1
|
Mou X, Ji D. A BARRage of firing while asleep. Science 2024; 385:710-711. [PMID: 39146433 DOI: 10.1126/science.adr2431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Memory reactivation requires counterbalancing to consolidate memories.
Collapse
Affiliation(s)
- Xiang Mou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daoyun Ji
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Liao Z, Gonzalez KC, Li DM, Yang CM, Holder D, McClain NE, Zhang G, Evans SW, Chavarha M, Simko J, Makinson CD, Lin MZ, Losonczy A, Negrean A. Functional architecture of intracellular oscillations in hippocampal dendrites. Nat Commun 2024; 15:6295. [PMID: 39060234 PMCID: PMC11282248 DOI: 10.1038/s41467-024-50546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions, report an advancing gradient of dendritic theta phase along the basal-tuft axis, and describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find that spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Deborah M Li
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Catalina M Yang
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Donald Holder
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Natalie E McClain
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, USA
| | - Stephen W Evans
- Department of Neurobiology, Stanford University, Stanford, USA
- The Boulder Creek Research Institute, Los Altos, USA
| | - Mariya Chavarha
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Jane Simko
- Department of Neuroscience, Columbia University, New York, USA
- Department of Neurology, Columbia University, New York, USA
| | - Christopher D Makinson
- Department of Neuroscience, Columbia University, New York, USA
- Department of Neurology, Columbia University, New York, USA
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, USA
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
- Kavli Institute for Brain Science, Columbia University, New York, USA.
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
- Allen Institute for Neural Dynamics, Seattle, USA.
| |
Collapse
|
3
|
Valdivia G, Espinosa N, Lara-Vasquez A, Caneo M, Inostroza M, Born J, Fuentealba P. Sleep-dependent decorrelation of hippocampal spatial representations. iScience 2024; 27:110076. [PMID: 38883845 PMCID: PMC11176648 DOI: 10.1016/j.isci.2024.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
Neuronal ensembles are crucial for episodic memory and spatial mapping. Sleep, particularly non-REM (NREM), is vital for memory consolidation, as it triggers plasticity mechanisms through brain oscillations that reactivate neuronal ensembles. Here, we assessed their role in consolidating hippocampal spatial representations during sleep. We recorded hippocampus activity in rats performing a spatial object-place recognition (OPR) memory task, during encoding and retrieval periods, separated by intervening sleep. Successful OPR retrieval correlated with NREM duration, during which cortical oscillations decreased in power and density as well as neuronal spiking, suggesting global downregulation of network excitability. However, neurons encoding specific spatial locations (i.e., place cells) or objects during OPR showed stronger synchrony with brain oscillations compared to non-encoding neurons, and the stability of spatial representations decreased proportionally with NREM duration. Our findings suggest that NREM sleep may promote flexible remapping in hippocampal ensembles, potentially aiding memory consolidation and adaptation to novel spatial contexts.
Collapse
Affiliation(s)
- Gonzalo Valdivia
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Nelson Espinosa
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Ariel Lara-Vasquez
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Mauricio Caneo
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Pablo Fuentealba
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| |
Collapse
|
4
|
Kromer JA, Tass PA. Coordinated reset stimulation of plastic neural networks with spatially dependent synaptic connections. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1351815. [PMID: 38863734 PMCID: PMC11165135 DOI: 10.3389/fnetp.2024.1351815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/15/2024] [Indexed: 06/13/2024]
Abstract
Background Abnormal neuronal synchrony is associated with several neurological disorders, including Parkinson's disease (PD), essential tremor, dystonia, and epilepsy. Coordinated reset (CR) stimulation was developed computationally to counteract abnormal neuronal synchrony. During CR stimulation, phase-shifted stimuli are delivered to multiple stimulation sites. Computational studies in plastic neural networks reported that CR stimulation drove the networks into an attractor of a stable desynchronized state by down-regulating synaptic connections, which led to long-lasting desynchronization effects that outlasted stimulation. Later, corresponding long-lasting desynchronization and therapeutic effects were found in animal models of PD and PD patients. To date, it is unclear how spatially dependent synaptic connections, as typically observed in the brain, shape CR-induced synaptic downregulation and long-lasting effects. Methods We performed numerical simulations of networks of leaky integrate-and-fire neurons with spike-timing-dependent plasticity and spatially dependent synaptic connections to study and further improve acute and long-term responses to CR stimulation. Results The characteristic length scale of synaptic connections relative to the distance between stimulation sites plays a key role in CR parameter adjustment. In networks with short synaptic length scales, a substantial synaptic downregulation can be achieved by selecting appropriate stimulus-related parameters, such as the stimulus amplitude and shape, regardless of the employed spatiotemporal pattern of stimulus deliveries. Complex stimulus shapes can induce local connectivity patterns in the vicinity of the stimulation sites. In contrast, in networks with longer synaptic length scales, the spatiotemporal sequence of stimulus deliveries is of major importance for synaptic downregulation. In particular, rapid shuffling of the stimulus sequence is advantageous for synaptic downregulation. Conclusion Our results suggest that CR stimulation parameters can be adjusted to synaptic connectivity to further improve the long-lasting effects. Furthermore, shuffling of CR sequences is advantageous for long-lasting desynchronization effects. Our work provides important hypotheses on CR parameter selection for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Justus A. Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | | |
Collapse
|
5
|
Cabrera Y, Koymans KJ, Poe GR, Kessels HW, Van Someren EJW, Wassing R. Overnight neuronal plasticity and adaptation to emotional distress. Nat Rev Neurosci 2024; 25:253-271. [PMID: 38443627 DOI: 10.1038/s41583-024-00799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Expressions such as 'sleep on it' refer to the resolution of distressing experiences across a night of sound sleep. Sleep is an active state during which the brain reorganizes the synaptic connections that form memories. This Perspective proposes a model of how sleep modifies emotional memory traces. Sleep-dependent reorganization occurs through neurophysiological events in neurochemical contexts that determine the fates of synapses to grow, to survive or to be pruned. We discuss how low levels of acetylcholine during non-rapid eye movement sleep and low levels of noradrenaline during rapid eye movement sleep provide a unique window of opportunity for plasticity in neuronal representations of emotional memories that resolves the associated distress. We integrate sleep-facilitated adaptation over three levels: experience and behaviour, neuronal circuits, and synaptic events. The model generates testable hypotheses for how failed sleep-dependent adaptation to emotional distress is key to mental disorders, notably disorders of anxiety, depression and post-traumatic stress with the common aetiology of insomnia.
Collapse
Affiliation(s)
- Yesenia Cabrera
- Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Karin J Koymans
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Gina R Poe
- Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Synaptic Plasticity and Behaviour, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, Netherlands
- Department of Integrative Neurophysiology and Psychiatry, VU University, Amsterdam UMC, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam UMC, Amsterdam, Netherlands
| | - Rick Wassing
- Sleep and Circadian Research, Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia.
- School of Psychological Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
- Sydney Local Health District, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Shavikloo M, Esmaeili A, Valizadeh A, Madadi Asl M. Synchronization of delayed coupled neurons with multiple synaptic connections. Cogn Neurodyn 2024; 18:631-643. [PMID: 38699603 PMCID: PMC11061096 DOI: 10.1007/s11571-023-10013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/16/2023] [Accepted: 09/16/2023] [Indexed: 05/05/2024] Open
Abstract
Synchronization is a key feature of the brain dynamics and is necessary for information transmission across brain regions and in higher brain functions like cognition, learning and memory. Experimental findings demonstrated that in cortical microcircuits there are multiple synapses between pairs of connected neurons. Synchronization of neurons in the presence of multiple synaptic connections may be relevant for optimal learning and memory, however, its effect on the dynamics of the neurons is not adequately studied. Here, we address the question that how changes in the strength of the synaptic connections and transmission delays between neurons impact synchronization in a two-neuron system with multiple synapses. To this end, we analytically and computationally investigated synchronization dynamics by considering both phase oscillator model and conductance-based Hodgkin-Huxley (HH) model. Our results show that symmetry/asymmetry of feedforward and feedback connections crucially determines stability of the phase locking of the system based on the strength of connections and delays. In both models, the two-neuron system with multiple synapses achieves in-phase synchrony in the presence of small and large delays, whereas an anti-phase synchronization state is favored for median delays. Our findings can expand the understanding of the functional role of multisynaptic contacts in neuronal synchronization and may shed light on the dynamical consequences of pathological multisynaptic connectivity in a number of brain disorders.
Collapse
Affiliation(s)
- Masoumeh Shavikloo
- Department of Physics, Faculty of Science, Urmia University, Urmia, Iran
| | - Asghar Esmaeili
- Department of Physics, Faculty of Science, Urmia University, Urmia, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| | - Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| |
Collapse
|
7
|
Liao Z, Gonzalez KC, Li DM, Yang CM, Holder D, McClain NE, Zhang G, Evans SW, Chavarha M, Yi J, Makinson CD, Lin MZ, Losonczy A, Negrean A. Functional architecture of intracellular oscillations in hippocampal dendrites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579750. [PMID: 38405778 PMCID: PMC10888786 DOI: 10.1101/2024.02.12.579750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions and report an advancing gradient of dendritic theta phase along the basal-tuft axis, then describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Kevin C. Gonzalez
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Deborah M. Li
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Catalina M. Yang
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Donald Holder
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Natalie E. McClain
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Stephen W. Evans
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Mariya Chavarha
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Jane Yi
- Department of Neuroscience, Columbia University, New York, United States
- Department of Neurology, Columbia University, New York, United States
| | - Christopher D. Makinson
- Department of Neuroscience, Columbia University, New York, United States
- Department of Neurology, Columbia University, New York, United States
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University, Stanford, United States
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
- Kavli Institute for Brain Science, Columbia University, New York, United States
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
8
|
Fernandez-Ruiz A, Sirota A, Lopes-Dos-Santos V, Dupret D. Over and above frequency: Gamma oscillations as units of neural circuit operations. Neuron 2023; 111:936-953. [PMID: 37023717 PMCID: PMC7614431 DOI: 10.1016/j.neuron.2023.02.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/08/2023]
Abstract
Gamma oscillations (∼30-150 Hz) are widespread correlates of neural circuit functions. These network activity patterns have been described across multiple animal species, brain structures, and behaviors, and are usually identified based on their spectral peak frequency. Yet, despite intensive investigation, whether gamma oscillations implement causal mechanisms of specific brain functions or represent a general dynamic mode of neural circuit operation remains unclear. In this perspective, we review recent advances in the study of gamma oscillations toward a deeper understanding of their cellular mechanisms, neural pathways, and functional roles. We discuss that a given gamma rhythm does not per se implement any specific cognitive function but rather constitutes an activity motif reporting the cellular substrates, communication channels, and computational operations underlying information processing in its generating brain circuit. Accordingly, we propose shifting the attention from a frequency-based to a circuit-level definition of gamma oscillations.
Collapse
Affiliation(s)
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Madadi Asl M, Ramezani Akbarabadi S. Delay-dependent transitions of phase synchronization and coupling symmetry between neurons shaped by spike-timing-dependent plasticity. Cogn Neurodyn 2023; 17:523-536. [PMID: 37007192 PMCID: PMC10050303 DOI: 10.1007/s11571-022-09850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022] Open
Abstract
Synchronization plays a key role in learning and memory by facilitating the communication between neurons promoted by synaptic plasticity. Spike-timing-dependent plasticity (STDP) is a form of synaptic plasticity that modifies the strength of synaptic connections between neurons based on the coincidence of pre- and postsynaptic spikes. In this way, STDP simultaneously shapes the neuronal activity and synaptic connectivity in a feedback loop. However, transmission delays due to the physical distance between neurons affect neuronal synchronization and the symmetry of synaptic coupling. To address the question that how transmission delays and STDP can jointly determine the emergent pairwise activity-connectivity patterns, we studied phase synchronization properties and coupling symmetry between two bidirectionally coupled neurons using both phase oscillator and conductance-based neuron models. We show that depending on the range of transmission delays, the activity of the two-neuron motif can achieve an in-phase/anti-phase synchronized state and its connectivity can attain a symmetric/asymmetric coupling regime. The coevolutionary dynamics of the neuronal system and the synaptic weights due to STDP stabilizes the motif in either one of these states by transitions between in-phase/anti-phase synchronization states and symmetric/asymmetric coupling regimes at particular transmission delays. These transitions crucially depend on the phase response curve (PRC) of the neurons, but they are relatively robust to the heterogeneity of transmission delays and potentiation-depression imbalance of the STDP profile.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531 Iran
| | | |
Collapse
|
10
|
Madadi Asl M, Valizadeh A, Tass PA. Decoupling of interacting neuronal populations by time-shifted stimulation through spike-timing-dependent plasticity. PLoS Comput Biol 2023; 19:e1010853. [PMID: 36724144 PMCID: PMC9891531 DOI: 10.1371/journal.pcbi.1010853] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023] Open
Abstract
The synaptic organization of the brain is constantly modified by activity-dependent synaptic plasticity. In several neurological disorders, abnormal neuronal activity and pathological synaptic connectivity may significantly impair normal brain function. Reorganization of neuronal circuits by therapeutic stimulation has the potential to restore normal brain dynamics. Increasing evidence suggests that the temporal stimulation pattern crucially determines the long-lasting therapeutic effects of stimulation. Here, we tested whether a specific pattern of brain stimulation can enable the suppression of pathologically strong inter-population synaptic connectivity through spike-timing-dependent plasticity (STDP). More specifically, we tested how introducing a time shift between stimuli delivered to two interacting populations of neurons can effectively decouple them. To that end, we first used a tractable model, i.e., two bidirectionally coupled leaky integrate-and-fire (LIF) neurons, to theoretically analyze the optimal range of stimulation frequency and time shift for decoupling. We then extended our results to two reciprocally connected neuronal populations (modules) where inter-population delayed connections were modified by STDP. As predicted by the theoretical results, appropriately time-shifted stimulation causes a decoupling of the two-module system through STDP, i.e., by unlearning pathologically strong synaptic interactions between the two populations. Based on the overall topology of the connections, the decoupling of the two modules, in turn, causes a desynchronization of the populations that outlasts the cessation of stimulation. Decoupling effects of the time-shifted stimulation can be realized by time-shifted burst stimulation as well as time-shifted continuous simulation. Our results provide insight into the further optimization of a variety of multichannel stimulation protocols aiming at a therapeutic reshaping of diseased brain networks.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
11
|
Kromer JA, Tass PA. Synaptic reshaping of plastic neuronal networks by periodic multichannel stimulation with single-pulse and burst stimuli. PLoS Comput Biol 2022; 18:e1010568. [PMID: 36327232 PMCID: PMC9632832 DOI: 10.1371/journal.pcbi.1010568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
Synaptic dysfunction is associated with several brain disorders, including Alzheimer's disease, Parkinson's disease (PD) and obsessive compulsive disorder (OCD). Utilizing synaptic plasticity, brain stimulation is capable of reshaping synaptic connectivity. This may pave the way for novel therapies that specifically counteract pathological synaptic connectivity. For instance, in PD, novel multichannel coordinated reset stimulation (CRS) was designed to counteract neuronal synchrony and down-regulate pathological synaptic connectivity. CRS was shown to entail long-lasting therapeutic aftereffects in PD patients and related animal models. This is in marked contrast to conventional deep brain stimulation (DBS) therapy, where PD symptoms return shortly after stimulation ceases. In the present paper, we study synaptic reshaping by periodic multichannel stimulation (PMCS) in networks of leaky integrate-and-fire (LIF) neurons with spike-timing-dependent plasticity (STDP). During PMCS, phase-shifted periodic stimulus trains are delivered to segregated neuronal subpopulations. Harnessing STDP, PMCS leads to changes of the synaptic network structure. We found that the PMCS-induced changes of the network structure depend on both the phase lags between stimuli and the shape of individual stimuli. Single-pulse stimuli and burst stimuli with low intraburst frequency down-regulate synapses between neurons receiving stimuli simultaneously. In contrast, burst stimuli with high intraburst frequency up-regulate these synapses. We derive theoretical approximations of the stimulation-induced network structure. This enables us to formulate stimulation strategies for inducing a variety of network structures. Our results provide testable hypotheses for future pre-clinical and clinical studies and suggest that periodic multichannel stimulation may be suitable for reshaping plastic neuronal networks to counteract pathological synaptic connectivity. Furthermore, we provide novel insight on how the stimulus type may affect the long-lasting outcome of conventional DBS. This may strongly impact parameter adjustment procedures for clinical DBS, which, so far, primarily focused on acute effects of stimulation.
Collapse
Affiliation(s)
- Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| |
Collapse
|
12
|
Paolini G, Ciszak M, Marino F, Olmi S, Torcini A. Collective excitability in highly diluted random networks of oscillators. CHAOS (WOODBURY, N.Y.) 2022; 32:103108. [PMID: 36319301 DOI: 10.1063/5.0102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
We report on collective excitable events in a highly diluted random network of non-excitable nodes. Excitability arises thanks to a self-sustained local adaptation mechanism that drives the system on a slow timescale across a hysteretic phase transition involving states with different degrees of synchronization. These phenomena have been investigated for the Kuramoto model with bimodal distribution of the natural frequencies and for the Kuramoto model with inertia and a unimodal frequency distribution. We consider global and partial stimulation protocols and characterize the system response for different levels of dilution. We compare the results with those obtained in the fully coupled case showing that such collective phenomena are remarkably robust against network diluteness.
Collapse
Affiliation(s)
- Gabriele Paolini
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, 95302 Cergy-Pontoise, France
| | - Marzena Ciszak
- CNR-Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Marino
- CNR-Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Simona Olmi
- INFN, Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Alessandro Torcini
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, 95302 Cergy-Pontoise, France
| |
Collapse
|
13
|
Metastable spiking networks in the replica-mean-field limit. PLoS Comput Biol 2022; 18:e1010215. [PMID: 35714155 PMCID: PMC9246178 DOI: 10.1371/journal.pcbi.1010215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 06/30/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Characterizing metastable neural dynamics in finite-size spiking networks remains a daunting challenge. We propose to address this challenge in the recently introduced replica-mean-field (RMF) limit. In this limit, networks are made of infinitely many replicas of the finite network of interest, but with randomized interactions across replicas. Such randomization renders certain excitatory networks fully tractable at the cost of neglecting activity correlations, but with explicit dependence on the finite size of the neural constituents. However, metastable dynamics typically unfold in networks with mixed inhibition and excitation. Here, we extend the RMF computational framework to point-process-based neural network models with exponential stochastic intensities, allowing for mixed excitation and inhibition. Within this setting, we show that metastable finite-size networks admit multistable RMF limits, which are fully characterized by stationary firing rates. Technically, these stationary rates are determined as the solutions of a set of delayed differential equations under certain regularity conditions that any physical solutions shall satisfy. We solve this original problem by combining the resolvent formalism and singular-perturbation theory. Importantly, we find that these rates specify probabilistic pseudo-equilibria which accurately capture the neural variability observed in the original finite-size network. We also discuss the emergence of metastability as a stochastic bifurcation, which can be interpreted as a static phase transition in the RMF limits. In turn, we expect to leverage the static picture of RMF limits to infer purely dynamical features of metastable finite-size networks, such as the transition rates between pseudo-equilibria.
Collapse
|
14
|
Madadi Asl M, Asadi A, Enayati J, Valizadeh A. Inhibitory Spike-Timing-Dependent Plasticity Can Account for Pathological Strengthening of Pallido-Subthalamic Synapses in Parkinson's Disease. Front Physiol 2022; 13:915626. [PMID: 35665225 PMCID: PMC9160312 DOI: 10.3389/fphys.2022.915626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative brain disorder associated with dysfunction of the basal ganglia (BG) circuitry. Dopamine (DA) depletion in experimental PD models leads to the pathological strengthening of pallido-subthalamic synaptic connections, contributing to the emergence of abnormally synchronized neuronal activity in the external segment of the globus pallidus (GPe) and subthalamic nucleus (STN). Augmented GPe-STN transmission following loss of DA was attributed to heterosynaptic plasticity mechanisms induced by cortico-subthalamic inputs. However, synaptic plasticity may play a role in this process. Here, by employing computational modeling we show that assuming inhibitory spike-timing-dependent plasticity (iSTDP) at pallido-subthalamic synapses can account for pathological strengthening of pallido-subthalamic synapses in PD by further promoting correlated neuronal activity in the GPe-STN network. In addition, we show that GPe-STN transmission delays can shape bistable activity-connectivity states due to iSTDP, characterized by strong connectivity and strong synchronized activity (pathological states) as opposed to weak connectivity and desynchronized activity (physiological states). Our results may shed light on how abnormal reshaping of GPe-STN connectivity by synaptic plasticity during parkinsonism is related to the PD pathophysiology and contribute to the development of therapeutic brain stimulation techniques targeting plasticity-induced rewiring of network connectivity.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Atefeh Asadi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Jamil Enayati
- Physics Department, College of Education, University of Garmian, Kalar, Iraq
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
15
|
Weiss JT, Donlea JM. Roles for Sleep in Neural and Behavioral Plasticity: Reviewing Variation in the Consequences of Sleep Loss. Front Behav Neurosci 2022; 15:777799. [PMID: 35126067 PMCID: PMC8810646 DOI: 10.3389/fnbeh.2021.777799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep is a vital physiological state that has been broadly conserved across the evolution of animal species. While the precise functions of sleep remain poorly understood, a large body of research has examined the negative consequences of sleep loss on neural and behavioral plasticity. While sleep disruption generally results in degraded neural plasticity and cognitive function, the impact of sleep loss can vary widely with age, between individuals, and across physiological contexts. Additionally, several recent studies indicate that sleep loss differentially impacts distinct neuronal populations within memory-encoding circuitry. These findings indicate that the negative consequences of sleep loss are not universally shared, and that identifying conditions that influence the resilience of an organism (or neuron type) to sleep loss might open future opportunities to examine sleep's core functions in the brain. Here, we discuss the functional roles for sleep in adaptive plasticity and review factors that can contribute to individual variations in sleep behavior and responses to sleep loss.
Collapse
Affiliation(s)
- Jacqueline T. Weiss
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey M. Donlea
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Jeffrey M. Donlea
| |
Collapse
|
16
|
Madadi Asl M, Vahabie AH, Valizadeh A, Tass PA. Spike-Timing-Dependent Plasticity Mediated by Dopamine and its Role in Parkinson's Disease Pathophysiology. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:817524. [PMID: 36926058 PMCID: PMC10013044 DOI: 10.3389/fnetp.2022.817524] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is a multi-systemic neurodegenerative brain disorder. Motor symptoms of PD are linked to the significant dopamine (DA) loss in substantia nigra pars compacta (SNc) followed by basal ganglia (BG) circuit dysfunction. Increasing experimental and computational evidence indicates that (synaptic) plasticity plays a key role in the emergence of PD-related pathological changes following DA loss. Spike-timing-dependent plasticity (STDP) mediated by DA provides a mechanistic model for synaptic plasticity to modify synaptic connections within the BG according to the neuronal activity. To shed light on how DA-mediated STDP can shape neuronal activity and synaptic connectivity in the PD condition, we reviewed experimental and computational findings addressing the modulatory effect of DA on STDP as well as other plasticity mechanisms and discussed their potential role in PD pathophysiology and related network dynamics and connectivity. In particular, reshaping of STDP profiles together with other plasticity-mediated processes following DA loss may abnormally modify synaptic connections in competing pathways of the BG. The cascade of plasticity-induced maladaptive or compensatory changes can impair the excitation-inhibition balance towards the BG output nuclei, leading to the emergence of pathological activity-connectivity patterns in PD. Pre-clinical, clinical as well as computational studies reviewed here provide an understanding of the impact of synaptic plasticity and other plasticity mechanisms on PD pathophysiology, especially PD-related network activity and connectivity, after DA loss. This review may provide further insights into the abnormal structure-function relationship within the BG contributing to the emergence of pathological states in PD. Specifically, this review is intended to provide detailed information for the development of computational network models for PD, serving as testbeds for the development and optimization of invasive and non-invasive brain stimulation techniques. Computationally derived hypotheses may accelerate the development of therapeutic stimulation techniques and potentially reduce the number of related animal experiments.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Abdol-Hossein Vahabie
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
17
|
Khaledi-Nasab A, Kromer JA, Tass PA. Long-Lasting Desynchronization Effects of Coordinated Reset Stimulation Improved by Random Jitters. Front Physiol 2021; 12:719680. [PMID: 34630142 PMCID: PMC8497886 DOI: 10.3389/fphys.2021.719680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
Abnormally strong synchronized activity is related to several neurological disorders, including essential tremor, epilepsy, and Parkinson's disease. Chronic high-frequency deep brain stimulation (HF DBS) is an established treatment for advanced Parkinson's disease. To reduce the delivered integral electrical current, novel theory-based stimulation techniques such as coordinated reset (CR) stimulation directly counteract the abnormal synchronous firing by delivering phase-shifted stimuli through multiple stimulation sites. In computational studies in neuronal networks with spike-timing-dependent plasticity (STDP), it was shown that CR stimulation down-regulates synaptic weights and drives the network into an attractor of a stable desynchronized state. This led to desynchronization effects that outlasted the stimulation. Corresponding long-lasting therapeutic effects were observed in preclinical and clinical studies. Computational studies suggest that long-lasting effects of CR stimulation depend on the adjustment of the stimulation frequency to the dominant synchronous rhythm. This may limit clinical applicability as different pathological rhythms may coexist. To increase the robustness of the long-lasting effects, we study randomized versions of CR stimulation in networks of leaky integrate-and-fire neurons with STDP. Randomization is obtained by adding random jitters to the stimulation times and by shuffling the sequence of stimulation site activations. We study the corresponding long-lasting effects using analytical calculations and computer simulations. We show that random jitters increase the robustness of long-lasting effects with respect to changes of the number of stimulation sites and the stimulation frequency. In contrast, shuffling does not increase parameter robustness of long-lasting effects. Studying the relation between acute, acute after-, and long-lasting effects of stimulation, we find that both acute after- and long-lasting effects are strongly determined by the stimulation-induced synaptic reshaping, whereas acute effects solely depend on the statistics of administered stimuli. We find that the stimulation duration is another important parameter, as effective stimulation only entails long-lasting effects after a sufficient stimulation duration. Our results show that long-lasting therapeutic effects of CR stimulation with random jitters are more robust than those of regular CR stimulation. This might reduce the parameter adjustment time in future clinical trials and make CR with random jitters more suitable for treating brain disorders with abnormal synchronization in multiple frequency bands.
Collapse
Affiliation(s)
- Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
18
|
Roscow EL, Chua R, Costa RP, Jones MW, Lepora N. Learning offline: memory replay in biological and artificial reinforcement learning. Trends Neurosci 2021; 44:808-821. [PMID: 34481635 DOI: 10.1016/j.tins.2021.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Learning to act in an environment to maximise rewards is among the brain's key functions. This process has often been conceptualised within the framework of reinforcement learning, which has also gained prominence in machine learning and artificial intelligence (AI) as a way to optimise decision making. A common aspect of both biological and machine reinforcement learning is the reactivation of previously experienced episodes, referred to as replay. Replay is important for memory consolidation in biological neural networks and is key to stabilising learning in deep neural networks. Here, we review recent developments concerning the functional roles of replay in the fields of neuroscience and AI. Complementary progress suggests how replay might support learning processes, including generalisation and continual learning, affording opportunities to transfer knowledge across the two fields to advance the understanding of biological and artificial learning and memory.
Collapse
Affiliation(s)
| | | | - Rui Ponte Costa
- Bristol Computational Neuroscience Unit, Intelligent Systems Lab, Department of Computer Science, University of Bristol, Bristol, UK
| | - Matt W Jones
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Nathan Lepora
- Department of Engineering Mathematics and Bristol Robotics Laboratory, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Pfeifer KJ, Kromer JA, Cook AJ, Hornbeck T, Lim EA, Mortimer BJP, Fogarty AS, Han SS, Dhall R, Halpern CH, Tass PA. Coordinated Reset Vibrotactile Stimulation Induces Sustained Cumulative Benefits in Parkinson's Disease. Front Physiol 2021; 12:624317. [PMID: 33889086 PMCID: PMC8055937 DOI: 10.3389/fphys.2021.624317] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Abnormal synchronization of neuronal activity in dopaminergic circuits is related to motor impairment in Parkinson's disease (PD). Vibrotactile coordinated reset (vCR) fingertip stimulation aims to counteract excessive synchronization and induce sustained unlearning of pathologic synaptic connectivity and neuronal synchrony. Here, we report two clinical feasibility studies that examine the effect of regular and noisy vCR stimulation on PD motor symptoms. Additionally, in one clinical study (study 1), we examine cortical beta band power changes in the sensorimotor cortex. Lastly, we compare these clinical results in relation to our computational findings. METHODS Study 1 examines six PD patients receiving noisy vCR stimulation and their cortical beta power changes after 3 months of daily therapy. Motor evaluations and at-rest electroencephalographic (EEG) recordings were assessed off medication pre- and post-noisy vCR. Study 2 follows three patients for 6+ months, two of whom received daily regular vCR and one patient from study 1 who received daily noisy vCR. Motor evaluations were taken at baseline, and follow-up visits were done approximately every 3 months. Computationally, in a network of leaky integrate-and-fire (LIF) neurons with spike timing-dependent plasticity, we study the differences between regular and noisy vCR by using a stimulus model that reproduces experimentally observed central neuronal phase locking. RESULTS Clinically, in both studies, we observed significantly improved motor ability. EEG recordings observed from study 1 indicated a significant decrease in off-medication cortical sensorimotor high beta power (21-30 Hz) at rest after 3 months of daily noisy vCR therapy. Computationally, vCR and noisy vCR cause comparable parameter-robust long-lasting synaptic decoupling and neuronal desynchronization. CONCLUSION In these feasibility studies of eight PD patients, regular vCR and noisy vCR were well tolerated, produced no side effects, and delivered sustained cumulative improvement of motor performance, which is congruent with our computational findings. In study 1, reduction of high beta band power over the sensorimotor cortex may suggest noisy vCR is effectively modulating the beta band at the cortical level, which may play a role in improved motor ability. These encouraging therapeutic results enable us to properly plan a proof-of-concept study.
Collapse
Affiliation(s)
- Kristina J. Pfeifer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Justus A. Kromer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Alexander J. Cook
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Traci Hornbeck
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Erika A. Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Adam S. Fogarty
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, United States
| | - Summer S. Han
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, CA, United States
| | - Rohit Dhall
- Center for Neurodegenerative Disorders, Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Casey H. Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
20
|
Khaledi-Nasab A, Kromer JA, Tass PA. Long-Lasting Desynchronization of Plastic Neural Networks by Random Reset Stimulation. Front Physiol 2021; 11:622620. [PMID: 33613303 PMCID: PMC7893102 DOI: 10.3389/fphys.2020.622620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive neuronal synchrony is a hallmark of neurological disorders such as epilepsy and Parkinson's disease. An established treatment for medically refractory Parkinson's disease is high-frequency (HF) deep brain stimulation (DBS). However, symptoms return shortly after cessation of HF-DBS. Recently developed decoupling stimulation approaches, such as Random Reset (RR) stimulation, specifically target pathological connections to achieve long-lasting desynchronization. During RR stimulation, a temporally and spatially randomized stimulus pattern is administered. However, spatial randomization, as presented so far, may be difficult to realize in a DBS-like setup due to insufficient spatial resolution. Motivated by recently developed segmented DBS electrodes with multiple stimulation sites, we present a RR stimulation protocol that copes with the limited spatial resolution of currently available depth electrodes for DBS. Specifically, spatial randomization is realized by delivering stimuli simultaneously to L randomly selected stimulation sites out of a total of M stimulation sites, which will be called L/M-RR stimulation. We study decoupling by L/M-RR stimulation in networks of excitatory integrate-and-fire neurons with spike-timing dependent plasticity by means of theoretical and computational analysis. We find that L/M-RR stimulation yields parameter-robust decoupling and long-lasting desynchronization. Furthermore, our theory reveals that strong high-frequency stimulation is not suitable for inducing long-lasting desynchronization effects. As a consequence, low and high frequency L/M-RR stimulation affect synaptic weights in qualitatively different ways. Our simulations confirm these predictions and show that qualitative differences between low and high frequency L/M-RR stimulation are present across a wide range of stimulation parameters, rendering stimulation with intermediate frequencies most efficient. Remarkably, we find that L/M-RR stimulation does not rely on a high spatial resolution, characterized by the density of stimulation sites in a target area, corresponding to a large M. In fact, L/M-RR stimulation with low resolution performs even better at low stimulation amplitudes. Our results provide computational evidence that L/M-RR stimulation may present a way to exploit modern segmented lead electrodes for long-lasting therapeutic effects.
Collapse
Affiliation(s)
- Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
21
|
Beck J, Cordi MJ, Rasch B. Hypnotic Suggestions Increase Slow-Wave Parameters but Decrease Slow-Wave Spindle Coupling. Nat Sci Sleep 2021; 13:1383-1393. [PMID: 34393533 PMCID: PMC8355552 DOI: 10.2147/nss.s316997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Sleep, in particular slow-wave sleep, is beneficial for memory consolidation. In two recent studies, a hypnotic suggestion to sleep more deeply increased the amount of slow-wave sleep in both a nap and a night design. In spite of these increases in slow-wave sleep, no beneficial effect on declarative memory consolidation was found. As coupling of slow-waves and sleep spindles is assumed to be critical for declarative memory consolidation during sleep, we hypothesized that the missing memory benefit after increased SWS could be related to a decrease in slow-wave/spindle coupling. PARTICIPANTS AND METHODS Data from 33 highly hypnotizable subjects were retrieved from a nap (n = 14) and a night (n = 19) study with a similar design and procedure. After an adaptation session, subjects slept in the sleep laboratory for two experimental sessions with polysomnography. Prior to sleep, a paired-associate learning task was conducted. Next, subjects either listened to a hypnotic suggestion to sleep more deeply or to a control text in a randomized order according to a within-subject design. After sleep, subjects performed the recall of the memory task. Here, we conducted a fine-grained analysis of the sleep data on slow-waves, spindles and their coupling. RESULTS In line with our hypothesis, listening to a hypnosis tape decreased the percentage of spindles coupled to slow-waves. Slow-wave parameters were consistently increased, but sleep spindles remained unaffected by the hypnotic suggestion. CONCLUSION Our results suggest that selectively enhancing slow-waves without affecting sleep spindles might not be sufficient to improve memory consolidation during sleep.
Collapse
Affiliation(s)
- Jonas Beck
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Maren Jasmin Cordi
- Department of Psychology, University of Fribourg, Fribourg, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Kromer JA, Khaledi-Nasab A, Tass PA. Impact of number of stimulation sites on long-lasting desynchronization effects of coordinated reset stimulation. CHAOS (WOODBURY, N.Y.) 2020; 30:083134. [PMID: 32872805 DOI: 10.1063/5.0015196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Excessive neuronal synchrony is a hallmark of several neurological disorders, e.g., Parkinson's disease. An established treatment for medically refractory Parkinson's disease is high-frequency deep brain stimulation. However, it provides only acute relief, and symptoms return shortly after cessation of stimulation. A theory-based approach called coordinated reset (CR) has shown great promise in achieving long-lasting effects. During CR stimulation, phase-shifted stimuli are delivered to multiple stimulation sites to counteract neuronal synchrony. Computational studies in plastic neuronal networks reported that synaptic weights reduce during stimulation, which may cause sustained structural changes leading to stabilized desynchronized activity even after stimulation ceases. Corresponding long-lasting effects were found in recent preclinical and clinical studies. We study long-lasting desynchronization by CR stimulation in excitatory recurrent neuronal networks of integrate-and-fire neurons with spike-timing-dependent plasticity (STDP). We focus on the impact of the stimulation frequency and the number of stimulation sites on long-lasting effects. We compare theoretical predictions to simulations of plastic neuronal networks. Our results are important regarding CR calibration for two reasons. We reveal that long-lasting effects become most pronounced when stimulation parameters are adjusted to the characteristics of STDP-rather than to neuronal frequency characteristics. This is in contrast to previous studies where the CR frequency was adjusted to the dominant neuronal rhythm. In addition, we reveal a nonlinear dependence of long-lasting effects on the number of stimulation sites and the CR frequency. Intriguingly, optimal long-lasting desynchronization does not require larger numbers of stimulation sites.
Collapse
Affiliation(s)
- Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, California 94305, USA
| | - Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, California 94305, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
23
|
Boutin A, Doyon J. A sleep spindle framework for motor memory consolidation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190232. [PMID: 32248783 DOI: 10.1098/rstb.2019.0232] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sleep spindle activity has repeatedly been found to contribute to brain plasticity and consolidation of both declarative and procedural memories. Here we propose a framework for motor memory consolidation that outlines the essential contribution of the hierarchical and multi-scale periodicity of spindle activity, as well as of the synchronization and interaction of brain oscillations during this sleep-dependent process. We posit that the clustering of sleep spindles in 'trains', together with the temporally organized alternation between spindles and associated refractory periods, is critical for efficient reprocessing and consolidation of motor memories. We further argue that the long-term retention of procedural memories relies on the synchronized (functional connectivity) local reprocessing of new information across segregated, but inter-connected brain regions that are involved in the initial learning process. Finally, we propose that oscillatory synchrony in the spindle frequency band may reflect the cross-structural reactivation, reorganization and consolidation of motor, and potentially declarative, memory traces within broader subcortical-cortical networks during sleep. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Arnaud Boutin
- Université Paris-Saclay, CIAMS, 91405, Orsay, France.,Université d'Orléans, CIAMS, 45067, Orléans, France
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
24
|
Liu TY, Watson BO. Patterned activation of action potential patterns during offline states in the neocortex: replay and non-replay. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190233. [PMID: 32248782 PMCID: PMC7209911 DOI: 10.1098/rstb.2019.0233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Action potential generation (spiking) in the neocortex is organized into repeating non-random patterns during both awake experiential states and non-engaged states ranging from inattention to sleep to anaesthesia—and even occur in slice preparations. Repeating patterns in a given population of neurons between states may imply a common means by which cortical networks can be engaged despite brain state changes, but super-imposed on this common firing is a variability that is both specific to ongoing inputs and can be re-shaped by experience. This similarity with specifically induced variance may allow for a range of processes including perception, memory consolidation and network homeostasis. Here, we review how patterned activity in neocortical populations has been studied and what it may imply for a cortex that must be both static and plastic. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
Collapse
Affiliation(s)
- Tang-Yu Liu
- Department of Psychiatry, University of Michigan, Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Xie X, Meng H, Wu H, Hou F, Chen Y, Zhou Y, Xue Q, Zhang J, Gong J, Li L, Song R. Integrative analyses indicate an association between ITIH3 polymorphisms with autism spectrum disorder. Sci Rep 2020; 10:5223. [PMID: 32251353 PMCID: PMC7089985 DOI: 10.1038/s41598-020-62189-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
It is challenge to pinpoint the functional variants among numerous genetic variants. Investigating the spatial dynamics of the human brain transcriptome for genes and exploring the expression quantitative trait loci data may provide the potential direction to identify the functional variants among autism spectrum disorders (ASD) patients. In order to explore the association of ITIH3 with ASD, the present study included three components: identifying the spatial-temporal expression of ITIH3 in the developing human brain using the expression data from the Allen Institute for Brain Science; examining the cis-acting regulatory effect of SNPs on the ITIH3 expression using UK Brain Expression Consortium database; validating the effect of identified SNPs using a case-control study with samples of 602 cases and 604 controls. The public expression data showed that ITIH3 may have a role in the development of human brain and suggested a cis-eQTL effect for rs2535629 and rs3617 on ITIH3 in the hippocampus. Genetic analysis of the above two SNPs suggested that the over-dominant model of rs2535629 was significantly associated with decreased risk of ASD. Convergent lines of evidence supported ITIH3 rs25352629 as a susceptibility variant for ASD.
Collapse
Affiliation(s)
- Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Heng Meng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Hou
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, 518019, China
| | - Yanlin Chen
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, 518019, China
| | - Yu Zhou
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Xue
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Jianhua Gong
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, 518019, China
| | - Li Li
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, 518019, China.
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Byrne Á, O'Dea RD, Forrester M, Ross J, Coombes S. Next-generation neural mass and field modeling. J Neurophysiol 2019; 123:726-742. [PMID: 31774370 DOI: 10.1152/jn.00406.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Wilson-Cowan population model of neural activity has greatly influenced our understanding of the mechanisms for the generation of brain rhythms and the emergence of structured brain activity. As well as the many insights that have been obtained from its mathematical analysis, it is now widely used in the computational neuroscience community for building large-scale in silico brain networks that can incorporate the increasing amount of knowledge from the Human Connectome Project. Here, we consider a neural population model in the spirit of that originally developed by Wilson and Cowan, albeit with the added advantage that it can account for the phenomena of event-related synchronization and desynchronization. This derived mean-field model provides a dynamic description for the evolution of synchrony, as measured by the Kuramoto order parameter, in a large population of quadratic integrate-and-fire model neurons. As in the original Wilson-Cowan framework, the population firing rate is at the heart of our new model; however, in a significant departure from the sigmoidal firing rate function approach, the population firing rate is now obtained as a real-valued function of the complex-valued population synchrony measure. To highlight the usefulness of this next-generation Wilson-Cowan style model, we deploy it in a number of neurobiological contexts, providing understanding of the changes in power spectra observed in electro- and magnetoencephalography neuroimaging studies of motor cortex during movement, insights into patterns of functional connectivity observed during rest and their disruption by transcranial magnetic stimulation, and to describe wave propagation across cortex.
Collapse
Affiliation(s)
- Áine Byrne
- Center for Neural Science, New York University, New York, New York.,School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
| | - Reuben D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Michael Forrester
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - James Ross
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephen Coombes
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
27
|
Gao M, Orita K, Ikegaya Y. Maternal Immune Activation in Pregnant Mice Produces Offspring with Altered Hippocampal Ripples. Biol Pharm Bull 2019; 42:666-670. [PMID: 31061308 DOI: 10.1248/bpb.b19-00028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Psychiatric disorders, such as schizophrenia and autism spectrum disorder, are associated with sleep disturbances and deficits in memory consolidation; however, the relationship between these symptoms remains unclear. Here, we focused on hippocampal sharp-wave ripples (SWRs), a form of transient high-frequency oscillations that occur during sleep and behavioral immobility and contribute to memory consolidation. We activated the maternal immune system with polyinosinic-polycytidylic acid (poly(I : C)), one of the major pharmacological models of psychiatric disorders, to investigate whether SWR activity is altered in acute slices of the hippocampus from offspring born to poly(I : C)-treated mouse dams. Using robust continuous clustering in a low dimensional space defined by a uniform manifold approximation and projection, we found that mice with prenatal exposure to poly(I : C) exhibited different feature distributions of SWR waveforms without affecting the overall frequencies of SWR events. Based on our results, maternal immune activation leads to altered SWR patterns in offspring.
Collapse
Affiliation(s)
- Mengxuan Gao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Ken Orita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Center for Information and Neural Networks, National Institute of Information and Communications Technology
| |
Collapse
|
28
|
The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat Rev Neurosci 2019; 19:744-757. [PMID: 30356103 DOI: 10.1038/s41583-018-0077-1] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Various cognitive functions have long been known to require the hippocampus. Recently, progress has been made in identifying the hippocampal neural activity patterns that implement these functions. One such pattern is the sharp wave-ripple (SWR), an event associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Hippocampal spiking during SWRs can represent past or potential future experience, and SWR-related interventions can alter subsequent memory performance. These findings and others suggest that SWRs support both memory consolidation and memory retrieval for processes such as decision-making. In addition, studies have identified distinct types of SWR based on representational content, behavioural state and physiological features. These various findings regarding SWRs suggest that different SWR types correspond to different cognitive functions, such as retrieval and consolidation. Here, we introduce another possibility - that a single SWR may support more than one cognitive function. Taking into account classic psychological theories and recent molecular results that suggest that retrieval and consolidation share mechanisms, we propose that the SWR mediates the retrieval of stored representations that can be utilized immediately by downstream circuits in decision-making, planning, recollection and/or imagination while simultaneously initiating memory consolidation processes.
Collapse
|
29
|
Sleep Deprivation by Exposure to Novel Objects Increases Synapse Density and Axon-Spine Interface in the Hippocampal CA1 Region of Adolescent Mice. J Neurosci 2019; 39:6613-6625. [PMID: 31263066 DOI: 10.1523/jneurosci.0380-19.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 11/21/2022] Open
Abstract
Sleep has been hypothesized to rebalance overall synaptic strength after ongoing learning during waking leads to net synaptic potentiation. If so, because synaptic strength and size are correlated, synapses on average should be larger after wake and smaller after sleep. This prediction was recently confirmed in mouse cerebral cortex using serial block-face electron microscopy (SBEM). However, whether these findings extend to other brain regions is unknown. Moreover, sleep deprivation by gentle handling was reported to produce hippocampal spine loss, raising the question of whether synapse size and number are differentially affected by sleep and waking. Here we applied SBEM to measure axon-spine interface (ASI), the contact area between pre-synapse and post-synapse, and synapse density in CA1 stratum radiatum. Adolescent YFP-H mice were studied after 6-8 h of sleep (S = 6), spontaneous wake at night (W = 4) or wake enforced during the day by novelty exposure (EW = 4; males/females balanced). In each animal ≥425 ASIs were measured and synaptic vesicles were counted in ~100 synapses/mouse. Reconstructed dendrites included many small, nonperforated synapses and fewer large, perforated synapses. Relative to S, ASI sizes in perforated synapses shifted toward higher values after W and more so after EW. ASI sizes in nonperforated synapses grew after EW relative to S and W, and so did their density. ASI size correlated with presynaptic vesicle number but the proportion of readily available vesicles decreased after EW, suggesting presynaptic fatigue. Thus, CA1 synapses undergo changes consistent with sleep-dependent synaptic renormalization and their number increases after extended wake.SIGNIFICANCE STATEMENT Sleep benefits learning, memory consolidation, and the integration of new with old memories, but the underlying mechanisms remain highly debated. One hypothesis suggests that sleep's cognitive benefits stem from its ability to renormalize total synaptic strength, after ongoing learning during wake leads to net synaptic potentiation. Supporting evidence for this hypothesis mainly comes from the cerebral cortex, including the observation that cortical synapses are larger after wake and smaller after sleep. Using serial electron microscopy, we find here that sleep/wake synaptic changes consistent with sleep-dependent synaptic renormalization also occur in the CA1 region. Thus, the role of sleep in maintaining synaptic homeostasis may extend to the hippocampus, a key area for learning and synaptic plasticity.
Collapse
|
30
|
Luccioli S, Angulo-Garcia D, Torcini A. Neural activity of heterogeneous inhibitory spiking networks with delay. Phys Rev E 2019; 99:052412. [PMID: 31212434 DOI: 10.1103/physreve.99.052412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 11/07/2022]
Abstract
We study a network of spiking neurons with heterogeneous excitabilities connected via inhibitory delayed pulses. For globally coupled systems the increase of the inhibitory coupling reduces the number of firing neurons by following a winner-takes-all mechanism. For sufficiently large transmission delay we observe the emergence of collective oscillations in the system beyond a critical coupling value. Heterogeneity promotes neural inactivation and asynchronous dynamics and its effect can be counteracted by considering longer time delays. In sparse networks, inhibition has the counterintuitive effect of promoting neural reactivation of silent neurons for sufficiently large coupling. In this regime, current fluctuations are on one side responsible for neural firing of subthreshold neurons and on the other side for their desynchronization. Therefore, collective oscillations are present only in a limited range of coupling values, which remains finite in the thermodynamic limit. Out of this range the dynamics is asynchronous and for very large inhibition neurons display a bursting behavior alternating periods of silence with periods where they fire freely in absence of any inhibition.
Collapse
Affiliation(s)
- Stefano Luccioli
- CNR-Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - David Angulo-Garcia
- Grupo de Modelado Computacional-Dinámica y Complejidad de Sistemas. Instituto de Matemáticas Aplicadas. Universidad de Cartagena. Carrera 6 # 36 - 100, Cartagena de Indias, Colombia
| | - Alessandro Torcini
- CNR-Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.,Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, CNRS, UMR 8089, 95302 Cergy-Pontoise cedex, France
| |
Collapse
|
31
|
Skelin I, Kilianski S, McNaughton BL. Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation. Neurobiol Learn Mem 2019; 160:21-31. [DOI: 10.1016/j.nlm.2018.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
|
32
|
Langille JJ. Remembering to Forget: A Dual Role for Sleep Oscillations in Memory Consolidation and Forgetting. Front Cell Neurosci 2019; 13:71. [PMID: 30930746 PMCID: PMC6425990 DOI: 10.3389/fncel.2019.00071] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
It has been known since the time of patient H. M. and Karl Lashley's equipotentiality studies that the hippocampus and cortex serve mnestic functions. Current memory models maintain that these two brain structures accomplish unique, but interactive, memory functions. Specifically, most modeling suggests that memories are rapidly acquired during waking experience by the hippocampus, before being later consolidated into the cortex for long-term storage. Sleep has been shown to be critical for the transfer and consolidation of memories in the cortex. Like memory consolidation, a role for sleep in adaptive forgetting has both historical precedent, as Francis Crick suggested in 1983 that sleep was for "reverse-learning," and recent empirical support. In this article I review the evidence indicating that the same brain activity involved in sleep replay associated memory consolidation is responsible for sleep-dependent forgetting. In reviewing the literature, it became clear that both a cellular mechanism for systems consolidation and an agreed upon general, as well as cellular, mechanism for sleep-dependent forgetting is seldom discussed or is lacking. I advocate here for a candidate cellular systems consolidation mechanism wherein changes in calcium kinetics and the activation of consolidative signaling cascades arise from the triple phase locking of non-rapid eye movement sleep (NREMS) slow oscillation, sleep spindle and sharp-wave ripple rhythms. I go on to speculatively consider several sleep stage specific forgetting mechanisms and conclude by discussing a notional function of NREM-rapid eye movement sleep (REMS) cycling. The discussed model argues that the cyclical organization of sleep functions to first lay down and edit and then stabilize and integrate engrams. All things considered, it is increasingly clear that hallmark sleep stage rhythms, including several NREMS oscillations and the REMS hippocampal theta rhythm, serve the dual function of enabling simultaneous memory consolidation and adaptive forgetting. Specifically, the same sleep rhythms that consolidate new memories, in the cortex and hippocampus, simultaneously organize the adaptive forgetting of older memories in these brain regions.
Collapse
Affiliation(s)
- Jesse J Langille
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Ocker GK, Doiron B. Training and Spontaneous Reinforcement of Neuronal Assemblies by Spike Timing Plasticity. Cereb Cortex 2019; 29:937-951. [PMID: 29415191 PMCID: PMC7963120 DOI: 10.1093/cercor/bhy001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/01/2018] [Accepted: 01/05/2018] [Indexed: 12/15/2022] Open
Abstract
The synaptic connectivity of cortex is plastic, with experience shaping the ongoing interactions between neurons. Theoretical studies of spike timing-dependent plasticity (STDP) have focused on either just pairs of neurons or large-scale simulations. A simple analytic account for how fast spike time correlations affect both microscopic and macroscopic network structure is lacking. We develop a low-dimensional mean field theory for STDP in recurrent networks and show the emergence of assemblies of strongly coupled neurons with shared stimulus preferences. After training, this connectivity is actively reinforced by spike train correlations during the spontaneous dynamics. Furthermore, the stimulus coding by cell assemblies is actively maintained by these internally generated spiking correlations, suggesting a new role for noise correlations in neural coding. Assembly formation has often been associated with firing rate-based plasticity schemes; our theory provides an alternative and complementary framework, where fine temporal correlations and STDP form and actively maintain learned structure in cortical networks.
Collapse
Affiliation(s)
- Gabriel Koch Ocker
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brent Doiron
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Madadi Asl M, Valizadeh A, Tass PA. Dendritic and Axonal Propagation Delays May Shape Neuronal Networks With Plastic Synapses. Front Physiol 2018; 9:1849. [PMID: 30618847 PMCID: PMC6307091 DOI: 10.3389/fphys.2018.01849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Biological neuronal networks are highly adaptive and plastic. For instance, spike-timing-dependent plasticity (STDP) is a core mechanism which adapts the synaptic strengths based on the relative timing of pre- and postsynaptic spikes. In various fields of physiology, time delays cause a plethora of biologically relevant dynamical phenomena. However, time delays increase the complexity of model systems together with the computational and theoretical analysis burden. Accordingly, in computational neuronal network studies propagation delays were often neglected. As a downside, a classic STDP rule in oscillatory neurons without propagation delays is unable to give rise to bidirectional synaptic couplings, i.e., loops or uncoupled states. This is at variance with basic experimental results. In this mini review, we focus on recent theoretical studies focusing on how things change in the presence of propagation delays. Realistic propagation delays may lead to the emergence of neuronal activity and synaptic connectivity patterns, which cannot be captured by classic STDP models. In fact, propagation delays determine the inventory of attractor states and shape their basins of attractions. The results reviewed here enable to overcome fundamental discrepancies between theory and experiments. Furthermore, these findings are relevant for the development of therapeutic brain stimulation techniques aiming at shifting the diseased brain to more favorable attractor states.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
35
|
Wu S, Zhang Y, Cui Y, Li H, Wang J, Guo L, Xia Y, Yao D, Xu P, Guo D. Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches. Neural Netw 2018; 110:91-103. [PMID: 30508808 DOI: 10.1016/j.neunet.2018.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
Abstract
Our mysterious brain is believed to operate near a non-equilibrium point and generate critical self-organized avalanches in neuronal activity. A central topic in neuroscience is to elucidate the underlying circuitry mechanisms of neuronal avalanches in the brain. Recent experimental evidence has revealed significant heterogeneity in both synaptic input and output connectivity, but whether the structural heterogeneity participates in the regulation of neuronal avalanches remains poorly understood. By computational modeling, we predict that different types of structural heterogeneity contribute distinct effects on avalanche neurodynamics. In particular, neuronal avalanches can be triggered at an intermediate level of input heterogeneity, but heterogeneous output connectivity cannot evoke avalanche dynamics. In the criticality region, the co-emergence of multi-scale cortical activities is observed, and both the avalanche dynamics and neuronal oscillations are modulated by the input heterogeneity. Remarkably, we show similar results can be reproduced in networks with various types of in- and out-degree distributions. Overall, these findings not only provide details on the underlying circuitry mechanisms of nonrandom synaptic connectivity in the regulation of neuronal avalanches, but also inspire testable hypotheses for future experimental studies.
Collapse
Affiliation(s)
- Shengdun Wu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yangsong Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yan Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Heng Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Jiakang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Lijun Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yang Xia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.
| |
Collapse
|
36
|
Rennó-Costa C, da Silva ACC, Blanco W, Ribeiro S. Computational models of memory consolidation and long-term synaptic plasticity during sleep. Neurobiol Learn Mem 2018; 160:32-47. [PMID: 30321652 DOI: 10.1016/j.nlm.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/18/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
The brain stores memories by persistently changing the connectivity between neurons. Sleep is known to be critical for these changes to endure. Research on the neurobiology of sleep and the mechanisms of long-term synaptic plasticity has provided data in support of various theories of how brain activity during sleep affects long-term synaptic plasticity. The experimental findings - and therefore the theories - are apparently quite contradictory, with some evidence pointing to a role of sleep in the forgetting of irrelevant memories, whereas other results indicate that sleep supports the reinforcement of the most valuable recollections. A unified theoretical framework is in need. Computational modeling and simulation provide grounds for the quantitative testing and comparison of theoretical predictions and observed data, and might serve as a strategy to organize the rather complicated and diverse pool of data and methodologies used in sleep research. This review article outlines the emerging progress in the computational modeling and simulation of the main theories on the role of sleep in memory consolidation.
Collapse
Affiliation(s)
- César Rennó-Costa
- BioMe - Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil; Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Cláudia Costa da Silva
- BioMe - Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil; Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil; Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil; Federal University of Paraiba, João Pessoa, Brazil
| | - Wilfredo Blanco
- BioMe - Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil; Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil; State University of Rio Grande do Norte, Natal, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
37
|
Madadi Asl M, Valizadeh A, Tass PA. Propagation delays determine neuronal activity and synaptic connectivity patterns emerging in plastic neuronal networks. CHAOS (WOODBURY, N.Y.) 2018; 28:106308. [PMID: 30384625 DOI: 10.1063/1.5037309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
In plastic neuronal networks, the synaptic strengths are adapted to the neuronal activity. Specifically, spike-timing-dependent plasticity (STDP) is a fundamental mechanism that modifies the synaptic strengths based on the relative timing of pre- and postsynaptic spikes, taking into account the spikes' temporal order. In many studies, propagation delays were neglected to avoid additional dynamic complexity or computational costs. So far, networks equipped with a classic STDP rule typically rule out bidirectional couplings (i.e., either loops or uncoupled states) and are, hence, not able to reproduce fundamental experimental findings. In this review paper, we consider additional features, e.g., extensions of the classic STDP rule or additional aspects like noise, in order to overcome the contradictions between theory and experiment. In addition, we review in detail recent studies showing that a classic STDP rule combined with realistic propagation patterns is able to capture relevant experimental findings. In two coupled oscillatory neurons with propagation delays, bidirectional synapses can be preserved and potentiated. This result also holds for large networks of type-II phase oscillators. In addition, not only the mean of the initial distribution of synaptic weights, but also its standard deviation crucially determines the emergent structural connectivity, i.e., the mean final synaptic weight, the number of two-neuron loops, and the symmetry of the final connectivity pattern. The latter is affected by the firing rates, where more symmetric synaptic configurations emerge at higher firing rates. Finally, we discuss these findings in the context of the computational neuroscience-based development of desynchronizing brain stimulation techniques.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195-1159, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195-1159, Iran
| | - Peter A Tass
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
38
|
Delay-Induced Multistability and Loop Formation in Neuronal Networks with Spike-Timing-Dependent Plasticity. Sci Rep 2018; 8:12068. [PMID: 30104713 PMCID: PMC6089910 DOI: 10.1038/s41598-018-30565-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Spike-timing-dependent plasticity (STDP) adjusts synaptic strengths according to the precise timing of pre- and postsynaptic spike pairs. Theoretical and computational studies have revealed that STDP may contribute to the emergence of a variety of structural and dynamical states in plastic neuronal populations. In this manuscript, we show that by incorporating dendritic and axonal propagation delays in recurrent networks of oscillatory neurons, the asymptotic connectivity displays multistability, where different structures emerge depending on the initial distribution of the synaptic strengths. In particular, we show that the standard deviation of the initial distribution of synaptic weights, besides its mean, determines the main properties of the emergent structural connectivity such as the mean final synaptic weight, the number of two-neuron loops and the symmetry of the final structure. We also show that the firing rates of the neurons affect the evolution of the network, and a more symmetric configuration of the synapses emerges at higher firing rates. We justify the network results based on a two-neuron framework and show how the results translate to large recurrent networks.
Collapse
|
39
|
Kurth S, Riedner BA, Dean DC, O'Muircheartaigh J, Huber R, Jenni OG, Deoni SCL, LeBourgeois MK. Traveling Slow Oscillations During Sleep: A Marker of Brain Connectivity in Childhood. Sleep 2018; 40:3953857. [PMID: 28934529 DOI: 10.1093/sleep/zsx121] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Slow oscillations, a defining characteristic of the nonrapid eye movement sleep electroencephalogram (EEG), proliferate across the scalp in highly reproducible patterns. In adults, the propagation of slow oscillations is a recognized fingerprint of brain connectivity and excitability. In this study, we (1) describe for the first time maturational features of sleep slow oscillation propagation in children (n = 23; 2-13 years) using high-density (hd) EEG and (2) examine associations between sleep slow oscillatory propagation characteristics (ie, distance, traveling speed, cortical involvement) and white matter myelin microstructure as measured with multicomponent Driven Equilibrium Single Pulse Observation of T1 and T2-magnetic resonance imaging (mcDESPOT-MRI). Results showed that with increasing age, slow oscillations propagated across longer distances (average growth of 0.2 cm per year; R(21) = 0.50, p < .05), while traveling speed and cortical involvement (ie, slow oscillation expanse) remained unchanged across childhood. Cortical involvement (R(20) = 0.44) and slow oscillation speed (R(20) = -0.47; both p < .05, corrected for age) were associated with myelin content in the superior longitudinal fascicle, the largest anterior-posterior, intrahemispheric white matter connectivity tract. Furthermore, slow oscillation distance was moderately associated with whole-brain (R(21) = 0.46, p < .05) and interhemispheric myelin content, the latter represented by callosal myelin water fraction (R(21) = 0.54, p < .01, uncorrected). Thus, we demonstrate age-related changes in slow oscillation propagation distance, as well as regional associations between brain activity during sleep and the anatomical connectivity of white matter microstructure. Our findings make an important contribution to knowledge of the brain connectome using a noninvasive and novel analytic approach. These data also have implications for understanding the emergence of neurodevelopmental disorders and the role of sleep in brain maturation trajectories.
Collapse
Affiliation(s)
- Salome Kurth
- Division of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Clinical Research Priority Program Sleep and Health, University of Zurich, Zurich, Switzerland
| | - Brady A Riedner
- Center for Sleep Medicine and Sleep Research, University of Wisconsin-Madison, Madison, WI
| | - Douglas C Dean
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI
| | | | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital Zurich, Zurich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sean C L Deoni
- Advanced Baby Imaging Lab, Department of Pediatrics, Memorial Hospital of Rhode Island, The Warren Alpert School of Medicine of Brown University, Providence, RI
| | - Monique K LeBourgeois
- Sleep and Development Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
40
|
Norimoto H, Makino K, Gao M, Shikano Y, Okamoto K, Ishikawa T, Sasaki T, Hioki H, Fujisawa S, Ikegaya Y. Hippocampal ripples down-regulate synapses. Science 2018; 359:1524-1527. [PMID: 29439023 DOI: 10.1126/science.aao0702] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022]
Abstract
The specific effects of sleep on synaptic plasticity remain unclear. We report that mouse hippocampal sharp-wave ripple oscillations serve as intrinsic events that trigger long-lasting synaptic depression. Silencing of sharp-wave ripples during slow-wave states prevented the spontaneous down-regulation of net synaptic weights and impaired the learning of new memories. The synaptic down-regulation was dependent on the N-methyl-d-aspartate receptor and selective for a specific input pathway. Thus, our findings are consistent with the role of slow-wave states in refining memory engrams by reducing recent memory-irrelevant neuronal activity and suggest a previously unrecognized function for sharp-wave ripples.
Collapse
Affiliation(s)
- Hiroaki Norimoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Neurophysiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama, Japan
| | - Kenichi Makino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mengxuan Gao
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Shikano
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuki Okamoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoe Ishikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeyoshi Fujisawa
- Laboratory for Systems Neurophysiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan. .,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| |
Collapse
|
41
|
Yang DP, Zhou HJ, Zhou C. Co-emergence of multi-scale cortical activities of irregular firing, oscillations and avalanches achieves cost-efficient information capacity. PLoS Comput Biol 2017; 13:e1005384. [PMID: 28192429 PMCID: PMC5330539 DOI: 10.1371/journal.pcbi.1005384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 02/28/2017] [Accepted: 01/29/2017] [Indexed: 11/19/2022] Open
Abstract
The brain is highly energy consuming, therefore is under strong selective pressure to achieve cost-efficiency in both cortical connectivities and activities. However, cost-efficiency as a design principle for cortical activities has been rarely studied. Especially it is not clear how cost-efficiency is related to ubiquitously observed multi-scale properties: irregular firing, oscillations and neuronal avalanches. Here we demonstrate that these prominent properties can be simultaneously observed in a generic, biologically plausible neural circuit model that captures excitation-inhibition balance and realistic dynamics of synaptic conductance. Their co-emergence achieves minimal energy cost as well as maximal energy efficiency on information capacity, when neuronal firing are coordinated and shaped by moderate synchrony to reduce otherwise redundant spikes, and the dynamical clusterings are maintained in the form of neuronal avalanches. Such cost-efficient neural dynamics can be employed as a foundation for further efficient information processing under energy constraint. The adult human brain consumes more than 20% of the resting metabolism, despite constituting only 2% of the body’s mass. Most energy is consumed by the cerebral cortex with billions of neurons, mainly to restore ion gradients across membranes for generating and propagating action potentials and synaptic transmission. Even small increases in the average spike rate of cortical neurons could cause the cortex to exceed the energy budget for the whole brain. Consequently, the cortex is likely to be under considerable selective pressure to reduce spike rates but to maintain efficient information processing. Experimentally, cortical activities are ubiquitously observed at multiple scales with prominent features: irregular individual firing, synchronized oscillations and neuronal avalanches. Do these features of cortical activities reflect cost-efficiency on the aspect of information capacity? We employ a generic but biologically plausible local neural circuit to compare various dynamical modes with different degrees of synchrony. Our simulations show that these features of cortical activities can be observed simultaneously and their co-emergence indeed robustly achieves maximal energy efficiency and minimal energy cost. Our work thus suggests that basic neurobiological and dynamical mechanisms can support the foundation for efficient neural information processing under the energy constraint.
Collapse
Affiliation(s)
- Dong-Ping Yang
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (DPY); (CZ)
| | - Hai-Jun Zhou
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Changsong Zhou
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Beijing Computational Science Research Center, Beijing, China
- Research Center, HKBU Institute of Research and Continuing Education, Virtual University Park Building, South Area Hi-tech Industrial Park, Shenzhen, China
- * E-mail: (DPY); (CZ)
| |
Collapse
|
42
|
Madadi Asl M, Valizadeh A, Tass PA. Dendritic and Axonal Propagation Delays Determine Emergent Structures of Neuronal Networks with Plastic Synapses. Sci Rep 2017; 7:39682. [PMID: 28045109 PMCID: PMC5206725 DOI: 10.1038/srep39682] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022] Open
Abstract
Spike-timing-dependent plasticity (STDP) modifies synaptic strengths based on the relative timing of pre- and postsynaptic spikes. The temporal order of spikes turned out to be crucial. We here take into account how propagation delays, composed of dendritic and axonal delay times, may affect the temporal order of spikes. In a minimal setting, characterized by neglecting dendritic and axonal propagation delays, STDP eliminates bidirectional connections between two coupled neurons and turns them into unidirectional connections. In this paper, however, we show that depending on the dendritic and axonal propagation delays, the temporal order of spikes at the synapses can be different from those in the cell bodies and, consequently, qualitatively different connectivity patterns emerge. In particular, we show that for a system of two coupled oscillatory neurons, bidirectional synapses can be preserved and potentiated. Intriguingly, this finding also translates to large networks of type-II phase oscillators and, hence, crucially impacts on the overall hierarchical connectivity patterns of oscillatory neuronal networks.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Institute for Advanced Studies in Basic Sciences (IASBS), Department of Physics, Zanjan, 45195-1159, Iran
| | - Alireza Valizadeh
- Institute for Advanced Studies in Basic Sciences (IASBS), Department of Physics, Zanjan, 45195-1159, Iran.,Institute for Research in Fundamental Sciences (IPM), School of Cognitive Sciences, Tehran, 19395-5746, Iran
| | - Peter A Tass
- Institute of Neuroscience and Medicine - Neuromodulation (INM-7), Research Center Jülich, Jülich, 52425, Germany.,Stanford University, Department of Neurosurgery, Stanford, CA, 94305, USA.,University of Cologne, Department of Neuromodulation, Cologne, 50937, Germany
| |
Collapse
|
43
|
Fraize N, Carponcy J, Joseph MA, Comte JC, Luppi PH, Libourel PA, Salin PA, Malleret G, Parmentier R. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep. Sleep 2016; 39:2173-2188. [PMID: 27748246 DOI: 10.5665/sleep.6322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/03/2016] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. METHODS We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. RESULTS We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. CONCLUSIONS These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM.
Collapse
Affiliation(s)
- Nicolas Fraize
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Julien Carponcy
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Mickaël Antoine Joseph
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Jean-Christophe Comte
- Biphoton Internal Facility, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Pierre-Hervé Luppi
- Pathophysiology of the Neural Networks of the Sleep/Wake Cycle, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Paul-Antoine Libourel
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France.,Pathophysiology of the Neural Networks of the Sleep/Wake Cycle, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Paul-Antoine Salin
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France.,Biphoton Internal Facility, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Gaël Malleret
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Régis Parmentier
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| |
Collapse
|
44
|
Muller L, Piantoni G, Koller D, Cash SS, Halgren E, Sejnowski TJ. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night. eLife 2016; 5:e17267. [PMID: 27855061 PMCID: PMC5114016 DOI: 10.7554/elife.17267] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/19/2016] [Indexed: 01/02/2023] Open
Abstract
During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories.
Collapse
Affiliation(s)
- Lyle Muller
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Giovanni Piantoni
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Dominik Koller
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Eric Halgren
- Department of Radiology, University of California, San Diego, San Diego, United States
- Department of Neurosciences, University of California, San Diego, San Diego, United States
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
45
|
Cui J, Ng LJ, Volman V. Callosal dysfunction explains injury sequelae in a computational network model of axonal injury. J Neurophysiol 2016; 116:2892-2908. [PMID: 27683891 DOI: 10.1152/jn.00603.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022] Open
Abstract
Mild traumatic brain injury (mTBI) often results in neurobehavioral aberrations such as impaired attention and increased reaction time. Diffusion imaging and postmortem analysis studies suggest that mTBI primarily affects myelinated axons in white matter tracts. In particular, corpus callosum, mediating interhemispheric information exchange, has been shown to be affected in mTBI. Yet little is known about the mechanisms linking the injury of myelinated callosal axons to the neurobehavioral sequelae of mTBI. To address this issue, we devised and studied a large, biologically plausible neuronal network model of cortical tissue. Importantly, the model architecture incorporated intra- and interhemispheric organization, including myelinated callosal axons and distance-dependent axonal conduction delays. In the resting state, the intact model network exhibited several salient features, including alpha-band (8-12 Hz) collective activity with low-frequency irregular spiking of individual neurons. The network model of callosal injury captured several clinical observations, including 1) "slowing down" of the network rhythms, manifested as an increased resting-state theta-to-alpha power ratio, 2) reduced response to attention-like network stimulation, manifested as a reduced spectral power of collective activity, and 3) increased population response time in response to stimulation. Importantly, these changes were positively correlated with injury severity, supporting proposals to use neurobehavioral indices as biomarkers for determining the severity of injury. Our modeling effort helps to understand the role played by the injury of callosal myelinated axons in defining the neurobehavioral sequelae of mTBI.
Collapse
Affiliation(s)
- Jianxia Cui
- L-3 Applied Technologies, Inc., San Diego, California
| | - Laurel J Ng
- L-3 Applied Technologies, Inc., San Diego, California
| | | |
Collapse
|
46
|
Zhan K, Teng J, Shi J, Li Q, Wang M. Feature-Linking Model for Image Enhancement. Neural Comput 2016; 28:1072-100. [DOI: 10.1162/neco_a_00832] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Inspired by gamma-band oscillations and other neurobiological discoveries, neural networks research shifts the emphasis toward temporal coding, which uses explicit times at which spikes occur as an essential dimension in neural representations. We present a feature-linking model (FLM) that uses the timing of spikes to encode information. The first spiking time of FLM is applied to image enhancement, and the processing mechanisms are consistent with the human visual system. The enhancement algorithm achieves boosting the details while preserving the information of the input image. Experiments are conducted to demonstrate the effectiveness of the proposed method. Results show that the proposed method is effective.
Collapse
Affiliation(s)
- Kun Zhan
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jicai Teng
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinhui Shi
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qiaoqiao Li
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mingying Wang
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
47
|
Esfahani ZG, Gollo LL, Valizadeh A. Stimulus-dependent synchronization in delayed-coupled neuronal networks. Sci Rep 2016; 6:23471. [PMID: 27001428 PMCID: PMC4802300 DOI: 10.1038/srep23471] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/07/2016] [Indexed: 02/04/2023] Open
Abstract
Time delay is a general feature of all interactions. Although the effects of delayed interaction are often neglected when the intrinsic dynamics is much slower than the coupling delay, they can be crucial otherwise. We show that delayed coupled neuronal networks support transitions between synchronous and asynchronous states when the level of input to the network changes. The level of input determines the oscillation period of neurons and hence whether time-delayed connections are synchronizing or desynchronizing. We find that synchronizing connections lead to synchronous dynamics, whereas desynchronizing connections lead to out-of-phase oscillations in network motifs and to frustrated states with asynchronous dynamics in large networks. Since the impact of a neuronal network to downstream neurons increases when spikes are synchronous, networks with delayed connections can serve as gatekeeper layers mediating the firing transfer to other regions. This mechanism can regulate the opening and closing of communicating channels between cortical layers on demand.
Collapse
Affiliation(s)
- Zahra G Esfahani
- Department of physics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| | - Leonardo L Gollo
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Alireza Valizadeh
- Department of physics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran.,School of Cognitive Sciences, IPM, Niavaran, Tehran, Iran
| |
Collapse
|
48
|
Miyawaki H, Diba K. Regulation of Hippocampal Firing by Network Oscillations during Sleep. Curr Biol 2016; 26:893-902. [PMID: 26972321 DOI: 10.1016/j.cub.2016.02.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/10/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022]
Abstract
It has been hypothesized that waking leads to higher-firing neurons, with increased energy expenditure, and that sleep serves to return activity to baseline levels. Oscillatory activity patterns during different stages of sleep may play specific roles in this process, but consensus has been missing. To evaluate these phenomena in the hippocampus, we recorded from region CA1 neurons in rats across the 24-hr cycle, and we found that their firing increased upon waking and decreased 11% per hour across sleep. Waking and sleeping also affected lower- and higher-firing neurons differently. Interestingly, the incidences of sleep spindles and sharp-wave ripples (SWRs), typically associated with cortical plasticity, were predictive of ensuing firing changes and were more robustly predictive than other oscillatory events. Spindles and SWRs were initiated during non-REM sleep, yet the changes were incorporated in the network over the following REM sleep epoch. These findings indicate an important role for spindles and SWRs and provide novel evidence of a symbiotic relationship between non-REM and REM stages of sleep in the homeostatic regulation of neuronal activity.
Collapse
Affiliation(s)
- Hiroyuki Miyawaki
- Department of Psychology, Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Kamran Diba
- Department of Psychology, Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| |
Collapse
|
49
|
Bi Z, Zhou C. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs. Front Comput Neurosci 2016; 10:14. [PMID: 26941634 PMCID: PMC4763167 DOI: 10.3389/fncom.2016.00014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/01/2016] [Indexed: 11/26/2022] Open
Abstract
In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP) when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis). Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons). Neurons (including the post-synaptic neuron) in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV) induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV) induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1) synchronous firing and burstiness tend to increase DiffV, (2) heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3) heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our work important for understanding functional processes of neuronal networks (such as memory) and neural development.
Collapse
Affiliation(s)
- Zedong Bi
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of SciencesBeijing, China; Department of Physics, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
| | - Changsong Zhou
- Department of Physics, Hong Kong Baptist UniversityKowloon Tong, Hong Kong; Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Institute of Computational and Theoretical Studies, Hong Kong Baptist UniversityKowloon Tong, Hong Kong; Beijing Computational Science Research CenterBeijing, China; Research Centre, HKBU Institute of Research and Continuing EducationShenzhen, China
| |
Collapse
|
50
|
Kato H, Ikeguchi T. Oscillation, Conduction Delays, and Learning Cooperate to Establish Neural Competition in Recurrent Networks. PLoS One 2016; 11:e0146044. [PMID: 26840529 PMCID: PMC4740405 DOI: 10.1371/journal.pone.0146044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/11/2015] [Indexed: 11/18/2022] Open
Abstract
Specific memory might be stored in a subnetwork consisting of a small population of neurons. To select neurons involved in memory formation, neural competition might be essential. In this paper, we show that excitable neurons are competitive and organize into two assemblies in a recurrent network with spike timing-dependent synaptic plasticity (STDP) and axonal conduction delays. Neural competition is established by the cooperation of spontaneously induced neural oscillation, axonal conduction delays, and STDP. We also suggest that the competition mechanism in this paper is one of the basic functions required to organize memory-storing subnetworks into fine-scale cortical networks.
Collapse
Affiliation(s)
- Hideyuki Kato
- School of Engineering, Tokyo University of Technology, Tokyo Japan
- * E-mail:
| | - Tohru Ikeguchi
- Faculty of Engineering Division I, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|