1
|
Atta AM, Rihan N, Abdelwaly AM, Nafie MS, Elgawish MS, Moustafa SM, Helal MA, Darwish KM. Development, biological evaluation, and molecular modelling of novel isocytosine and guanidine derivatives as BACE1 inhibitors using a fragment growing strategy. RSC Med Chem 2025:d4md00698d. [PMID: 40093519 PMCID: PMC11904611 DOI: 10.1039/d4md00698d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by significant synaptic loss and neuronal death in brain regions critical for cognitive functions. The disease is characterized by the formation of amyloid plaques, which are extracellular constructs consisting mainly of aggregated Aβ42. The latter is a peptide formed by the proteolytic cleavage of β-amyloid precursor protein (APP) by two enzymes, β- and γ-secretase. Therefore, inhibition of the aspartic protease β-secretase (BACE1) is considered a promising therapeutic approach for the treatment and prevention of Alzheimer's disease. Unfortunately, a limited number of β-secretase inhibitors have reached human trials and eventually failed due to inconclusive therapeutic and/or safety profiles. In this study, we developed drug-like molecules with a β-secretase inhibitory activity using a fragment growing strategy on isocytosine and acyl guanidine warheads. Our approach is based on optimizing the hydrophobic part of the molecules to obtain a conformationally restrained scaffold complementary to the hydrophobic pockets within the enzyme active site. We developed 32 compounds with promising in vitro inhibitory activity against BACE1 down to sub-micromolar IC50. Docking simulation studies were performed to understand the mode of binding of the prepared compounds. We demonstrated that compounds with superior activities, such as 16b and 16g, are able to provide the best balance between the steric shape and position of the polar substituent for achieving preferential anchoring into the S1, S3, S1', and S2' sub-pockets. Further, in vivo characterization of selected drug-like candidates of the benzimidazole series AMK-IV, namely 16a and 16k, demonstrated their ability to reduce oxidation stress and their safety within brain and liver tissues.
Collapse
Affiliation(s)
- Asmaa M Atta
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC) Badr City Cairo (P.O. 11829) Egypt
| | - Nouran Rihan
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology Giza (P.O. 12587) Egypt
| | - Ahmad M Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology Giza (P.O. 12587) Egypt
- Institute for Computational Molecular Science, and, Department of Chemistry, Temple University Philadelphia Pennsylvania (P.O. 19122) USA
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah Sharjah (P.O. 27272) United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University Ismailia (P.O. 41522) Egypt
| | - Mohamed S Elgawish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia (P.O. 41522) Egypt
- Center for Molecular Spectroscopy and Dynamics, Institute of Basic Science, Korea University Seoul (P.O. 02841) Republic of South Korea
| | - Samia M Moustafa
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia (P.O. 41522) Egypt
| | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology Giza (P.O. 12587) Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia (P.O. 41522) Egypt
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia (P.O. 41522) Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala (P.O. 43713) Egypt
| |
Collapse
|
2
|
Feldman HH, Cummings JL, Boxer AL, Staffaroni AM, Knopman DS, Sukoff Rizzo SJ, Territo PR, Arnold SE, Ballard C, Beher D, Boeve BF, Dacks PA, Diaz K, Ewen C, Fiske B, Gonzalez MI, Harris GA, Hoffman BJ, Martinez TN, McDade E, Nisenbaum LK, Palma J, Quintana M, Rabinovici GD, Rohrer JD, Rosen HJ, Troyer MD, Kim DY, Tanzi RE, Zetterberg H, Ziogas NK, May PC, Rommel A. A framework for translating tauopathy therapeutics: Drug discovery to clinical trials. Alzheimers Dement 2024; 20:8129-8152. [PMID: 39316411 PMCID: PMC11567863 DOI: 10.1002/alz.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
The tauopathies are defined by pathological tau protein aggregates within a spectrum of clinically heterogeneous neurodegenerative diseases. The primary tauopathies meet the definition of rare diseases in the United States. There is no approved treatment for primary tauopathies. In this context, designing the most efficient development programs to translate promising targets and treatments from preclinical studies to early-phase clinical trials is vital. In September 2022, the Rainwater Charitable Foundation convened an international expert workshop focused on the translation of tauopathy therapeutics through early-phase trials. Our report on the workshop recommends a framework for principled drug development and a companion lexicon to facilitate communication focusing on reproducibility and achieving common elements. Topics include the selection of targets, drugs, biomarkers, participants, and study designs. The maturation of pharmacodynamic biomarkers to demonstrate target engagement and surrogate disease biomarkers is a crucial unmet need. HIGHLIGHTS: Experts provided a framework to translate therapeutics (discovery to clinical trials). Experts focused on the "5 Rights" (target, drug, biomarker, participants, trial). Current research on frontotemporal degeneration, progressive supranuclear palsy, and corticobasal syndrome therapeutics includes 32 trials (37% on biologics) Tau therapeutics are being tested in Alzheimer's disease; primary tauopathies have a large unmet need.
Collapse
Affiliation(s)
- Howard H. Feldman
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jeffrey L. Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of Nevada at Las VegasLas VegasNevadaUSA
| | - Adam L. Boxer
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Adam M. Staffaroni
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | | | - Paul R. Territo
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Steven E. Arnold
- Department of NeurologyHarvard Medical SchoolMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Clive Ballard
- College of Medicine and HealthUniversity of ExeterExeterUK
| | | | | | - Penny A. Dacks
- The Association for Frontotemporal DegenerationKing of PrussiaPennsylvaniaUSA
| | | | | | - Brian Fiske
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | | | | | | | | | - Eric McDade
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Jose‐Alberto Palma
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | | | - Gil D. Rabinovici
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jonathan D. Rohrer
- Department of Neurodegenerative DiseaseDementia Research CentreQueen Square Institute of NeurologyUniversity College of LondonLondonUK
| | - Howard J. Rosen
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Doo Yeon Kim
- Department of NeurologyGenetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Rudolph E. Tanzi
- Department of NeurologyGenetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistrySahlgrenska Academy at the University of GothenburgMölndalSweden
| | | | - Patrick C. May
- ADvantage Neuroscience Consulting LLCFort WayneIndianaUSA
| | - Amy Rommel
- Rainwater Charitable FoundationFort WorthTexasUSA
| |
Collapse
|
3
|
Daniels AJ, McDade E, Llibre-Guerra JJ, Xiong C, Perrin RJ, Ibanez L, Supnet-Bell C, Cruchaga C, Goate A, Renton AE, Benzinger TL, Gordon BA, Hassenstab J, Karch C, Popp B, Levey A, Morris J, Buckles V, Allegri RF, Chrem P, Berman SB, Chhatwal JP, Farlow MR, Fox NC, Day GS, Ikeuchi T, Jucker M, Lee JH, Levin J, Lopera F, Takada L, Sosa AL, Martins R, Mori H, Noble JM, Salloway S, Huey E, Rosa-Neto P, Sánchez-Valle R, Schofield PR, Roh JH, Bateman RJ, Dominantly Inherited Alzheimer Network. 15 Years of Longitudinal Genetic, Clinical, Cognitive, Imaging, and Biochemical Measures in DIAN. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311689. [PMID: 39148846 PMCID: PMC11326320 DOI: 10.1101/2024.08.08.24311689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This manuscript describes and summarizes the Dominantly Inherited Alzheimer Network Observational Study (DIAN Obs), highlighting the wealth of longitudinal data, samples, and results from this human cohort study of brain aging and a rare monogenic form of Alzheimer's disease (AD). DIAN Obs is an international collaborative longitudinal study initiated in 2008 with support from the National Institute on Aging (NIA), designed to obtain comprehensive and uniform data on brain biology and function in individuals at risk for autosomal dominant AD (ADAD). ADAD gene mutations in the amyloid protein precursor (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes are deterministic causes of ADAD, with virtually full penetrance, and a predictable age at symptomatic onset. Data and specimens collected are derived from full clinical assessments, including neurologic and physical examinations, extensive cognitive batteries, structural and functional neuro-imaging, amyloid and tau pathological measures using positron emission tomography (PET), flurordeoxyglucose (FDG) PET, cerebrospinal fluid and blood collection (plasma, serum, and whole blood), extensive genetic and multi-omic analyses, and brain donation upon death. This comprehensive evaluation of the human nervous system is performed longitudinally in both mutation carriers and family non-carriers, providing one of the deepest and broadest evaluations of the human brain across decades and through AD progression. These extensive data sets and samples are available for researchers to address scientific questions on the human brain, aging, and AD.
Collapse
Affiliation(s)
- Alisha J. Daniels
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Eric McDade
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Chengjie Xiong
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Richard J. Perrin
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Laura Ibanez
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Carlos Cruchaga
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alan E. Renton
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Brian A. Gordon
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Jason Hassenstab
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Celeste Karch
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Brent Popp
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Allan Levey
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - John Morris
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Virginia Buckles
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Patricio Chrem
- Institute of Neurological Research FLENI, Buenos Aires, Argentina
| | | | - Jasmeer P. Chhatwal
- Massachusetts General and Brigham & Women’s Hospitals, Harvard Medical School, Boston MA, USA
| | | | - Nick C. Fox
- UK Dementia Research Institute at University College London, London, United Kingdom
- University College London, London, United Kingdom
| | | | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | - Johannes Levin
- DZNE, German Center for Neurodegenerative Diseases, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Ana Luisa Sosa
- Instituto Nacional de Neurologia y Neurocirugla Innn, Mexico City, Mexico
| | - Ralph Martins
- Edith Cowan University, Western Australia, Australia
| | | | - James M. Noble
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, and GH Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Edward Huey
- Brown University, Butler Hospital, Providence, RI, USA
| | - Pedro Rosa-Neto
- Centre de Recherche de L’hopital Douglas and McGill University, Montreal, Quebec
| | - Raquel Sánchez-Valle
- Hospital Clínic de Barcelona. IDIBAPS. University of Barcelona, Barcelona, Spain
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jee Hoon Roh
- Korea University, Korea University Anam Hospital, Seoul, South Korea
| | | | | |
Collapse
|
4
|
Sosa AL, Brucki SMD, Crivelli L, Lopera FJ, Acosta DM, Acosta‐Uribe J, Aguilar D, Aguilar‐Navarro SG, Allegri RF, Bertolucci PHF, Calandri IL, Carrillo MC, Mendez PAC, Cornejo‐Olivas M, Custodio N, Damian A, de Souza LC, Duran‐Aniotz C, García AM, García‐Peña C, Gonzales MM, Grinberg LT, Ibanez AM, Illanes‐Manrique MZ, Jack CR, Leon‐Salas JM, Llibre‐Guerra JJ, Luna‐Muñoz J, Matallana D, Miller BL, Naci L, Parra MA, Pericak‐Vance M, Piña‐Escudero SD, França Resende EDP, Ringman JM, Sevlever G, Slachevsky A, Suemoto CK, Valcour V, Villegas‐Lanau A, Yassuda MS, Mahinrad S, Sexton C. Advancements in dementia research, diagnostics, and care in Latin America: Highlights from the 2023 Alzheimer's Association International conference satellite symposium in Mexico City. Alzheimers Dement 2024; 20:5009-5026. [PMID: 38801124 PMCID: PMC11247679 DOI: 10.1002/alz.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION While Latin America (LatAm) is facing an increasing burden of dementia due to the rapid aging of the population, it remains underrepresented in dementia research, diagnostics, and care. METHODS In 2023, the Alzheimer's Association hosted its eighth satellite symposium in Mexico, highlighting emerging dementia research, priorities, and challenges within LatAm. RESULTS Significant initiatives in the region, including intracountry support, showcased their efforts in fostering national and international collaborations; genetic studies unveiled the unique genetic admixture in LatAm; researchers conducting emerging clinical trials discussed ongoing culturally specific interventions; and the urgent need to harmonize practices and studies, improve diagnosis and care, and use affordable biomarkers in the region was highlighted. DISCUSSION The myriad of topics discussed at the 2023 AAIC satellite symposium highlighted the growing research efforts in LatAm, providing valuable insights into dementia biology, genetics, epidemiology, treatment, and care.
Collapse
|
5
|
Howard L, Abdelnour C, Abner EL, Allegri RF, Dodge HH, Gauthier S, Hoyos CM, Jicha GA, Kehoe PG, Mummery CJ, Ogunniyi A, Scarmeas N, Chen X, Titiner JR, Weber CR, Peters R. Decentralized clinical trials for medications to reduce the risk of dementia: Consensus report and guidance. Alzheimers Dement 2024; 20:4625-4634. [PMID: 38824659 PMCID: PMC11247660 DOI: 10.1002/alz.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION Recent growth in the functionality and use of technology has prompted an increased interest in the potential for remote or decentralized clinical trials in dementia. There are many potential benefits associated with decentralized medication trials, but we currently lack specific recommendations for their delivery in the dementia field. METHODS A modified Delphi method engaged an expert panel to develop recommendations for the conduct of decentralized medication trials in dementia prevention. A working group of researchers and clinicians with expertise in dementia trials further refined the recommendations. RESULTS Overall, the recommendations support the delivery of decentralized trials in dementia prevention provided adequate safety checks and balances are included. A total of 40 recommendations are presented, spanning aspects of decentralized clinical trials, including safety, dispensing, outcome assessment, and data collection. DISCUSSION These recommendations provide an accessible, pragmatic guide for the design and conduct of remote medication trials for dementia prevention. HIGHLIGHTS Clinical trials of medication have begun adopting decentralized approaches. Researchers in the field lack guidance on what would be appropriate circumstances and frameworks for what would be appropriate circumstances and frameworks for the use of decentralized trial methods in dementia prevention. The present report provides consensus-based expert recommendations for decentralized clinical trials for dementia prevention.
Collapse
Affiliation(s)
- Leanne Howard
- Brain Health, The George Institute for Global Health, Sydney, New South Wales, Australia
- School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
| | - Erin L Abner
- Department of Epidemiology and Environmental Health, University of Kentucky, Lexington, USA
| | - Ricardo F Allegri
- Departament of Cognitive Neurology, Neuropsychology, and Neuropsychiatry, Instituto de Investigaciones Neurologicas Fleni, Buenos Aires, Argentina
- Department of Neurosciences, Universidad de la Costa, Barranquilla, Colombia
| | - Hiroko H Dodge
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Serge Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Camilla M Hoyos
- Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gregory A Jicha
- Department of Epidemiology and Environmental Health, University of Kentucky, Lexington, USA
| | - Patrick G Kehoe
- Translational Health Sciences, Bristol Medical School University of Bristol, Bristol, UK
| | | | | | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Columbia University, New York, New York, USA
| | - Xiaoying Chen
- Brain Health, The George Institute for Global Health, Sydney, New South Wales, Australia
- School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Jodie R Titiner
- International Society to Advance Alzheimer's Research and Treatment, Alzheimer's Association, Chicago, USA
| | - Christopher R Weber
- International Society to Advance Alzheimer's Research and Treatment, Alzheimer's Association, Chicago, USA
| | - Ruth Peters
- Brain Health, The George Institute for Global Health, Sydney, New South Wales, Australia
- School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
- School of Public Health, Imperial College London, London, UK
| |
Collapse
|
6
|
de Jong AJ, Santa-Ana-Tellez Y, Zuidgeest MGP, Grupstra RJ, Jami F, de Boer A, Gardarsdottir H. Direct-to-participant investigational medicinal product supply in clinical trials in Europe: Exploring the experiences of sponsors, site staff and couriers. Br J Clin Pharmacol 2023; 89:3512-3522. [PMID: 37438875 DOI: 10.1111/bcp.15850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023] Open
Abstract
AIMS Insights into the current practice of direct-to-participant (DtP) supply of investigational medicinal product (IMP) in the context of clinical trials conducted in Europe are needed, as regulations are unharmonized. This study is set out to explore how DtP IMP supply has been employed in Europe and what the advantages and disadvantages and barriers and facilitators of its implementation are. METHODS We conducted semi-structured interviews with representatives from sponsor companies, courier services and site study staff involved in the IMP dispensing and delivery process in Europe. Interviews were conducted between May and November 2021, and data were analysed following thematic analysis. RESULTS Sixteen respondents participated in one of the 12 interviews. Respondents had experience with different models of DtP IMP supply including shipment from the investigative site, a central pharmacy (a depot under the control of a pharmacist) and a local pharmacy-aiming to reduce trial participation burden. The respondents indicated that investigative site-to-participant shipment is not affected by regulatory barriers, but could burden site staff. Shipment from central locations was considered most efficient, but possible regulatory barriers related to maintaining participants' privacy and investigator oversight were identified. The respondents indicated that the involvement of local pharmacies to dispense IMP can be considered when the IMP is authorized. CONCLUSIONS Several DtP IMP supply models are implemented in clinical trials conducted in Europe. In this study, three main DtP IMP models were identified, which can be referenced when describing these approaches for regulatory approval.
Collapse
Affiliation(s)
- Amos J de Jong
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Yared Santa-Ana-Tellez
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mira G P Zuidgeest
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renske J Grupstra
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Fatemeh Jami
- Strategic Advice R&D Quality Assurance, AstraZeneca, Cambridge, UK
| | - Anthonius de Boer
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Dutch Medicines Evaluation Board, Utrecht, The Netherlands
| | - Helga Gardarsdottir
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Clinical Pharmacy, Division Laboratory and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
7
|
van der Ende EL, In ‘t Veld SGJG, Hanskamp I, van der Lee S, Dijkstra JIR, Hok-A-Hin YS, Blujdea ER, van Swieten JC, Irwin DJ, Chen-Plotkin A, Hu WT, Lemstra AW, Pijnenburg YAL, van der Flier WM, del Campo M, Teunissen CE, Vermunt L. CSF proteomics in autosomal dominant Alzheimer's disease highlights parallels with sporadic disease. Brain 2023; 146:4495-4507. [PMID: 37348871 PMCID: PMC10629764 DOI: 10.1093/brain/awad213] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/24/2023] Open
Abstract
Autosomal dominant Alzheimer's disease (ADAD) offers a unique opportunity to study pathophysiological changes in a relatively young population with few comorbidities. A comprehensive investigation of proteome changes occurring in ADAD could provide valuable insights into AD-related biological mechanisms and uncover novel biomarkers and therapeutic targets. Furthermore, ADAD might serve as a model for sporadic AD, but in-depth proteome comparisons are lacking. We aimed to identify dysregulated CSF proteins in ADAD and determine the degree of overlap with sporadic AD. We measured 1472 proteins in CSF of PSEN1 or APP mutation carriers (n = 22) and age- and sex-matched controls (n = 20) from the Amsterdam Dementia Cohort using proximity extension-based immunoassays (PEA). We compared protein abundance between groups with two-sided t-tests and identified enriched biological pathways. Using the same protein panels in paired plasma samples, we investigated correlations between CSF proteins and their plasma counterparts. Finally, we compared our results with recently published PEA data from an international cohort of sporadic AD (n = 230) and non-AD dementias (n = 301). All statistical analyses were false discovery rate-corrected. We detected 66 differentially abundant CSF proteins (65 increased, 1 decreased) in ADAD compared to controls (q < 0.05). The most strongly upregulated proteins (fold change >1.8) were related to immunity (CHIT1, ITGB2, SMOC2), cytoskeletal structure (MAPT, NEFL) and tissue remodelling (TMSB10, MMP-10). Significant CSF-plasma correlations were found for the upregulated proteins SMOC2 and LILR1B. Of the 66 differentially expressed proteins, 36 had been measured previously in the sporadic dementias cohort, 34 of which (94%) were also significantly upregulated in sporadic AD, with a strong correlation between the fold changes of these proteins in both cohorts (rs = 0.730, P < 0.001). Twenty-nine of the 36 proteins (81%) were also upregulated among non-AD patients with suspected AD co-pathology. This CSF proteomics study demonstrates substantial biochemical similarities between ADAD and sporadic AD, suggesting involvement of the same biological processes. Besides known AD-related proteins, we identified several relatively novel proteins, such as TMSB10, MMP-10 and SMOC2, which have potential as novel biomarkers. With shared pathophysiological CSF changes, ADAD study findings might be translatable to sporadic AD, which could greatly expedite therapy development.
Collapse
Affiliation(s)
- Emma L van der Ende
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sjors G J G In ‘t Veld
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Iris Hanskamp
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sven van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Janna I R Dijkstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Elena R Blujdea
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - John C van Swieten
- Alzheimer Center and Department of Neurology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marta del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28003 Madrid, Spain
- Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Nudelman KNH, Jackson T, Rumbaugh M, Eloyan A, Abreu M, Dage JL, Snoddy C, Faber KM, Foroud T, Hammers DB, DIAN/DIAN-TU Clinical/Genetics Committee, Taurone A, Thangarajah M, Aisen P, Beckett L, Kramer J, Koeppe R, Kukull WA, Murray ME, Toga AW, Vemuri P, Atri A, Day GS, Duara R, Graff-Radford NR, Honig LS, Jones DT, Masdeu JC, Mendez M, Musiek E, Onyike CU, Riddle M, Rogalski E, Salloway S, Sha SJ, Turner RS, Wingo TS, Wolk DA, Carrillo MC, Dickerson BC, Rabinovici GD, Apostolova LG, LEADS Consortium. Pathogenic variants in the Longitudinal Early-onset Alzheimer's Disease Study cohort. Alzheimers Dement 2023; 19 Suppl 9:S64-S73. [PMID: 37801072 PMCID: PMC10783439 DOI: 10.1002/alz.13482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION One goal of the Longitudinal Early-onset Alzheimer's Disease Study (LEADS) is to investigate the genetic etiology of early onset (40-64 years) cognitive impairment. Toward this goal, LEADS participants are screened for known pathogenic variants. METHODS LEADS amyloid-positive early-onset Alzheimer's disease (EOAD) or negative early-onset non-AD (EOnonAD) cases were whole exome sequenced (N = 299). Pathogenic variant frequency in APP, PSEN1, PSEN2, GRN, MAPT, and C9ORF72 was assessed for EOAD and EOnonAD. Gene burden testing was performed in cases compared to similar-age cognitively normal controls in the Parkinson's Progression Markers Initiative (PPMI) study. RESULTS Previously reported pathogenic variants in the six genes were identified in 1.35% of EOAD (3/223) and 6.58% of EOnonAD (5/76). No genes showed enrichment for carriers of rare functional variants in LEADS cases. DISCUSSION Results suggest that LEADS is enriched for novel genetic causative variants, as previously reported variants are not observed in most cases. HIGHLIGHTS Sequencing identified eight cognitively impaired pathogenic variant carriers. Pathogenic variants were identified in PSEN1, GRN, MAPT, and C9ORF72. Rare variants were not enriched in APP, PSEN1/2, GRN, and MAPT. The Longitudinal Early-onset Alzheimer's Disease Study (LEADS) is a key resource for early-onset Alzheimer's genetic research.
Collapse
Affiliation(s)
- Kelly N. H. Nudelman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA, 46202
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA, 46202
| | - Trever Jackson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA, 46202
| | - Malia Rumbaugh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA, 46202
| | - Ani Eloyan
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI, USA, 02912
| | - Marco Abreu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA, 46202
| | - Jeffrey L. Dage
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA, 46202
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA, 46202
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA, 46202
| | - Casey Snoddy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA, 46202
| | - Kelley M. Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA, 46202
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA, 46202
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA, 46202
| | - Dustin B. Hammers
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA, 46202
| | - DIAN/DIAN-TU Clinical/Genetics Committee
- Washington University School of Medicine in St. Louis, MO, USA, 63110
- Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
- Mayo Clinic College of Medicine, Jacksonville, FL, USA, 32224
| | - Alexander Taurone
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI, USA, 02912
| | - Maryanne Thangarajah
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI, USA, 02912
| | - Paul Aisen
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego, CA, USA, 92121
| | - Laurel Beckett
- Department of Public Health Sciences, University of California – Davis, Davis, California, USA, 95616
| | - Joel Kramer
- Department of Neurology, University of California – San Francisco, San Francisco, CA, USA, 94143
| | - Robert Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Walter A. Kukull
- Department of Epidemiology, University of Washington, Seattle, WA, USA, 98195
| | - Melissa E. Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA, 32224
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, USA, 90033
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ, USA, 85315
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA, 32224
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami, FL, USA, 33140
| | | | - Lawrence S. Honig
- Taub Institute and Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA, 10032
| | - David T. Jones
- Department of Radiology, Mayo Clinic, Rochester, MN, USA, 55905
- Department of Neurology, Mayo Clinic, Rochester, MN, USA, 55905
| | - Joseph C. Masdeu
- Nantz National Alzheimer Center, Houston Methodist and Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Mario Mendez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
| | - Erik Musiek
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA, 63110
| | - Chiadi U. Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 21295
| | - Meghan Riddle
- Department of Neurology, Alpert Medical School, Brown University, Providence, RI Island, USA, 02912
| | - Emily Rogalski
- Department of Psychiatry and Behavioral Sciences, Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA , 60611
| | - Stephen Salloway
- Department of Neurology, Alpert Medical School, Brown University, Providence, RI Island, USA, 02912
| | - Sharon J. Sha
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA, 94304
| | - R. Scott Turner
- Department of Neurology, Georgetown University, DC, USA, 20057
| | - Thomas S. Wingo
- Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA, USA, 30307
| | - David A. Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Maria C. Carrillo
- Medical & Scientific Relations Division, Alzheimer’s Association, Chicago, IL, USA, 60603
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 02114
| | - Gil D. Rabinovici
- Department of Neurology, University of California – San Francisco, San Francisco, CA, USA, 94143
| | - Liana G. Apostolova
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA, 46202
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA, 46202
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego, CA, USA, 92121
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine Indianapolis, Indianapolis, IN, USA, 46202
| | | |
Collapse
|
9
|
Quintana M, Saville BR, Vestrucci M, Detry MA, Chibnik L, Shefner J, Berry JD, Chase M, Andrews J, Sherman AV, Yu H, Drake K, Cudkowicz M, Paganoni S, Macklin EA. Design and Statistical Innovations in a Platform Trial for Amyotrophic Lateral Sclerosis. Ann Neurol 2023; 94:547-560. [PMID: 37245090 DOI: 10.1002/ana.26714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Platform trials allow efficient evaluation of multiple interventions for a specific disease. The HEALEY ALS Platform Trial is testing multiple investigational products in parallel and sequentially in persons with amyotrophic lateral sclerosis (ALS) with the goal of rapidly identifying novel treatments to slow disease progression. Platform trials have considerable operational and statistical efficiencies compared with typical randomized controlled trials due to their use of shared infrastructure and shared control data. We describe the statistical approaches required to achieve the objectives of a platform trial in the context of ALS. This includes following regulatory guidance for the disease area of interest and accounting for potential differences in outcomes of participants within the shared control (potentially due to differences in time of randomization, mode of administration, and eligibility criteria). Within the HEALEY ALS Platform Trial, the complex statistical objectives are met using a Bayesian shared parameter analysis of function and survival. This analysis serves to provide a common integrated estimate of treatment benefit, overall slowing in disease progression, as measured by function and survival while accounting for potential differences in the shared control group using Bayesian hierarchical modeling. Clinical trial simulation is used to provide a better understanding of this novel analysis method and complex design. ANN NEUROL 2023;94:547-560.
Collapse
Affiliation(s)
| | - Benjamin R Saville
- Berry Consultants, Austin, Texas, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Lori Chibnik
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marianne Chase
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jinsy Andrews
- Neurological Institute of New York, Columbia University, New York, New York, USA
| | - Alexander V Sherman
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong Yu
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristin Drake
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Merit Cudkowicz
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sabrina Paganoni
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Eric A Macklin
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
10
|
McKay NS, Gordon BA, Hornbeck RC, Dincer A, Flores S, Keefe SJ, Joseph-Mathurin N, Jack CR, Koeppe R, Millar PR, Ances BM, Chen CD, Daniels A, Hobbs DA, Jackson K, Koudelis D, Massoumzadeh P, McCullough A, Nickels ML, Rahmani F, Swisher L, Wang Q, Allegri RF, Berman SB, Brickman AM, Brooks WS, Cash DM, Chhatwal JP, Day GS, Farlow MR, la Fougère C, Fox NC, Fulham M, Ghetti B, Graff-Radford N, Ikeuchi T, Klunk W, Lee JH, Levin J, Martins R, Masters CL, McConathy J, Mori H, Noble JM, Reischl G, Rowe C, Salloway S, Sanchez-Valle R, Schofield PR, Shimada H, Shoji M, Su Y, Suzuki K, Vöglein J, Yakushev I, Cruchaga C, Hassenstab J, Karch C, McDade E, Perrin RJ, Xiong C, Morris JC, Bateman RJ, Benzinger TLS. Positron emission tomography and magnetic resonance imaging methods and datasets within the Dominantly Inherited Alzheimer Network (DIAN). Nat Neurosci 2023; 26:1449-1460. [PMID: 37429916 PMCID: PMC10400428 DOI: 10.1038/s41593-023-01359-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case-control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual's point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of 'sporadic' AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers.
Collapse
Affiliation(s)
| | | | | | - Aylin Dincer
- Washington University in St. Louis, St. Louis, MO, USA
| | - Shaney Flores
- Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah J Keefe
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | - Beau M Ances
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Diana A Hobbs
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | | | | | - Laura Swisher
- Washington University in St. Louis, St. Louis, MO, USA
| | - Qing Wang
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Adam M Brickman
- Columbia University Irving Medical Center, New York, NY, USA
| | - William S Brooks
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - David M Cash
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Jasmeer P Chhatwal
- Massachusetts General and Brigham & Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | | | | | - Christian la Fougère
- Department of Radiology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Nick C Fox
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Michael Fulham
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ralph Martins
- Edith Cowan University, Joondalup, Western Australia, Australia
| | | | | | | | - James M Noble
- Columbia University Irving Medical Center, New York, NY, USA
| | - Gerald Reischl
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | | | | | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | | | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Igor Yakushev
- School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Celeste Karch
- Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - John C Morris
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | |
Collapse
|
11
|
Colavitta MF, Barrantes FJ. Therapeutic Strategies Aimed at Improving Neuroplasticity in Alzheimer Disease. Pharmaceutics 2023; 15:2052. [PMID: 37631266 PMCID: PMC10459958 DOI: 10.3390/pharmaceutics15082052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia among elderly people. Owing to its varied and multicausal etiopathology, intervention strategies have been highly diverse. Despite ongoing advances in the field, efficient therapies to mitigate AD symptoms or delay their progression are still of limited scope. Neuroplasticity, in broad terms the ability of the brain to modify its structure in response to external stimulation or damage, has received growing attention as a possible therapeutic target, since the disruption of plastic mechanisms in the brain appear to correlate with various forms of cognitive impairment present in AD patients. Several pre-clinical and clinical studies have attempted to enhance neuroplasticity via different mechanisms, for example, regulating glucose or lipid metabolism, targeting the activity of neurotransmitter systems, or addressing neuroinflammation. In this review, we first describe several structural and functional aspects of neuroplasticity. We then focus on the current status of pharmacological approaches to AD stemming from clinical trials targeting neuroplastic mechanisms in AD patients. This is followed by an analysis of analogous pharmacological interventions in animal models, according to their mechanisms of action.
Collapse
Affiliation(s)
- María F. Colavitta
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP-UCA), Facultad de Psicología, Av. Alicia Moreau de Justo, Buenos Aires C1107AAZ, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
| |
Collapse
|
12
|
Shah J, Gao F, Li B, Ghisays V, Luo J, Chen Y, Lee W, Zhou Y, Benzinger TL, Reiman EM, Chen K, Su Y, Wu T. Deep residual inception encoder-decoder network for amyloid PET harmonization. Alzheimers Dement 2022; 18:2448-2457. [PMID: 35142053 PMCID: PMC9360199 DOI: 10.1002/alz.12564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Multiple positron emission tomography (PET) tracers are available for amyloid imaging, posing a significant challenge to consensus interpretation and quantitative analysis. We accordingly developed and validated a deep learning model as a harmonization strategy. METHOD A Residual Inception Encoder-Decoder Neural Network was developed to harmonize images between amyloid PET image pairs made with Pittsburgh Compound-B and florbetapir tracers. The model was trained using a dataset with 92 subjects with 10-fold cross validation and its generalizability was further examined using an independent external dataset of 46 subjects. RESULTS Significantly stronger between-tracer correlations (P < .001) were observed after harmonization for both global amyloid burden indices and voxel-wise measurements in the training cohort and the external testing cohort. DISCUSSION We proposed and validated a novel encoder-decoder based deep model to harmonize amyloid PET imaging data from different tracers. Further investigation is ongoing to improve the model and apply to additional tracers.
Collapse
Affiliation(s)
- Jay Shah
- ASU‐Mayo Center for Innovative ImagingArizona State University699 S. Mill Ave.TempeArizona85287USA
- School of Computing and Augmented IntelligenceArizona State University699 S. Mill Ave.TempeArizona85287USA
| | - Fei Gao
- ASU‐Mayo Center for Innovative ImagingArizona State University699 S. Mill Ave.TempeArizona85287USA
- School of Computing and Augmented IntelligenceArizona State University699 S. Mill Ave.TempeArizona85287USA
| | - Baoxin Li
- ASU‐Mayo Center for Innovative ImagingArizona State University699 S. Mill Ave.TempeArizona85287USA
- School of Computing and Augmented IntelligenceArizona State University699 S. Mill Ave.TempeArizona85287USA
| | - Valentina Ghisays
- Banner Alzheimer's Institute901 E. Willetta StreetPhoenixArizona85006USA
| | - Ji Luo
- Banner Alzheimer's Institute901 E. Willetta StreetPhoenixArizona85006USA
| | - Yinghua Chen
- Banner Alzheimer's Institute901 E. Willetta StreetPhoenixArizona85006USA
| | - Wendy Lee
- Banner Alzheimer's Institute901 E. Willetta StreetPhoenixArizona85006USA
| | - Yuxiang Zhou
- Department of RadiologyMayo Clinic at Arizona5777 E Mayo BlvdPhoenixArizona85054USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St. Louis510 South Kingshighway BoulevardSt. LouisMissouri63110USA
| | - Eric M. Reiman
- Banner Alzheimer's Institute901 E. Willetta StreetPhoenixArizona85006USA
| | - Kewei Chen
- Banner Alzheimer's Institute901 E. Willetta StreetPhoenixArizona85006USA
| | - Yi Su
- ASU‐Mayo Center for Innovative ImagingArizona State University699 S. Mill Ave.TempeArizona85287USA
- School of Computing and Augmented IntelligenceArizona State University699 S. Mill Ave.TempeArizona85287USA
- Banner Alzheimer's Institute901 E. Willetta StreetPhoenixArizona85006USA
| | - Teresa Wu
- ASU‐Mayo Center for Innovative ImagingArizona State University699 S. Mill Ave.TempeArizona85287USA
- School of Computing and Augmented IntelligenceArizona State University699 S. Mill Ave.TempeArizona85287USA
| |
Collapse
|
13
|
Joseph‐Mathurin N, Llibre‐Guerra JJ, Li Y, McCullough AA, Hofmann C, Wojtowicz J, Park E, Wang G, Preboske GM, Wang Q, Gordon BA, Chen CD, Flores S, Aggarwal NT, Berman SB, Bird TD, Black SE, Borowski B, Brooks WS, Chhatwal JP, Clarnette R, Cruchaga C, Fagan AM, Farlow M, Fox NC, Gauthier S, Hassenstab J, Hobbs DA, Holdridge KC, Honig LS, Hornbeck RC, Hsiung GR, Jack CR, Jimenez‐Velazquez IZ, Jucker M, Klein G, Levin J, Mancini M, Masellis M, McKay NS, Mummery CJ, Ringman JM, Shimada H, Snider BJ, Suzuki K, Wallon D, Xiong C, Yaari R, McDade E, Perrin RJ, Bateman RJ, Salloway SP, Benzinger TL, Clifford DB, For the Dominantly Inherited Alzheimer Network Trials Unit. Amyloid-Related Imaging Abnormalities in the DIAN-TU-001 Trial of Gantenerumab and Solanezumab: Lessons from a Trial in Dominantly Inherited Alzheimer Disease. Ann Neurol 2022; 92:729-744. [PMID: 36151869 PMCID: PMC9828339 DOI: 10.1002/ana.26511] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD). METHODS 142 DIAD mutation carriers received either gantenerumab SC (n = 52), solanezumab IV (n = 50), or placebo (n = 40). Participants underwent assessments with the Clinical Dementia Rating® (CDR®), neuropsychological testing, CSF biomarkers, β-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA. Cross-sectional and longitudinal analyses evaluated potential ARIA-related risk factors. RESULTS Eleven participants developed ARIA-E, including 3 with mild symptoms. No ARIA-E was reported under solanezumab while gantenerumab was associated with ARIA-E compared to placebo (odds ratio [OR] = 9.1, confidence interval [CI][1.2, 412.3]; p = 0.021). Under gantenerumab, APOE-ɛ4 carriers were more likely to develop ARIA-E (OR = 5.0, CI[1.0, 30.4]; p = 0.055), as were individuals with microhemorrhage at baseline (OR = 13.7, CI[1.2, 163.2]; p = 0.039). No ARIA-E was observed at the initial 225 mg/month gantenerumab dose, and most cases were observed at doses >675 mg. At first ARIA-E occurrence, all ARIA-E participants were amyloid-PET+, 60% were CDR >0, 60% were past their estimated year to symptom onset, and 60% had also incident ARIA-H. Most ARIA-E radiologically resolved after dose adjustment and developing ARIA-E did not significantly increase odds of trial discontinuation. ARIA-E was more frequently observed in the occipital lobe (90%). ARIA-E severity was associated with age at time of ARIA-E. INTERPRETATION In DIAD, solanezumab was not associated with ARIA. Gantenerumab dose over 225 mg increased ARIA-E risk, with additional risk for individuals APOE-ɛ4(+) or with microhemorrhage. ARIA-E was reversible on MRI in most cases, generally asymptomatic, without additional risk for trial discontinuation. ANN NEUROL 2022;92:729-744.
Collapse
Affiliation(s)
- Nelly Joseph‐Mathurin
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO
| | | | - Yan Li
- Department of NeurologyWashington University School of MedicineSt. LouisMO
| | - Austin A. McCullough
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO
| | - Carsten Hofmann
- Pharmaceutical Sciences, Roche Innovation Center BaselF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Jakub Wojtowicz
- Product Development, Clinical SafetyF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Ethan Park
- Division of BiostatisticsWashington University School of MedicineSt. LouisMO
| | - Guoqiao Wang
- Division of BiostatisticsWashington University School of MedicineSt. LouisMO
| | | | - Qing Wang
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO
| | - Brian A. Gordon
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO
| | - Charles D. Chen
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO
| | - Shaney Flores
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO
| | - Neelum T. Aggarwal
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Sarah B. Berman
- Departments of Neurology and Clinical and Translational ScienceUniversity of PittsburghPittsburghPA
| | - Thomas D. Bird
- Department of NeurologyUniversity of WashingtonSeattleWA
| | - Sandra E. Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences CentreSunnybrook Research Institute, University of TorontoTorontoOntarioCanada
| | | | - William S. Brooks
- Neuroscience Research AustraliaUniversity of New South WalesNew South WalesAustralia
| | - Jasmeer P. Chhatwal
- Department of NeurologyBrigham and Women's Hospital, Massachusetts General HospitalBostonMA
| | - Roger Clarnette
- Department of Internal Medicine, Medical SchoolUniversity of Western AustraliaCrawleyAustralia
| | - Carlos Cruchaga
- Department of PsychiatryWashington University School of MedicineSt. LouisMO
| | - Anne M. Fagan
- Department of NeurologyWashington University School of MedicineSt. LouisMO
| | - Martin Farlow
- Department of NeurologyIndiana University School of MedicineIndianapolisIN
| | - Nick C. Fox
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Serge Gauthier
- McGill Center for Studies in AgingMcGill UniversityMontrealQuebecCanada
| | - Jason Hassenstab
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO
- Psychological and Brain SciencesWashington University School of MedicineSt. LouisMO
| | - Diana A. Hobbs
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO
| | | | | | - Russ C. Hornbeck
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO
| | - Ging‐Yuek R. Hsiung
- Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | | | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE)Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Gregory Klein
- Clinical Imaging, Biomarkers & Translational TechnologiesF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Department of Neurology, Ludwig‐Maximilians‐Universität MünchenMunich Cluster for Systems Neurology (SyNergy)MunichGermany
| | | | - Mario Masellis
- Department of Medicine (Neurology), Sunnybrook Health Sciences CentreSunnybrook Research Institute, University of TorontoTorontoOntarioCanada
| | - Nicole S. McKay
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO
| | | | - John M. Ringman
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Hiroyuki Shimada
- Diagnostic and Interventional Radiology, Graduate School of MedicineOsaka City UniversityOsakaJapan
| | - B. Joy Snider
- Department of NeurologyWashington University School of MedicineSt. LouisMO
| | - Kazushi Suzuki
- Department of Internal MedicineNational Defense Medical CollegeSaitamaJapan
| | | | - Chengjie Xiong
- Division of BiostatisticsWashington University School of MedicineSt. LouisMO
| | | | - Eric McDade
- Department of NeurologyWashington University School of MedicineSt. LouisMO
| | - Richard J. Perrin
- Department of NeurologyWashington University School of MedicineSt. LouisMO
- Department of Pathology & ImmunologyWashington University School of MedicineSt. LouisMO
| | - Randall J. Bateman
- Department of NeurologyWashington University School of MedicineSt. LouisMO
| | - Stephen P. Salloway
- Department of NeurologyAlpert Medical School of Brown University, Butler HospitalProvidenceRI
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO
| | - David B. Clifford
- Department of NeurologyWashington University School of MedicineSt. LouisMO
| | | |
Collapse
|
14
|
Buckles VD, Xiong C, Bateman RJ, Hassenstab J, Allegri R, Berman SB, Chhatwal JP, Danek A, Fagan AM, Ghetti B, Goate A, Graff-Radford N, Jucker M, Levin J, Marcus DS, Masters CL, McCue L, McDade E, Mori H, Moulder KL, Noble JM, Paumier K, Preische O, Ringman JM, Fox NC, Salloway S, Schofield PR, Martins R, Vöglein J, Morris JC, Dominantly Inherited Alzheimer Network. Different rates of cognitive decline in autosomal dominant and late-onset Alzheimer disease. Alzheimers Dement 2022; 18:1754-1764. [PMID: 34854530 PMCID: PMC9160203 DOI: 10.1002/alz.12505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 09/22/2021] [Indexed: 01/28/2023]
Abstract
As prevention trials advance with autosomal dominant Alzheimer disease (ADAD) participants, understanding the similarities and differences between ADAD and "sporadic" late-onset AD (LOAD) is critical to determine generalizability of findings between these cohorts. Cognitive trajectories of ADAD mutation carriers (MCs) and autopsy-confirmed LOAD individuals were compared to address this question. Longitudinal rates of change on cognitive measures were compared in ADAD MCs (n = 310) and autopsy-confirmed LOAD participants (n = 163) before and after symptom onset (estimated/observed). LOAD participants declined more rapidly in the presymptomatic (preclinical) period and performed more poorly at symptom onset than ADAD participants on a cognitive composite. After symptom onset, however, the younger ADAD MCs declined more rapidly. The similar but not identical cognitive trajectories (declining but at different rates) for ADAD and LOAD suggest common AD pathologies but with some differences.
Collapse
Affiliation(s)
- Virginia D. Buckles
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ricardo Allegri
- Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sarah B. Berman
- Department of Neurology and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jasmeer P. Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich Germany
| | - Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Mathias Jucker
- DZNE Tuebingen & Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Johannes Levin
- DZNE Munich, Munich Cluster of systems neurology (SyNergy) & Ludwig-Maximilians-Universität, Munich, Germany
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Lena McCue
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiroshi Mori
- Department of Neuroscience, Osaka City University Medical School, Osaka City, Japan
| | - Krista L. Moulder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - James M Noble
- Department of Neurology, Taub Institute for Research on Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Katrina Paumier
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Oliver Preische
- DZNE Tuebingen & University of Tuebingen, Tuebingen, Germany
| | - John M. Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nick C Fox
- Department of Neurodegenerative Disease & UK Dementia Research Institute, Institute of Neurology, London, UK
| | - Stephen Salloway
- Department of Neurology, Butler Hospital & Alpert Medical School of Brown University, Providence, RI, 02906, USA
| | - Peter R. Schofield
- Neuroscience Research Australia & School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Ralph Martins
- Sir James McCusker Alzheimer’s Disease Research Unit, Edith Cowan University, Nedlands, Australia
| | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases (DZNE) and Department of Neurology, Ludwig-Maximilians Universität München; Munich, Germany
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | |
Collapse
|
15
|
Zieneldien T, Kim J, Sawmiller D, Cao C. The Immune System as a Therapeutic Target for Alzheimer’s Disease. Life (Basel) 2022; 12:life12091440. [PMID: 36143476 PMCID: PMC9506058 DOI: 10.3390/life12091440] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder and is the most common cause of dementia. Furthermore, aging is considered the most critical risk factor for AD. However, despite the vast amount of research and resources allocated to the understanding and development of AD treatments, setbacks have been more prominent than successes. Recent studies have shown that there is an intricate connection between the immune and central nervous systems, which can be imbalanced and thereby mediate neuroinflammation and AD. Thus, this review examines this connection and how it can be altered with AD. Recent developments in active and passive immunotherapy for AD are also discussed as well as suggestions for improving these therapies moving forward.
Collapse
Affiliation(s)
- Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Darrell Sawmiller
- MegaNano BioTech, Inc., 3802 Spectrum Blvd. Suite 122, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA
- Correspondence:
| |
Collapse
|
16
|
Paranjpe MD, Chaffin M, Zahid S, Ritchie S, Rotter JI, Rich SS, Gerszten R, Guo X, Heckbert S, Tracy R, Danesh J, Lander ES, Inouye M, Kathiresan S, Butterworth AS, Khera AV. Neurocognitive trajectory and proteomic signature of inherited risk for Alzheimer's disease. PLoS Genet 2022; 18:e1010294. [PMID: 36048760 PMCID: PMC9436054 DOI: 10.1371/journal.pgen.1010294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
For Alzheimer's disease-a leading cause of dementia and global morbidity-improved identification of presymptomatic high-risk individuals and identification of new circulating biomarkers are key public health needs. Here, we tested the hypothesis that a polygenic predictor of risk for Alzheimer's disease would identify a subset of the population with increased risk of clinically diagnosed dementia, subclinical neurocognitive dysfunction, and a differing circulating proteomic profile. Using summary association statistics from a recent genome-wide association study, we first developed a polygenic predictor of Alzheimer's disease comprised of 7.1 million common DNA variants. We noted a 7.3-fold (95% CI 4.8 to 11.0; p < 0.001) gradient in risk across deciles of the score among 288,289 middle-aged participants of the UK Biobank study. In cross-sectional analyses stratified by age, minimal differences in risk of Alzheimer's disease and performance on a digit recall test were present according to polygenic score decile at age 50 years, but significant gradients emerged by age 65. Similarly, among 30,541 participants of the Mass General Brigham Biobank, we again noted no significant differences in Alzheimer's disease diagnosis at younger ages across deciles of the score, but for those over 65 years we noted an odds ratio of 2.0 (95% CI 1.3 to 3.2; p = 0.002) in the top versus bottom decile of the polygenic score. To understand the proteomic signature of inherited risk, we performed aptamer-based profiling in 636 blood donors (mean age 43 years) with very high or low polygenic scores. In addition to the well-known apolipoprotein E biomarker, this analysis identified 27 additional proteins, several of which have known roles related to disease pathogenesis. Differences in protein concentrations were consistent even among the youngest subset of blood donors (mean age 33 years). Of these 28 proteins, 7 of the 8 proteins with concentrations available were similarly associated with the polygenic score in participants of the Multi-Ethnic Study of Atherosclerosis. These data highlight the potential for a DNA-based score to identify high-risk individuals during the prolonged presymptomatic phase of Alzheimer's disease and to enable biomarker discovery based on profiling of young individuals in the extremes of the score distribution.
Collapse
Affiliation(s)
- Manish D. Paranjpe
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mark Chaffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sohail Zahid
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Scott Ritchie
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Cambridge Baker Systems Genomics Initiative, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles Medical Center, Torrance, California, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Robert Gerszten
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles Medical Center, Torrance, California, United States of America
| | - Susan Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Russ Tracy
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Eric S. Lander
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Cambridge Baker Systems Genomics Initiative, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
- The Alan Turing Institute, London, United Kingdom
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Verve Therapeutics, Cambridge, Massachusetts, United States of America
- Division of Cardiology and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Amit V. Khera
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Verve Therapeutics, Cambridge, Massachusetts, United States of America
- Division of Cardiology and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Berg D, Crotty GF, Keavney JL, Schwarzschild MA, Simuni T, Tanner C. Path to Parkinson Disease Prevention: Conclusion and Outlook. Neurology 2022; 99:76-83. [PMID: 35970586 DOI: 10.1212/wnl.0000000000200793] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/12/2022] [Indexed: 01/19/2023] Open
Abstract
Tremendous progress in our understanding of the pathophysiology and clinical manifestations of the prodromal phase of Parkinson disease (PD) offers a unique opportunity to start therapeutic interventions as early as possible to slow or even stop the progression to clinically manifest motor PD. A Parkinson's Prevention Conference, "Planning for Prevention of Parkinson's: A trial design symposium and workshop" was convened to discuss all issues that need to be addressed before the launch of the first PD prevention study. In this review, we summarize the major opportunities and challenges in designing prevention trials in PD, organized by the following critical trial design questions: Who (should be enrolled)? What (to test)? How (to measure prevention)? and the pivotal question, When during the prodromal disease (should we start these trials)? We outline the implications of these questions and their meaning for a responsible, sustainable, and fruitful further planning for prevention trials. Despite the great progress that has been made, it needs to be acknowledged that several queries remain to be carefully considered and addressed because prevention trials are being planned and become a reality.
Collapse
Affiliation(s)
- Daniela Berg
- From the Department of Neurology (D.B.), Christian-Albrechts-University, Kiel, Germany; Molecular Neurobiology Laboratory (G.F.C., M.A.S.), Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown; Harvard Medical School (G.F.C., M.A.S.), Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Northwestern University Feinberg School of Medicine (T.S.), Weill Institute for Neuroscience (C.T.), Department of Neurology, University of California - San Francisco; and Parkinson's Disease Research Education and Clinical Center (C.T.), San Francisco Veterans Affairs Medical Center
| | - Grace F Crotty
- From the Department of Neurology (D.B.), Christian-Albrechts-University, Kiel, Germany; Molecular Neurobiology Laboratory (G.F.C., M.A.S.), Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown; Harvard Medical School (G.F.C., M.A.S.), Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Northwestern University Feinberg School of Medicine (T.S.), Weill Institute for Neuroscience (C.T.), Department of Neurology, University of California - San Francisco; and Parkinson's Disease Research Education and Clinical Center (C.T.), San Francisco Veterans Affairs Medical Center
| | - Jessi L Keavney
- From the Department of Neurology (D.B.), Christian-Albrechts-University, Kiel, Germany; Molecular Neurobiology Laboratory (G.F.C., M.A.S.), Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown; Harvard Medical School (G.F.C., M.A.S.), Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Northwestern University Feinberg School of Medicine (T.S.), Weill Institute for Neuroscience (C.T.), Department of Neurology, University of California - San Francisco; and Parkinson's Disease Research Education and Clinical Center (C.T.), San Francisco Veterans Affairs Medical Center
| | - Michael A Schwarzschild
- From the Department of Neurology (D.B.), Christian-Albrechts-University, Kiel, Germany; Molecular Neurobiology Laboratory (G.F.C., M.A.S.), Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown; Harvard Medical School (G.F.C., M.A.S.), Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Northwestern University Feinberg School of Medicine (T.S.), Weill Institute for Neuroscience (C.T.), Department of Neurology, University of California - San Francisco; and Parkinson's Disease Research Education and Clinical Center (C.T.), San Francisco Veterans Affairs Medical Center
| | - Tanya Simuni
- From the Department of Neurology (D.B.), Christian-Albrechts-University, Kiel, Germany; Molecular Neurobiology Laboratory (G.F.C., M.A.S.), Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown; Harvard Medical School (G.F.C., M.A.S.), Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Northwestern University Feinberg School of Medicine (T.S.), Weill Institute for Neuroscience (C.T.), Department of Neurology, University of California - San Francisco; and Parkinson's Disease Research Education and Clinical Center (C.T.), San Francisco Veterans Affairs Medical Center.
| | - Caroline Tanner
- From the Department of Neurology (D.B.), Christian-Albrechts-University, Kiel, Germany; Molecular Neurobiology Laboratory (G.F.C., M.A.S.), Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown; Harvard Medical School (G.F.C., M.A.S.), Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Northwestern University Feinberg School of Medicine (T.S.), Weill Institute for Neuroscience (C.T.), Department of Neurology, University of California - San Francisco; and Parkinson's Disease Research Education and Clinical Center (C.T.), San Francisco Veterans Affairs Medical Center
| |
Collapse
|
18
|
Malik R, Kalra S, Bhatia S, Harrasi AA, Singh G, Mohan S, Makeen HA, Albratty M, Meraya A, Bahar B, Tambuwala MM. Overview of therapeutic targets in management of dementia. Biomed Pharmacother 2022; 152:113168. [PMID: 35701303 DOI: 10.1016/j.biopha.2022.113168] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Dementia is defined as a gradual cognitive impairment that interferes with everyday tasks, and is a leading cause of dependency, disability, and mortality. According to the current scenario, millions of individuals worldwide have dementia. This review provides with an overview of dementia before moving on to its subtypes (neurodegenerative and non-neurodegenerative) and pathophysiology. It also discusses the incidence and severity of dementia, focusing on Alzheimer's disease with its different hypotheses such as Aβ cascade hypothesis, Tau hypothesis, inflammatory hypothesis, cholinergic and oxidative stress hypothesis. Alzheimer's disease is the most common type and a progressive neurodegenerative illness distinct by neuronal loss and resulting cognitive impairment, leading to dementia. Alzheimer's disease (AD) is considered the most familiar neurodegenerative dementias that affect mostly older population. There are still no disease-modifying therapies available for any dementias at this time, but there are various methods for lowering the risk to dementia patients by using suitable diagnostic and evaluation methods. Thereafter, the management and treatment of primary risk elements of dementia are reviewed. Finally, the future perspectives of dementia (AD) focusing on the impact of the new treatment are discussed.
Collapse
Affiliation(s)
- Rohit Malik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim Meraya
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK.
| |
Collapse
|
19
|
Aschenbrenner AJ, Hassenstab J, Wang G, Li Y, Xiong C, McDade E, Clifford DB, Salloway S, Farlow M, Yaari R, Cheng EYJ, Holdridge KC, Mummery CJ, Masters CL, Hsiung GY, Surti G, Day GS, Weintraub S, Honig LS, Galvin JE, Ringman JM, Brooks WS, Fox NC, Snyder PJ, Suzuki K, Shimada H, Gräber S, Bateman RJ. Avoid or Embrace? Practice Effects in Alzheimer's Disease Prevention Trials. Front Aging Neurosci 2022; 14:883131. [PMID: 35783127 PMCID: PMC9244171 DOI: 10.3389/fnagi.2022.883131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
Demonstrating a slowing in the rate of cognitive decline is a common outcome measure in clinical trials in Alzheimer's disease (AD). Selection of cognitive endpoints typically includes modeling candidate outcome measures in the many, richly phenotyped observational cohort studies available. An important part of choosing cognitive endpoints is a consideration of improvements in performance due to repeated cognitive testing (termed "practice effects"). As primary and secondary AD prevention trials are comprised predominantly of cognitively unimpaired participants, practice effects may be substantial and may have considerable impact on detecting cognitive change. The extent to which practice effects in AD prevention trials are similar to those from observational studies and how these potential differences impact trials is unknown. In the current study, we analyzed data from the recently completed DIAN-TU-001 clinical trial (TU) and the associated DIAN-Observational (OBS) study. Results indicated that asymptomatic mutation carriers in the TU exhibited persistent practice effects on several key outcomes spanning the entire trial duration. Critically, these practice related improvements were larger on certain tests in the TU relative to matched participants from the OBS study. Our results suggest that the magnitude of practice effects may not be captured by modeling potential endpoints in observational studies where assessments are typically less frequent and drug expectancy effects are absent. Using alternate instrument forms (represented in our study by computerized tasks) may partly mitigate practice effects in clinical trials but incorporating practice effects as outcomes may also be viable. Thus, investigators must carefully consider practice effects (either by minimizing them or modeling them directly) when designing cognitive endpoint AD prevention trials by utilizing trial data with similar assessment frequencies.
Collapse
Affiliation(s)
| | - Jason Hassenstab
- Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Guoqiao Wang
- Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Yan Li
- Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Chengjie Xiong
- Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Eric McDade
- Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - David B. Clifford
- Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Stephen Salloway
- Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Martin Farlow
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Roy Yaari
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | | | | | | | | | - Ghulam Surti
- The University of Rhode Island, Kingston, RI, United States
| | | | - Sandra Weintraub
- Feiniberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lawrence S. Honig
- Columbia University Irving Medical Center, New York, NY, United States
| | - James E. Galvin
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - John M. Ringman
- University of Southern California, Los Angeles, CA, United States
| | - William S. Brooks
- Neuroscience Research Australia, University of New South Wales Medicine, Randwick, NSW, Australia
| | - Nick C. Fox
- Dementia Research Center, University College London, London, United Kingdom
| | | | | | | | - Susanne Gräber
- German Center for Neurodegenerative Disease (DZNE), Tübingen, Germany
| | - Randall J. Bateman
- Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
20
|
What contribution can genetics make to predict the risk of Alzheimer's disease? Rev Neurol (Paris) 2022; 178:414-421. [PMID: 35491248 DOI: 10.1016/j.neurol.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. Although its etiology remains incompletely understood, genetic variants are important contributors. The prediction of AD risk through individual genetic variants is an important topic of research that may have individual and societal consequences when preventive treatments will become available. However, the genetic substratum of AD is heterogeneous. In addition to the extremely rare and fully penetrant pathogenic variants of the PSEN1, PSEN2 or APP genes causing autosomal dominant AD, a large spectrum of risk factors have been identified in complex forms, including the common risk factor APOEɛ4, which is associated with a moderate-to-high risk, common polymorphisms associated with a modest individual risk, and a plethora of rare variants in genes like SORL1, TREM2 or ABCA7 with moderate to high-magnitude effect. Understanding how these genetic factors contribute to AD risk in a given individual, in additional to non-genetic factors, remains a challenge. Over the last 10 years, age-related penetrance curves have progressively incorporated advances in the knowledge of AD genetics, from APOE to common polygenic components and, currently, SORL1 rare variants, which represents an important step towards precision medicine in AD. In this review, we present the complex genetic architecture of AD and we expose the prediction of AD risk according to its underlying genetic component.
Collapse
|
21
|
Aisen PS, Jimenez-Maggiora GA, Rafii MS, Walter S, Raman R. Early-stage Alzheimer disease: getting trial-ready. Nat Rev Neurol 2022; 18:389-399. [PMID: 35379951 PMCID: PMC8978175 DOI: 10.1038/s41582-022-00645-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Slowing the progression of Alzheimer disease (AD) might be the greatest unmet medical need of our time. Although one AD therapeutic has received a controversial accelerated approval from the FDA, more effective and accessible therapies are urgently needed. Consensus is growing that for meaningful disease modification in AD, therapeutic intervention must be initiated at very early (preclinical or prodromal) stages of the disease. Although the methods for such early-stage clinical trials have been developed, identification and recruitment of the required asymptomatic or minimally symptomatic study participants takes many years and requires substantial funds. As an example, in the Anti-Amyloid Treatment in Asymptomatic Alzheimer’s Disease Trial (the first phase III trial to be performed in preclinical AD), 3.5 years and more than 5,900 screens were required to recruit and randomize 1,169 participants. A new clinical trials infrastructure is required to increase the efficiency of recruitment and accelerate therapeutic progress. Collaborations in North America, Europe and Asia are now addressing this need by establishing trial-ready cohorts of individuals with preclinical and prodromal AD. These collaborations are employing innovative methods to engage the target population, assess risk of brain amyloid accumulation, select participants for biomarker studies and determine eligibility for trials. In the future, these programmes could provide effective tools for pursuing the primary prevention of AD. Here, we review the lessons learned from the AD trial-ready cohorts that have been established to date, with the aim of informing ongoing and future efforts towards efficient, cost-effective trial recruitment. Consensus is growing that intervention in the very early stages of Alzheimer disease is necessary for disease modification. Here, the authors discuss the challenges of recruiting asymptomatic or mildly symptomatic participants for clinical trials, focusing on ‘trial-ready’ cohorts as a potential solution. Trial-ready cohorts are an effective strategy for the identification of participants eligible for clinical trials in early-stage Alzheimer disease (AD). Building these cohorts requires considerable planning and technological infrastructure to facilitate recruitment, remote longitudinal assessment, data management and data storage. Trial-ready cohorts exist for genetically determined populations at risk of AD, such as those with familial AD and Down syndrome; the longitudinal data from these cohorts is improving our understanding of the disease progression in early stages, informing clinical trial design and accelerating recruitment to intervention studies. So far, the challenges experienced by trial-ready cohorts for early-stage AD have included difficulties recruiting an ethnically and racially representative cohort; and for online cohorts, difficulty retaining participants. The results of ongoing work will reveal the success of strategies to improve cohort diversity and retention, and the rates of referral to clinical trials.
Collapse
|
22
|
Golde TE. Alzheimer’s disease – the journey of a healthy brain into organ failure. Mol Neurodegener 2022; 17:18. [PMID: 35248124 PMCID: PMC8898417 DOI: 10.1186/s13024-022-00523-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
As the most common dementia, Alzheimer’s disease (AD) exacts an immense personal, societal, and economic toll. AD was first described at the neuropathological level in the early 1900s. Today, we have mechanistic insight into select aspects of AD pathogenesis and have the ability to clinically detect and diagnose AD and underlying AD pathologies in living patients. These insights demonstrate that AD is a complex, insidious, degenerative proteinopathy triggered by Aβ aggregate formation. Over time Aβ pathology drives neurofibrillary tangle (NFT) pathology, dysfunction of virtually all cell types in the brain, and ultimately, overt neurodegeneration. Yet, large gaps in our knowledge of AD pathophysiology and huge unmet medical need remain. Though we largely conceptualize AD as a disease of aging, heritable and non-heritable factors impact brain physiology, either continuously or at specific time points during the lifespan, and thereby alter risk for devolvement of AD. Herein, I describe the lifelong journey of a healthy brain from birth to death with AD, while acknowledging the many knowledge gaps that remain regarding our understanding of AD pathogenesis. To ensure the current lexicon surrounding AD changes from inevitable, incurable, and poorly manageable to a lexicon of preventable, curable, and manageable we must address these knowledge gaps, develop therapies that have a bigger impact on clinical symptoms or progression of disease and use these interventions at the appropriate stage of disease.
Collapse
|
23
|
Paganoni S, Berry JD, Quintana M, Macklin E, Saville BR, Detry MA, Chase M, Sherman AV, Yu H, Drake K, Andrews J, Shefner J, Chibnik LB, Vestrucci M, Cudkowicz ME. Adaptive Platform Trials to Transform Amyotrophic Lateral Sclerosis Therapy Development. Ann Neurol 2022; 91:165-175. [PMID: 34935174 DOI: 10.1002/ana.26285] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/07/2022]
Abstract
Current therapeutic development in amyotrophic lateral sclerosis (ALS) relies on individual randomized clinical trials to test a specific investigational product in a single patient population. This approach has intrinsic limitations, including cost, time, and lack of flexibility. Adaptive platform trials represent a novel approach to investigate several interventions for a single disease in a continuous manner. Already in use in oncology, this approach is now being employed more often in neurology. Here, we describe a newly launched platform trial for ALS. The Healey ALS Platform Trial is testing multiple investigational products concurrently in people with ALS, with the goal of rapidly identifying novel treatments, biomarkers, and trial endpoints. ANN NEUROL 2022;91:165-175.
Collapse
Affiliation(s)
- Sabrina Paganoni
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Eric Macklin
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Benjamin R Saville
- Berry Consultants, Austin, TX
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN
| | | | - Marianne Chase
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alexander V Sherman
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hong Yu
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kristin Drake
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | - Lori B Chibnik
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Merit E Cudkowicz
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
24
|
Golde TE. Disease-Modifying Therapies for Alzheimer's Disease: More Questions than Answers. Neurotherapeutics 2022; 19:209-227. [PMID: 35229269 PMCID: PMC8885119 DOI: 10.1007/s13311-022-01201-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
Scientific advances over the last four decades have steadily infused the Alzheimer's disease (AD) field with great optimism that therapies targeting Aβ, amyloid, tau, and innate immune activation states in the brain would provide disease modification. Unfortunately, this optimistic scenario has not yet played out. Though a recent approval of the anti-Aβ aggregate binding antibody, Aduhelm (aducanumab), as a "disease-modifying therapy for AD" is viewed by some as a breakthrough, many remain unconvinced by the data underlying this approval. Collectively, we have not succeeded in changing AD from a largely untreatable, inevitable, and incurable disease to a treatable, preventable, and curable one. Here, I will review the major foci of the AD "disease-modifying" therapeutic pipeline and some of the "open questions" that remain in terms of these therapeutic approaches. I will conclude the review by discussing how we, as a field, might adjust our approach, learning from our past failures to ensure future success.
Collapse
Affiliation(s)
- Todd E Golde
- Departments of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, Evelyn F. and William L. McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Apostolova LG, Aisen P, Eloyan A, Fagan A, Fargo KN, Foroud T, Gatsonis C, Grinberg LT, Jack CR, Kramer J, Koeppe R, Kukull WA, Murray ME, Nudelman K, Rumbaugh M, Toga A, Vemuri P, Trullinger A, Iaccarino L, Day GS, Graff‐Radford NR, Honig LS, Jones DT, Masdeu J, Mendez M, Musiek E, Onyike CU, Rogalski E, Salloway S, Wolk DA, Wingo TS, Carrillo MC, Dickerson BC, Rabinovici GD, the LEADS Consortium. The Longitudinal Early-onset Alzheimer's Disease Study (LEADS): Framework and methodology. Alzheimers Dement 2021; 17:2043-2055. [PMID: 34018654 PMCID: PMC8939858 DOI: 10.1002/alz.12350] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Patients with early-onset Alzheimer's disease (EOAD) are commonly excluded from large-scale observational and therapeutic studies due to their young age, atypical presentation, or absence of pathogenic mutations. The goals of the Longitudinal EOAD Study (LEADS) are to (1) define the clinical, imaging, and fluid biomarker characteristics of EOAD; (2) develop sensitive cognitive and biomarker measures for future clinical and research use; and (3) establish a trial-ready network. LEADS will follow 400 amyloid beta (Aβ)-positive EOAD, 200 Aβ-negative EOnonAD that meet National Institute on Aging-Alzheimer's Association (NIA-AA) criteria for mild cognitive impairment (MCI) or AD dementia, and 100 age-matched controls. Participants will undergo clinical and cognitive assessments, magnetic resonance imaging (MRI), [18 F]Florbetaben and [18 F]Flortaucipir positron emission tomography (PET), lumbar puncture, and blood draw for DNA, RNA, plasma, serum and peripheral blood mononuclear cells, and post-mortem assessment. To develop more effective AD treatments, scientists need to understand the genetic, biological, and clinical processes involved in EOAD. LEADS will develop a public resource that will enable future planning and implementation of EOAD clinical trials.
Collapse
|
26
|
The case for low-level BACE1 inhibition for the prevention of Alzheimer disease. Nat Rev Neurol 2021; 17:703-714. [PMID: 34548654 DOI: 10.1038/s41582-021-00545-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals (>65 years) and has a long presymptomatic phase. Preventive therapies for AD are not yet available, and potential disease-modifying therapies targeting amyloid-β plaques in symptomatic stages of AD have only just been approved in the United States. Small-molecule inhibitors of β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1; also known as β-secretase 1) reduce the production of amyloid-β peptide and are among the most advanced drug candidates for AD. However, to date all phase II and phase III clinical trials of BACE inhibitors were either concluded without benefit or discontinued owing to futility or the occurrence of adverse effects. Adverse effects included early, mild cognitive impairment that was associated with all but one inhibitor; preliminary results suggest that the cognitive effects are non-progressive and reversible. These discontinuations have raised questions regarding the suitability of BACE1 as a drug target for AD. In this Perspective, we discuss the status of BACE inhibitors and suggest ways in which the results of the discontinued trials can inform the development of future clinical trials of BACE inhibitors and related secretase modulators as preventative therapies. We also propose a series of experiments that should be performed to inform 'go-no-go' decisions in future trials with BACE inhibitors and consider the possibility that low levels of BACE1 inhibition could avoid adverse effects while achieving efficacy for AD prevention.
Collapse
|
27
|
A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer's disease. Nat Med 2021; 27:1187-1196. [PMID: 34155411 PMCID: PMC8988051 DOI: 10.1038/s41591-021-01369-8] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Dominantly inherited Alzheimer's disease (DIAD) causes predictable biological changes decades before the onset of clinical symptoms, enabling testing of interventions in the asymptomatic and symptomatic stages to delay or slow disease progression. We conducted a randomized, placebo-controlled, multi-arm trial of gantenerumab or solanezumab in participants with DIAD across asymptomatic and symptomatic disease stages. Mutation carriers were assigned 3:1 to either drug or placebo and received treatment for 4-7 years. The primary outcome was a cognitive end point; secondary outcomes included clinical, cognitive, imaging and fluid biomarker measures. Fifty-two participants carrying a mutation were assigned to receive gantenerumab, 52 solanezumab and 40 placebo. Both drugs engaged their Aβ targets but neither demonstrated a beneficial effect on cognitive measures compared to controls. The solanezumab-treated group showed a greater cognitive decline on some measures and did not show benefits on downstream biomarkers. Gantenerumab significantly reduced amyloid plaques, cerebrospinal fluid total tau, and phospho-tau181 and attenuated increases of neurofilament light chain. Amyloid-related imaging abnormalities edema was observed in 19.2% (3 out of 11 were mildly symptomatic) of the gantenerumab group, 2.5% of the placebo group and 0% of the solanezumab group. Gantenerumab and solanezumab did not slow cognitive decline in symptomatic DIAD. The asymptomatic groups showed no cognitive decline; symptomatic participants had declined before reaching the target doses.
Collapse
|
28
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
29
|
Cross-Sectional Exploration of Plasma Biomarkers of Alzheimer's Disease in Down Syndrome: Early Data from the Longitudinal Investigation for Enhancing Down Syndrome Research (LIFE-DSR) Study. J Clin Med 2021; 10:jcm10091907. [PMID: 33924960 PMCID: PMC8124643 DOI: 10.3390/jcm10091907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
With improved healthcare, the Down syndrome (DS) population is both growing and aging rapidly. However, with longevity comes a very high risk of Alzheimer’s disease (AD). The LIFE-DSR study (NCT04149197) is a longitudinal natural history study recruiting 270 adults with DS over the age of 25. The study is designed to characterize trajectories of change in DS-associated AD (DS-AD). The current study reports its cross-sectional analysis of the first 90 subjects enrolled. Plasma biomarkers phosphorylated tau protein (p-tau), neurofilament light chain (NfL), amyloid β peptides (Aβ1-40, Aβ1-42), and glial fibrillary acidic protein (GFAP) were undertaken with previously published methods. The clinical data from the baseline visit include demographics as well as the cognitive measures under the Severe Impairment Battery (SIB) and Down Syndrome Mental Status Examination (DS-MSE). Biomarker distributions are described with strong statistical associations observed with participant age. The biomarker data contributes to understanding DS-AD across the spectrum of disease. Collectively, the biomarker data show evidence of DS-AD progression beginning at approximately 40 years of age. Exploring these data across the full LIFE-DSR longitudinal study population will be an important resource in understanding the onset, progression, and clinical profiles of DS-AD pathophysiology.
Collapse
|
30
|
Cercy SP. Pericytes and the Neurovascular Unit: The Critical Nexus of Alzheimer Disease Pathogenesis? EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021. [DOI: 10.14218/erhm.2020.00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Rynearson KD, Ponnusamy M, Prikhodko O, Xie Y, Zhang C, Nguyen P, Hug B, Sawa M, Becker A, Spencer B, Florio J, Mante M, Salehi B, Arias C, Galasko D, Head BP, Johnson G, Lin JH, Duddy SK, Rissman RA, Mobley WC, Thinakaran G, Tanzi RE, Wagner SL. Preclinical validation of a potent γ-secretase modulator for Alzheimer's disease prevention. J Exp Med 2021; 218:211838. [PMID: 33651103 PMCID: PMC7931646 DOI: 10.1084/jem.20202560] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
A potent γ-secretase modulator (GSM) has been developed to circumvent problems associated with γ-secretase inhibitors (GSIs) and to potentially enable use in primary prevention of early-onset familial Alzheimer's disease (EOFAD). Unlike GSIs, GSMs do not inhibit γ-secretase activity but rather allosterically modulate γ-secretase, reducing the net production of Aβ42 and to a lesser extent Aβ40, while concomitantly augmenting production of Aβ38 and Aβ37. This GSM demonstrated robust time- and dose-dependent efficacy in acute, subchronic, and chronic studies across multiple species, including primary and secondary prevention studies in a transgenic mouse model. The GSM displayed a >40-fold safety margin in rats based on a comparison of the systemic exposure (AUC) at the no observed adverse effect level (NOAEL) to the 50% effective AUC or AUCeffective, the systemic exposure required for reducing levels of Aβ42 in rat brain by 50%.
Collapse
Affiliation(s)
- Kevin D Rynearson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Moorthi Ponnusamy
- Department of Molecular Medicine and Byrd Alzheimer's Institute, University of South Florida, Morsani College of Medicine, Tampa, FL
| | - Olga Prikhodko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Yuhuan Xie
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA
| | - Phuong Nguyen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Brenda Hug
- Veterans Administration San Diego Healthcare System, La Jolla, CA
| | - Mariko Sawa
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Ann Becker
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Jazmin Florio
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Michael Mante
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Bahar Salehi
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Carlos Arias
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Brian P Head
- Veterans Administration San Diego Healthcare System, La Jolla, CA.,Department of Anesthesiology, University of California, San Diego, La Jolla, CA
| | | | | | - Steven K Duddy
- Integrated Nonclinical Development Solutions, Ann Arbor, MI
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA.,Veterans Administration San Diego Healthcare System, La Jolla, CA
| | - William C Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Gopal Thinakaran
- Department of Molecular Medicine and Byrd Alzheimer's Institute, University of South Florida, Morsani College of Medicine, Tampa, FL
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA.,Veterans Administration San Diego Healthcare System, La Jolla, CA
| |
Collapse
|
32
|
Abstract
Alzheimer’s disease (AD) is the leading cause of neurodegeneration in the elderly and is clinically characterized by slowly progressing cognitive decline, which most commonly affects episodic memory function. This eventually leads to difficulties in activities of daily living. Biomarker studies show that the underlying pathology of AD begins 20 years before clinical symptoms. This results in the need to define specific targets and preclinical stages in order to address the problems of this disease at an earlier point in time. Genetic studies are indispensable for gaining insight into the etiology of neurodegenerative diseases and can play a major role in the early definition of the individual disease risk. This review provides an overview of the currently known genetic features of AD.
Collapse
Affiliation(s)
- Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
33
|
Montine TJ, Bukhari SA, White LR. Cognitive Impairment in Older Adults and Therapeutic Strategies. Pharmacol Rev 2021; 73:152-162. [PMID: 33298513 PMCID: PMC7736830 DOI: 10.1124/pharmrev.120.000031] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cognitive impairment and its severe form dementia are increasingly prevalent in older adults and loom as a public health disaster unless effective interventions are developed. Cognitive impairment is a convergent trait caused by damage from an idiosyncratic mix of four prevalent diseases (Alzheimer disease; vascular brain injury; Lewy body diseases, such as Parkinson disease and dementia with Lewy bodies; and limbic-predominant age-related transactive response DNA-binding protein 43 encephalopathy) that is counterbalanced by individually varying resilience, which is comprised of reserve and compensation. Brain regional damage from each of these four prevalent diseases is generated by the net effect of injury and (mal)adaptive response and is accompanied by characteristic lesions. Existing therapeutics enhance resilience, whereas most agents under development target mechanisms of damage with only suppression of vascular brain injury yet to show therapeutic promise. We hope to anticipate future tailored interventions that target mechanisms of damage and thereby avert the oncoming surge of cognitive impairment and dementia in older adults. SIGNIFICANCE STATEMENT: Brain regional damage is generated by the net effect of injury and (mal)adaptive response. The extent to which signs and symptoms of such damage occur is influenced by an underlying resilience comprising reserve and compensation. Finding tailored interventions that target specific mechanisms of damage likely yields the most effective therapies.
Collapse
Affiliation(s)
- Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California (T.J.M., S.A.B.) and Pacific Health Research and Education Institute, Honolulu, Hawaii (L.R.W.)
| | - Syed A Bukhari
- Department of Pathology, Stanford University, Stanford, California (T.J.M., S.A.B.) and Pacific Health Research and Education Institute, Honolulu, Hawaii (L.R.W.)
| | - Lon R White
- Department of Pathology, Stanford University, Stanford, California (T.J.M., S.A.B.) and Pacific Health Research and Education Institute, Honolulu, Hawaii (L.R.W.)
| |
Collapse
|
34
|
Gleason A, Bush AI. Iron and Ferroptosis as Therapeutic Targets in Alzheimer's Disease. Neurotherapeutics 2021; 18:252-264. [PMID: 33111259 PMCID: PMC8116360 DOI: 10.1007/s13311-020-00954-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD), one of the most common neurodegenerative diseases worldwide, has a devastating personal, familial, and societal impact. In spite of profound investment and effort, numerous clinical trials targeting amyloid-β, which is thought to have a causative role in the disease, have not yielded any clinically meaningful success to date. Iron is an essential cofactor in many physiological processes in the brain. An extensive body of work links iron dyshomeostasis with multiple aspects of the pathophysiology of AD. In particular, regional iron load appears to be a risk factor for more rapid cognitive decline. Existing iron-chelating agents have been in use for decades for other indications, and there are preliminary data that some of these could be effective in AD. Many novel iron-chelating compounds are under development, some with in vivo data showing potential Alzheimer's disease-modifying properties. This heretofore underexplored therapeutic class has considerable promise and could yield much-needed agents that slow neurodegeneration in AD.
Collapse
Affiliation(s)
- Andrew Gleason
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
35
|
Kawarabayashi T, Terakawa T, Takahashi A, Hasegawa H, Narita S, Sato K, Nakamura T, Seino Y, Hirohata M, Baba N, Ueda T, Harigaya Y, Kametani F, Maruyama N, Ishimoto M, St George-Hyslop P, Shoji M. Oral Immunization with Soybean Storage Protein Containing Amyloid-β 4-10 Prevents Spatial Learning Decline. J Alzheimers Dis 2020; 70:487-503. [PMID: 31177217 PMCID: PMC6700641 DOI: 10.3233/jad-190023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amyloid-β (Aβ) plays a central role in the pathogenesis of Alzheimer’s disease (AD). Because AD pathologies begin two decades before the onset of dementia, prevention of Aβ amyloidosis has been proposed as a mean to block the pathological cascade. Here, we generate a transgenic plant-based vaccine, a soybean storage protein containing Aβ4–10, named Aβ+, for oral Aβ immunization. One mg of Aβ+ or control protein (Aβ–) was administered to TgCRND8 mice once a week from 9 weeks up to 58 weeks. Aβ+ immunization raised both anti-Aβ antibodies and cellular immune responses. Spatial learning decline was prevented in the Aβ+ immunized group in an extended reference memory version of Morris water maze test from 21 to 57 weeks. In Tris-buffered saline (TBS), sodium dodecyl sulfate (SDS), and formic acid (FA) serial extractions, all sets of Aβ species from Aβ monomer, low to high molecular weight Aβ oligomers, and Aβ smears had different solubility in TgCRND8 brains. Aβ oligomers decreased in TBS fractions, corresponding to an increase in high molecular weight Aβ oligomers in SDS extracts and Aβ smears in FA fraction of the Aβ+ treated group. There was significant inhibition of histological Aβ burden, especially in diffuse plaques, and suppression of microglial inflammation. Processing of amyloid-β protein precursor was not different between Aβ+ and Aβ– groups. No evidence of amyloid-related inflammatory angiopathy was observed. Thus, Aβ+ oral immunization could be a promising, cheap, and long-term safe disease-modifying therapy to prevent the pathological process in AD.
Collapse
Affiliation(s)
- Takeshi Kawarabayashi
- Department of Neurology, Geriatrics Research Institute Hospital, Maebashi, Aomori, Japan.,Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Teruhiko Terakawa
- Hokko Chemical Industry Co., Ltd, Atsugi-shi, Kanagawa, Japan.,Inplanta Innovations Inc. Yokohama, Kanagawa, Japan
| | | | | | - Sakiko Narita
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kaoru Sato
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takumi Nakamura
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.,Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yusuke Seino
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Mie Hirohata
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Nobue Baba
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Tetsuya Ueda
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Yasuo Harigaya
- Department of Neurology, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Masao Ishimoto
- Institute of Crop Science, NARO, Tsukuba, Ibaraki, Japan
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mikio Shoji
- Department of Neurology, Geriatrics Research Institute Hospital, Maebashi, Aomori, Japan.,Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
36
|
Lozupone M, Solfrizzi V, D'Urso F, Di Gioia I, Sardone R, Dibello V, Stallone R, Liguori A, Ciritella C, Daniele A, Bellomo A, Seripa D, Panza F. Anti-amyloid-β protein agents for the treatment of Alzheimer's disease: an update on emerging drugs. Expert Opin Emerg Drugs 2020; 25:319-335. [PMID: 32772738 DOI: 10.1080/14728214.2020.1808621] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Currently available Alzheimer's disease (AD) therapeutics are only symptomatic, targeting cholinergic and glutamatergic neurotransmissions. Several putative disease-modifying drugs in late-stage clinical development target amyloid-β (Aβ) peptide and tau protein, the principal neurophatological hallmarks of the disease. AREAS COVERED Phase III randomized clinical trials of anti-Aβ drugs for AD treatment were searched in US and EU clinical trial registries and principal biomedical databases until May 2020. EXPERT OPINION At present, compounds in Phase III clinical development for AD include four anti-Ab monoclonal antibodies (solanezumab, gantenerumab, aducanumab, BAN2401), the combination of cromolyn sodium and ibuprofen (ALZT-OP1), and two small molecules (levetiracetam, GV-971). These drugs are mainly being tested in subjects during early AD phases or at preclinical stage of familial AD or even in asymptomatic subjects at high risk of developing AD. The actual results support the hypothesis that elevated Aβ represents an early stage in the AD continuum and demonstrate the feasibility of enrolling these high-risk participants in secondary prevention trials to slow cognitive decline during the AD preclinical stages. However, a series of clinical failures may question further development of Aβ-targeting drugs and the findings from current ongoing Phase III trials will hopefully give light to this critical issue.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro , Bari, Italy
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro" , Bari, Italy
| | - Francesca D'Urso
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Ilaria Di Gioia
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Rodolfo Sardone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Vittorio Dibello
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy.,Department of Orofacial Pain and Dysfunction, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , The Netherlands
| | - Roberta Stallone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Angelo Liguori
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Chiara Ciritella
- Physical and Rehabilitation Medicine Department, University of Foggia , Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart , Rome, Italy.,Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Davide Seripa
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo Della Sofferenza , Foggia, Italy.,Hematology and Stem Cell Transplant Unit, Vito Fazzi Hospital, ASL Lecce , Lecce, Italy
| | - Francesco Panza
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| |
Collapse
|
37
|
Castillo-Barnes D, Su L, Ramírez J, Salas-Gonzalez D, Martinez-Murcia FJ, Illan IA, Segovia F, Ortiz A, Cruchaga C, Farlow MR, Xiong C, Graff-Radford NR, Schofield PR, Masters CL, Salloway S, Jucker M, Mori H, Levin J, Gorriz JM, Dominantly Inherited Alzheimer Network (DIAN). Autosomal Dominantly Inherited Alzheimer Disease: Analysis of genetic subgroups by Machine Learning. AN INTERNATIONAL JOURNAL ON INFORMATION FUSION 2020; 58:153-167. [PMID: 32284705 PMCID: PMC7153760 DOI: 10.1016/j.inffus.2020.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite subjects with Dominantly-Inherited Alzheimer's Disease (DIAD) represent less than 1% of all Alzheimer's Disease (AD) cases, the Dominantly Inherited Alzheimer Network (DIAN) initiative constitutes a strong impact in the understanding of AD disease course with special emphasis on the presyptomatic disease phase. Until now, the 3 genes involved in DIAD pathogenesis (PSEN1, PSEN2 and APP) have been commonly merged into one group (Mutation Carriers, MC) and studied using conventional statistical analysis. Comparisons between groups using null-hypothesis testing or longitudinal regression procedures, such as the linear-mixed-effects models, have been assessed in the extant literature. Within this context, the work presented here performs a comparison between different groups of subjects by considering the 3 genes, either jointly or separately, and using tools based on Machine Learning (ML). This involves a feature selection step which makes use of ANOVA followed by Principal Component Analysis (PCA) to determine which features would be realiable for further comparison purposes. Then, the selected predictors are classified using a Support-Vector-Machine (SVM) in a nested k-Fold cross-validation resulting in maximum classification rates of 72-74% using PiB PET features, specially when comparing asymptomatic Non-Carriers (NC) subjects with asymptomatic PSEN1 Mutation-Carriers (PSEN1-MC). Results obtained from these experiments led to the idea that PSEN1-MC might be considered as a mixture of two different subgroups including: a first group whose patterns were very close to NC subjects, and a second group much more different in terms of imaging patterns. Thus, using a k-Means clustering algorithm it was determined both subgroups and a new classification scenario was conducted to validate this process. The comparison between each subgroup vs. NC subjects resulted in classification rates around 80% underscoring the importance of considering DIAN as an heterogeneous entity.
Collapse
Affiliation(s)
- Diego Castillo-Barnes
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada (Spain)
| | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge (UK)
| | - Javier Ramírez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada (Spain)
| | - Diego Salas-Gonzalez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada (Spain)
| | | | - Ignacio A. Illan
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada (Spain)
| | - Fermin Segovia
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada (Spain)
| | - Andres Ortiz
- Department of Communications Engineering, University of Malaga, Malaga (Spain)
| | - Carlos Cruchaga
- Department of Psychiatry and Neurology, Washington University School of Medicine, St. Louis, Missouri (USA)
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana (USA)
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri (USA)
| | | | - Peter R. Schofield
- Neuroscience Research Australia and School of Medical Sciences, University of New South Wales, Sydney (Australia)
| | - Colin L. Masters
- Florey Institute and University of Melbourne, Victoria (Australia)
| | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen (Germany)
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical school, Osaka (Japan)
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich (Germany)
| | - Juan M. Gorriz
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada (Spain)
- Department of Psychiatry, University of Cambridge, Cambridge (UK)
| | | |
Collapse
|
38
|
Boxer AL, Gold M, Feldman H, Boeve BF, Dickinson SLJ, Fillit H, Ho C, Paul R, Pearlman R, Sutherland M, Verma A, Arneric SP, Alexander BM, Dickerson BC, Dorsey ER, Grossman M, Huey ED, Irizarry MC, Marks WJ, Masellis M, McFarland F, Niehoff D, Onyike CU, Paganoni S, Panzara MA, Rockwood K, Rohrer JD, Rosen H, Schuck RN, Soares HD, Tatton N. New directions in clinical trials for frontotemporal lobar degeneration: Methods and outcome measures. Alzheimers Dement 2020; 16:131-143. [PMID: 31668596 PMCID: PMC6949386 DOI: 10.1016/j.jalz.2019.06.4956] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Frontotemporal lobar degeneration (FTLD) is the most common form of dementia for those under 60 years of age. Increasing numbers of therapeutics targeting FTLD syndromes are being developed. METHODS In March 2018, the Association for Frontotemporal Degeneration convened the Frontotemporal Degeneration Study Group meeting in Washington, DC, to discuss advances in the clinical science of FTLD. RESULTS Challenges exist for conducting clinical trials in FTLD. Two of the greatest challenges are (1) the heterogeneity of FTLD syndromes leading to difficulties in efficiently measuring treatment effects and (2) the rarity of FTLD disorders leading to recruitment challenges. DISCUSSION New personalized endpoints that are clinically meaningful to individuals and their families should be developed. Personalized approaches to analyzing MRI data, development of new fluid biomarkers and wearable technologies will help to improve the power to detect treatment effects in FTLD clinical trials and enable new, clinical trial designs, possibly leveraged from the experience of oncology trials. A computational visualization and analysis platform that can support novel analyses of combined clinical, genetic, imaging, biomarker data with other novel modalities will be critical to the success of these endeavors.
Collapse
Affiliation(s)
- Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | | | - Howard Feldman
- Department of Neurosciences, University of California San Diego, San Diego, CA
| | | | | | | | - Carole Ho
- Denali Therapeutics, San Francisco, CA
| | | | | | | | | | | | | | | | - Earl Ray Dorsey
- Center for Health and Technology, University of Rochester, Rochester, NY
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Edward D. Huey
- Departments of Psychiatry and Neurology, Columbia University, NY
| | | | - William J. Marks
- Clinical Neurology, Verily Life Sciences, South San Francisco, CA
| | - Mario Masellis
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, ON, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, ON, Canada
| | | | - Debra Niehoff
- Association for Frontotemporal Degeneration, Radnor, PA
| | - Chiadi U. Onyike
- Department Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University, Baltimore, MD
| | - Sabrina Paganoni
- Healey Center for ALS, Massachusetts General Hospital, Boston, MA
| | | | - Kenneth Rockwood
- Division of Geriatric Medicine, Dalhousie University, Halifax, NS
| | - Jonathan D. Rohrer
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Howard Rosen
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Robert N. Schuck
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | | | - Nadine Tatton
- Association for Frontotemporal Degeneration, Radnor, PA
| |
Collapse
|
39
|
Rosen HJ, Boeve BF, Boxer AL. Tracking disease progression in familial and sporadic frontotemporal lobar degeneration: Recent findings from ARTFL and LEFFTDS. Alzheimers Dement 2020; 16:71-78. [PMID: 31914219 PMCID: PMC6953606 DOI: 10.1002/alz.12004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/17/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Familial frontotemporal lobar degeneration (f-FTLD) due to autosomal dominant mutations is an important entity for developing treatments for FTLD. The Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS) longitudinal studies were designed to describe the natural history of f-FTLD. METHODS We summarized recent publications from the ARTFL and LEFFTDS studies, along with other recent publications describing the natural history of f-FTLD. RESULTS Published and emerging studies are producing data on all phases of f-FTLD, including the asymptomatic and symptomatic phases of disease, as well as the transitional phase when symptoms are just beginning to develop. These data indicate that rates of change increase along with disease severity, which is consistent with commonly cited models of neurodegeneration, and that measurement of biomarkers may predict onset of symptoms. DISCUSSION Data from large multisite studies are producing important data on the natural history of f-FTLD that will be critical for planning intervention trials.
Collapse
Affiliation(s)
- Howard J. Rosen
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCalifornia
| | | | - Adam L. Boxer
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCalifornia
| |
Collapse
|
40
|
Withers M, Sayegh P, Rodriguez-Agudelo Y, Ernstrom K, Raman R, Montoya L, Zuno-Reyes A, Mosieri C, Matute E, Ringman JM. A mixed-methods study of cultural beliefs about dementia and genetic testing among Mexicans and Mexican-Americans at-risk for autosomal dominant Alzheimer's disease. J Genet Couns 2019; 28:921-932. [PMID: 31207006 PMCID: PMC7500864 DOI: 10.1002/jgc4.1133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023]
Abstract
Trials to prevent autosomal dominantly inherited Alzheimer's disease (ADAD) are critical and timely. However, cultural beliefs about AD and genetic testing may preclude informed consent and participation, especially among racial/ethnic minorities. This mixed-methods study examines cultural beliefs about AD and genetic screening among at-risk populations of Mexican heritage. We surveyed 86 Mexican and 37 Mexican-American family members of patients with ADAD and interviewed 18 respondents in Mexico to explore perceptions and knowledge regarding AD and genetic testing. While most respondents understood that AD is inherited in their families, they also had limited understanding of the genetic mechanisms behind AD. Many believed that AD is a normal part of aging or that it is a mental illness caused by bad habits. However, beliefs that AD is caused by a curse or God's will were uncommon. The interviews demonstrated that very few at-risk respondents understood their own risk for harboring the mutation causing AD in their family. Once informed, most expressed a strong interest in genetic testing, largely motivated by the desire to be better prepared for the development of AD. Health professionals treating and investigators enrolling members from families with ADAD cannot assume that they fully understand the nature of the illness; therefore, providers should provide comprehensive information about ADAD and genetic testing.
Collapse
Affiliation(s)
- Mellissa Withers
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Philip Sayegh
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | | | - Karin Ernstrom
- Alzheimer’s Therapeutic Research Institute, University of Southern California, Los Angeles, California, USA
| | - Rema Raman
- Alzheimer’s Therapeutic Research Institute, University of Southern California, Los Angeles, California, USA
| | - Lucy Montoya
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | | | - Chizoba Mosieri
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Esmeralda Matute
- Institute of Neurosciences, University of Guadalajara, Guadalajara, Mexico
| | - John M. Ringman
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
41
|
Reynolds DS. A short perspective on the long road to effective treatments for Alzheimer's disease. Br J Pharmacol 2019; 176:3636-3648. [PMID: 30657599 PMCID: PMC6715596 DOI: 10.1111/bph.14581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Globally, there are approximately 47 million people living with dementia, and about two thirds of those have Alzheimer's disease (AD). Age is the single biggest risk factor for the vast majority of sporadic AD cases, and because the world's population is aging, the number of people living with AD is set to rise dramatically over the coming decades. There are currently no disease-modifying treatments for AD, and the few symptomatic agents available have limited impact on the disease. Perhaps surprisingly, there is relatively little activity in the AD research and development field compared with other diseases with a high mortality burden, such as cancer. There is enormous economic incentive to discover and develop the first disease-modifying treatment, but previous failure has significantly reduced further industrial investment in this field. The short review looks at the historical path trodden to develop treatments and reflects on the journey down the road to truly effective treatments for people living with AD. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
|
42
|
Sala-Llonch R, Falgàs N, Bosch B, Fernández-Villullas G, Balasa M, Antonell A, Perissinotti A, Pavía J, Campos F, Lladó A, Lomeña F, Sánchez-Valle R. Regional patterns of 18F-florbetaben uptake in presenilin 1 mutation carriers. Neurobiol Aging 2019; 81:1-8. [DOI: 10.1016/j.neurobiolaging.2019.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
|
43
|
Cummings J, Feldman HH, Scheltens P. The "rights" of precision drug development for Alzheimer's disease. Alzheimers Res Ther 2019; 11:76. [PMID: 31470905 PMCID: PMC6717388 DOI: 10.1186/s13195-019-0529-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023]
Abstract
There is a high rate of failure in Alzheimer's disease (AD) drug development with 99% of trials showing no drug-placebo difference. This low rate of success delays new treatments for patients and discourages investment in AD drug development. Studies across drug development programs in multiple disorders have identified important strategies for decreasing the risk and increasing the likelihood of success in drug development programs. These experiences provide guidance for the optimization of AD drug development. The "rights" of AD drug development include the right target, right drug, right biomarker, right participant, and right trial. The right target identifies the appropriate biologic process for an AD therapeutic intervention. The right drug must have well-understood pharmacokinetic and pharmacodynamic features, ability to penetrate the blood-brain barrier, efficacy demonstrated in animals, maximum tolerated dose established in phase I, and acceptable toxicity. The right biomarkers include participant selection biomarkers, target engagement biomarkers, biomarkers supportive of disease modification, and biomarkers for side effect monitoring. The right participant hinges on the identification of the phase of AD (preclinical, prodromal, dementia). Severity of disease and drug mechanism both have a role in defining the right participant. The right trial is a well-conducted trial with appropriate clinical and biomarker outcomes collected over an appropriate period of time, powered to detect a clinically meaningful drug-placebo difference, and anticipating variability introduced by globalization. We lack understanding of some critical aspects of disease biology and drug action that may affect the success of development programs even when the "rights" are adhered to. Attention to disciplined drug development will increase the likelihood of success, decrease the risks associated with AD drug development, enhance the ability to attract investment, and make it more likely that new therapies will become available to those with or vulnerable to the emergence of AD.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Department of Brain Health, School of Integrated Health Sciences, UNLV and Cleveland Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville Ave, Las Vegas, NV, 89106, USA.
| | - Howard H Feldman
- Department of Neurosciences, Alzheimer's Disease Cooperative Study, University of California San Diego, San Diego, CA, USA
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain 2019; 141:1917-1933. [PMID: 29850777 DOI: 10.1093/brain/awy132] [Citation(s) in RCA: 1051] [Impact Index Per Article: 175.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Cholinergic synapses are ubiquitous in the human central nervous system. Their high density in the thalamus, striatum, limbic system, and neocortex suggest that cholinergic transmission is likely to be critically important for memory, learning, attention and other higher brain functions. Several lines of research suggest additional roles for cholinergic systems in overall brain homeostasis and plasticity. As such, the brain's cholinergic system occupies a central role in ongoing research related to normal cognition and age-related cognitive decline, including dementias such as Alzheimer's disease. The cholinergic hypothesis of Alzheimer's disease centres on the progressive loss of limbic and neocortical cholinergic innervation. Neurofibrillary degeneration in the basal forebrain is believed to be the primary cause for the dysfunction and death of forebrain cholinergic neurons, giving rise to a widespread presynaptic cholinergic denervation. Cholinesterase inhibitors increase the availability of acetylcholine at synapses in the brain and are one of the few drug therapies that have been proven clinically useful in the treatment of Alzheimer's disease dementia, thus validating the cholinergic system as an important therapeutic target in the disease. This review includes an overview of the role of the cholinergic system in cognition and an updated understanding of how cholinergic deficits in Alzheimer's disease interact with other aspects of disease pathophysiology, including plaques composed of amyloid-β proteins. This review also documents the benefits of cholinergic therapies at various stages of Alzheimer's disease and during long-term follow-up as visualized in novel imaging studies. The weight of the evidence supports the continued value of cholinergic drugs as a standard, cornerstone pharmacological approach in Alzheimer's disease, particularly as we look ahead to future combination therapies that address symptoms as well as disease progression.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - M-Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ezio Giacobini
- Department of Internal Medicine, Rehabilitation and Geriatrics, University of Geneva Hospitals, Geneva, Switzerland
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Ara S Khachaturian
- The Campaign to Prevent Alzheimer's Disease by 2020 (PAD2020), Potomac, MD, USA
| | - Andrea Vergallo
- AXA Research Fund and Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Enrica Cavedo
- AXA Research Fund and Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Peter J Snyder
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI USA.,Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
45
|
Cummings J, Ritter A, Zhong K. Clinical Trials for Disease-Modifying Therapies in Alzheimer's Disease: A Primer, Lessons Learned, and a Blueprint for the Future. J Alzheimers Dis 2019; 64:S3-S22. [PMID: 29562511 PMCID: PMC6004914 DOI: 10.3233/jad-179901] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) has no currently approved disease-modifying therapies (DMTs), and treatments to prevent, delay the onset, or slow the progression are urgently needed. A delay of 5 years if available by 2025 would decrease the total number of patients with AD by 50% in 2050. To meet the definition of DMT, an agent must produce an enduring change in the course of AD; clinical trials of DMTs have the goal of demonstrating this effect. AD drug discovery entails target identification followed by high throughput screening and lead optimization of drug-like compounds. Once an optimized agent is available and has been assessed for efficacy and toxicity in animals, it progresses through Phase I testing with healthy volunteers, Phase II learning trials to establish proof-of-mechanism and dose, and Phase III confirmatory trials to demonstrate efficacy and safety in larger populations. Phase III is followed by Food and Drug Administration review and, if appropriate, market access. Trial populations include cognitively normal at-risk participants in prevention trials, mildly impaired participants with biomarker evidence of AD in prodromal AD trials, and subjects with cognitive and functional impairment in AD dementia trials. Biomarkers are critical in trials of DMTs, assisting in participant characterization and diagnosis, target engagement and proof-of-pharmacology, demonstration of disease-modification, and monitoring side effects. Clinical trial designs include randomized, parallel group; delayed start; staggered withdrawal; and adaptive. Lessons learned from completed trials inform future trials and increase the likelihood of success.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Kate Zhong
- Global Alzheimer Platform, Washington, DC, USA
| |
Collapse
|
46
|
Hampel H, Vergallo A, Perry G, Lista S. The Alzheimer Precision Medicine Initiative. J Alzheimers Dis 2019; 68:1-24. [DOI: 10.3233/jad-181121] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Harald Hampel
- AXA Research Fund & Sorbonne University Chair, Paris, France
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, Paris, France
| | - Andrea Vergallo
- AXA Research Fund & Sorbonne University Chair, Paris, France
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, Paris, France
| | - George Perry
- College of Sciences, One UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Simone Lista
- AXA Research Fund & Sorbonne University Chair, Paris, France
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, Paris, France
| | | |
Collapse
|
47
|
McDade E. Reply to: Major Clinical Trials Failed the Amyloid Hypothesis of Alzheimer's Disease. J Am Geriatr Soc 2019; 67:848-849. [PMID: 30851120 DOI: 10.1111/jgs.15826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Eric McDade
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
48
|
Su Y, Flores S, Wang G, Hornbeck RC, Speidel B, Joseph-Mathurin N, Vlassenko AG, Gordon BA, Koeppe RA, Klunk WE, Jack CR, Farlow MR, Salloway S, Snider BJ, Berman SB, Roberson ED, Brosch J, Jimenez-Velazques I, van Dyck CH, Galasko D, Yuan SH, Jayadev S, Honig LS, Gauthier S, Hsiung GYR, Masellis M, Brooks WS, Fulham M, Clarnette R, Masters CL, Wallon D, Hannequin D, Dubois B, Pariente J, Sanchez-Valle R, Mummery C, Ringman JM, Bottlaender M, Klein G, Milosavljevic-Ristic S, McDade E, Xiong C, Morris JC, Bateman RJ, Benzinger TLS. Comparison of Pittsburgh compound B and florbetapir in cross-sectional and longitudinal studies. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:180-190. [PMID: 30847382 PMCID: PMC6389727 DOI: 10.1016/j.dadm.2018.12.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction Quantitative in vivo measurement of brain amyloid burden is important for both research and clinical purposes. However, the existence of multiple imaging tracers presents challenges to the interpretation of such measurements. This study presents a direct comparison of Pittsburgh compound B–based and florbetapir-based amyloid imaging in the same participants from two independent cohorts using a crossover design. Methods Pittsburgh compound B and florbetapir amyloid PET imaging data from three different cohorts were analyzed using previously established pipelines to obtain global amyloid burden measurements. These measurements were converted to the Centiloid scale to allow fair comparison between the two tracers. The mean and inter-individual variability of the two tracers were compared using multivariate linear models both cross-sectionally and longitudinally. Results Global amyloid burden measured using the two tracers were strongly correlated in both cohorts. However, higher variability was observed when florbetapir was used as the imaging tracer. The variability may be partially caused by white matter signal as partial volume correction reduces the variability and improves the correlations between the two tracers. Amyloid burden measured using both tracers was found to be in association with clinical and psychometric measurements. Longitudinal comparison of the two tracers was also performed in similar but separate cohorts whose baseline amyloid load was considered elevated (i.e., amyloid positive). No significant difference was detected in the average annualized rate of change measurements made with these two tracers. Discussion Although the amyloid burden measurements were quite similar using these two tracers as expected, difference was observable even after conversion into the Centiloid scale. Further investigation is warranted to identify optimal strategies to harmonize amyloid imaging data acquired using different tracers.
Collapse
Affiliation(s)
- Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Shaney Flores
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Guoqiao Wang
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA.,Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Russ C Hornbeck
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Benjamin Speidel
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Nelly Joseph-Mathurin
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrei G Vlassenko
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Brian A Gordon
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Barbara J Snider
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jared Brosch
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | - Shauna H Yuan
- University of California-San Diego, San Diego, CA, USA
| | | | | | - Serge Gauthier
- McGill Center for Studies in Aging, Douglas Mental Health Research Institute, Montreal, Canada
| | | | - Mario Masellis
- Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | | | - Michael Fulham
- University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | - Colin L Masters
- The University of Melbourne and the Florey Institute, Parkville, VIC, Australia
| | - David Wallon
- Inserm U1245, Department of Neurology and CNR-MAJ, Rouen, France.,Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Didier Hannequin
- Inserm U1245, Department of Neurology and CNR-MAJ, Rouen, France.,Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Bruno Dubois
- University Salpêtrière Hospital in Paris, Paris, France
| | | | | | | | - John M Ringman
- Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Eric McDade
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA.,Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Randall J Bateman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
49
|
Sánchez-Valle R, Heslegrave A, Foiani MS, Bosch B, Antonell A, Balasa M, Lladó A, Zetterberg H, Fox NC. Serum neurofilament light levels correlate with severity measures and neurodegeneration markers in autosomal dominant Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:113. [PMID: 30390718 PMCID: PMC6215337 DOI: 10.1186/s13195-018-0439-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Background Biomarkers that can track disease onset and progression in autosomal dominant Alzheimer’s disease (ADAD) are needed. We investigate whether serum neurofilament light (NfL) concentration is associated with clinical and cerebrospinal fluid (CSF) markers in ADAD. We also evaluate serum NfL differences between clinical groups. Methods Serum NfL was measured cross-sectionally in 60 individuals from ADAD families using an ultrasensitive immunoassay on the Single molecule array (Simoa) platform and longitudinally in an exploratory study in a subset of six mutation carriers. Spearman coefficients assessed associations between serum NfL and relevant measures. Differences between groups were evaluated by Kruskal-Wallis and Mann-Whitney U tests. Results Forty-two participants were mutation carriers: 22 symptomatic (SMC) and 20 asymptomatic (AMC). Eighteen subjects were non-carriers and cognitively normal (controls (CTR)). Serum NfL correlated with the estimated years from symptoms onset across mutation carriers (rho = 0.75, p < 0.001). In mutation carriers, serum NfL also showed strong correlation with clinical (rho = 0.70, p < 0.001) and cognitive (rho = −0.77, p < 0.001) measures and CSF NfL, total tau and phosphorylated tau levels (rho = 0.72, 0.71, and 0.71, respectively, all p < 0.001). Serum NfL concentration was higher in SMC than in AMC and CTR. Conclusions Serum NfL might be a feasible non-invasive biomarker to track disease onset and severity in ADAD.
Collapse
Affiliation(s)
- Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain.
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Martha S Foiani
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nick C Fox
- UK Dementia Research Institute at UCL, London, UK.,Dementia Research Centre, University College of London, Institute of Neurology, London, UK
| |
Collapse
|
50
|
McDade E, Wang G, Gordon BA, Hassenstab J, Benzinger TLS, Buckles V, Fagan AM, Holtzman DM, Cairns NJ, Goate AM, Marcus DS, Morris JC, Paumier K, Xiong C, Allegri R, Berman SB, Klunk W, Noble J, Ringman J, Ghetti B, Farlow M, Sperling RA, Chhatwal J, Salloway S, Graff-Radford NR, Schofield PR, Masters C, Rossor MN, Fox NC, Levin J, Jucker M, Bateman RJ. Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease. Neurology 2018; 91:e1295-e1306. [PMID: 30217935 DOI: 10.1212/wnl.0000000000006277] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 07/05/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To assess the onset, sequence, and rate of progression of comprehensive biomarker and clinical measures across the spectrum of Alzheimer disease (AD) using the Dominantly Inherited Alzheimer Network (DIAN) study and compare these to cross-sectional estimates. METHODS We conducted longitudinal clinical, cognitive, CSF, and neuroimaging assessments (mean of 2.7 [±1.1] visits) in 217 DIAN participants. Linear mixed effects models were used to assess changes in each measure relative to individuals' estimated years to symptom onset and to compare mutation carriers and noncarriers. RESULTS Longitudinal β-amyloid measures changed first (starting 25 years before estimated symptom onset), followed by declines in measures of cortical metabolism (approximately 7-10 years later), then cognition and hippocampal atrophy (approximately 20 years later). There were significant differences in the estimates of CSF p-tau181 and tau, with elevations from cross-sectional estimates preceding longitudinal estimates by over 10 years; further, longitudinal estimates identified a significant decline in CSF p-tau181 near symptom onset as opposed to continued elevations. CONCLUSION These longitudinal estimates clarify the sequence and temporal dynamics of presymptomatic pathologic changes in autosomal dominant AD, information critical to a better understanding of the disease. The pattern of biomarker changes identified here also suggests that once β-amyloidosis begins, additional pathologies may begin to develop less than 10 years later, but more than 15 years before symptom onset, an important consideration for interventions meant to alter the disease course.
Collapse
Affiliation(s)
- Eric McDade
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany.
| | - Guoqiao Wang
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Brian A Gordon
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Jason Hassenstab
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Tammie L S Benzinger
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Virginia Buckles
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Anne M Fagan
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - David M Holtzman
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Nigel J Cairns
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Alison M Goate
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Daniel S Marcus
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - John C Morris
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Katrina Paumier
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Chengjie Xiong
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Ricardo Allegri
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Sarah B Berman
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - William Klunk
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - James Noble
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - John Ringman
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Bernardino Ghetti
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Martin Farlow
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Reisa A Sperling
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Jasmeer Chhatwal
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Stephen Salloway
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Neill R Graff-Radford
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Peter R Schofield
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Colin Masters
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Martin N Rossor
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Nick C Fox
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Johannes Levin
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Mathias Jucker
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany
| | - Randall J Bateman
- From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany.
| | | |
Collapse
|