1
|
Stickel KC, Shah NR, Claeboe ET, Orr KS, Mosley AL, Doud EH, Belecky-Adams TL, Baucum AJ. Mechanisms of spinophilin-dependent pancreas dysregulation in obesity. Am J Physiol Endocrinol Metab 2024; 327:E155-E171. [PMID: 38630048 PMCID: PMC11427100 DOI: 10.1152/ajpendo.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Spinophilin is an F-actin binding and protein phosphatase 1 (PP1) targeting protein that acts as a scaffold of PP1 to its substrates. Spinophilin knockout (Spino-/-) mice have decreased fat mass, increased lean mass, and improved glucose tolerance, with no difference in feeding behaviors. Although spinophilin is enriched in neurons, its roles in nonneuronal tissues, such as β cells of the pancreatic islets, are unclear. We have corroborated and expanded upon previous studies to determine that Spino-/- mice have decreased weight gain and improved glucose tolerance in two different models of obesity. We have identified multiple putative spinophilin-interacting proteins isolated from intact pancreas and observed increased interactions of spinophilin with exocrine, ribosomal, and cytoskeletal protein classes that normally act to mediate peptide hormone production, processing, and/or release in Leprdb/db and/or high-fat diet-fed (HFF) models of obesity. In addition, we have found that spinophilin interacts with proteins from similar classes in isolated islets, suggesting a role for spinophilin in the pancreatic islet. Consistent with a pancreatic β cell type-specific role for spinophilin, using our recently described conditional spinophilin knockout mice, we found that loss of spinophilin specifically in pancreatic β cells improved glucose tolerance without impacting body weight in chow-fed mice. Our data further support the role of spinophilin in mediating pathophysiological changes in body weight and whole body metabolism associated with obesity. Our data provide the first evidence that pancreatic spinophilin protein interactions are modulated by obesity and that loss of spinophilin specifically in pancreatic β cells impacts whole body glucose tolerance.NEW & NOTEWORTHY To our knowledge, these data are the first to demonstrate that obesity impacts spinophilin protein interactions in the pancreas and identify spinophilin specifically in pancreatic β cells as a modulator of whole body glucose tolerance.
Collapse
Affiliation(s)
- Kaitlyn C Stickel
- Department of Biology, Indiana University-Indianapolis, Indianapolis, Indiana, United States
| | - Nikhil R Shah
- Medical Neurosciences and Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Emily T Claeboe
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Kara S Orr
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Amber L Mosley
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Emma H Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Teri L Belecky-Adams
- Department of Biology, Indiana University-Indianapolis, Indianapolis, Indiana, United States
| | - Anthony J Baucum
- Department of Biology, Indiana University-Indianapolis, Indianapolis, Indiana, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
2
|
Avila-Zozaya M, Zachariou V. Genetic mouse models in opioid research: current status and future directions. J Neural Transm (Vienna) 2024; 131:491-494. [PMID: 38436758 DOI: 10.1007/s00702-024-02762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Synthetic and semi-synthetic opioids are prescribed for the management of severe pain conditions, but their long-term use is often leading to physical dependence and addiction disorders. Understanding the complex neurobiology of the opioid system in preclinical models will be essential for the development of safe and efficacious analgesics. With rising numbers of synthetic opioid users and overdose cases, a better understanding of the neuroanatomical and cellular pathways associated with physical dependence and addiction is expected to guide treatment approaches for opioid use disorders. In this commentary, we highlight the importance of advanced genetic mouse models for studying the regional effects of opioid receptors, and we discuss the need of genetic mouse models for the investigation of the regional, circuit and cell compartment-specific role of intracellular mediators of opioid actions.
Collapse
Affiliation(s)
- Monserrat Avila-Zozaya
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Venetia Zachariou
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Ma R, Kutchy NA, Wang Z, Hu G. Extracellular vesicle-mediated delivery of anti-miR-106b inhibits morphine-induced primary ciliogenesis in the brain. Mol Ther 2023; 31:1332-1345. [PMID: 37012704 PMCID: PMC10188913 DOI: 10.1016/j.ymthe.2023.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Repeated use of opioids such as morphine causes changes in the shape and signal transduction pathways of various brain cells, including astrocytes and neurons, resulting in alterations in brain functioning and ultimately leading to opioid use disorder. We previously demonstrated that extracellular vesicle (EV)-induced primary ciliogenesis contributes to the development of morphine tolerance. Herein, we aimed to investigate the underlying mechanisms and potential EV-mediated therapeutic approach to inhibit morphine-mediated primary ciliogenesis. We demonstrated that miRNA cargo in morphine-stimulated-astrocyte-derived EVs (morphine-ADEVs) mediated morphine-induced primary ciliogenesis in astrocytes. CEP97 is a target of miR-106b and is a negative regulator of primary ciliogenesis. Intranasal delivery of ADEVs loaded with anti-miR-106b decreased the expression of miR-106b in astrocytes, inhibited primary ciliogenesis, and prevented the development of tolerance in morphine-administered mice. Furthermore, we confirmed primary ciliogenesis in the astrocytes of opioid abusers. miR-106b-5p in morphine-ADEVs induces primary ciliogenesis via targeting CEP97. Intranasal delivery of ADEVs loaded with anti-miR-106b ameliorates morphine-mediated primary ciliogenesis and prevents morphine tolerance. Our findings bring new insights into the mechanisms underlying primary cilium-mediated morphine tolerance and pave the way for developing ADEV-mediated small RNA delivery strategies for preventing substance use disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901- 8525, USA
| | - Zhongbin Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
4
|
Ho IH, Ng LH, Cheng X, Gin T, Chan CS, Sun W, Xiao L, Zhang L, Chan MT, Wu WK, Liu X. Annexin A2 traps mu-opioid receptors in recycling endosomes upon remifentanil-induced internalization. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100071. [PMID: 34401608 PMCID: PMC8358694 DOI: 10.1016/j.ynpai.2021.100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
•ANXA2 is a novel MOR1-interacting protein regulating MOR1 sub-cellular localization.•ANXA2 retains MOR1 in late recycling endosomes after remifentanil exposure.
Collapse
Affiliation(s)
- Idy H.T. Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lhotse H.L. Ng
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaojie Cheng
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chee Sam Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6 Affiliated Hospital of Shenzhen University Health Science Center, National Key Clinical Pain Medicine of China, Shenzhen 518060, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6 Affiliated Hospital of Shenzhen University Health Science Center, National Key Clinical Pain Medicine of China, Shenzhen 518060, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Matthew T.V. Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - William K.K. Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- State Key Laboratory of Digestive Disease, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
5
|
Wang T, Zhu X, Yi H, Gu J, Liu S, Izenwasser S, Lemmon VP, Roy S, Hao S. Viral vector-mediated gene therapy for opioid use disorders. Exp Neurol 2021; 341:113710. [PMID: 33781732 DOI: 10.1016/j.expneurol.2021.113710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Chronic exposure to opioids typically results in adverse consequences. Opioid use disorder (OUD) is a disease of the CNS with behavioral, psychological, neurobiological, and medical manifestations. OUD induces a variety of changes of neurotransmitters/neuropeptides in the nervous system. Existing pharmacotherapy, such as opioid maintenance therapy (OMT) is the mainstay for the treatment of OUD, however, current opioid replacement therapy is far from effective for the majority of patients. Pharmacological therapy for OUD has been challenging for many reasons including debilitating side-effects. Therefore, developing an effective, non-pharmacological approach would be a critical advancement in improving and expanding treatment for OUD. Viral vector mediated gene therapy provides a potential new approach for treating opioid abused patients. Gene therapy can supply targeting gene products directly linked to the mechanisms of OUD to restore neurotransmitter and/or neuropeptides imbalance, and avoid the off-target effects of systemic administration of drugs. The most commonly used viral vectors in rodent studies of treatment of opioid-used disorder are based on recombinant adenovirus (AV), adeno-associated virus (AAV), lentiviral (LV) vectors, and herpes simplex virus (HSV) vectors. In this review, we will focus on the recent progress of viral vector mediated gene therapy in OUD, especially morphine tolerance and withdrawal.
Collapse
Affiliation(s)
- Tao Wang
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Xun Zhu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hyun Yi
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Jun Gu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shue Liu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sari Izenwasser
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Vance P Lemmon
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shuanglin Hao
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America.
| |
Collapse
|
6
|
Zhang Y, Song L, Dong H, Kim DS, Sun Z, Boger H, Wang Q, Wang H. Spinophilin-deficient mice are protected from diet-induced obesity and insulin resistance. Am J Physiol Endocrinol Metab 2020; 319:E354-E362. [PMID: 32603260 PMCID: PMC7473908 DOI: 10.1152/ajpendo.00114.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Browning of white adipose tissue (WAT) has been shown to reduce obesity and obesity-related complications, suggesting that factors that promote WAT browning may have applications in the development of therapeutic strategies for treating obesity. Here, we show that ablation of spinophilin (SPL), a ubiquitously expressed, multidomain scaffolding protein, increases metabolism and improves energy balance. Male and female SPL knockout (KO) and wild-type (WT) littermate controls were fed a chow diet or a high-fat diet (HFD). Body weight, hepatic steatosis, glucose and insulin tolerance, physical activity, and expression of browning genes in adipose tissues were measured and compared. Male SPL knockout (KO) mice fed a chow diet were significantly leaner, had lower body weights, and exhibited better glucose tolerance and insulin sensitivity than wild-type (WT) littermate controls. When fed an HFD, SPL KO mice were protected from increased body fat, weight gain, hepatic steatosis, hyperinsulinemia, and insulin resistance. Physical activity of SPL KO mice was markedly increased compared with WT controls. Furthermore, expression of the brown adipocyte marker, uncoupling protein-1 (UCP-1), and the mitochondrial activity markers, cd137 and c-idea, were significantly increased in visceral WAT (vWAT) of SPL KO mice, suggesting that SPL knockout protected the mice from HFD-induced obesity and its metabolic complications, at least in part, by promoting the browning of white adipocytes in vWAT. Our data identify a critical role of SPL in regulating glucose homeostasis, obesity, and adipocyte browning. These results suggest SPL may serve as a drug target for obesity and diabetes.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Lili Song
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Huansheng Dong
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Zhen Sun
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Heather Boger
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
7
|
Sakloth F, Polizu C, Bertherat F, Zachariou V. Regulators of G Protein Signaling in Analgesia and Addiction. Mol Pharmacol 2020; 98:739-750. [PMID: 32474445 DOI: 10.1124/mol.119.119206] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are multifunctional proteins expressed in peripheral and neuronal cells, playing critical roles in development, physiologic processes, and pharmacological responses. RGS proteins primarily act as GTPase accelerators for activated Gα subunits of G-protein coupled receptors, but they may also modulate signal transduction by several other mechanisms. Over the last two decades, preclinical work identified members of the RGS family with unique and critical roles in intracellular responses to drugs of abuse. New information has emerged on the mechanisms by which RGS proteins modulate the efficacy of opioid analgesics in a brain region- and agonist-selective fashion. There has also been progress in the understanding of the protein complexes and signal transduction pathways regulated by RGS proteins in addiction and analgesia circuits. In this review, we summarize findings on the mechanisms by which RGS proteins modulate functional responses to opioids in models of analgesia and addiction. We also discuss reports on the regulation and function of RGS proteins in models of psychostimulant addiction. Using information from preclinical studies performed over the last 20 years, we highlight the diverse mechanisms by which RGS protein complexes control plasticity in response to opioid and psychostimulant drug exposure; we further discuss how the understanding of these pathways may lead to new opportunities for therapeutic interventions in G protein pathways. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins are signal transduction modulators, expressed widely in various tissues, including brain regions mediating addiction and analgesia. Evidence from preclinical work suggests that members of the RGS family act by unique mechanisms in specific brain regions to control drug-induced plasticity. This review highlights interesting findings on the regulation and function of RGS proteins in models of analgesia and addiction.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Claire Polizu
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
8
|
RGS4 Maintains Chronic Pain Symptoms in Rodent Models. J Neurosci 2019; 39:8291-8304. [PMID: 31308097 DOI: 10.1523/jneurosci.3154-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/02/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022] Open
Abstract
Regulator of G-protein signaling 4 (RGS4) is a potent modulator of G-protein-coupled receptor signal transduction that is expressed throughout the pain matrix. Here, we use genetic mouse models to demonstrate a role of RGS4 in the maintenance of chronic pain states in male and female mice. Using paradigms of peripheral inflammation and nerve injury, we show that the prevention of RGS4 action leads to recovery from mechanical and cold allodynia and increases the motivation for wheel running. Similarly, RGS4KO eliminates the duration of nocifensive behavior in the second phase of the formalin assay. Using the Complete Freud's Adjuvant (CFA) model of hindpaw inflammation we also demonstrate that downregulation of RGS4 in the adult ventral posterolateral thalamic nuclei promotes recovery from mechanical and cold allodynia. RNA sequencing analysis of thalamus (THL) from RGS4WT and RGS4KO mice points to many signal transduction modulators and transcription factors that are uniquely regulated in CFA-treated RGS4WT cohorts. Ingenuity pathway analysis suggests that several components of glutamatergic signaling are differentially affected by CFA treatment between RGS4WT and RGS4KO groups. Notably, Western blot analysis shows increased expression of metabotropic glutamate receptor 2 in THL synaptosomes of RGS4KO mice at time points at which they recover from mechanical allodynia. Overall, our study provides information on a novel intracellular pathway that contributes to the maintenance of chronic pain states and points to RGS4 as a potential therapeutic target.SIGNIFICANCE STATEMENT There is an imminent need for safe and efficient chronic pain medications. Regulator of G-protein signaling 4 (RGS4) is a multifunctional signal transduction protein, widely expressed in the pain matrix. Here, we demonstrate that RGS4 plays a prominent role in the maintenance of chronic pain symptoms in male and female mice. Using genetically modified mice, we show a dynamic role of RGS4 in recovery from symptoms of sensory hypersensitivity deriving from hindpaw inflammation or hindlimb nerve injury. We also demonstrate an important role of RGS4 actions in gene expression patterns induced by chronic pain states in the mouse thalamus. Our findings provide novel insight into mechanisms associated with the maintenance of chronic pain states and demonstrate that interventions in RGS4 activity promote recovery from sensory hypersensitivity symptoms.
Collapse
|
9
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
10
|
Morris CW, Watkins DS, Salek AB, Edler MC, Baucum AJ. The association of spinophilin with disks large-associated protein 3 (SAPAP3) is regulated by metabotropic glutamate receptor (mGluR) 5. Mol Cell Neurosci 2018; 90:60-69. [PMID: 29908232 PMCID: PMC6294707 DOI: 10.1016/j.mcn.2018.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/03/2023] Open
Abstract
Spinophilin is the most abundant protein phosphatase 1 targeting protein in the postsynaptic density of dendritic spines. Spinophilin associates with myriad synaptic proteins to regulate normal synaptic communication; however, the full complement of spinophilin interacting proteins and mechanisms regulating spinophilin interactions are unclear. Here we validate an association between spinophilin and the scaffolding protein, disks large-associated protein 3 (SAP90/PSD-95 associated protein 3; SAPAP3). Loss of SAPAP3 leads to obsessive-compulsive disorder (OCD)-like behaviors due to alterations in metabotropic glutamate receptor (mGluR) signaling. Here we report that spinophilin associates with SAPAP3 in the brain and in a heterologous cell system. Moreover, we have found that expression or activation of group I mGluRs along with activation of the mGluR-dependent kinase, protein kinase C β, enhances this interaction. Functionally, global loss of spinophilin attenuates amphetamine-induced hyperlocomotion, a striatal behavior associated with dopamine dysregulation and OCD. Together, these data delineate a novel link between mGluR signaling, spinophilin, and SAPAP3 in striatal pathophysiology.
Collapse
Affiliation(s)
- Cameron W Morris
- Undergraduate Neuroscience program, Indiana University-Purdue University Indianapolis, School of Science, USA
| | | | - Asma B Salek
- Department of Biology, Indiana University-Purdue University Indianapolis, School of Science, USA
| | - Michael C Edler
- Department of Biology, Indiana University-Purdue University Indianapolis, School of Science, USA
| | - Anthony J Baucum
- Undergraduate Neuroscience program, Indiana University-Purdue University Indianapolis, School of Science, USA; Department of Biology, Indiana University-Purdue University Indianapolis, School of Science, USA; Stark Neurosciences Research, USA; Department of Pharmacology and Toxicology, Institute Indiana University School of Medicine, USA.
| |
Collapse
|
11
|
Gaspari S, Cogliani V, Manouras L, Anderson EM, Mitsi V, Avrampou K, Carr FB, Zachariou V. RGS9-2 Modulates Responses to Oxycodone in Pain-Free and Chronic Pain States. Neuropsychopharmacology 2017; 42:1548-1556. [PMID: 28074831 PMCID: PMC5436127 DOI: 10.1038/npp.2017.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/28/2016] [Accepted: 12/23/2016] [Indexed: 12/11/2022]
Abstract
Regulator of G-protein signaling 9-2 (RGS9-2) is a striatal-enriched signal-transduction modulator known to have a critical role in the development of addiction-related behaviors following exposure to psychostimulants or opioids. RGS9-2 controls the function of several G-protein-coupled receptors, including dopamine receptor and mu opioid receptor (MOR). We previously showed that RGS9-2 complexes negatively control morphine analgesia, and promote the development of morphine tolerance. In contrast, RGS9-2 positively modulates the actions of other opioid analgesics, such as fentanyl and methadone. Here we investigate the role of RGS9-2 in regulating responses to oxycodone, an MOR agonist prescribed for the treatment of severe pain conditions that has addictive properties. Using mice lacking the Rgs9 gene (RGS9KO), we demonstrate that RGS9-2 positively regulates the rewarding effects of oxycodone in pain-free states, and in a model of neuropathic pain. Furthermore, although RGS9-2 does not affect the analgesic efficacy of oxycodone or the expression of physical withdrawal, it opposes the development of oxycodone tolerance, in both acute pain and chronic neuropathic pain models. Taken together, these data provide new information on the signal-transduction mechanisms that modulate the rewarding and analgesic actions of oxycodone.
Collapse
Affiliation(s)
- Sevasti Gaspari
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Greece
| | - Valeria Cogliani
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Lefteris Manouras
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Greece
| | - Ethan M Anderson
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Vasiliki Mitsi
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Kleopatra Avrampou
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Fiona B Carr
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Venetia Zachariou
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| |
Collapse
|
12
|
Di Sebastiano AR, Fahim S, Dunn HA, Walther C, Ribeiro FM, Cregan SP, Angers S, Schmid S, Ferguson SSG. Role of Spinophilin in Group I Metabotropic Glutamate Receptor Endocytosis, Signaling, and Synaptic Plasticity. J Biol Chem 2016; 291:17602-15. [PMID: 27358397 DOI: 10.1074/jbc.m116.722355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 11/06/2022] Open
Abstract
Activation of Group I metabotropic glutamate receptors (mGluRs) activates signaling cascades, resulting in calcium release from intracellular stores, ERK1/2 activation, and long term changes in synaptic activity that are implicated in learning, memory, and neurodegenerative diseases. As such, elucidating the molecular mechanisms underlying Group I mGluR signaling is important for understanding physiological responses initiated by the activation of these receptors. In the current study, we identify the multifunctional scaffolding protein spinophilin as a novel Group I mGluR-interacting protein. We demonstrate that spinophilin interacts with the C-terminal tail and second intracellular loop of Group I mGluRs. Furthermore, we show that interaction of spinophilin with Group I mGluRs attenuates receptor endocytosis and phosphorylation of ERK1/2, an effect that is dependent upon the interaction of spinophilin with the C-terminal PDZ binding motif encoded by Group I mGluRs. Spinophilin knock-out results in enhanced mGluR5 endocytosis as well as increased ERK1/2, AKT, and Ca(2+) signaling in primary cortical neurons. In addition, the loss of spinophilin expression results in impaired mGluR5-stimulated LTD. Our results indicate that spinophilin plays an important role in regulating the activity of Group I mGluRs as well as their influence on synaptic activity.
Collapse
Affiliation(s)
- Andrea R Di Sebastiano
- From the J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, London, Ontario N6A 3K7, Canada
| | - Sandra Fahim
- From the J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, London, Ontario N6A 3K7, Canada
| | - Henry A Dunn
- the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Cornelia Walther
- From the J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, London, Ontario N6A 3K7, Canada
| | - Fabiola M Ribeiro
- the Departamento de Bioquimica e Imunologia, ICB, Universidade Federa de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Sean P Cregan
- From the J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, London, Ontario N6A 3K7, Canada
| | - Stephane Angers
- the Leslie Dan Faculty of Pharmacy and Department of Pharmacology, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Susanne Schmid
- the Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada, and
| | - Stephen S G Ferguson
- the Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada, and
| |
Collapse
|
13
|
Lee J, Ghil S. Regulator of G protein signaling 8 inhibits protease-activated receptor 1/G i/o signaling by forming a distinct G protein-dependent complex in live cells. Cell Signal 2016; 28:391-400. [DOI: 10.1016/j.cellsig.2016.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
14
|
Walther C, Ferguson SSG. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling. Mol Endocrinol 2015; 29:814-30. [PMID: 25942107 DOI: 10.1210/me.2015-1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| |
Collapse
|
15
|
Bowman SL, Puthenveedu MA. Postendocytic Sorting of Adrenergic and Opioid Receptors: New Mechanisms and Functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:189-206. [PMID: 26055059 DOI: 10.1016/bs.pmbts.2015.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endocytic pathway tightly regulates the activity of G protein-coupled receptors (GPCRs). Much of our understanding of this relationship between GPCR endocytic trafficking and signaling comes from studies done on catecholamine and opioid receptors. After ligand-induced endocytosis, a key sorting step in the endosome determines whether receptors are recycled back to the cell surface, leading to recovery of signaling, or are degraded in the lysosome, leading to desensitization. Recycling of GPCRs, unlike that of many other proteins, is an active process driven by specific sequences on the receptor and proteins that interact with this sequence. Recent data suggest that sequence-dependent recycling plays complex roles in regulating both the timing and location of GPCR signaling. This chapter will describe our current understanding of the mechanisms regulating GPCR sorting in the endosome and discuss emerging ideas on their role in GPCR signaling, focusing on adrenergic and opioid receptors as prototypes.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
16
|
Dunn HA, Ferguson SSG. PDZ Protein Regulation of G Protein–Coupled Receptor Trafficking and Signaling Pathways. Mol Pharmacol 2015; 88:624-39. [DOI: 10.1124/mol.115.098509] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/25/2015] [Indexed: 01/03/2023] Open
|
17
|
Gaspari S, Papachatzaki MM, Koo JW, Carr FB, Tsimpanouli ME, Stergiou E, Bagot RC, Ferguson D, Mouzon E, Chakravarty S, Deisseroth K, Lobo MK, Zachariou V. Nucleus accumbens-specific interventions in RGS9-2 activity modulate responses to morphine. Neuropsychopharmacology 2014; 39:1968-77. [PMID: 24561386 PMCID: PMC4059906 DOI: 10.1038/npp.2014.45] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
Abstract
Regulator of G protein signalling 9-2 (Rgs9-2) modulates the actions of a wide range of CNS-acting drugs by controlling signal transduction of several GPCRs in the striatum. RGS9-2 acts via a complex mechanism that involves interactions with Gα subunits, the Gβ5 protein, and the adaptor protein R7BP. Our recent work identified Rgs9-2 complexes in the striatum associated with acute or chronic exposures to mu opioid receptor (MOR) agonists. In this study we use several new genetic tools that allow manipulations of Rgs9-2 activity in particular brain regions of adult mice in order to better understand the mechanism via which this protein modulates opiate addiction and analgesia. We used adeno-associated viruses (AAVs) to express forms of Rgs9-2 in the dorsal and ventral striatum (nucleus accumbens, NAc) in order to examine the influence of this protein in morphine actions. Consistent with earlier behavioural findings from constitutive Rgs9 knockout mice, we show that Rgs9-2 actions in the NAc modulate morphine reward and dependence. Notably, Rgs9-2 in the NAc affects the analgesic actions of morphine as well as the development of analgesic tolerance. Using optogenetics we demonstrate that activation of Channelrhodopsin2 in Rgs9-2-expressing neurons, or in D1 dopamine receptor (Drd1)-enriched medium spiny neurons, accelerates the development of morphine tolerance, whereas activation of D2 dopamine receptor (Drd2)-enriched neurons does not significantly affect the development of tolerance. Together, these data provide new information on the signal transduction mechanisms underlying opiate actions in the NAc.
Collapse
Affiliation(s)
- Sevasti Gaspari
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Maria M Papachatzaki
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Ja Wook Koo
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Fiona B Carr
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | | | - Eugenia Stergiou
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Rosemary C Bagot
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Deveroux Ferguson
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Ezekiell Mouzon
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Sumana Chakravarty
- Division of Chemical Biology, Indian Institute of Chemical Technology, Hyderabad, India
| | - Karl Deisseroth
- Departments of Bioengineering and Physiology and Behavioural Sciences, Stanford Univerity, Stanford, CA, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Venetia Zachariou
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY 10029, USA, Tel: +1 212 6598612; E-mail:
| |
Collapse
|
18
|
Fuxe K, Borroto-Escuela DO, Ciruela F, Guidolin D, Agnati LF. Receptor-receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-6946-2-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Yekkirala AS, Kalyuzhny AE, Portoghese PS. An immunocytochemical-derived correlate for evaluating the bridging of heteromeric mu-delta opioid protomers by bivalent ligands. ACS Chem Biol 2013; 8:1412-6. [PMID: 23675763 DOI: 10.1021/cb400113d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bivalent ligands that contain two pharmacophores linked by a spacer are promising tools to investigate the pharmacology of opioid receptor heteromers. Evidence for occupation of neighboring protomers by two phamacophores of a single bivalent ligand (bridging) has relied mainly on pharmacological data. In the present study, we have employed an immunocytochemical correlate to support in vivo biological studies that are consistent with bridging. We show that a bivalent mu agonist/delta antagonist (MDAN-21) that is devoid of tolerance due to possible bridging of mu and delta protomers prevents endocytosis of the heteromeric receptors in HEK-293 cells. Conversely, a bivalent ligand (MDAN-16) with a short spacer or monovalent mu agonist give rise to robust internalization. The data suggest that the immobilization of proximal mu and delta protomers is due to bridging by MDAN-21. The finding that MDAN-21 and its shorter spacer homologue MDAN-16 possess equivalent activity in HEK-293 cells, but produce dramatically divergent internalization of mu-delta heteromer, is relevant to the role of internalization and tolerance.
Collapse
Affiliation(s)
- Ajay S. Yekkirala
- Department
of Medicinal Chemistry, College of Pharmacy, ‡Department of Pharmacology, and §Department of Neuroscience,
Medical School, University of Minnesota, Minneapolis,
Minnesota 55455, United States
| | - Alexander E Kalyuzhny
- Department
of Medicinal Chemistry, College of Pharmacy, ‡Department of Pharmacology, and §Department of Neuroscience,
Medical School, University of Minnesota, Minneapolis,
Minnesota 55455, United States
| | - Philip S. Portoghese
- Department
of Medicinal Chemistry, College of Pharmacy, ‡Department of Pharmacology, and §Department of Neuroscience,
Medical School, University of Minnesota, Minneapolis,
Minnesota 55455, United States
| |
Collapse
|
20
|
Masuho I, Xie K, Martemyanov KA. Macromolecular composition dictates receptor and G protein selectivity of regulator of G protein signaling (RGS) 7 and 9-2 protein complexes in living cells. J Biol Chem 2013; 288:25129-25142. [PMID: 23857581 DOI: 10.1074/jbc.m113.462283] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins play essential roles in the regulation of signaling via G protein-coupled receptors (GPCRs). With hundreds of GPCRs and dozens of G proteins, it is important to understand how RGS regulates selective GPCR-G protein signaling. In neurons of the striatum, two RGS proteins, RGS7 and RGS9-2, regulate signaling by μ-opioid receptor (MOR) and dopamine D2 receptor (D2R) and are implicated in drug addiction, movement disorders, and nociception. Both proteins form trimeric complexes with the atypical G protein β subunit Gβ5 and a membrane anchor, R7BP. In this study, we examined GTPase-accelerating protein (GAP) activity as well as Gα and GPCR selectivity of RGS7 and RGS9-2 complexes in live cells using a bioluminescence resonance energy transfer-based assay that monitors dissociation of G protein subunits. We showed that RGS9-2/Gβ5 regulated both Gi and Go with a bias toward Go, but RGS7/Gβ5 could serve as a GAP only for Go. Interestingly, R7BP enhanced GAP activity of RGS7 and RGS9-2 toward Go and Gi and enabled RGS7 to regulate Gi signaling. Neither RGS7 nor RGS9-2 had any activity toward Gz, Gs, or Gq in the absence or presence of R7BP. We also observed no effect of GPCRs (MOR and D2R) on the G protein bias of R7 RGS proteins. However, the GAP activity of RGS9-2 showed a strong receptor preference for D2R over MOR. Finally, RGS7 displayed an four times greater GAP activity relative to RGS9-2. These findings illustrate the principles involved in establishing G protein and GPCR selectivity of striatal RGS proteins.
Collapse
Affiliation(s)
- Ikuo Masuho
- From the Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33410
| | - Keqiang Xie
- From the Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33410
| | - Kirill A Martemyanov
- From the Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33410.
| |
Collapse
|
21
|
Tapocik JD, Luu TV, Mayo CL, Wang BD, Doyle E, Lee AD, Lee NH, Elmer GI. Neuroplasticity, axonal guidance and micro-RNA genes are associated with morphine self-administration behavior. Addict Biol 2013; 18:480-95. [PMID: 22804800 DOI: 10.1111/j.1369-1600.2012.00470.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuroadaptations in the ventral striatum (VS) and ventral midbrain (VMB) following chronic opioid administration are thought to contribute to the pathogenesis and persistence of opiate addiction. In order to identify candidate genes involved in these neuroadaptations, we utilized a behavior-genetics strategy designed to associate contingent intravenous drug self-administration with specific patterns of gene expression in inbred mice differentially predisposed to the rewarding effects of morphine. In a Yoked-control paradigm, C57BL/6J mice showed clear morphine-reinforced behavior, whereas DBA/2J mice did not. Moreover, the Yoked-control paradigm revealed the powerful consequences of self-administration versus passive administration at the level of gene expression. Morphine self-administration in the C57BL/6J mice uniquely up- or down-regulated 237 genes in the VS and 131 genes in the VMB. Interestingly, only a handful of the C57BL/6J self-administration genes (<3%) exhibited a similar expression pattern in the DBA/2J mice. Hence, specific sets of genes could be confidently assigned to regional effects of morphine in a contingent- and genotype-dependent manner. Bioinformatics analysis revealed that neuroplasticity, axonal guidance and micro-RNAs (miRNAs) were among the key themes associated with drug self-administration. Noteworthy were the primary miRNA genes H19 and micro-RNA containing gene (Mirg), processed, respectively, to mature miRNAs miR-675 and miR-154, because they are prime candidates to mediate network-like changes in responses to chronic drug administration. These miRNAs have postulated roles in dopaminergic neuron differentiation and mu-opioid receptor regulation. The strategic approach designed to focus on reinforcement-associated genes provides new insight into the role of neuroplasticity pathways and miRNAs in drug addiction.
Collapse
Affiliation(s)
| | - Truong V. Luu
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Cheryl L. Mayo
- Department of Psychiatry; Maryland Psychiatric Research Center; University of Maryland School of Medicine; Baltimore; MD; USA
| | - Bi-Dar Wang
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Erin Doyle
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Alec D. Lee
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Norman H. Lee
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Greg I. Elmer
- Department of Psychiatry; Maryland Psychiatric Research Center; University of Maryland School of Medicine; Baltimore; MD; USA
| |
Collapse
|
22
|
Neurabin: a key factor in the specific neuroprotection mediated by Adenosine. Purinergic Signal 2013; 8:659-60. [PMID: 22992978 DOI: 10.1007/s11302-012-9333-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
23
|
Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 2013; 65:223-54. [PMID: 23321159 DOI: 10.1124/pr.112.005942] [Citation(s) in RCA: 593] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance.
Collapse
Affiliation(s)
- John T Williams
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Esteves SLC, Korrodi-Gregório L, Cotrim CZ, van Kleeff PJM, Domingues SC, da Cruz e Silva OAB, Fardilha M, da Cruz e Silva EF. Protein phosphatase 1γ isoforms linked interactions in the brain. J Mol Neurosci 2012; 50:179-97. [PMID: 23080069 DOI: 10.1007/s12031-012-9902-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/03/2012] [Indexed: 01/03/2023]
Abstract
Posttranslational protein modifications, in particular reversible protein phosphorylation, are important regulatory mechanisms involved in cellular signaling transduction pathways. Thousands of human proteins are phosphorylatable and the tight regulation of phosphorylation states is crucial for cell maintenance and development. Protein phosphorylation occurs primarily on serine, threonine, and tyrosine residues, through the antagonistic actions of protein kinases and phosphatases. The catalytic subunit of protein phosphatase 1 (PP1), a major Ser/Thr-phosphatase, associates with a large variety of regulatory subunits that define substrate specificity and determine specific cellular pathway responses. PP1 has been shown to bind to different proteins in the brain in order to execute key and differential functions. This work reports the identification of proteins expressed in the human brain that interact with PP1γ1 and PP1γ2 isoforms by the yeast two-hybrid method. An extensive search of PP1-binding motifs was performed for the proteins identified, revealing already known PP1 regulators but also novel interactors. Moreover, our results were integrated with the data of PP1γ interacting proteins from several public web databases, permitting the development of physical maps of the novel interactions. The PP1γ interactome thus obtained allowed for the identification of novel PP1 interacting proteins, supporting novel functions of PP1γ isoforms in the human brain.
Collapse
Affiliation(s)
- Sara L C Esteves
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fourla DD, Papakonstantinou MP, Vrana SM, Georgoussi Z. Selective interactions of spinophilin with the C-terminal domains of the δ- and μ-opioid receptors and G proteins differentially modulate opioid receptor signaling. Cell Signal 2012; 24:2315-28. [PMID: 22922354 DOI: 10.1016/j.cellsig.2012.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/31/2012] [Accepted: 08/08/2012] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that the intracellular domains of opioid receptors serve as platforms for the formation of a multi-component signaling complex consisting of various interacting partners (Leontiadis et al., 2009, Cell Signal. 21, 1218-1228; Georganta et al., 2010, Neuropharmacology, 59(3), 139-148). In the present study we demonstrate that spinophilin a dendritic-spine enriched scaffold protein associates with δ- and μ-opioid receptors (δ-ΟR, μ-OR) constitutively in HEK293 an interaction that is altered upon agonist administration and enhanced upon forskolin treatment for both μ-OR and δ-ΟR. Spinophilin association with the opioid receptors is mediated via the third intracellular loop and a conserved region of the C-terminal tails. The portion of spinophilin responsible for interaction with the δ-OR and μ-OR is narrowed to a region encompassing amino acids 151-444. Spinophilin, RGS4, Gα and Gβγ subunits of G proteins form a multi-protein complex using specific regions of spinophilin and a conserved amino acid stretch of the C-terminal tails of both δ-μ-ORs. Expression of spinophilin in HEK293 cells potentiated DPDPE-mediated adenylyl-cyclase inhibition of δ-OR leaving unaffected the levels of cAMP accumulation mediated by the μ-OR. Moreover, measurements of extracellular signal regulated kinase (ERK1,2) phosphorylation indicated that the presence of spinophilin attenuated agonist-driven ERK1,2 phosphorylation mediated upon activation of the δ-OR but not the μ-OR. Collectively, these findings suggest that spinophilin associates with both δ- and μ-ΟR and G protein subunits in HEK293 cells participating in a multimeric signaling complex that displays a differential regulatory role in opioid receptor signaling.
Collapse
Affiliation(s)
- Danai-Dionysia Fourla
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | | | | | | |
Collapse
|
26
|
Magalhaes AC, Dunn H, Ferguson SS. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol 2012; 165:1717-1736. [PMID: 21699508 DOI: 10.1111/j.1476-5381.2011.01552.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
GPCRs represent the largest family of integral membrane proteins and were first identified as receptor proteins that couple via heterotrimeric G-proteins to regulate a vast variety of effector proteins to modulate cellular function. It is now recognized that GPCRs interact with a myriad of proteins that not only function to attenuate their signalling but also function to couple these receptors to heterotrimeric G-protein-independent signalling pathways. In addition, intracellular and transmembrane proteins associate with GPCRs and regulate their processing in the endoplasmic reticulum, trafficking to the cell surface, compartmentalization to plasma membrane microdomains, endocytosis and trafficking between intracellular membrane compartments. The present review will overview the functional consequence of β-arrestin, receptor activity-modifying proteins (RAMPS), regulators of G-protein signalling (RGS), GPCR-associated sorting proteins (GASPs), Homer, small GTPases, PSD95/Disc Large/Zona Occludens (PDZ), spinophilin, protein phosphatases, calmodulin, optineurin and Src homology 3 (SH3) containing protein interactions with GPCRs.
Collapse
Affiliation(s)
- Ana C Magalhaes
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| | - Henry Dunn
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| | - Stephen Sg Ferguson
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| |
Collapse
|
27
|
Dang VC, Christie MJ. Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons. Br J Pharmacol 2012; 165:1704-1716. [PMID: 21564086 DOI: 10.1111/j.1476-5381.2011.01482.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Agonists acting on µ-opioid receptors (MOR) are very effective analgesics but cause tolerance during long-term or repeated exposure. Intensive efforts have been made to find novel opioid agonists that are efficacious analgesics but can elude the signalling events that cause tolerance. µ-Opioid agonists differentially couple to downstream signalling mechanisms. Some agonists, such as enkephalins, D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), methadone and sufentanyl are efficacious at mediating G-protein and effector coupling, as well as triggering MOR regulatory events that include MOR phosphorylation, β-arrestin binding, receptor endocytosis and recycling. By contrast, morphine and closely related alkaloids can mediate efficacious MOR-effector coupling but poorly trigger receptor regulation. Several models have been proposed to relate differential MOR regulation by different opioids with their propensity to cause tolerance. Most are based on dogma that β-arrestin-2 (βarr-2) binding causes MOR desensitization and/or that MOR endocytosis and recycling are required for receptor resensitization. This review will examine some of these notions in light of recent evidence establishing that MOR dephosphorylation and resensitization do not require endocytosis. Recent evidence from opioid-treated animals also suggests that impaired MOR-effector coupling is driven, at least in part, by enhanced desensitization, as well as impaired resensitization that appears to be βarr-2 dependent. Better understanding of how chronic exposure to opioids alters receptor regulatory mechanisms may facilitate the development of effective analgesics that produce limited tolerance.
Collapse
Affiliation(s)
- Vu C Dang
- Department of Psychiatry, University of California, San Francisco, CA, USABrain & Mind Research Institute, University of Sydney, NSW, Australia
| | - MacDonald J Christie
- Department of Psychiatry, University of California, San Francisco, CA, USABrain & Mind Research Institute, University of Sydney, NSW, Australia
| |
Collapse
|
28
|
Ruiz de Azua I, Nakajima KI, Rossi M, Cui Y, Jou W, Gavrilova O, Wess J. Spinophilin as a novel regulator of M3 muscarinic receptor-mediated insulin release in vitro and in vivo. FASEB J 2012; 26:4275-86. [PMID: 22730439 DOI: 10.1096/fj.12-204644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Spinophilin (SPL), a multidomain scaffolding protein known to modulate the activity of different G-protein-coupled receptors, regulates various central nervous system (CNS) functions. However, little is known about the role of SPL expressed in peripheral cell types including pancreatic β cells. In this study, we examined the ability of SPL to modulate the activity of β-cell M(3) muscarinic acetylcholine receptors (M3Rs), which play an important role in facilitating insulin release and maintaining normal blood glucose levels. We demonstrated, by using both in vitro and in vivo approaches (mouse insulinoma cells and SPL-deficient mice), that SPL is a potent negative regulator of M3R-mediated signaling and insulin release. Additional biochemical and biophysical studies, including the use of bioluminescence resonance energy transfer technology, suggested that SPL is able to recruit regulator of G-protein signaling 4 (RGS4) to the M3R signaling complex in an agonist-dependent fashion. Since RGS4 is a member of the RGS family of proteins that act to reduce the lifetime of activated G proteins, these findings support the concept that the inhibitory effects of SPL on M3R activity are mediated by RGS4. These data suggest that SPL or other G-protein-coupled receptor-associated proteins may serve as novel targets for drug therapy aimed at improving β-cell function for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Inigo Ruiz de Azua
- Molecular Signaling Section, Mouse Metabolic Core Facility, Laboratory of Bioorganic Chemistry, NIH-NIDDK, Bldg. 8A, Rm. B1A-05, 8 Center Dr. MSC 0810 Bethesda, MD 20892-0810, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine. J Neurosci 2012; 32:2683-95. [PMID: 22357852 DOI: 10.1523/jneurosci.4125-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endogenous adenosine is an essential protective agent against neural damage by various insults to the brain. However, the therapeutic potential of adenosine receptor-directed ligands for neuroprotection is offset by side effects in peripheral tissues and organs. An increase in adenosine receptor responsiveness to endogenous adenosine would enhance neuroprotection while avoiding the confounding effects of exogenous ligands. Here we report novel regulation of adenosine-evoked responses by a neural tissue-specific protein, neurabin. Neurabin attenuated adenosine A(1) receptor (A1R) signaling by assembling a complex between the A1R and the regulator of G-protein signaling 4 (RGS4), a protein known to turn off G-protein signaling. Inactivation of the neurabin gene enhanced A1R signaling and promoted the protective effect of adenosine against excitotoxic seizure and neuronal death in mice. Furthermore, administration of a small molecule inhibitor of RGS4 significantly attenuated seizure severity in mice. Notably, the dose of kainate capable of inducing an ∼50% rate of death in wild-type (WT) mice did not affect neurabin-null mice or WT mice cotreated with an RGS4 inhibitor. The enhanced anti-seizure and neuroprotective effect achieved by disruption of the A1R/neurabin/RGS4 complex is elicited by the on-site and on-demand release of endogenous adenosine, and does not require administration of A1R ligands. These data identify neurabin-RGS4 as a novel tissue-selective regulatory mechanism for fine-tuning adenosine receptor function in the nervous system. Moreover, these findings implicate the A1R/neurabin/RGS4 complex as a valid therapeutic target for specifically manipulating the neuroprotective effects of endogenous adenosine.
Collapse
|
30
|
Terzi D, Cao Y, Agrimaki I, Martemyanov KA, Zachariou V. R7BP modulates opiate analgesia and tolerance but not withdrawal. Neuropsychopharmacology 2012; 37:1005-12. [PMID: 22089315 PMCID: PMC3280654 DOI: 10.1038/npp.2011.284] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adaptor protein R7 family binding protein (R7BP) modulates G protein coupled receptor (GPCR) signaling and desensitization by controlling the function of regulator of G protein signaling (RGS) proteins. R7BP is expressed throughout the brain and appears to modulate the membrane localization and stability of three proteins that belong to R7 RGS family: RGS6, RGS7, and RGS9-2. RGS9-2 is a potent negative modulator of opiate and psychostimulant addiction and promotes the development of analgesic tolerance to morphine, whereas the role of RGS6 and RGS7 in addiction remains unknown. Recent studies revealed that functional deletion of R7BP reduces R7 protein activity by preventing their anchoring to the cell membrane and enhances GPCR responsiveness in the basal ganglia. Here, we take advantage of R7BP knockout mice in order to examine the way interventions in R7 proteins function throughout the brain affect opiate actions. Our results suggest that R7BP is a negative modulator of the analgesic and locomotor activating actions of morphine. We also report that R7BP contributes to the development of morphine tolerance. Finally, our data suggest that although prevention of R7BP actions enhances the analgesic responses to morphine, it does not affect the severity of somatic withdrawal signs. Our data suggest that interventions in R7BP actions enhance the analgesic effect of morphine and prevent tolerance, without affecting withdrawal, pointing to R7BP complexes as potential new targets for analgesic drugs.
Collapse
Affiliation(s)
- Dimitra Terzi
- Department of Basic Sciences, University of Crete, Faculty of Medicine, Laboratory of Pharmacology, Heraklion, Crete, Greece
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute—Florida, Jupiter, FL, USA
| | - Ioanna Agrimaki
- Department of Basic Sciences, University of Crete, Faculty of Medicine, Laboratory of Pharmacology, Heraklion, Crete, Greece
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute—Florida, Jupiter, FL, USA,Department of Neuroscience, The Scripps Research Institute—Florida, 130 Scripps Way 3C2, Jupiter, FL 33458, USA, Tel:+561 228 2770, E-mail:
| | - Venetia Zachariou
- Department of Basic Sciences, University of Crete, Faculty of Medicine, Laboratory of Pharmacology, Heraklion, Crete, Greece,Department of Basic Sciences, University of Crete, Faculty of Medicine, Laboratory of Pharmacology, Heraklion, Crete 71003, Greece, Tel: +30 2810 394527, Fax: +30 2810 394530, E-mail:
| |
Collapse
|
31
|
Abstract
Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled and activate inhibitory G proteins. These receptors form homo- and heterodimeric complexes and signal to kinase cascades and scaffold a variety of proteins.The authors discuss classic mechanisms and developments in understanding opioid tolerance and opioid receptor signaling and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. The authors put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, the authors conclude there is a continued need for more translational work on opioid receptors in vivo.
Collapse
|
32
|
Lau EK, Trester-Zedlitz M, Trinidad JC, Kotowski SJ, Krutchinsky AN, Burlingame AL, von Zastrow M. Quantitative encoding of the effect of a partial agonist on individual opioid receptors by multisite phosphorylation and threshold detection. Sci Signal 2011; 4:ra52. [PMID: 21868358 DOI: 10.1126/scisignal.2001748] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In comparison to endogenous ligands of seven-transmembrane receptors, which typically act as full agonists, many drugs act as partial agonists. Partial agonism is best described as a "macroscopic" property that is manifest at the level of physiological systems or cell populations; however, whether partial agonists also encode discrete regulatory information at the "microscopic" level of individual receptors is not known. Here, we addressed this question by focusing on morphine, a partial agonist drug for μ-type opioid peptide receptors (MORs), and by combining quantitative mass spectrometry with cell biological analysis to investigate the reduced efficacy of morphine, compared to that of a peptide full agonist, in promoting receptor endocytosis. We showed that these chemically distinct ligands produced a complex and qualitatively similar mixture of phosphorylated opioid receptor forms in intact cells. Quantitatively, however, the different agonists promoted disproportionate multisite phosphorylation of a specific serine and threonine motif, and we found that modification at more than one residue was essential for the efficient recruitment of the adaptor protein β-arrestin that mediated subsequent endocytosis of MORs. Thus, quantitative encoding of agonist-selective endocytosis at the level of individual opioid receptors was based on the conserved biochemical principles of multisite phosphorylation and threshold detection.
Collapse
Affiliation(s)
- Elaine K Lau
- Department of Psychiatry, University of California, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Membrane attachment is key to protecting transducin GTPase-activating complex from intracellular proteolysis in photoreceptors. J Neurosci 2011; 31:14660-8. [PMID: 21994382 DOI: 10.1523/jneurosci.3516-11.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The members of the R7 regulator of G-protein signaling (RGS) protein subfamily are versatile regulators of G-protein signaling throughout the nervous system. Recent studies indicate that they are often found in complexes with membrane anchor proteins that serve as versatile modulators of their activity, intracellular targeting, and stability. One striking example is the interplay between the membrane anchor R9AP and the RGS9-1 · Gβ5 GTPase-activating complex responsible for the rapid inactivation of the G-protein transducin in vertebrate photoreceptor cells during their recovery from light excitation. The amount of this complex in photoreceptors sets their temporal resolution and is precisely regulated by the expression level of R9AP, which serves to protect the RGS9-1 and Gβ5 subunits from intracellular proteolysis. In this study, we investigated the mechanism by which R9AP performs its protective function in mouse rods and found that it is entirely confined to recruiting RGS9-1 · Gβ5 to cellular membranes. Furthermore, membrane attachment of RGS9-1 · Gβ5 is sufficient for its stable expression in rods even in the absence of R9AP. Our second finding is that RGS9-1 · Gβ5 possesses targeting information that specifies its exclusion from the outer segment and that this information is neutralized by association with R9AP to allow outer segment targeting. Finally, we demonstrate that the ability of R9AP · RGS9-1 · Gβ5 to accelerate GTP hydrolysis on transducin is independent of its means of membrane attachment, since replacing the transmembrane domain of R9AP with a site for lipid modification did not impair the catalytic activity of this complex.
Collapse
|
34
|
Rodríguez-Muñoz M, Sánchez-Blázquez P, Vicente-Sánchez A, Bailón C, Martín-Aznar B, Garzón J. The histidine triad nucleotide-binding protein 1 supports mu-opioid receptor-glutamate NMDA receptor cross-regulation. Cell Mol Life Sci 2011; 68:2933-49. [PMID: 21153910 PMCID: PMC11114723 DOI: 10.1007/s00018-010-0598-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/04/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
A series of pharmacological and physiological studies have demonstrated the functional cross-regulation between MOR and NMDAR. These receptors coexist at postsynaptic sites in midbrain periaqueductal grey (PAG) neurons, an area implicated in the analgesic effects of opioids like morphine. In this study, we found that the MOR-associated histidine triad nucleotide-binding protein 1 (HINT1) is essential for maintaining the connection between the NMDAR and MOR. Morphine-induced analgesic tolerance is prevented and even rescued by inhibiting PKC or by antagonizing NMDAR. However, in the absence of HINT1, the MOR becomes supersensitive to morphine before suffering a profound and lasting desensitization that is refractory to PKC inhibition or NMDAR antagonism. Thus, HINT1 emerges as a key protein that is critical for sustaining NMDAR-mediated regulation of MOR signaling strength. Thus, HINT1 deficiency may contribute to opioid-intractable pain syndromes by causing long-term MOR desensitization via mechanisms independent of NMDAR.
Collapse
Affiliation(s)
- María Rodríguez-Muñoz
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Pilar Sánchez-Blázquez
- Neurofarmacología, Instituto Cajal, CSIC, Avda Dr. Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Ana Vicente-Sánchez
- Neurofarmacología, Instituto Cajal, CSIC, Avda Dr. Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Concha Bailón
- Neurofarmacología, Instituto Cajal, CSIC, Avda Dr. Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Beatriz Martín-Aznar
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Javier Garzón
- Neurofarmacología, Instituto Cajal, CSIC, Avda Dr. Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| |
Collapse
|
35
|
Xie K, Martemyanov KA. Control of striatal signaling by g protein regulators. Front Neuroanat 2011; 5:49. [PMID: 21852966 PMCID: PMC3151604 DOI: 10.3389/fnana.2011.00049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 07/23/2011] [Indexed: 12/03/2022] Open
Abstract
Signaling via heterotrimeric G proteins plays a crucial role in modulating the responses of striatal neurons that ultimately shape core behaviors mediated by the basal ganglia circuitry, such as reward valuation, habit formation, and movement coordination. Activation of G protein-coupled receptors (GPCRs) by extracellular signals activates heterotrimeric G proteins by promoting the binding of GTP to their α subunits. G proteins exert their effects by influencing the activity of key effector proteins in this region, including ion channels, second messenger enzymes, and protein kinases. Striatal neurons express a staggering number of GPCRs whose activation results in the engagement of downstream signaling pathways and cellular responses with unique profiles but common molecular mechanisms. Studies over the last decade have revealed that the extent and duration of GPCR signaling are controlled by a conserved protein family named regulator of G protein signaling (RGS). RGS proteins accelerate GTP hydrolysis by the α subunits of G proteins, thus promoting deactivation of GPCR signaling. In this review, we discuss the progress made in understanding the roles of RGS proteins in controlling striatal G protein signaling and providing integration and selectivity of signal transmission. We review evidence on the formation of a macromolecular complex between RGS proteins and other components of striatal signaling pathways, their molecular regulatory mechanisms and impacts on GPCR signaling in the striatum obtained from biochemical studies and experiments involving genetic mouse models. Special emphasis is placed on RGS9-2, a member of the RGS family that is highly enriched in the striatum and plays critical roles in drug addiction and motor control.
Collapse
Affiliation(s)
- Keqiang Xie
- The Scripps Research Institute Jupiter, FL, USA
| | | |
Collapse
|
36
|
Hoffman PL, Bennett B, Saba LM, Bhave SV, Carosone-Link PJ, Hornbaker CK, Kechris KJ, Williams RW, Tabakoff B. Using the Phenogen website for 'in silico' analysis of morphine-induced analgesia: identifying candidate genes. Addict Biol 2011; 16:393-404. [PMID: 21054686 DOI: 10.1111/j.1369-1600.2010.00254.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identification of genes that contribute to polygenic (complex) behavioral phenotypes is a key goal of current genetic research. One approach to this goal is to combine gene expression information with genetic information, i.e. to map chromosomal regions that regulate gene expression levels. This approach has been termed 'genetical genomics', and, when used in conjunction with the identification of genomic regions (QTLs) that regulate the complex physiological trait under investigation, provides a strong basis for candidate gene discovery. In this paper, we describe the implementation of the genetical genomic/phenotypic approach to identify candidate genes for sensitivity to the analgesic effect of morphine in BXD recombinant inbred mice. Our analysis was performed 'in silico', using an online interactive resource called PhenoGen (http://phenogen.ucdenver.edu). We describe in detail the use of this resource, which identified a set of candidate genes, some of whose products regulate the cellular localization and activity of the mu opiate receptor. The results demonstrate how PhenoGen can be used to identify a novel set of genes that can be further investigated for their potential role in pain, morphine analgesia and/or morphine tolerance.
Collapse
Affiliation(s)
- Paula L Hoffman
- University of Colorado Denver, School of Medicine, Department of Pharmacology, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Papachatzaki MM, Antal Z, Terzi D, Szücs P, Zachariou V, Antal M. RGS9-2 modulates nociceptive behaviour and opioid-mediated synaptic transmission in the spinal dorsal horn. Neurosci Lett 2011; 501:31-4. [PMID: 21741448 DOI: 10.1016/j.neulet.2011.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 11/17/2022]
Abstract
The regulator of G protein signaling 9-2 (RGS9-2) is a constituent of G protein-coupled receptor (GPCR) macromolecular complexes with a major role in regulation of GPCR activity in the central nervous system. Previous in situ hybridization and Western blot studies revealed that RGS9-2 is expressed in the superficial dorsal horn of the spinal cord. In the present study, we monitored tail withdrawal latencies to noxious thermal stimuli and performed in vitro whole-cell patch clamp electrophysiological recordings from neurons in lamina II of the spinal dorsal horn to examine the role of RGS9-2 in the dorsal horn of the spinal cord in nociceptive behaviours and opiate mediated modulation of synaptic transmission. Our findings obtained from RGS9 knockout mice indicate that the lack of RGS9-2 protein decreases sensitivity to thermal stimuli and to the analgesic actions of morphine in the tail immersion paradigm. This modulatory role of RGS9-2 on opiate-mediated responses was further supported by electrophysiological studies showing that hyperpolarization of neurons in lamina II of the spinal dorsal horn evoked by application of DAMGO ([d-Ala2, N-MePhe4, Gly-ol]-enkephalin, a mu opioid receptor agonist) was diminished in RGS9 knockout mice. The results indicate that RGS9-2 enhances the effect of morphine and may play a crucial role in opiate-mediated analgesic mechanisms at the level of the spinal cord.
Collapse
Affiliation(s)
- Maria Martha Papachatzaki
- Department of Basic Science, University of Crete, Faculty of Medicine, Heraklion, Crete 71003, Greece
| | | | | | | | | | | |
Collapse
|
38
|
A unique role of RGS9-2 in the striatum as a positive or negative regulator of opiate analgesia. J Neurosci 2011; 31:5617-24. [PMID: 21490202 DOI: 10.1523/jneurosci.4146-10.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The signaling molecule RGS9-2 is a potent modulator of G-protein-coupled receptor function in striatum. Our earlier work revealed a critical role for RGS9-2 in the actions of the μ-opioid receptor (MOR) agonist morphine. In this study, we demonstrate that RGS9-2 may act as a positive or negative modulator of MOR-mediated behavioral responses in mice depending on the agonist administered. Paralleling these findings we use coimmunoprecipitation assays to show that the signaling complexes formed between RGS9-2 and Gα subunits in striatum are determined by the MOR agonist, and we identify RGS9-2 containing complexes associated with analgesic tolerance. In striatum, MOR activation promotes the formation of complexes between RGS9-2 and several Gα subunits, but morphine uniquely promotes an association between RGS9-2 and Gαi3. In contrast, RGS9-2/Gαq complexes assemble after acute application of several MOR agonists but not after morphine application. Repeated morphine administration leads to the formation of distinct complexes, which contain RGS9-2, Gβ5, and Gαq. Finally, we use simple pharmacological manipulations to disrupt RGS9-2 complexes formed during repeated MOR activation to delay the development of analgesic tolerance to morphine. Our data provide a better understanding of the brain-region-specific signaling events associated with opiate analgesia and tolerance and point to pharmacological approaches that can be readily tested for improving chronic analgesic responsiveness.
Collapse
|
39
|
Wu Y, Chen R, Zhao X, Li A, Li G, Zhou J. JWA regulates chronic morphine dependence via the delta opioid receptor. Biochem Biophys Res Commun 2011; 409:520-5. [PMID: 21600884 DOI: 10.1016/j.bbrc.2011.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
Abstract
Opioid dependence is correlated with the adaptive changes at the cellular level following chronic opioid use, and believed to be the main cause for the relapse of drug taking behavior of addicts. Despite decades of intensive studies, the underlying mechanisms of morphine dependence are still unclear. Here, we present evidence that JWA was induced by chronic morphine treatment in specific brain regions, and knockdown of JWA expression significantly reduced the withdrawal response to chronic morphine treatment in rats. We further demonstrated that the morphine induced DOR expression, while activation of DARPP-32 and MAP kinase was suppressed by JWA knockdown. Through an in vitro cell model of chronic morphine exposure, we also found that JWA is required for maintaining the stability of DOR via the ubiquitin-proteasome pathway. These observations suggest that JWA is directly involved in the regulation of chronic morphine dependence.
Collapse
Affiliation(s)
- Yu Wu
- Department of Molecular Cell Biology & Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Charlet A, Muller AH, Laux A, Kemmel V, Schweitzer A, Deloulme JC, Stuber D, Delalande F, Bianchi E, Van Dorsselaer A, Aunis D, Andrieux A, Poisbeau P, Goumon Y. Abnormal nociception and opiate sensitivity of STOP null mice exhibiting elevated levels of the endogenous alkaloid morphine. Mol Pain 2010; 6:96. [PMID: 21172011 PMCID: PMC3017033 DOI: 10.1186/1744-8069-6-96] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 12/20/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mice deficient for the stable tubule only peptide (STOP) display altered dopaminergic neurotransmission associated with severe behavioural defects including disorganized locomotor activity. Endogenous morphine, which is present in nervous tissues and synthesized from dopamine, may contribute to these behavioral alterations since it is thought to play a role in normal and pathological neurotransmission. RESULTS In this study, we showed that STOP null brain structures, including cortex, hippocampus, cerebellum and spinal cord, contain high endogenous morphine amounts. The presence of elevated levels of morphine was associated with the presence of a higher density of mu opioid receptor with a higher affinity for morphine in STOP null brains. Interestingly, STOP null mice exhibited significantly lower nociceptive thresholds to thermal and mechanical stimulations. They also had abnormal behavioural responses to the administration of exogenous morphine and naloxone. Low dose of morphine (1 mg/kg, i.p.) produced a significant mechanical antinociception in STOP null mice whereas it has no effect on wild-type mice. High concentration of naloxone (1 mg/kg) was pronociceptive for both mice strain, a lower concentration (0.1 mg/kg) was found to increase the mean mechanical nociceptive threshold only in the case of STOP null mice. CONCLUSIONS Together, our data show that STOP null mice displayed elevated levels of endogenous morphine, as well as an increase of morphine receptor affinity and density in brain. This was correlated with hypernociception and impaired pharmacological sensitivity to mu opioid receptor ligands.
Collapse
Affiliation(s)
- Alexandre Charlet
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique et Université de Strasbourg, Strasbourg, F-67084, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rapid delivery of internalized signaling receptors to the somatodendritic surface by sequence-specific local insertion. J Neurosci 2010; 30:11703-14. [PMID: 20810891 DOI: 10.1523/jneurosci.6282-09.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recycling pathway is a major route for delivering signaling receptors to the somatodendritic plasma membrane. We investigated the cell biological basis for the remarkable selectivity and speed of this process. We focused on the mu-opioid neuropeptide receptor and the beta(2)-adrenergic catecholamine receptor, two seven-transmembrane signaling receptors that traverse the recycling pathway efficiently after ligand-induced endocytosis and localize at steady state throughout the postsynaptic surface. Rapid recycling of each receptor in dissociated neuronal cultures was mediated by a receptor-specific cytoplasmic sorting sequence. Total internal reflection fluorescence microscopy imaging revealed that both sequences drive recycling via discrete vesicular fusion events in the cell body and dendritic shaft. Both sequences promoted recycling via "transient"-type events characterized by nearly immediate lateral spread of receptors after vesicular insertion resembling receptor insertion events observed previously in non-neural cells. The sequences differed in their abilities to produce distinct "persistent"-type events at which inserted receptors lingered for a variable time period before lateral spread. Both types of insertion event generated a uniform distribution of receptors in the somatodendritic plasma membrane when imaged over a 1 min interval, but persistent events uniquely generated a punctate surface distribution over a 10 s interval. These results establish sequence-directed recycling of signaling receptors in CNS neurons and show that this mechanism has the ability to generate receptor-specific patterns of local surface distribution on a timescale overlapping that of rapid physiological signaling.
Collapse
|
42
|
Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J. Mu-opioid receptors transiently activate the Akt-nNOS pathway to produce sustained potentiation of PKC-mediated NMDAR-CaMKII signaling. PLoS One 2010; 5:e11278. [PMID: 20585660 PMCID: PMC2890584 DOI: 10.1371/journal.pone.0011278] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In periaqueductal grey (PAG) matter, cross-talk between the Mu-opioid receptor (MOR) and the glutamate N-methyl-D-Aspartate receptor (NMDAR)-CaMKII pathway supports the development of analgesic tolerance to morphine. In neurons, histidine triad nucleotide binding protein 1 (HINT1) connects the regulators of G protein signaling RGSZ1 and RGSZ2 to the C terminus of the MOR. In response to morphine, this HINT1-RGSZ complex binds PKCgamma, and afterwards, the interplay between PKCgamma, Src and Gz/Gi proteins leads to sustained potentiation of NMDAR-mediated glutamate responses. METHODOLOGY/PRINCIPAL FINDINGS Following an intracerebroventricular (icv) injection of 10 nmol morphine, Akt was recruited to the synaptosomal membrane and activated by Thr308 and Ser473 phosphorylation. The Akt activation was immediately transferred to neural Nitric Oxide Synthase (nNOS) Ser1417. Afterwards, nitric oxide (NO)-released zinc ions recruited PKCgamma to the MOR to promote the Src-mediated phosphorylation of the Tyr1325 NMDAR2A subunit. This action increased NMDAR calcium flux and CaMKII was activated in a calcium-calmodulin dependent manner. CaMKII then acted on nNOS Ser847 to produce a sustained reduction in NO levels. The activation of the Akt-nNOS pathway was also reduced by the binding of these proteins to the MOR-HINT1 complex where they remained inactive. Tolerance to acute morphine developed as a result of phosphorylation of MOR cytosolic residues, uncoupling from the regulated G proteins which are transferred to RGSZ2 proteins. The diminished effect of morphine was prevented by LNNA, an inhibitor of nNOS function, and naltrindole, a delta-opioid receptor antagonist that also inhibits Akt. CONCLUSIONS/SIGNIFICANCE Analysis of the regulatory phosphorylation of the proteins included in the study indicated that morphine produces a transient activation of the Akt/PKB-nNOS pathway. This activation occurs upstream of PKCgamma and Src mediated potentiation of NMDAR activity, ultimately leading to morphine tolerance. In summary, the Akt-nNOS pathway acts as a primer for morphine-triggered events which leads to the sustained potentiation of the NMDAR-CaMKII pathway and MOR inhibition.
Collapse
Affiliation(s)
- Pilar Sánchez-Blázquez
- Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health (CIBERSAM) G09, ISCIII, Madrid, Spain
| | | | - Javier Garzón
- Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health (CIBERSAM) G09, ISCIII, Madrid, Spain
| |
Collapse
|
43
|
von Zastrow M. Regulation of opioid receptors by endocytic membrane traffic: mechanisms and translational implications. Drug Alcohol Depend 2010; 108:166-71. [PMID: 20338697 PMCID: PMC3417350 DOI: 10.1016/j.drugalcdep.2010.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 02/17/2010] [Accepted: 02/19/2010] [Indexed: 11/27/2022]
Abstract
Opioid neuropeptide receptors mediate diverse physiological functions and are important targets for both therapeutic and abused drugs. Opioid receptors are highly regulated in intact cells, and there is reason to believe that this regulation controls the clinical effects of opioid drugs. The present review will discuss some of this evidence, focusing specifically on the regulation of opioid receptors by endocytic membrane trafficking mechanisms. First, some basic principles of regulated endocytosis will be reviewed, and the principle of 'molecular sorting' as a means to determine the functional consequences of endocytosis will be introduced, Most of this information has been derived from studies of simplified cell models. Second, present knowledge about the operation of these mechanisms in physiologically relevant CNS neurons will be discussed, focusing on studies of neurons cultured from rodent brain. Third, recent insight into the effects of endocytic trafficking on opioid regulation in vivo will be considered, focusing on results from studies of transgenic mouse models. Much remains to be learned at these pre-clinical levels, and effects of endocytosis on opioid actions in humans remain completely unexplored. Two particular insights, which have emerged from pre-clinical studies, will be proposed for translational consideration.
Collapse
Affiliation(s)
- Mark von Zastrow
- Department of Psychiatry, N212E Genentech Hall, UCSF Mission Bay Campus, San Francisco, CA 94158-2140, USA.
| |
Collapse
|
44
|
Lu R, Chen Y, Cottingham C, Peng N, Jiao K, Limbird LE, Wyss JM, Wang Q. Enhanced hypotensive, bradycardic, and hypnotic responses to alpha2-adrenergic agonists in spinophilin-null mice are accompanied by increased G protein coupling to the alpha2A-adrenergic receptor. Mol Pharmacol 2010; 78:279-86. [PMID: 20430865 DOI: 10.1124/mol.110.065300] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously identified spinophilin as a regulator of alpha(2) adrenergic receptor (alpha(2)AR) trafficking and signaling in vitro and in vivo (Science 304:1940-1944, 2004). To assess the generalized role of spinophilin in regulating alpha(2)AR functions in vivo, the present study examined the impact of eliminating spinophilin on alpha(2)AR-evoked cardiovascular and hypnotic responses, previously demonstrated to be mediated by the alpha(2A)AR subtype, after systemic administration of the alpha(2)-agonists 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK14,304) and clonidine in spinophilin-null mice. Mice lacking spinophilin expression display dramatically enhanced and prolonged hypotensive, bradycardic, and sedative-hypnotic responses to alpha(2)AR stimulation. Whereas these changes in sensitivity to alpha(2)AR agonists occur independent of any changes in alpha(2A)AR density or intrinsic affinity for agonist in the brains of spinophilin-null mice compared with wild-type control mice, the coupling of the alpha(2A)AR to cognate G proteins is enhanced in spinophilin-null mice. Thus, brain preparations from spinophilin-null mice demonstrate enhanced guanine nucleotide regulation of UK14,304 binding and evidence of a larger fraction of alpha(2A)AR in the guanine-nucleotide-sensitive higher affinity state compared with those from wild-type mice. These findings suggest that eliminating spinophilin expression in native tissues leads to an enhanced receptor/G protein coupling efficiency that contributes to sensitization of receptor mediated responses in vivo.
Collapse
Affiliation(s)
- R Lu
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Brain region specific actions of regulator of G protein signaling 4 oppose morphine reward and dependence but promote analgesia. Biol Psychiatry 2010; 67:761-9. [PMID: 19914603 PMCID: PMC3077672 DOI: 10.1016/j.biopsych.2009.08.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 07/01/2009] [Accepted: 08/19/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND Regulator of G protein signaling 4 (RGS4) is one of the smaller members of the RGS family of proteins, which are known to control signaling amplitude and duration via interactions with G protein alpha subunits or other signaling molecules. Earlier evidence suggests dynamic regulation of RGS4 levels in neuronal networks mediating actions of opiates and other drugs of abuse, but the consequences of RGS4 actions in vivo are largely unknown. METHODS In this study, we use constitutive and nucleus accumbens-inducible RGS4 knockout mice as well as mice overexpressing RGS4 in the nucleus accumbens via viral mediated gene transfer, to examine the influence of RGS4 on behavioral responses to opiates. We also use electrophysiology and immunoprecipitation assays to further understand the mechanisms underlying the tissue-specific actions of RGS4. RESULTS Inducible knockout or selective overexpression of RGS4 in the nucleus accumbens reveals that, in this brain region, RGS4 acts as a negative regulator of morphine reward, whereas in the locus coeruleus RGS4 opposes morphine physical dependence. In contrast, we show that RGS4 does not affect morphine analgesia or tolerance but is a positive modulator of certain opiate analgesics, such as methadone and fentanyl. CONCLUSIONS These findings provide fundamentally novel information concerning the role of RGS4 in the cellular mechanisms underlying the diverse actions of opiate drugs in the nervous system.
Collapse
|
46
|
Ragusa MJ, Dancheck B, Critton DA, Nairn AC, Page R, Peti W. Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat Struct Mol Biol 2010; 17:459-64. [PMID: 20305656 PMCID: PMC2924587 DOI: 10.1038/nsmb.1786] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 02/08/2010] [Indexed: 01/14/2023]
Abstract
The serine/threonine Protein Phosphatase 1 (PP1) dephosphorylates hundreds of key biological targets. PP1 associates with ≥200 regulatory proteins to form highly specific holoenzymes. These regulatory proteins target PP1 to its point of action within the cell and prime its enzymatic specificity for particular substrates. However, how they direct PP1’s specificity is not understood. Here we show that spinophilin, a neuronal PP1 regulator, is entirely unstructured in its unbound form and binds PP1, through a folding-upon-binding mechanism, in an elongated fashion, blocking one of PP1’s three putative substrate binding sites, without altering its active site. This mode of binding is sufficient for spinophilin to restrict PP1’s activity toward a model substrate in vitro, without affecting its ability to dephosphorylate its neuronal substrate GluR1. Thus, our work provides the molecular basis for the ability of spinophilin to dictate PP1 substrate specificity.
Collapse
Affiliation(s)
- Michael J Ragusa
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, USA
| | | | | | | | | | | |
Collapse
|
47
|
Bockaert J, Perroy J, Bécamel C, Marin P, Fagni L. GPCR interacting proteins (GIPs) in the nervous system: Roles in physiology and pathologies. Annu Rev Pharmacol Toxicol 2010; 50:89-109. [PMID: 20055699 DOI: 10.1146/annurev.pharmtox.010909.105705] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) are key transmembrane recognition molecules for regulatory signals such as light, odors, taste hormones, and neurotransmitters. In addition to activating guanine nucleotide binding proteins (G proteins), GPCRs associate with a variety of GPCR-interacting proteins (GIPs). GIPs contain structural interacting domains that allow the formation of large functional complexes involved in G protein-dependent and -independent signaling. At the cellular level, other functions of GIPs include targeting of GPCRs to subcellular compartments and their trafficking to and from the plasma membrane. Recently, roles of GPCR-GIP interactions in central nervous system physiology and pathologies have been revealed. Here, we highlight the role of GIPs in some important neurological and psychiatric disorders, as well as their potential for the future development of therapeutic drugs.
Collapse
Affiliation(s)
- Joël Bockaert
- Centre National de la Recherche Scientifique, UMR, Institut de Génomique Fonctionnelle, Montpellier, France.
| | | | | | | | | |
Collapse
|
48
|
Jin J, Kittanakom S, Wong V, Reyes BAS, Van Bockstaele EJ, Stagljar I, Berrettini W, Levenson R. Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence. BMC Neurosci 2010; 11:33. [PMID: 20214800 PMCID: PMC2841195 DOI: 10.1186/1471-2202-11-33] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 03/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Opioid agonist drugs produce analgesia. However, long-term exposure to opioid agonists may lead to opioid dependence. The analgesic and addictive properties of opioid agonist drugs are mediated primarily via the mu-opioid receptor (MOR). Opioid agonists appear to alter neuronal morphology in key brain regions implicated in the development of opioid dependence. However, the precise role of the MOR in the development of these neuronal alterations remains elusive. We hypothesize that identifying and characterizing novel MOR interacting proteins (MORIPs) may help to elucidate the underlying mechanisms involved in the development of opioid dependence. RESULTS GPR177, the mammalian ortholog of Drosophila Wntless/Evi/Sprinter, was identified as a MORIP in a modified split ubiquitin yeast two-hybrid screen. GPR177 is an evolutionarily conserved protein that plays a critical role in mediating Wnt protein secretion from Wnt producing cells. The MOR/GPR177 interaction was validated in pulldown, coimmunoprecipitation, and colocalization studies using mammalian tissue culture cells. The interaction was also observed in rodent brain, where MOR and GPR177 were coexpressed in close spatial proximity within striatal neurons. At the cellular level, morphine treatment caused a shift in the distribution of GPR177 from cytosol to the cell surface, leading to enhanced MOR/GPR177 complex formation at the cell periphery and the inhibition of Wnt protein secretion. CONCLUSIONS It is known that chronic morphine treatment decreases dendritic arborization and hippocampal neurogenesis, and Wnt proteins are essential for these processes. We therefore propose that the morphine-mediated MOR/GPR177 interaction may result in decreased Wnt secretion in the CNS, resulting in atrophy of dendritic arbors and decreased neurogenesis. Our results demonstrate a previously unrecognized role for GPR177 in regulating cellular response to opioid drugs.
Collapse
Affiliation(s)
- Jay Jin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|
50
|
Effect of KEPI (Ppp1r14c) deletion on morphine analgesia and tolerance in mice of different genetic backgrounds: when a knockout is near a relevant quantitative trait locus. Neuroscience 2009; 165:882-95. [PMID: 19819304 DOI: 10.1016/j.neuroscience.2009.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/23/2009] [Accepted: 10/03/2009] [Indexed: 01/01/2023]
Abstract
We previously identified KEPI as a morphine-regulated gene using subtractive hybridization and differential display PCR. Upon phosphorylation by protein kinase C, KEPI becomes a powerful inhibitor of protein phosphatase 1. To gain insights into KEPI functions, we created KEPI knockout (KO) mice on mixed 129S6xC57BL/6 genetic backgrounds. KEPI maps onto mouse chromosome 10 close to the locus that contains the mu-opioid receptor (Oprm1) and provides a major quantitative trait locus for morphine effects. Analysis of single nucleotide polymorphisms in and near the Oprm1 locus identified a doubly-recombinant mouse with C57BL/6 markers within 1 Mb on either side of the KEPI deletion. This strategy minimized the amount of 129S6 DNA surrounding the transgene and documented the C57BL/6 origin of the Oprm1 gene in this founder and its offspring. Recombinant KEPIKO mice displayed (a) normal analgesic responses and normal locomotion after initial morphine treatments, (b) accelerated development of tolerance to analgesic effects of morphine, (c) elevated activity of protein phosphatase 1 in thalamus, (d) attenuated morphine reward as assessed by conditioned place preference. These data support roles for KEPI action in adaptive responses to repeated administration of morphine that include analgesic tolerance and drug reward.
Collapse
|