1
|
Xu G, Zhao Z, Zhu Q, Zhu K, Zhang J, Wu D. Myelin water imaging of in vivo and ex vivo human brains using multi-echo gradient echo at 3 T and 7 T. Magn Reson Med 2025; 93:803-813. [PMID: 39370873 DOI: 10.1002/mrm.30310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE To compare the myelin water fraction (MWF) measurements between 3 T and 7 T and between in vivo and ex vivo human brains, and to investigate the relationship between multi-echo gradient-echo (mGRE)-based 3D MWF and myelin content using histological staining, which has not been validated in the human brain. METHODS In this study, we performed 3D mGRE-based MWF measurements on five ex vivo human brain hemispheres and five healthy volunteers at 3 T and 7 T with 1 mm isotropic resolution. The data were fitted with theT 2 * $$ {\mathrm{T}}_2^{\ast } $$ based on a three compartment complex-valued model to estimate MWF. We obtained myelin basic protein (MBP) staining from two tissue blocks and co-registered the MWF map and histology image for voxel-wise correlation between the two. RESULTS The MWF values measured from 7 T were overall higher than 7 T, but data between the two field strength demonstrated high correlations both in vivo (r = 0.88) and ex vivo (r = 0.83) across 19 white matter regions. Moreover, the MWF measurements showed a good agreement between in vivo and ex vivo assessments at 3 T (r = 0.61) and 7 T (r = 0.54). Based on MBP staining, the MWF values exhibited strong positive correlations with myelin content on both 3 T (r = 0.68 and r = 0.78 for the two tissue blocks) and 7 T (r = 0.64 and r = 0.82 for the two tissue blocks). CONCLUSION The findings demonstrated that the mGRE-based MWF mapping can be used to quantify myelin content in the human brain, despite the field-strength dependency of the measurements.
Collapse
Affiliation(s)
- Guojun Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhiyong Zhao
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinfeng Zhu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Keqing Zhu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology, The First Affiliated Hospital and School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Zhang
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology, The First Affiliated Hospital and School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Hervouin A, Bézy-Wendling J, Noury F. How to accurately quantify brain magnetic susceptibility in the context of Parkinson's disease: Validation on phantoms and healthy volunteers at 1.5 and 3 T. NMR IN BIOMEDICINE 2024; 37:e5182. [PMID: 38993048 DOI: 10.1002/nbm.5182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024]
Abstract
Currently, brain iron content represents a new neuromarker for understanding the physiopathological mechanisms leading to Parkinson's disease (PD). In vivo quantification of biological iron is possible by reconstructing magnetic susceptibility maps obtained using quantitative susceptibility mapping (QSM). Applying QSM is challenging, as up to now, no standardization of acquisition protocols and phase image processing has emerged from referenced studies. Our objectives were to compare the accuracy and the sensitivity of 10 QSM pipelines built from algorithms from the literature, applied on phantoms data and on brain data. Two phantoms, with known magnetic susceptibility ranges, were created from several solutions of gadolinium chelate. Twenty healthy volunteers from two age groups were included. Phantoms and brain data were acquired at 1.5 and 3 T, respectively. Susceptibility-weighted images were obtained using a 3D multigradient-recalled-echo sequence. For brain data, 3D anatomical T1- and T2-weighted images were also acquired to segment the deep gray nuclei of interest. Concerning in vitro data, the linear dependence of magnetic susceptibility versus gadolinium concentration and deviations from the theoretically expected values were calculated. For brain data, the accuracy and sensitivity of the QSM pipelines were evaluated in comparison with results from the literature and regarding the expected magnetic susceptibility increase with age, respectively. A nonparametric Mann-Whitney U-test was used to compare the magnetic susceptibility quantification in deep gray nuclei between the two age groups. Our methodology enabled quantifying magnetic susceptibility in human brain and the results were consistent with those from the literature. Statistically significant differences were obtained between the two age groups in all cerebral regions of interest. Our results show the importance of optimizing QSM pipelines according to the application and the targeted magnetic susceptibility range, to achieve accurate quantification. We were able to define the optimal QSM pipeline for future applications on patients with PD.
Collapse
Affiliation(s)
| | | | - Fanny Noury
- Univ Rennes, Inserm, LTSI-UMR 1099, Rennes, France
| |
Collapse
|
3
|
Mohammadi S, Ghaderi S, Fatehi F. Iron accumulation/overload and Alzheimer's disease risk factors in the precuneus region: A comprehensive narrative review. Aging Med (Milton) 2024; 7:649-667. [PMID: 39507230 PMCID: PMC11535174 DOI: 10.1002/agm2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Early cerebral and body iron dysregulation and accumulation interact with AD pathology, particularly in the precuneus, a crucial functional hub in cognitive functions. Quantitative susceptibility mapping (QSM), a novel post-processing approach, provides insights into tissue iron levels and cerebral oxygen metabolism and reveals abnormal iron accumulation early in AD. Increased iron deposition in the precuneus can lead to oxidative stress, neuroinflammation, and accelerated neurodegeneration. Metabolic disorders (diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity), genetic factors, and small vessel pathology contribute to abnormal iron accumulation in the precuneus. Therefore, in line with the growing body of literature in the precuneus region of patients with AD, QSM as a neuroimaging method could serve as a non-invasive biomarker to track disease progression, complement other imaging modalities, and aid in early AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
4
|
Zarkali A, Thomas GEC, Zetterberg H, Weil RS. Neuroimaging and fluid biomarkers in Parkinson's disease in an era of targeted interventions. Nat Commun 2024; 15:5661. [PMID: 38969680 PMCID: PMC11226684 DOI: 10.1038/s41467-024-49949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in Parkinson's disease is the variability in symptoms and rates of progression, underpinned by heterogeneity of pathological processes. Biomarkers are urgently needed for accurate diagnosis, patient stratification, monitoring disease progression and precise treatment. These were previously lacking, but recently, novel imaging and fluid biomarkers have been developed. Here, we consider new imaging approaches showing sensitivity to brain tissue composition, and examine novel fluid biomarkers showing specificity for pathological processes, including seed amplification assays and extracellular vesicles. We reflect on these biomarkers in the context of new biological staging systems, and on emerging techniques currently in development.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, Institute of Neurology, UCL, London, UK.
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Rimona S Weil
- Dementia Research Centre, Institute of Neurology, UCL, London, UK
- Department of Advanced Neuroimaging, UCL, London, UK
- Movement Disorders Centre, UCL, London, UK
| |
Collapse
|
5
|
Levi S, Ripamonti M, Moro AS, Cozzi A. Iron imbalance in neurodegeneration. Mol Psychiatry 2024; 29:1139-1152. [PMID: 38212377 PMCID: PMC11176077 DOI: 10.1038/s41380-023-02399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Iron is an essential element for the development and functionality of the brain, and anomalies in its distribution and concentration in brain tissue have been found to be associated with the most frequent neurodegenerative diseases. When magnetic resonance techniques allowed iron quantification in vivo, it was confirmed that the alteration of brain iron homeostasis is a common feature of many neurodegenerative diseases. However, whether iron is the main actor in the neurodegenerative process, or its alteration is a consequence of the degenerative process is still an open question. Because the different iron-related pathogenic mechanisms are specific for distinctive diseases, identifying the molecular mechanisms common to the various pathologies could represent a way to clarify this complex topic. Indeed, both iron overload and iron deficiency have profound consequences on cellular functioning, and both contribute to neuronal death processes in different manners, such as promoting oxidative damage, a loss of membrane integrity, a loss of proteostasis, and mitochondrial dysfunction. In this review, with the attempt to elucidate the consequences of iron dyshomeostasis for brain health, we summarize the main pathological molecular mechanisms that couple iron and neuronal death.
Collapse
Affiliation(s)
- Sonia Levi
- Vita-Salute San Raffaele University, Milano, Italy.
- IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | | | - Andrea Stefano Moro
- Vita-Salute San Raffaele University, Milano, Italy
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Anna Cozzi
- IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
6
|
Thomas GE, Hannaway N, Zarkali A, Shmueli K, Weil RS. Longitudinal Associations of Magnetic Susceptibility with Clinical Severity in Parkinson's Disease. Mov Disord 2024; 39:546-559. [PMID: 38173297 PMCID: PMC11141787 DOI: 10.1002/mds.29702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Dementia is common in Parkinson's disease (PD), but there is wide variation in its timing. A critical gap in PD research is the lack of quantifiable markers of progression, and methods to identify early stages of dementia. Atrophy-based magnetic resonance imaging (MRI) has limited sensitivity in detecting or tracking changes relating to PD dementia, but quantitative susceptibility mapping (QSM), sensitive to brain tissue iron, shows potential for these purposes. OBJECTIVE The objective of the paper is to study, for the first time, the longitudinal relationship between cognition and QSM in PD in detail. METHODS We present a longitudinal study of clinical severity in PD using QSM, including 59 PD patients (without dementia at study onset), and 22 controls over 3 years. RESULTS In PD, increased baseline susceptibility in the right temporal cortex, nucleus basalis of Meynert, and putamen was associated with greater cognitive severity after 3 years; and increased baseline susceptibility in basal ganglia, substantia nigra, red nucleus, insular cortex, and dentate nucleus was associated with greater motor severity after 3 years. Increased follow-up susceptibility in these regions was associated with increased follow-up cognitive and motor severity, with further involvement of hippocampus relating to cognitive severity. However, there were no consistent increases in susceptibility over 3 years. CONCLUSIONS Our study suggests that QSM may predict changes in cognitive severity many months prior to overt cognitive involvement in PD. However, we did not find robust longitudinal changes in QSM over the course of the study. Additional tissue metrics may be required together with QSM for it to monitor progression in clinical practice and therapeutic trials. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Naomi Hannaway
- Dementia Research CentreUCL Institute of NeurologyLondonUK
| | | | - Karin Shmueli
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Rimona S. Weil
- Dementia Research CentreUCL Institute of NeurologyLondonUK
- Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
- Movement Disorders ConsortiumUniversity College LondonLondonUK
| |
Collapse
|
7
|
Merenstein JL, Zhao J, Overson DK, Truong TK, Johnson KG, Song AW, Madden DJ. Depth- and curvature-based quantitative susceptibility mapping analyses of cortical iron in Alzheimer's disease. Cereb Cortex 2024; 34:bhad525. [PMID: 38185996 PMCID: PMC10839848 DOI: 10.1093/cercor/bhad525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
In addition to amyloid beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been associated with elevated iron in deep gray matter nuclei using quantitative susceptibility mapping (QSM). However, only a few studies have examined cortical iron, using more macroscopic approaches that cannot assess layer-specific differences. Here, we conducted column-based QSM analyses to assess whether AD-related increases in cortical iron vary in relation to layer-specific differences in the type and density of neurons. We obtained global and regional measures of positive (iron) and negative (myelin, protein aggregation) susceptibility from 22 adults with AD and 22 demographically matched healthy controls. Depth-wise analyses indicated that global susceptibility increased from the pial surface to the gray/white matter boundary, with a larger slope for positive susceptibility in the left hemisphere for adults with AD than controls. Curvature-based analyses indicated larger global susceptibility for adults with AD versus controls; the right hemisphere versus left; and gyri versus sulci. Region-of-interest analyses identified similar depth- and curvature-specific group differences, especially for temporo-parietal regions. Finding that iron accumulates in a topographically heterogenous manner across the cortical mantle may help explain the profound cognitive deterioration that differentiates AD from the slowing of general motor processes in healthy aging.
Collapse
Affiliation(s)
- Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
| | - Jiayi Zhao
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - Kim G Johnson
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| |
Collapse
|
8
|
Tang D, Sun C, Yang J, Fan L, Wang Y. Advances in the Study of the Pathology and Treatment of Alzheimer's Disease and Its Association with Periodontitis. Life (Basel) 2023; 13:2203. [PMID: 38004343 PMCID: PMC10672606 DOI: 10.3390/life13112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of β-amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Chang Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Jumei Yang
- Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| |
Collapse
|
9
|
Ahmed M, Chen J, Arani A, Senjem ML, Cogswell PM, Jack CR, Liu C. The diamagnetic component map from quantitative susceptibility mapping (QSM) source separation reveals pathological alteration in Alzheimer's disease-driven neurodegeneration. Neuroimage 2023; 280:120357. [PMID: 37661080 DOI: 10.1016/j.neuroimage.2023.120357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
A sensitive and accurate imaging technique capable of tracking the disease progression of Alzheimer's Disease (AD) driven amnestic dementia would be beneficial. A currently available method for pathology detection in AD with high accuracy is Positron Emission Tomography (PET) imaging, despite certain limitations such as low spatial resolution, off-targeting error, and radiation exposure. Non-invasive MRI scanning with quantitative magnetic susceptibility measurements can be used as a complementary tool. To date, quantitative susceptibility mapping (QSM) has widely been used in tracking deep gray matter iron accumulation in AD. The present work proposes that by compartmentalizing quantitative susceptibility into paramagnetic and diamagnetic components, more holistic information about AD pathogenesis can be acquired. Particularly, diamagnetic component susceptibility (DCS) can be a powerful indicator for tracking protein accumulation in the gray matter (GM), demyelination in the white matter (WM), and relevant changes in the cerebrospinal fluid (CSF). In the current work, voxel-wise group analysis of the WM and the CSF regions show significantly lower |DCS| (the absolute value of DCS) value for amnestic dementia patients compared to healthy controls. Additionally, |DCS| and τ PET standardized uptake value ratio (SUVr) were found to be associated in several GM regions typically affected by τ deposition in AD. Therefore, we propose that the separated diamagnetic susceptibility can be used to track pathological neurodegeneration in different tissue types and regions of the brain. With the initial evidence, we believe the usage of compartmentalized susceptibility demonstrates substantive potential as an MRI-based technique for tracking AD-driven neurodegeneration.
Collapse
Affiliation(s)
- Maruf Ahmed
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Jingjia Chen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Arvin Arani
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Information Technology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
10
|
Lee EY, Kim J, Prado-Rico JM, Du G, Lewis MM, Kong L, Kim BG, Hong YS, Yanosky JD, Mailman RB, Huang X. Higher hippocampal diffusivity values in welders are associated with greater R2* in the red nucleus and lower psychomotor performance. Neurotoxicology 2023; 96:53-68. [PMID: 36966945 PMCID: PMC10445214 DOI: 10.1016/j.neuro.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
INTRODUCTION Chronic excessive welding exposure may be related to higher metal accumulation and structural differences in different subcortical structures. We examined how welding affected brain structures and their associations with metal exposure and neurobehavioral consequences. METHODS Study includes 42 welders and 31 controls without a welding history. Welding-related structural differences were assessed by volume and diffusion tensor imaging (DTI) metrics in basal ganglia, red nucleus (RN), and hippocampus. Metal exposure was estimated by both exposure questionnaires and whole blood metal levels. Brain metal accumulations were estimated by R1 (for Mn) and R2* (for Fe). Neurobehavioral status was assessed by standard neuropsychological tests. RESULTS Compared to controls, welders displayed higher hippocampal mean (MD), axial (AD), and radial diffusivity (RD) (p's < 0.036), but similar DTI or volume in other ROIs (p's > 0.117). Welders had higher blood metal levels (p's < 0.004), higher caudate and RN R2* (p's < 0.014), and lower performance on processing/psychomotor speed, executive function, and visuospatial processing tasks (p's < 0.046). Higher caudate and RN R2* were associated with higher blood Fe and Pb (p's < 0.043), respectively. RN R2* was a significant predictor of all hippocampal diffusivity metrics (p's < 0.006). Higher hippocampal MD and RD values were associated with lower Trail Making Test-A scores (p's < 0.025). A mediation analysis of both groups revealed blood Pb indirectly affected hippocampal diffusivity via RN R2* (p's < 0.041). DISCUSSION Welding-related higher hippocampal diffusivity metrics may be associated with higher RN R2* and lower psychomotor speed performance. Future studies are warranted to test the role of Pb exposure in these findings.
Collapse
Affiliation(s)
- Eun-Young Lee
- Department of Health Care and Science, Dong-A University, Busan, South Korea.
| | - Juhee Kim
- Department of Health Care and Science, Dong-A University, Busan, South Korea
| | - Janina Manzieri Prado-Rico
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Guangwei Du
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mechelle M Lewis
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Lan Kong
- Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Byoung-Gwon Kim
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, South Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, South Korea
| | - Jeff D Yanosky
- Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Richard B Mailman
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Kinesiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
11
|
Shih NC, Kurniawan ND, Cabeen RP, Korobkova L, Wong E, Chui HC, Clark KA, Miller CA, Hawes D, Jones KT, Sepehrband F. Microstructural mapping of dentate gyrus pathology in Alzheimer's disease: A 16.4 Tesla MRI study. Neuroimage Clin 2023; 37:103318. [PMID: 36630864 PMCID: PMC9841366 DOI: 10.1016/j.nicl.2023.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The dentate gyrus (DG) is an integral portion of the hippocampal formation, and it is composed of three layers. Quantitative magnetic resonance (MR) imaging has the capability to map brain tissue microstructural properties which can be exploited to investigate neurodegeneration in Alzheimer's disease (AD). However, assessing subtle pathological changes within layers requires high resolution imaging and histological validation. In this study, we utilized a 16.4 Tesla scanner to acquire ex vivo multi-parameter quantitative MRI measures in human specimens across the layers of the DG. Using quantitative diffusion tensor imaging (DTI) and multi-parameter MR measurements acquired from AD (N = 4) and cognitively normal control (N = 6) tissues, we performed correlation analyses with histological measurements. Here, we found that quantitative MRI measures were significantly correlated with neurofilament and phosphorylated Tau density, suggesting sensitivity to layer-specific changes in the DG of AD tissues.
Collapse
Affiliation(s)
- Nien-Chu Shih
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nyoman D Kurniawan
- Center for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| | - Ryan P Cabeen
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura Korobkova
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089. USA
| | - Ellen Wong
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kristi A Clark
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Carol A Miller
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Debra Hawes
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Kymry T Jones
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Farshid Sepehrband
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
12
|
Zhao Z, Zhang L, Luo W, Cao Z, Zhu Q, Kong X, Zhu K, Zhang J, Wu D. Layer-specific microstructural patterns of anterior hippocampus in Alzheimer's disease with ex vivo diffusion MRI at 14.1 T. Hum Brain Mapp 2022; 44:458-471. [PMID: 36053237 PMCID: PMC9842914 DOI: 10.1002/hbm.26062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023] Open
Abstract
High-resolution ex vivo diffusion MRI (dMRI) can provide exquisite mesoscopic details and microstructural information of the human brain. Microstructural pattern of the anterior part of human hippocampus, however, has not been well elucidated with ex vivo dMRI, either in normal or disease conditions. The present study collected high-resolution (0.1 mm isotropic) dMRI of post-mortem anterior hippocampal tissues from four Alzheimer's diseases (AD), three primary age-related tauopathy (PART), and three healthy control (HC) brains on a 14.1 T spectrometer. We evaluated how AD affected dMRI-based microstructural features in different layers and subfields of anterior hippocampus. In the HC samples, we found higher anisotropy, lower diffusivity, and more streamlines in the layers within cornu ammonis (CA) than those within dentate gyrus (DG). Comparisons between disease groups showed that (1) anisotropy measurements in the CA layers of AD, especially stratum lacunosum (SL) and stratum radiatum (SR), had higher regional variability than the other two groups; (2) streamline density in the DG layers showed a gradually increased variance from HC to PART to AD; (3) AD also showed the higher variability in terms of inter-layer connectivity than HC or PART. Moreover, voxelwise correlation analysis between the coregistered dMRI and histopathology images revealed significant correlations between dMRI measurements and the contents of amyloid beta (Aβ)/tau protein in specific layers of AD samples. These findings may reflect layer-specific microstructural characteristics in different hippocampal subfields at the mesoscopic resolution, which were associated with protein deposition in the anterior hippocampus of AD patients.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Lei Zhang
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of NeurobiologyZhejiang University School of MedicineHangzhouChina
| | - Wanrong Luo
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Zuozhen Cao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Qinfeng Zhu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Xueqian Kong
- Department of ChemistryZhejiang UniversityHangzhouChina
| | - Keqing Zhu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of NeurobiologyZhejiang University School of MedicineHangzhouChina
| | - Jing Zhang
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of NeurobiologyZhejiang University School of MedicineHangzhouChina,Department of Pathology, The First Affiliated Hospital and School of MedicineZhejiang UniversityHangzhouChina
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| |
Collapse
|
13
|
Uchida Y, Kan H, Sakurai K, Oishi K, Matsukawa N. Quantitative susceptibility mapping as an imaging biomarker for Alzheimer’s disease: The expectations and limitations. Front Neurosci 2022; 16:938092. [PMID: 35992906 PMCID: PMC9389285 DOI: 10.3389/fnins.2022.938092] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and a distressing diagnosis for individuals and caregivers. Researchers and clinical trials have mainly focused on β-amyloid plaques, which are hypothesized to be one of the most important factors for neurodegeneration in AD. Meanwhile, recent clinicopathological and radiological studies have shown closer associations of tau pathology rather than β-amyloid pathology with the onset and progression of Alzheimer’s symptoms. Toward a biological definition of biomarker-based research framework for AD, the 2018 National Institute on Aging–Alzheimer’s Association working group has updated the ATN classification system for stratifying disease status in accordance with relevant pathological biomarker profiles, such as cerebral β-amyloid deposition, hyperphosphorylated tau, and neurodegeneration. In addition, altered iron metabolism has been considered to interact with abnormal proteins related to AD pathology thorough generating oxidative stress, as some prior histochemical and histopathological studies supported this iron-mediated pathomechanism. Quantitative susceptibility mapping (QSM) has recently become more popular as a non-invasive magnetic resonance technique to quantify local tissue susceptibility with high spatial resolution, which is sensitive to the presence of iron. The association of cerebral susceptibility values with other pathological biomarkers for AD has been investigated using various QSM techniques; however, direct evidence of these associations remains elusive. In this review, we first briefly describe the principles of QSM. Second, we focus on a large variety of QSM applications, ranging from common applications, such as cerebral iron deposition, to more recent applications, such as the assessment of impaired myelination, quantification of venous oxygen saturation, and measurement of blood– brain barrier function in clinical settings for AD. Third, we mention the relationships among QSM, established biomarkers, and cognitive performance in AD. Finally, we discuss the role of QSM as an imaging biomarker as well as the expectations and limitations of clinically useful diagnostic and therapeutic implications for AD.
Collapse
Affiliation(s)
- Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Yuto Uchida,
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Ōbu, Japan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Noriyuki Matsukawa,
| |
Collapse
|
14
|
Zhang M, Fu H, Hu W, Leng J, Zhang Y. Versatile Dicyanomethylene-Based Fluorescent Probes for the Detection of β-Amyloid in Alzheimer's Disease: A Theoretical Perspective. Int J Mol Sci 2022; 23:8619. [PMID: 35955758 PMCID: PMC9369443 DOI: 10.3390/ijms23158619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Motivated by the growing demand for target chemosensors designed with diagnostic or therapeutic capability for fibrils related to amyloidosis diseases, we investigated in the present work the response mechanism of dicyanomethylene-based fluorescent probes for amyloid fibril using a combined approach, including molecular docking, quantum mechanics/molecular mechanics (QM/MM), and the quantum chemical method. Various binding modes for the probes in β-amyloid (Aβ) are discussed, and the fibril environment-induced molecular optical changes at the most stable site are compared to the fibril-free situation in aqueous environments. The results reveal that the fluorescence enhancement for the probes in Aβ observed experimentally is an average consequence over multiple binding sites. In particular, the conformational difference, including conjugation length and donor effect, significantly contributes to the optical property of the studied probes both in water and fibril. To further estimate the transition nature of the molecular photoabsorption and photoemission processes, the hole-electron distribution and the structural variation on the first excited state of the probes are investigated in detail. On the basis of the calculations, structure-property relationships for the studied chemosensors are established. Our computational approach with the ability to elucidate the available experimental results can be used for designing novel molecular probes with applications to Aβ imaging and the early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Jiancai Leng
- International School for Optoelectronic Engineering, School of Electrical Engineering and Automation, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.Z.); (H.F.); (W.H.)
| | - Yujin Zhang
- International School for Optoelectronic Engineering, School of Electrical Engineering and Automation, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.Z.); (H.F.); (W.H.)
| |
Collapse
|
15
|
Meng X, Wu Y, Liu W, Wang Y, Xu Z, Jiao Z. Research on Voxel-Based Features Detection and Analysis of Alzheimer’s Disease Using Random Survey Support Vector Machine. Front Neuroinform 2022; 16:856295. [PMID: 35418845 PMCID: PMC8995748 DOI: 10.3389/fninf.2022.856295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a degenerative disease of the central nervous system characterized by memory and cognitive dysfunction, as well as abnormal changes in behavior and personality. The research focused on how machine learning classified AD became a recent hotspot. In this study, we proposed a novel voxel-based feature detection framework for AD. Specifically, using 649 voxel-based morphometry (VBM) methods obtained from MRI in Alzheimer’s Disease Neuroimaging Initiative (ADNI), we proposed a feature detection method according to the Random Survey Support Vector Machines (RS-SVM) and combined the research process based on image-, gene-, and pathway-level analysis for AD prediction. Particularly, we constructed 136, 141, and 113 novel voxel-based features for EMCI (early mild cognitive impairment)-HC (healthy control), LMCI (late mild cognitive impairment)-HC, and AD-HC groups, respectively. We applied linear regression model, least absolute shrinkage and selection operator (Lasso), partial least squares (PLS), SVM, and RS-SVM five methods to test and compare the accuracy of these features in these three groups. The prediction accuracy of the AD-HC group using the RS-SVM method was higher than 90%. In addition, we performed functional analysis of the features to explain the biological significance. The experimental results using five machine learning indicate that the identified features are effective for AD and HC classification, the RS-SVM framework has the best classification accuracy, and our strategy can identify important brain regions for AD.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Yue Wu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Ying Wang
- School of Computer Science and Engineering, Changshu Institute of Technology, Changshu, China
| | - Zhe Xu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
- *Correspondence: Zhuqing Jiao,
| |
Collapse
|
16
|
Yan Y, Aierken A, Wang C, Song D, Ni J, Wang Z, Quan Z, Qing H. A potential biomarker of preclinical Alzheimer's disease: The olfactory dysfunction and its pathogenesis-based neural circuitry impairments. Neurosci Biobehav Rev 2021; 132:857-869. [PMID: 34810025 DOI: 10.1016/j.neubiorev.2021.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 01/24/2023]
Abstract
The olfactory dysfunction can signal and act as a potential biomarker of preclinical AD. However, the precise regulatory mechanism of olfactory function on the neural pathogenesis of AD is still unclear. The impairment of neural networks in olfaction system has been shown to be tightly associated with AD. As key brain regions of the olfactory system, the olfactory bulb (OB) and the piriform cortex (PCx) have a profound influence on the olfactory function. Therefore, this review will explore the mechanism of olfactory dysfunction in preclinical AD in the perspective of abnormal neural networks in the OB and PCx and their associated brain regions, especially from two aspects of aberrant oscillations and synaptic plasticity damages, which help better understand the underlying mechanism of olfactory neural network damages related to AD.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|