1
|
van der Molen T, Spaeth A, Chini M, Hernandez S, Kaurala GA, Schweiger HE, Duncan C, McKenna S, Geng J, Lim M, Bartram J, Dendukuri A, Zhang Z, Gonzalez-Ferrer J, Bhaskaran-Nair K, Blauvelt LJ, Harder CR, Petzold LR, Alam El Din DM, Laird J, Schenke M, Smirnova L, Colquitt BM, Mostajo-Radji MA, Hansma PK, Teodorescu M, Hierlemann A, Hengen KB, Hanganu-Opatz IL, Kosik KS, Sharf T. Protosequences in brain organoids model intrinsic brain states Authors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.29.573646. [PMID: 38234832 PMCID: PMC10793448 DOI: 10.1101/2023.12.29.573646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2024]
Abstract
Neuronal firing sequences are thought to be the basic building blocks of neural coding and information broadcasting within the brain. However, when sequences emerge during neurodevelopment remains unknown. We demonstrate that structured firing sequences are present in spontaneous activity of human and murine brain organoids and ex vivo neonatal brain slices from the murine somatosensory cortex. We observed a balance between temporally rigid and flexible firing patterns that are emergent phenomena in human and murine brain organoids and early postnatal murine somatosensory cortex, but not in primary dissociated cortical cultures. Our findings suggest that temporal sequences do not arise in an experience-dependent manner, but are rather constrained by an innate preconfigured architecture established during neurogenesis. These findings highlight the potential for brain organoids to further explore how exogenous inputs can be used to refine neuronal circuits and enable new studies into the genetic mechanisms that govern assembly of functional circuitry during early human brain development.
Collapse
Affiliation(s)
- Tjitse van der Molen
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alex Spaeth
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sebastian Hernandez
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gregory A. Kaurala
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hunter E. Schweiger
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Cole Duncan
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sawyer McKenna
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jinghui Geng
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Max Lim
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julian Bartram
- Department of Biosystems Science and Engineering, ETH Zürich, Klingelbergstrasse 48, 4056 Basel, Switzerland
| | - Aditya Dendukuri
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zongren Zhang
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106
| | - Jesus Gonzalez-Ferrer
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kiran Bhaskaran-Nair
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lon J. Blauvelt
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Cole R.K. Harder
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Linda R. Petzold
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Dowlette-Mary Alam El Din
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jason Laird
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD 21205, USA
| | - Maren Schenke
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bradley M. Colquitt
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Paul K. Hansma
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106
| | - Mircea Teodorescu
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Klingelbergstrasse 48, 4056 Basel, Switzerland
| | - Keith B. Hengen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ileana L. Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tal Sharf
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
Murakami T. Spatial dynamics of spontaneous activity in the developing and adult cortices. Neurosci Res 2024:S0168-0102(24)00152-4. [PMID: 39653148 DOI: 10.1016/j.neures.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Even in the absence of external stimuli, the brain remains remarkably active, with neurons continuously firing and communicating with each other. It is not merely random firing of individual neurons but rather orchestrated patterns of activity that propagate throughout the intricate network. Over two decades, advancements in neuroscience observation tools for hemodynamics, membrane potential, and neural calcium signals, have allowed researchers to analyze the dynamics of spontaneous activity across different spatial scales, from individual neurons to macroscale brain networks. One of the remarkable findings from these studies is that the spatial patterns of spontaneous activity in the developing brain are vastly different from those in the mature adult brain. Spatial patterns of spontaneous activity during development are essential for connection refinement between brain regions, whereas the functional role in the adult brain is still controversial. In this paper, I review the differences in spatial dynamics of spontaneous activity between developing and adult cortices. Then, I delve into the cellular mechanisms underlying spontaneous activity, especially its generation and propagation manner, to contribute to a deeper understanding of brain function and its development.
Collapse
Affiliation(s)
- Tomonari Murakami
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Matsui T, Hashimoto T, Murakami T, Uemura M, Kikuta K, Kato T, Ohki K. Orthogonalization of spontaneous and stimulus-driven activity by hierarchical neocortical areal network in primates. Nat Commun 2024; 15:10055. [PMID: 39632809 PMCID: PMC11618767 DOI: 10.1038/s41467-024-54322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2022] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
How biological neural networks reliably process information in the presence of spontaneous activity remains controversial. In mouse primary visual cortex (V1), stimulus-evoked and spontaneous activity show orthogonal (dissimilar) patterns, which is advantageous for separating sensory signals from internal noise. However, studies in carnivore and primate V1, which have functional columns, have reported high similarity between stimulus-evoked and spontaneous activity. Thus, the mechanism of signal-noise separation in the columnar visual cortex may be different from that in rodents. To address this issue, we compared spontaneous and stimulus-evoked activity in marmoset V1 and higher visual areas. In marmoset V1, spontaneous and stimulus-evoked activity showed similar patterns as expected. However, in marmoset higher visual areas, spontaneous and stimulus-evoked activity were progressively orthogonalized along the cortical hierarchy, eventually reaching levels comparable to those in mouse V1. These results suggest that orthogonalization of spontaneous and stimulus-evoked activity is a general principle of cortical computation.
Collapse
Affiliation(s)
- Teppei Matsui
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Graduate School of Brain, Doshisha University, Kyoto, Japan.
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- JST-PRESTO, Japan Science and Technology Agency, Tokyo, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| | - Takayuki Hashimoto
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| | - Tomonari Murakami
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Masato Uemura
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
- Department of Biology, Kansai Medical University, Osaka, Japan
| | - Kohei Kikuta
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Toshiki Kato
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Kenichi Ohki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Muller L, Churchland PS, Sejnowski TJ. Transformers and cortical waves: encoders for pulling in context across time. Trends Neurosci 2024; 47:788-802. [PMID: 39341729 DOI: 10.1016/j.tins.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2024] [Revised: 06/07/2024] [Accepted: 08/09/2024] [Indexed: 10/01/2024]
Abstract
The capabilities of transformer networks such as ChatGPT and other large language models (LLMs) have captured the world's attention. The crucial computational mechanism underlying their performance relies on transforming a complete input sequence - for example, all the words in a sentence - into a long 'encoding vector' that allows transformers to learn long-range temporal dependencies in naturalistic sequences. Specifically, 'self-attention' applied to this encoding vector enhances temporal context in transformers by computing associations between pairs of words in the input sequence. We suggest that waves of neural activity traveling across single cortical areas, or multiple regions on the whole-brain scale, could implement a similar encoding principle. By encapsulating recent input history into a single spatial pattern at each moment in time, cortical waves may enable a temporal context to be extracted from sequences of sensory inputs, the same computational principle as that used in transformers.
Collapse
Affiliation(s)
- Lyle Muller
- Department of Mathematics, Western University, London, Ontario, Canada; Fields Laboratory for Network Science, Fields Institute, Toronto, Ontario, Canada.
| | - Patricia S Churchland
- Department of Philosophy, University of California at San Diego, San Diego, CA, USA.
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, San Diego, CA, USA; Department of Neurobiology, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
5
|
Davis ZW, Busch A, Steward C, Muller L, Reynolds J. Horizontal cortical connections shape intrinsic traveling waves into feature-selective motifs that regulate perceptual sensitivity. Cell Rep 2024; 43:114707. [PMID: 39243374 PMCID: PMC11485754 DOI: 10.1016/j.celrep.2024.114707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2024] [Revised: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024] Open
Abstract
Intrinsic cortical activity forms traveling waves that modulate sensory-evoked responses and perceptual sensitivity. These intrinsic traveling waves (iTWs) may arise from the coordination of synaptic activity through long-range feature-dependent horizontal connectivity within cortical areas. In a spiking network model that incorporates feature-selective patchy connections, we observe iTW motifs that result from shifts in excitatory/inhibitory balance as action potentials traverse these patchy connections. To test whether feature-selective motifs occur in vivo, we examined data recorded in the middle temporal visual area (Area MT) of marmosets performing a visual detection task. We find that some iTWs form motifs that are feature selective, exhibiting direction-selective modulations in spiking activity. Further, motifs modulate the gain of target-evoked responses and perceptual sensitivity if the target matches the preference of the motif. These results suggest that iTWs are shaped by the patchy horizontal fiber projections in the cortex and can regulate neural and perceptual sensitivity in a feature-selective manner.
Collapse
Affiliation(s)
- Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; John Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Alexandra Busch
- Department of Applied Mathematics, Western University, London, ON N6A 3K7, Canada; Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - Christopher Steward
- Department of Applied Mathematics, Western University, London, ON N6A 3K7, Canada; Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - Lyle Muller
- Department of Applied Mathematics, Western University, London, ON N6A 3K7, Canada; Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - John Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Shaw S, Kilpatrick ZP. Representing stimulus motion with waves in adaptive neural fields. J Comput Neurosci 2024; 52:145-164. [PMID: 38607466 PMCID: PMC11802407 DOI: 10.1007/s10827-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The spatiotemporal structure of waves can indicate the information they encode and the physiological processes that sustain them. Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive neural fields as a model of visual motion processing. Neural field equations model the activity of cortical tissue as a continuum excitable medium, and adaptive processes provide negative feedback, generating localized activity patterns. Synaptic connectivity in our model is described by an integral kernel that weakens dynamically due to activity-dependent synaptic depression, leading to marginally stable traveling fronts (with attenuated backs) or pulses of a fixed speed. Our analysis quantifies how weak stimuli shift the relative position of these waves over time, characterized by a wave response function we obtain perturbatively. Persistent and continuously visible stimuli model moving visual objects. Intermittent flashes that hop across visual space can produce the experience of smooth apparent visual motion. Entrainment of waves to both kinds of moving stimuli are well characterized by our theory and numerical simulations, providing a mechanistic description of the perception of visual motion.
Collapse
Affiliation(s)
- Sage Shaw
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA
| | - Zachary P Kilpatrick
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA.
- Institute for Cognitive Sciences, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
7
|
Koller DP, Schirner M, Ritter P. Human connectome topology directs cortical traveling waves and shapes frequency gradients. Nat Commun 2024; 15:3570. [PMID: 38670965 PMCID: PMC11053146 DOI: 10.1038/s41467-024-47860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Traveling waves and neural oscillation frequency gradients are pervasive in the human cortex. While the direction of traveling waves has been linked to brain function and dysfunction, the factors that determine this direction remain elusive. We hypothesized that structural connectivity instrength gradients - defined as the gradually varying sum of incoming connection strengths across the cortex - could shape both traveling wave direction and frequency gradients. We confirm the presence of instrength gradients in the human connectome across diverse cohorts and parcellations. Using a cortical network model, we demonstrate how these instrength gradients direct traveling waves and shape frequency gradients. Our model fits resting-state MEG functional connectivity best in a regime where instrength-directed traveling waves and frequency gradients emerge. We further show how structural subnetworks of the human connectome generate opposing wave directions and frequency gradients observed in the alpha and beta bands. Our findings suggest that structural connectivity instrength gradients affect both traveling wave direction and frequency gradients.
Collapse
Grants
- P.R. acknowledges funding from the following sources: Digital Europe Grant TEF-Health # 101100700, H2020 Research and Innovation Action Grant Human Brain Project SGA2 785907, H2020 Research and Innovation Action Grant Human Brain Project SGA3 945539, H2020 Research and Innovation Action Grant EOSC VirtualBrainCloud 826421, H2020 Research and Innovation Action Grant AISN 101057655, H2020 Research Infrastructures Grant EBRAINS-PREP 101079717, H2020 European Innovation Council PHRASE 101058240, H2020 Research Infrastructures Grant EBRAIN-Health 101058516, H2020 European Research Council Grant ERC BrainModes 683049, JPND ERA PerMed PatternCog 2522FSB904, Berlin Institute of Health & Foundation Charité, Johanna Quandt Excellence Initiative, German Research Foundation SFB 1436 (project ID 425899996), German Research Foundation SFB 1315 (project ID 327654276), German Research Foundation SFB 936 (project ID 178316478), German Research Foundation SFB-TRR 295 (project ID 424778381) German Research Foundation SPP Computational Connectomics RI 2073/6-1, RI 2073/10-2, RI 2073/9-1.
Collapse
Affiliation(s)
- Dominik P Koller
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Michael Schirner
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Einstein Center Digital Future, Wilhelmstraße 67, 10117, Berlin, Germany
| | - Petra Ritter
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany.
- Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Einstein Center Digital Future, Wilhelmstraße 67, 10117, Berlin, Germany.
| |
Collapse
|
8
|
Abstract
Brain oscillations are involved in many cognitive processes, and several studies have investigated their role in cognition. In particular, the phase of certain oscillations has been related to temporal binding and integration processes, with some authors arguing that perception could be an inherently rhythmic process. However, previous research on oscillations mostly overlooked their spatial component: how oscillations propagate through the brain as traveling waves, with systematic phase delays between brain regions. Here, we argue that interpreting oscillations as traveling waves is a useful paradigm shift to understand their role in temporal binding and address controversial results. After a brief definition of traveling waves, we propose an original view on temporal integration that considers this new perspective. We first focus on cortical dynamics, then speculate about the role of thalamic nuclei in modulating the waves, and on the possible consequences for rhythmic temporal binding. In conclusion, we highlight the importance of considering oscillations as traveling waves when investigating their role in cognitive functions.
Collapse
Affiliation(s)
- Andrea Alamia
- CNRS Centre de Recherche Cerveau et Cognition (CERCO, UMR 5549), Toulouse, France
| | - Rufin VanRullen
- CNRS Centre de Recherche Cerveau et Cognition (CERCO, UMR 5549), Toulouse, France
| |
Collapse
|
9
|
Kim B, Ding W, Yang L, Chen Q, Mao J, Feng G, Choi JH, Shen S. Simultaneous two-photon imaging and wireless EEG recording in mice. Heliyon 2024; 10:e25910. [PMID: 38449613 PMCID: PMC10915345 DOI: 10.1016/j.heliyon.2024.e25910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background In vivo two-photon imaging is a reliable method with high spatial resolution that allows observation of individual neuron and dendritic activity longitudinally. Neurons in local brain regions can be influenced by global brain states such as levels of arousal and attention that change over relatively short time scales, such as minutes. As such, the scientific rigor of investigating regional neuronal activities could be enhanced by considering the global brain state. New method In order to assess the global brain state during in vivo two-photon imaging, CBRAIN (collective brain research platform aided by illuminating neural activity), a wireless EEG collecting and labeling device, was controlled by the same computer of two-photon microscope. In an experiment to explore neuronal responses to isoflurane anesthesia through two-photon imaging, we investigated whether the response of individual cells correlated with concurrent EEG changes induced by anesthesia. Results In two-photon imaging, calcium activities of the excitatory neurons in the primary somatosensory cortex disappeared in about 30s after to the initiation of isoflurane anesthesia. The simultaneously recorded EEG showed various transitional activity for about 7 min from the initiation of anesthesia and continued with burst and suppression alternating pattern thereafter. As such, there was a dissociation between excitatory neuron activity of the primary somatosensory cortex and the global brain activity under anesthesia. Comparison with existing methods Existing methods to combine two-photon and EEG recording used wired EEG recording. In this study, wireless EEG was used in conjunction with two-photon imaging, facilitated by CBRAIN. More importantly, built-in algorithms of the CBRAIN can automatically detect brain state such as sleep. The codes used for EEG classification are easy to use, with no prior experience required. Conclusion Simultaneous recording of wireless EEG and two-photon imaging provides a practical way to capture individual neuronal activities with respect to global brain state in an experimental set-up.
Collapse
Affiliation(s)
- Bowon Kim
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Weihua Ding
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Liuyue Yang
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA, USA
- Current address: Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianren Mao
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Shiqian Shen
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Orsher Y, Rom A, Perel R, Lahini Y, Blinder P, Shein-Idelson M. Sequentially activated discrete modules appear as traveling waves in neuronal measurements with limited spatiotemporal sampling. eLife 2024; 12:RP92254. [PMID: 38451063 PMCID: PMC10942589 DOI: 10.7554/elife.92254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/08/2024] Open
Abstract
Numerous studies have identified traveling waves in the cortex and suggested they play important roles in brain processing. These waves are most often measured using macroscopic methods that are unable to assess the local spiking activity underlying wave dynamics. Here, we investigated the possibility that waves may not be traveling at the single neuron scale. We first show that sequentially activating two discrete brain areas can appear as traveling waves in EEG simulations. We next reproduce these results using an analytical model of two sequentially activated regions. Using this model, we were able to generate wave-like activity with variable directions, velocities, and spatial patterns, and to map the discriminability limits between traveling waves and modular sequential activations. Finally, we investigated the link between field potentials and single neuron excitability using large-scale measurements from turtle cortex ex vivo. We found that while field potentials exhibit wave-like dynamics, the underlying spiking activity was better described by consecutively activated spatially adjacent groups of neurons. Taken together, this study suggests caution when interpreting phase delay measurements as continuously propagating wavefronts in two different spatial scales. A careful distinction between modular and wave excitability profiles across scales will be critical for understanding the nature of cortical computations.
Collapse
Affiliation(s)
- Yuval Orsher
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
- School of Physics & Astronomy, Faculty of Exact Sciences, Tel Aviv UniversityTel AvivIsrael
| | - Ariel Rom
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv University, IsraelTel AvivIsrael
| | - Rotem Perel
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
| | - Yoav Lahini
- School of Physics & Astronomy, Faculty of Exact Sciences, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv University, IsraelTel AvivIsrael
| | - Pablo Blinder
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv University, IsraelTel AvivIsrael
| | - Mark Shein-Idelson
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv University, IsraelTel AvivIsrael
| |
Collapse
|
11
|
Noda T, Takahashi H. Stochastic resonance in sparse neuronal network: functional role of ongoing activity to detect weak sensory input in awake auditory cortex of rat. Cereb Cortex 2024; 34:bhad428. [PMID: 37955660 PMCID: PMC10793590 DOI: 10.1093/cercor/bhad428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2022] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
The awake cortex is characterized by a higher level of ongoing spontaneous activity, but it has a better detectability of weak sensory inputs than the anesthetized cortex. However, the computational mechanism underlying this paradoxical nature of awake neuronal activity remains to be elucidated. Here, we propose a hypothetical stochastic resonance, which improves the signal-to-noise ratio (SNR) of weak sensory inputs through nonlinear relations between ongoing spontaneous activities and sensory-evoked activities. Prestimulus and tone-evoked activities were investigated via in vivo extracellular recording with a dense microelectrode array covering the entire auditory cortex in rats in both awake and anesthetized states. We found that tone-evoked activities increased supralinearly with the prestimulus activity level in the awake state and that the SNR of weak stimulus representation was optimized at an intermediate level of prestimulus ongoing activity. Furthermore, the temporally intermittent firing pattern, but not the trial-by-trial reliability or the fluctuation of local field potential, was identified as a relevant factor for SNR improvement. Since ongoing activity differs among neurons, hypothetical stochastic resonance or "sparse network stochastic resonance" might offer beneficial SNR improvement at the single-neuron level, which is compatible with the sparse representation in the sensory cortex.
Collapse
Affiliation(s)
- Takahiro Noda
- Department of Mechano-informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hirokazu Takahashi
- Department of Mechano-informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
12
|
Davis ZW, Busch A, Stewerd C, Muller L, Reynolds J. Horizontal cortical connections shape intrinsic traveling waves into feature-selective motifs that regulate perceptual sensitivity. RESEARCH SQUARE 2024:rs.3.rs-3830199. [PMID: 38260448 PMCID: PMC10802692 DOI: 10.21203/rs.3.rs-3830199/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2024]
Abstract
Intrinsic, ongoing fluctuations of cortical activity form traveling waves that modulate the gain of sensory-evoked responses and perceptual sensitivity. Several lines of evidence suggest that intrinsic traveling waves (iTWs) may arise, in part, from the coordination of synaptic activity through the recurrent horizontal connectivity within cortical areas, which include long range patchy connections that link neurons with shared feature preferences. In a spiking network model with anatomical topology that incorporates feature-selective patchy connections, which we call the Balanced Patchy Network (BPN), we observe repeated iTWs, which we refer to as motifs. In the model, motifs stem from fluctuations in the excitability of like-tuned neurons that result from shifts in E/I balance as action potentials traverse these patchy connections. To test if feature-selective motifs occur in vivo, we examined data previously recorded using multielectrode arrays in Area MT of marmosets trained to perform a threshold visual detection task. Using a newly developed method for comparing the similarity of wave patterns we found that some iTWs can be grouped into motifs. As predicted by the BPN, many of these motifs are feature selective, exhibiting direction-selective modulations in ongoing spiking activity. Further, motifs modulate the gain of the response evoked by a target and perceptual sensitivity to the target if the target matches the preference of the motif. These results provide evidence that iTWs are shaped by the patterns of horizontal fiber projections in the cortex and that patchy connections enable iTWs to regulate neural and perceptual sensitivity in a feature selective manner.
Collapse
Affiliation(s)
- Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA, USA. 92037
- Department of Ophthalmology and Visual Science, University of Utah, SLC, UT, USA 84112
| | - Alexandria Busch
- Department of Applied Mathematics, Western University, London, ON, Canada. N6A 3K7
- Brain and Mind Institute, Western University, London, ON, Canada. N6A 3K7
| | - Christopher Stewerd
- Department of Applied Mathematics, Western University, London, ON, Canada. N6A 3K7
- Brain and Mind Institute, Western University, London, ON, Canada. N6A 3K7
| | - Lyle Muller
- Department of Applied Mathematics, Western University, London, ON, Canada. N6A 3K7
- Brain and Mind Institute, Western University, London, ON, Canada. N6A 3K7
| | - John Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA, USA. 92037
| |
Collapse
|
13
|
Horváth C, Ulbert I, Fiáth R. Propagating population activity patterns during spontaneous slow waves in the thalamus of rodents. Neuroimage 2024; 285:120484. [PMID: 38061688 DOI: 10.1016/j.neuroimage.2023.120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Slow waves (SWs) represent the most prominent electrophysiological events in the thalamocortical system under anesthesia and during deep sleep. Recent studies have revealed that SWs have complex spatiotemporal dynamics and propagate across neocortical regions. However, it is still unclear whether neuronal activity in the thalamus exhibits similar propagation properties during SWs. Here, we report propagating population activity in the thalamus of ketamine/xylazine-anesthetized rats and mice visualized by high-density silicon probe recordings. In both rodent species, propagation of spontaneous thalamic activity during up-states was most frequently observed in dorsal thalamic nuclei such as the higher order posterior (Po), lateral posterior (LP) or laterodorsal (LD) nuclei. The preferred direction of thalamic activity spreading was along the dorsoventral axis, with over half of the up-states exhibiting a gradual propagation in the ventral-to-dorsal direction. Furthermore, simultaneous neocortical and thalamic recordings collected under anesthesia demonstrated that there is a weak but noticeable interrelation between propagation patterns observed during cortical up-states and those displayed by thalamic population activity. In addition, using chronically implanted silicon probes, we detected propagating activity patterns in the thalamus of naturally sleeping rats during slow-wave sleep. However, in comparison to propagating up-states observed under anesthesia, these propagating patterns were characterized by a reduced rate of occurrence and a faster propagation speed. Our findings suggest that the propagation of spontaneous population activity is an intrinsic property of the thalamocortical network during synchronized brain states such as deep sleep or anesthesia. Additionally, our data implies that the neocortex may have partial control over the formation of propagation patterns within the dorsal thalamus under anesthesia.
Collapse
Affiliation(s)
- Csaba Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
14
|
Fakche C, Dugué L. Perceptual Cycles Travel Across Retinotopic Space. J Cogn Neurosci 2024; 36:200-216. [PMID: 37902594 DOI: 10.1162/jocn_a_02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/31/2023]
Abstract
Visual perception waxes and wanes periodically over time at low frequencies (theta: 4-7 Hz; alpha: 8-13 Hz), creating "perceptual cycles." These perceptual cycles can be induced when stimulating the brain with a flickering visual stimulus at the theta or alpha frequency. Here, we took advantage of the well-known organization of the visual system into retinotopic maps (topographic correspondence between visual and cortical spaces) to assess the spatial organization of induced perceptual cycles. Specifically, we tested the hypothesis that they can propagate across the retinotopic space. A disk oscillating in luminance (inducer) at 4, 6, 8, or 10 Hz was presented in the periphery of the visual field to induce perceptual cycles at specific frequencies. EEG recordings verified that the brain responded at the corresponding inducer frequencies and their first harmonics. Perceptual cycles were assessed with a concurrent detection task-target stimuli were displayed at threshold contrast (50% detection) at random times during the inducer. Behavioral results confirmed that perceptual performance was modulated periodically by the inducer at each frequency. We additionally manipulated the distance between the target and the inducer (three possible positions) and showed that the optimal phase, that is, moment of highest target detection, shifted across target distance to the inducer, specifically when its flicker frequency was in the alpha range (8 and 10 Hz). These results demonstrate that induced alpha perceptual cycles travel across the retinotopic space in humans at a propagation speed of 0.3-0.5 m/sec, consistent with the speed of unmyelinated horizontal connections in the visual cortex.
Collapse
Affiliation(s)
- Camille Fakche
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Laura Dugué
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- Institut Universitaire de France
| |
Collapse
|
15
|
Shaw S, Kilpatrick ZP. Representing stimulus motion with waves in adaptive neural fields. ARXIV 2023:arXiv:2312.06100v1. [PMID: 38168459 PMCID: PMC10760209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2024]
Abstract
Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The spatiotemporal structure of waves can indicate the information they encode and the physiological processes that sustain them. Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive neural fields as a model of visual motion processing. Neural field equations model the activity of cortical tissue as a continuum excitable medium, and adaptive processes provide negative feedback, generating localized activity patterns. Synaptic connectivity in our model is described by an integral kernel that weakens dynamically due to activity-dependent synaptic depression, leading to marginally stable traveling fronts (with attenuated backs) or pulses of a fixed speed. Our analysis quantifies how weak stimuli shift the relative position of these waves over time, characterized by a wave response function we obtain perturbatively. Persistent and continuously visible stimuli model moving visual objects. Intermittent flashes that hop across visual space can produce the experience of smooth apparent visual motion. Entrainment of waves to both kinds of moving stimuli are well characterized by our theory and numerical simulations, providing a mechanistic description of the perception of visual motion.
Collapse
Affiliation(s)
- Sage Shaw
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA
| | - Zachary P Kilpatrick
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA
- Institute for Cognitive Sciences, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
16
|
Jeong H, Namboodiri VMK, Jung MW, Andermann ML. Sensory cortical ensembles exhibit differential coupling to ripples in distinct hippocampal subregions. Curr Biol 2023; 33:5185-5198.e4. [PMID: 37995696 PMCID: PMC10842729 DOI: 10.1016/j.cub.2023.10.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2023] [Revised: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Cortical neurons activated during recent experiences often reactivate with dorsal hippocampal CA1 ripples during subsequent rest. Less is known about cortical interactions with intermediate hippocampal CA1, whose connectivity, functions, and ripple events differ from dorsal CA1. We identified three clusters of putative excitatory neurons in mouse visual cortex that are preferentially excited together with either dorsal or intermediate CA1 ripples or suppressed before both ripples. Neurons in each cluster were evenly distributed across primary and higher visual cortices and co-active even in the absence of ripples. These ensembles exhibited similar visual responses but different coupling to thalamus and pupil-indexed arousal. We observed a consistent activity sequence preceding and predicting ripples: (1) suppression of ripple-suppressed cortical neurons, (2) thalamic silence, and (3) activation of intermediate CA1-ripple-activated cortical neurons. We propose that coordinated dynamics of these ensembles relay visual experiences to distinct hippocampal subregions for incorporation into different cognitive maps.
Collapse
Affiliation(s)
- Huijeong Jeong
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA.
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| | - Mark L Andermann
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Niraula S, Hauser WL, Rouse AG, Subramanian J. Repeated passive visual experience modulates spontaneous and non-familiar stimuli-evoked neural activity. Sci Rep 2023; 13:20907. [PMID: 38017135 PMCID: PMC10684504 DOI: 10.1038/s41598-023-47957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
Familiarity creates subjective memory of repeated innocuous experiences, reduces neural and behavioral responsiveness to those experiences, and enhances novelty detection. The neural correlates of the internal model of familiarity and the cellular mechanisms of enhanced novelty detection following multi-day repeated passive experience remain elusive. Using the mouse visual cortex as a model system, we test how the repeated passive experience of a 45° orientation-grating stimulus for multiple days alters spontaneous and non-familiar stimuli evoked neural activity in neurons tuned to familiar or non-familiar stimuli. We found that familiarity elicits stimulus competition such that stimulus selectivity reduces in neurons tuned to the familiar 45° stimulus; it increases in those tuned to the 90° stimulus but does not affect neurons tuned to the orthogonal 135° stimulus. Furthermore, neurons tuned to orientations 45° apart from the familiar stimulus dominate local functional connectivity. Interestingly, responsiveness to natural images, which consists of familiar and non-familiar orientations, increases subtly in neurons that exhibit stimulus competition. We also show the similarity between familiar grating stimulus-evoked and spontaneous activity increases, indicative of an internal model of altered experience.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - William L Hauser
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - Adam G Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, 66103, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
18
|
Niraula S, Hauser WL, Rouse AG, Subramanian J. Repeated passive visual experience modulates spontaneous and non-familiar stimulievoked neural activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529278. [PMID: 36865208 PMCID: PMC9980096 DOI: 10.1101/2023.02.21.529278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/24/2023]
Abstract
Familiarity creates subjective memory of repeated innocuous experiences, reduces neural and behavioral responsiveness to those experiences, and enhances novelty detection. The neural correlates of the internal model of familiarity and the cellular mechanisms of enhanced novelty detection following multi-day repeated passive experience remain elusive. Using the mouse visual cortex as a model system, we test how the repeated passive experience of a 45° orientation-grating stimulus for multiple days alters spontaneous and non-familiar stimuli evoked neural activity in neurons tuned to familiar or non-familiar stimuli. We found that familiarity elicits stimulus competition such that stimulus selectivity reduces in neurons tuned to the familiar 45° stimulus; it increases in those tuned to the 90° stimulus but does not affect neurons tuned to the orthogonal 135° stimulus. Furthermore, neurons tuned to orientations 45° apart from the familiar stimulus dominate local functional connectivity. Interestingly, responsiveness to natural images, which consists of familiar and non-familiar orientations, increases subtly in neurons that exhibit stimulus competition. We also show the similarity between familiar grating stimulus-evoked and spontaneous activity increases, indicative of an internal model of altered experience.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - William L. Hauser
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam G. Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
19
|
Boucher-Routhier M, Thivierge JP. A deep generative adversarial network capturing complex spiral waves in disinhibited circuits of the cerebral cortex. BMC Neurosci 2023; 24:22. [PMID: 36964493 PMCID: PMC10039524 DOI: 10.1186/s12868-023-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2022] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND In the cerebral cortex, disinhibited activity is characterized by propagating waves that spread across neural tissue. In this pathological state, a widely reported form of activity are spiral waves that travel in a circular pattern around a fixed spatial locus termed the center of mass. Spiral waves exhibit stereotypical activity and involve broad patterns of co-fluctuations, suggesting that they may be of lower complexity than healthy activity. RESULTS To evaluate this hypothesis, we performed dense multi-electrode recordings of cortical networks where disinhibition was induced by perfusing a pro-epileptiform solution containing 4-Aminopyridine as well as increased potassium and decreased magnesium. Spiral waves were identified based on a spatially delimited center of mass and a broad distribution of instantaneous phases across electrodes. Individual waves were decomposed into "snapshots" that captured instantaneous neural activation across the entire network. The complexity of these snapshots was examined using a measure termed the participation ratio. Contrary to our expectations, an eigenspectrum analysis of these snapshots revealed a broad distribution of eigenvalues and an increase in complexity compared to baseline networks. A deep generative adversarial network was trained to generate novel exemplars of snapshots that closely captured cortical spiral waves. These synthetic waves replicated key features of experimental data including a tight center of mass, a broad eigenvalue distribution, spatially-dependent correlations, and a high complexity. By adjusting the input to the model, new samples were generated that deviated in systematic ways from the experimental data, thus allowing the exploration of a broad range of states from healthy to pathologically disinhibited neural networks. CONCLUSIONS Together, results show that the complexity of population activity serves as a marker along a continuum from healthy to disinhibited brain states. The proposed generative adversarial network opens avenues for replicating the dynamics of cortical seizures and accelerating the design of optimal neurostimulation aimed at suppressing pathological brain activity.
Collapse
Affiliation(s)
- Megan Boucher-Routhier
- School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON, K1N 6N5, Canada
| | - Jean-Philippe Thivierge
- School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON, K1N 6N5, Canada.
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
20
|
Jeong H, Namboodiri VMK, Jung MW, Andermann ML. Sensory cortical ensembles exhibit differential coupling to ripples in distinct hippocampal subregions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533028. [PMID: 36993665 PMCID: PMC10055189 DOI: 10.1101/2023.03.17.533028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 06/19/2023]
Abstract
Cortical neurons activated during recent experiences often reactivate with dorsal hippocampal CA1 sharp-wave ripples (SWRs) during subsequent rest. Less is known about cortical interactions with intermediate hippocampal CA1, whose connectivity, functions, and SWRs differ from those of dorsal CA1. We identified three clusters of visual cortical excitatory neurons that are excited together with either dorsal or intermediate CA1 SWRs, or suppressed before both SWRs. Neurons in each cluster were distributed across primary and higher visual cortices and co-active even in the absence of SWRs. These ensembles exhibited similar visual responses but different coupling to thalamus and pupil-indexed arousal. We observed a consistent activity sequence: (i) suppression of SWR-suppressed cortical neurons, (ii) thalamic silence, and (iii) activation of the cortical ensemble preceding and predicting intermediate CA1 SWRs. We propose that the coordinated dynamics of these ensembles relay visual experiences to distinct hippocampal subregions for incorporation into different cognitive maps.
Collapse
Affiliation(s)
- Huijeong Jeong
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
- Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco 94158, CA, USA
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Mark L. Andermann
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
- Lead contact
| |
Collapse
|
21
|
Bermudez-Contreras E, Schjetnan AGP, Luczak A, Mohajerani MH. Sensory experience selectively reorganizes the late component of evoked responses. Cereb Cortex 2023; 33:2626-2640. [PMID: 35704850 PMCID: PMC10016043 DOI: 10.1093/cercor/bhac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2021] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/13/2022] Open
Abstract
In response to sensory stimulation, the cortex exhibits an early transient response followed by late and slower activation. Recent studies suggest that the early component represents features of the stimulus while the late component is associated with stimulus perception. Although very informative, these studies only focus on the amplitude of the evoked responses to study its relationship with sensory perception. In this work, we expand upon the study of how patterns of evoked and spontaneous activity are modified by experience at the mesoscale level using voltage and extracellular glutamate transient recordings over widespread regions of mouse dorsal neocortex. We find that repeated tactile or auditory stimulation selectively modifies the spatiotemporal patterns of cortical activity, mainly of the late evoked response in anesthetized mice injected with amphetamine and also in awake mice. This modification lasted up to 60 min and results in an increase in the amplitude of the late response after repeated stimulation and in an increase in the similarity between the spatiotemporal patterns of the late early evoked response. This similarity increase occurs only for the evoked responses of the sensory modality that received the repeated stimulation. Thus, this selective long-lasting spatiotemporal modification of the cortical activity patterns might provide evidence that evoked responses are a cortex-wide phenomenon. This work opens new questions about how perception-related cortical activity changes with sensory experience across the cortex.
Collapse
Affiliation(s)
- Edgar Bermudez-Contreras
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | | | - Artur Luczak
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Majid H Mohajerani
- Corresponding author: Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
22
|
Alilović J, Lampers E, Slagter HA, van Gaal S. Illusory object recognition is either perceptual or cognitive in origin depending on decision confidence. PLoS Biol 2023; 21:e3002009. [PMID: 36862734 PMCID: PMC10013920 DOI: 10.1371/journal.pbio.3002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2022] [Revised: 03/14/2023] [Accepted: 01/20/2023] [Indexed: 03/03/2023] Open
Abstract
We occasionally misinterpret ambiguous sensory input or report a stimulus when none is presented. It is unknown whether such errors have a sensory origin and reflect true perceptual illusions, or whether they have a more cognitive origin (e.g., are due to guessing), or both. When participants performed an error-prone and challenging face/house discrimination task, multivariate electroencephalography (EEG) analyses revealed that during decision errors (e.g., mistaking a face for a house), sensory stages of visual information processing initially represent the presented stimulus category. Crucially however, when participants were confident in their erroneous decision, so when the illusion was strongest, this neural representation flipped later in time and reflected the incorrectly reported percept. This flip in neural pattern was absent for decisions that were made with low confidence. This work demonstrates that decision confidence arbitrates between perceptual decision errors, which reflect true illusions of perception, and cognitive decision errors, which do not.
Collapse
Affiliation(s)
- Josipa Alilović
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Eline Lampers
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Heleen A. Slagter
- Department of Applied and Experimental Psychology, Vrije Universiteit Amsterdam, the Netherlands
- Institute for Brain and Behavior, Vrije Universiteit Amsterdam, the Netherlands
| | - Simon van Gaal
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
23
|
Li XW, Ren Y, Shi DQ, Qi L, Xu F, Xiao Y, Lau PM, Bi GQ. Biphasic Cholinergic Modulation of Reverberatory Activity in Neuronal Networks. Neurosci Bull 2023; 39:731-744. [PMID: 36670292 PMCID: PMC10170002 DOI: 10.1007/s12264-022-01012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2022] [Accepted: 09/04/2022] [Indexed: 01/22/2023] Open
Abstract
Acetylcholine (ACh) is an important neuromodulator in various cognitive functions. However, it is unclear how ACh influences neural circuit dynamics by altering cellular properties. Here, we investigated how ACh influences reverberatory activity in cultured neuronal networks. We found that ACh suppressed the occurrence of evoked reverberation at low to moderate doses, but to a much lesser extent at high doses. Moreover, high doses of ACh caused a longer duration of evoked reverberation, and a higher occurrence of spontaneous activity. With whole-cell recording from single neurons, we found that ACh inhibited excitatory postsynaptic currents (EPSCs) while elevating neuronal firing in a dose-dependent manner. Furthermore, all ACh-induced cellular and network changes were blocked by muscarinic, but not nicotinic receptor antagonists. With computational modeling, we found that simulated changes in EPSCs and the excitability of single cells mimicking the effects of ACh indeed modulated the evoked network reverberation similar to experimental observations. Thus, ACh modulates network dynamics in a biphasic fashion, probably by inhibiting excitatory synaptic transmission and facilitating neuronal excitability through muscarinic signaling pathways.
Collapse
Affiliation(s)
- Xiao-Wei Li
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yi Ren
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Dong-Qing Shi
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Lei Qi
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fang Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yanyang Xiao
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Pak-Ming Lau
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China. .,CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Guo-Qiang Bi
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.,CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| |
Collapse
|
24
|
Lee R, Kwak S, Lee D, Chey J. Cognitive control training enhances the integration of intrinsic functional networks in adolescents. Front Hum Neurosci 2022; 16:859358. [PMID: 36504634 PMCID: PMC9729882 DOI: 10.3389/fnhum.2022.859358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction We have demonstrated that intensive cognitive training can produce sustained improvements in cognitive performance in adolescents. Few studies, however, have investigated the neural basis of these training effects, leaving the underlying mechanism of cognitive plasticity during this period unexplained. Methods In this study, we trained 51 typically developing adolescents on cognitive control tasks and examined how their intrinsic brain networks changed by applying graph theoretical analysis. We hypothesized that the training would accelerate the process of network integration, which is a key feature of network development throughout adolescence. Results We found that the cognitive control training enhanced the integration of functional networks, particularly the cross-network integration of the cingulo-opercular network. Moreover, the analysis of additional data from older adolescents revealed that the cingulo-opercular network was more integrated with other networks in older adolescents than in young adolescents. Discussion These findings are consistent with the hypothesis that cognitive control training may speed up network development, such that brain networks exhibit more mature patterns after training.
Collapse
Affiliation(s)
- Raihyung Lee
- Department of Psychology, Seoul National University, Seoul, South Korea,Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Seyul Kwak
- Department of Psychology, Seoul National University, Seoul, South Korea,Department of Psychology, Pusan National University, Busan, South Korea
| | - Dasom Lee
- Department of Psychology, Seoul National University, Seoul, South Korea
| | - Jeanyung Chey
- Department of Psychology, Seoul National University, Seoul, South Korea,*Correspondence: Jeanyung Chey,
| |
Collapse
|
25
|
Abstract
It has been demonstrated experimentally that slow and fast conduction waves with distinct conduction velocities can occur in the same nerve system depending on the strength or the form of the stimulus, which give rise to two modes of nerve functions. However, the mechanisms remain to be elucidated. In this study, we use computer simulations of the cable equation with modified Hodgkin-Huxley kinetics and analytical solutions of a simplified model to show that stimulus-dependent slow and fast waves recapitulating the experimental observations can occur in the cable, which are the two stable conduction states of a bistable conduction behavior. The bistable conduction is caused by a positive feedback loop of the wavefront upstroke speed, mediated by the sodium channel inactivation properties. Although the occurrence of bistable conduction only requires the presence of the sodium current, adding a calcium current to the model further promotes bistable conduction by potentiating the slow wave. We also show that the bistable conduction is robust, occurring for sodium and calcium activation thresholds well within the experimentally determined ones of the known sodium and calcium channel families. Since bistable conduction can occur in the cable equation of Hodgkin-Huxley kinetics with a single inward current, i.e., the sodium current, it can be a generic mechanism applicable to stimulus-dependent fast and slow conduction not only in the nerve systems but also in other electrically excitable systems, such as cardiac muscles.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
26
|
Kobayashi S, O'Hashi K, Kobayashi M. Repetitive nociceptive stimulation increases spontaneous neural activation similar to nociception-induced activity in mouse insular cortex. Sci Rep 2022; 12:15190. [PMID: 36071208 PMCID: PMC9452502 DOI: 10.1038/s41598-022-19562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Recent noninvasive neuroimaging technology has revealed that spatiotemporal patterns of cortical spontaneous activity observed in chronic pain patients are different from those in healthy subjects, suggesting that the spontaneous cortical activity plays a key role in the induction and/or maintenance of chronic pain. However, the mechanisms of the spontaneously emerging activities supposed to be induced by nociceptive inputs remain to be established. In the present study, we investigated spontaneous cortical activities in sessions before and after electrical stimulation of the periodontal ligament (PDL) by applying wide-field and two-photon calcium imaging to anesthetized GCaMP6s transgenic mice. First, we identified the sequential cortical activation patterns from the primary somatosensory and secondary somatosensory cortices to the insular cortex (IC) by PDL stimulation. We, then found that spontaneous IC activities that exhibited a similar spatiotemporal cortical pattern to evoked activities by PDL stimulation increased in the session after repetitive PDL stimulation. At the single-cell level, repetitive PDL stimulation augmented the synchronous neuronal activity. These results suggest that cortical plasticity induced by the repetitive stimulation leads to the frequent PDL stimulation-evoked-like spontaneous IC activation. This nociception-induced spontaneous activity in IC may be a part of mechanisms that induces chronic pain.
Collapse
Affiliation(s)
- Shutaro Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Oral Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kazunori O'Hashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. .,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. .,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. .,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. .,Molecular Imaging Research Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
27
|
Saggar M, Shine JM, Liégeois R, Dosenbach NUF, Fair D. Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest. Nat Commun 2022; 13:4791. [PMID: 35970984 PMCID: PMC9378660 DOI: 10.1038/s41467-022-32381-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2021] [Accepted: 07/27/2022] [Indexed: 01/01/2023] Open
Abstract
In the absence of external stimuli, neural activity continuously evolves from one configuration to another. Whether these transitions or explorations follow some underlying arrangement or lack a predictable ordered plan remains to be determined. Here, using fMRI data from highly sampled individuals (~5 hours of resting-state data per individual), we aimed to reveal the rules that govern transitions in brain activity at rest. Our Topological Data Analysis based Mapper approach characterized a highly visited transition state of the brain that acts as a switch between different neural configurations to organize the spontaneous brain activity. Further, while the transition state was characterized by a uniform representation of canonical resting-state networks (RSNs), the periphery of the landscape was dominated by a subject-specific combination of RSNs. Altogether, we revealed rules or principles that organize spontaneous brain activity using a precision dynamics approach.
Collapse
Affiliation(s)
- Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, NSW, Australia
| | - Raphaël Liégeois
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nico U F Dosenbach
- Departments of Neurology, Radiology, Pediatrics and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Damien Fair
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
28
|
Avitan L, Stringer C. Not so spontaneous: Multi-dimensional representations of behaviors and context in sensory areas. Neuron 2022; 110:3064-3075. [PMID: 35863344 DOI: 10.1016/j.neuron.2022.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Sensory areas are spontaneously active in the absence of sensory stimuli. This spontaneous activity has long been studied; however, its functional role remains largely unknown. Recent advances in technology, allowing large-scale neural recordings in the awake and behaving animal, have transformed our understanding of spontaneous activity. Studies using these recordings have discovered high-dimensional spontaneous activity patterns, correlation between spontaneous activity and behavior, and dissimilarity between spontaneous and sensory-driven activity patterns. These findings are supported by evidence from developing animals, where a transition toward these characteristics is observed as the circuit matures, as well as by evidence from mature animals across species. These newly revealed characteristics call for the formulation of a new role for spontaneous activity in neural sensory computation.
Collapse
Affiliation(s)
- Lilach Avitan
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | | |
Collapse
|
29
|
Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci Rep 2022; 12:11408. [PMID: 35794138 PMCID: PMC9259570 DOI: 10.1038/s41598-022-15502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement. The recent functional support is limited to the short term: in a structure of the true crab Neohelice granulata that has many insect-like mushroom bodies traits, the plastic learning changes express the context attribute of an associative memory trace. Here, we used in vivo calcium imaging to test whether neuronal activity in this structure is associated with memory reactivation in the long-term (i.e., 24 h after training). Long-term training effects were tested by presenting the training-context alone, a reminder known to trigger memory reconsolidation. We found similar spontaneous activity between trained and naïve animals. However, after training-context presentation, trained animals showed increased calcium events rate, suggesting that memory reactivation induced a change in the underlying physiological state of this center. Reflecting the change in the escape response observed in the paradigm, animals trained with a visual danger stimulus showed significantly lower calcium-evoked transients in the insect-like mushroom body. Protein synthesis inhibitor cycloheximide administered during consolidation prevented calcium mediated changes. Moreover, we found the presence of distinct calcium activity spatial patterns. Results suggest that intrinsic neurons of this crustacean mushroom body-like center are involved in contextual associative long-term memory processes.
Collapse
|
30
|
Schmalz F, El Jundi B, Rössler W, Strube-Bloss M. Categorizing Visual Information in Subpopulations of Honeybee Mushroom Body Output Neurons. Front Physiol 2022; 13:866807. [PMID: 35574496 PMCID: PMC9092450 DOI: 10.3389/fphys.2022.866807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Multisensory integration plays a central role in perception, as all behaviors usually require the input of different sensory signals. For instance, for a foraging honeybee the association of a food source includes the combination of olfactory and visual cues to be categorized as a flower. Moreover, homing after successful foraging using celestial cues and the panoramic scenery may be dominated by visual cues. Hence, dependent on the context, one modality might be leading and influence the processing of other modalities. To unravel the complex neural mechanisms behind this process we studied honeybee mushroom body output neurons (MBON). MBONs represent the first processing level after olfactory-visual convergence in the honeybee brain. This was physiologically confirmed in our previous study by characterizing a subpopulation of multisensory MBONs. These neurons categorize incoming sensory inputs into olfactory, visual, and olfactory-visual information. However, in addition to multisensory units a prominent population of MBONs was sensitive to visual cues only. Therefore, we asked which visual features might be represented at this high-order integration level. Using extracellular, multi-unit recordings in combination with visual and olfactory stimulation, we separated MBONs with multisensory responses from purely visually driven MBONs. Further analysis revealed, for the first time, that visually driven MBONs of both groups encode detailed aspects within this individual modality, such as light intensity and light identity. Moreover, we show that these features are separated by different MBON subpopulations, for example by extracting information about brightness and wavelength. Most interestingly, the latter MBON population was tuned to separate UV-light from other light stimuli, which were only poorly differentiated from each other. A third MBON subpopulation was neither tuned to brightness nor to wavelength and encoded the general presence of light. Taken together, our results support the view that the mushroom body, a high-order sensory integration, learning and memory center in the insect brain, categorizes sensory information by separating different behaviorally relevant aspects of the multisensory scenery and that these categories are channeled into distinct MBON subpopulations.
Collapse
Affiliation(s)
- Fabian Schmalz
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| | - Basil El Jundi
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| | - Martin Strube-Bloss
- Department of Biological Cybernetics and Theoretical Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
31
|
Lomas JD, Lin A, Dikker S, Forster D, Lupetti ML, Huisman G, Habekost J, Beardow C, Pandey P, Ahmad N, Miyapuram K, Mullen T, Cooper P, van der Maden W, Cross ES. Resonance as a Design Strategy for AI and Social Robots. Front Neurorobot 2022; 16:850489. [PMID: 35574227 PMCID: PMC9097027 DOI: 10.3389/fnbot.2022.850489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Resonance, a powerful and pervasive phenomenon, appears to play a major role in human interactions. This article investigates the relationship between the physical mechanism of resonance and the human experience of resonance, and considers possibilities for enhancing the experience of resonance within human-robot interactions. We first introduce resonance as a widespread cultural and scientific metaphor. Then, we review the nature of "sympathetic resonance" as a physical mechanism. Following this introduction, the remainder of the article is organized in two parts. In part one, we review the role of resonance (including synchronization and rhythmic entrainment) in human cognition and social interactions. Then, in part two, we review resonance-related phenomena in robotics and artificial intelligence (AI). These two reviews serve as ground for the introduction of a design strategy and combinatorial design space for shaping resonant interactions with robots and AI. We conclude by posing hypotheses and research questions for future empirical studies and discuss a range of ethical and aesthetic issues associated with resonance in human-robot interactions.
Collapse
Affiliation(s)
- James Derek Lomas
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Albert Lin
- Center for Human Frontiers, Qualcomm Institute, University of California, San Diego, San Diego, CA, United States
| | - Suzanne Dikker
- Department of Psychology, New York University, New York, NY, United States
- Department of Clinical Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Deborah Forster
- Center for Human Frontiers, Qualcomm Institute, University of California, San Diego, San Diego, CA, United States
| | - Maria Luce Lupetti
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Gijs Huisman
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Julika Habekost
- The Design Lab, California Institute of Information and Communication Technologies, University of California, San Diego, San Diego, CA, United States
| | - Caiseal Beardow
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Pankaj Pandey
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India
| | - Nashra Ahmad
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India
| | - Krishna Miyapuram
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India
| | - Tim Mullen
- Intheon Labs, San Diego, CA, United States
| | - Patrick Cooper
- Department of Physics, Duquesne University, Pittsburgh, PA, United States
| | - Willem van der Maden
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Emily S. Cross
- Social Robotics, Institute of Neuroscience and Psychology, School of Computing Science, University of Glasgow, Glasgow, United Kingdom
- SOBA Lab, School of Psychology, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
32
|
Takeda Y, Hiroe N, Yamashita O. Whole-brain propagating patterns in human resting-state brain activities. Neuroimage 2021; 245:118711. [PMID: 34793956 DOI: 10.1016/j.neuroimage.2021.118711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Repetitive propagating activities in resting-state brain activities have been widely observed in various species and regions. Because they resemble the preceding brain activities during tasks, they are assumed to reflect past experiences embedded in neuronal circuits. "Whole-brain" propagating activities may also reflect a process that integrates information distributed over the entire brain, such as visual and motor information. Here we reveal whole-brain propagating activities from human resting-state magnetoencephalography (MEG) and electroencephalography (EEG) data. We simultaneously recorded the MEGs and EEGs and estimated the source currents from both measurements. Then using our recently proposed algorithm, we extracted repetitive spatiotemporal patterns from the source currents. The estimated patterns consisted of multiple frequency components, each of which transiently exhibited the frequency-specific resting-state networks (RSNs) of functional MRIs (fMRIs), such as the default mode and sensorimotor networks. A simulation test suggested that the spatiotemporal patterns reflected the phase alignment of the multiple frequency oscillators induced by the propagating activities along the anatomical connectivity. These results argue that whole-brain propagating activities transiently exhibited multiple RSNs in their multiple frequency components, suggesting that they reflected a process to integrate the information distributed over the frequencies and networks.
Collapse
Affiliation(s)
- Yusuke Takeda
- Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan; Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| | - Nobuo Hiroe
- Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| | - Okito Yamashita
- Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan; Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| |
Collapse
|
33
|
Afrashteh N, Inayat S, Bermudez-Contreras E, Luczak A, McNaughton BL, Mohajerani MH. Spatiotemporal structure of sensory-evoked and spontaneous activity revealed by mesoscale imaging in anesthetized and awake mice. Cell Rep 2021; 37:110081. [PMID: 34879278 DOI: 10.1016/j.celrep.2021.110081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2020] [Revised: 05/25/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022] Open
Abstract
Stimuli-evoked and spontaneous brain activity propagates across the cortex in diverse spatiotemporal patterns. Despite extensive studies, the relationship between spontaneous and evoked activity is poorly understood. We investigate this relationship by comparing the amplitude, speed, direction, and complexity of propagation trajectories of spontaneous and evoked activity elicited with visual, auditory, and tactile stimuli using mesoscale wide-field imaging in mice. For both spontaneous and evoked activity, the speed and direction of propagation is modulated by the amplitude. However, spontaneous activity has a higher complexity of the propagation trajectories. For low stimulus strengths, evoked activity amplitude and speed is similar to that of spontaneous activity but becomes dissimilar at higher stimulus strengths. These findings are consistent with observations that primary sensory areas receive widespread inputs from other cortical regions, and during rest, the cortex tends to reactivate traces of complex multisensory experiences that might have occurred in exhibition of different behaviors.
Collapse
Affiliation(s)
- Navvab Afrashteh
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada
| | - Samsoon Inayat
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada
| | - Edgar Bermudez-Contreras
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada
| | - Artur Luczak
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada
| | - Bruce L McNaughton
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada; Center for Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92603, USA
| | - Majid H Mohajerani
- University of Lethbridge, Faculty of Arts and Sciences, Department of Neuroscience, 4401 University Dr. W., Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
34
|
Rezaei Z, Jafari Z, Afrashteh N, Torabi R, Singh S, Kolb BE, Davidsen J, Mohajerani MH. Prenatal stress dysregulates resting-state functional connectivity and sensory motifs. Neurobiol Stress 2021; 15:100345. [PMID: 34124321 PMCID: PMC8173309 DOI: 10.1016/j.ynstr.2021.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022] Open
Abstract
Prenatal stress (PS) can impact fetal brain structure and function and contribute to higher vulnerability to neurodevelopmental and neuropsychiatric disorders. To understand how PS alters evoked and spontaneous neocortical activity and intrinsic brain functional connectivity, mesoscale voltage imaging was performed in adult C57BL/6NJ mice that had been exposed to auditory stress on gestational days 12-16, the age at which neocortex is developing. PS mice had a four-fold higher basal corticosterone level and reduced amplitude of cortical sensory-evoked responses to visual, auditory, whisker, forelimb, and hindlimb stimuli. Relative to control animals, PS led to a general reduction of resting-state functional connectivity, as well as reduced inter-modular connectivity, enhanced intra-modular connectivity, and altered frequency of auditory and forelimb spontaneous sensory motifs. These resting-state changes resulted in a cortical connectivity pattern featuring disjoint but tight modules and a decline in network efficiency. The findings demonstrate that cortical connectivity is sensitive to PS and exposed offspring may be at risk for adult stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zahra Rezaei
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Navvab Afrashteh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Reza Torabi
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Surjeet Singh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Bryan E. Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Majid H. Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| |
Collapse
|
35
|
Davis ZW, Benigno GB, Fletterman C, Desbordes T, Steward C, Sejnowski TJ, H Reynolds J, Muller L. Spontaneous traveling waves naturally emerge from horizontal fiber time delays and travel through locally asynchronous-irregular states. Nat Commun 2021; 12:6057. [PMID: 34663796 PMCID: PMC8523565 DOI: 10.1038/s41467-021-26175-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2020] [Accepted: 09/17/2021] [Indexed: 11/25/2022] Open
Abstract
Studies of sensory-evoked neuronal responses often focus on mean spike rates, with fluctuations treated as internally-generated noise. However, fluctuations of spontaneous activity, often organized as traveling waves, shape stimulus-evoked responses and perceptual sensitivity. The mechanisms underlying these waves are unknown. Further, it is unclear whether waves are consistent with the low rate and weakly correlated “asynchronous-irregular” dynamics observed in cortical recordings. Here, we describe a large-scale computational model with topographically-organized connectivity and conduction delays relevant to biological scales. We find that spontaneous traveling waves are a general property of these networks. The traveling waves that occur in the model are sparse, with only a small fraction of neurons participating in any individual wave. Consequently, they do not induce measurable spike correlations and remain consistent with locally asynchronous irregular states. Further, by modulating local network state, they can shape responses to incoming inputs as observed in vivo. Spontaneous traveling cortical waves shape neural responses. Using a large-scale computational model, the authors show that transmission delays shape locally asynchronous spiking dynamics into traveling waves without inducing correlations and boost responses to external input, as observed in vivo.
Collapse
Affiliation(s)
- Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Gabriel B Benigno
- Department of Applied Mathematics, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | | | - Theo Desbordes
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - John H Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Lyle Muller
- Department of Applied Mathematics, Western University, London, ON, Canada. .,Brain and Mind Institute, Western University, London, ON, Canada.
| |
Collapse
|
36
|
Huang C. Modulation of the dynamical state in cortical network models. Curr Opin Neurobiol 2021; 70:43-50. [PMID: 34403890 PMCID: PMC8688204 DOI: 10.1016/j.conb.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2021] [Revised: 05/18/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
Cortical neural responses can be modulated by various factors, such as stimulus inputs and the behavior state of the animal. Understanding the circuit mechanisms underlying modulations of network dynamics is important to understand the flexibility of circuit computations. Identifying the dynamical state of a network is an important first step to predict network responses to external stimulus and top-down modulatory inputs. Models in stable or unstable dynamical regimes require different analytic tools to estimate the network responses to inputs and the structure of neural variability. In this article, I review recent cortical models of state-dependent responses and their predictions about the underlying modulatory mechanisms.
Collapse
Affiliation(s)
- Chengcheng Huang
- Departments of Neuroscience and Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Pezzulo G, Zorzi M, Corbetta M. The secret life of predictive brains: what's spontaneous activity for? Trends Cogn Sci 2021; 25:730-743. [PMID: 34144895 PMCID: PMC8363551 DOI: 10.1016/j.tics.2021.05.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023]
Abstract
Brains at rest generate dynamical activity that is highly structured in space and time. We suggest that spontaneous activity, as in rest or dreaming, underlies top-down dynamics of generative models. During active tasks, generative models provide top-down predictive signals for perception, cognition, and action. When the brain is at rest and stimuli are weak or absent, top-down dynamics optimize the generative models for future interactions by maximizing the entropy of explanations and minimizing model complexity. Spontaneous fluctuations of correlated activity within and across brain regions may reflect transitions between 'generic priors' of the generative model: low dimensional latent variables and connectivity patterns of the most common perceptual, motor, cognitive, and interoceptive states. Even at rest, brains are proactive and predictive.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Roma, Italy.
| | - Marco Zorzi
- Department of General Psychology and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), Fondazione Biomedica, Padova, Italy
| |
Collapse
|
38
|
Abstract
Current concepts of sensory processing in the cerebral cortex emphasize serial extraction and recombination of features in hierarchically structured feed-forward networks in order to capture the relations among the components of perceptual objects. These concepts are implemented in convolutional deep learning networks and have been validated by the astounding similarities between the functional properties of artificial systems and their natural counterparts. However, cortical architectures also display an abundance of recurrent coupling within and between the layers of the processing hierarchy. This massive recurrence gives rise to highly complex dynamics whose putative function is poorly understood. Here a concept is proposed that assigns specific functions to the dynamics of cortical networks and combines, in a unifying approach, the respective advantages of recurrent and feed-forward processing. It is proposed that the priors about regularities of the world are stored in the weight distributions of feed-forward and recurrent connections and that the high-dimensional, dynamic space provided by recurrent interactions is exploited for computations. These comprise the ultrafast matching of sensory evidence with the priors covertly represented in the correlation structure of spontaneous activity and the context-dependent grouping of feature constellations characterizing natural objects. The concept posits that information is encoded not only in the discharge frequency of neurons but also in the precise timing relations among the discharges. Results of experiments designed to test the predictions derived from this concept support the hypothesis that cerebral cortex exploits the high-dimensional recurrent dynamics for computations serving predictive coding.
Collapse
Affiliation(s)
- Wolf Singer
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60438, Germany;
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main 60438, Germany
| |
Collapse
|
39
|
Lantz CL, Quinlan EM. High-Frequency Visual Stimulation Primes Gamma Oscillations for Visually Evoked Phase Reset and Enhances Spatial Acuity. Cereb Cortex Commun 2021; 2:tgab016. [PMID: 33997786 PMCID: PMC8110461 DOI: 10.1093/texcom/tgab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/12/2022] Open
Abstract
The temporal frequency of sensory stimulation is a decisive factor in the plasticity of perceptual detection thresholds. However, surprisingly little is known about how distinct temporal parameters of sensory input differentially recruit activity of neuronal circuits in sensory cortices. Here we demonstrate that brief repetitive visual stimulation induces long-term plasticity of visual responses revealed 24 h after stimulation and that the location and generalization of visual response plasticity is determined by the temporal frequency of the visual stimulation. Brief repetitive low-frequency stimulation (2 Hz) is sufficient to induce a visual response potentiation that is expressed exclusively in visual cortex layer 4 and in response to a familiar stimulus. In contrast, brief, repetitive high-frequency stimulation (HFS, 20 Hz) is sufficient to induce a visual response potentiation that is expressed in all cortical layers and transfers to novel stimuli. HFS induces a long-term suppression of the activity of fast-spiking interneurons and primes ongoing gamma oscillatory rhythms for phase reset by subsequent visual stimulation. This novel form of generalized visual response enhancement induced by HFS is paralleled by an increase in visual acuity, measured as improved performance in a visual detection task.
Collapse
Affiliation(s)
- Crystal L Lantz
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
40
|
Bang JW, Rahnev D. Awake suppression after brief exposure to a familiar stimulus. Commun Biol 2021; 4:348. [PMID: 33731846 PMCID: PMC7969731 DOI: 10.1038/s42003-021-01863-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2020] [Accepted: 02/17/2021] [Indexed: 02/08/2023] Open
Abstract
Newly learned information undergoes a process of awake reactivation shortly after the learning offset and we recently demonstrated that this effect can be observed as early as area V1. However, reactivating all experiences can be wasteful and unnecessary, especially for familiar stimuli. Therefore, here we tested whether awake reactivation occurs differentially for new and familiar stimuli. Subjects completed a brief visual task on a stimulus that was either novel or highly familiar due to extensive prior training on it. Replicating our previous results, we found that awake reactivation occurred in V1 for the novel stimulus. On the other hand, brief exposure to the familiar stimulus led to 'awake suppression' such that neural activity patterns immediately after exposure to the familiar stimulus diverged from the patterns associated with that stimulus. Further, awake reactivation was observed selectively in V1, whereas awake suppression had similar strength across areas V1-V3. These results are consistent with the presence of a competition between local awake reactivation and top-down awake suppression, with suppression becoming dominant for familiar stimuli.
Collapse
Affiliation(s)
- Ji Won Bang
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA. .,Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Dobromir Rahnev
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
41
|
Bellay T, Shew WL, Yu S, Falco-Walter JJ, Plenz D. Selective Participation of Single Cortical Neurons in Neuronal Avalanches. Front Neural Circuits 2021; 14:620052. [PMID: 33551757 PMCID: PMC7862716 DOI: 10.3389/fncir.2020.620052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal avalanches are scale-invariant neuronal population activity patterns in the cortex that emerge in vivo in the awake state and in vitro during balanced excitation and inhibition. Theory and experiments suggest that avalanches indicate a state of cortex that improves numerous aspects of information processing by allowing for the transient and selective formation of local as well as system-wide spanning neuronal groups. If avalanches are indeed involved with information processing, one might expect that single neurons would participate in avalanche patterns selectively. Alternatively, all neurons could participate proportionally to their own activity in each avalanche as would be expected for a population rate code. Distinguishing these hypotheses, however, has been difficult as robust avalanche analysis requires technically challenging measures of their intricate organization in space and time at the population level, while also recording sub- or suprathreshold activity from individual neurons with high temporal resolution. Here, we identify repeated avalanches in the ongoing local field potential (LFP) measured with high-density microelectrode arrays in the cortex of awake nonhuman primates and in acute cortex slices from young and adult rats. We studied extracellular unit firing in vivo and intracellular responses of pyramidal neurons in vitro. We found that single neurons participate selectively in specific LFP-based avalanche patterns. Furthermore, we show in vitro that manipulating the balance of excitation and inhibition abolishes this selectivity. Our results support the view that avalanches represent the selective, scale-invariant formation of neuronal groups in line with the idea of Hebbian cell assemblies underlying cortical information processing.
Collapse
Affiliation(s)
- Timothy Bellay
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Woodrow L. Shew
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Shan Yu
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Jessica J. Falco-Walter
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
42
|
Yu Q, Fu H, Wang G, Zhang J, Yan B. Short-Term Visual Experience Leads to Potentiation of Spontaneous Activity in Mouse Superior Colliculus. Neurosci Bull 2021; 37:353-368. [PMID: 33394455 DOI: 10.1007/s12264-020-00622-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
Spontaneous activity in the brain maintains an internal structured pattern that reflects the external environment, which is essential for processing information and developing perception and cognition. An essential prerequisite of spontaneous activity for perception is the ability to reverberate external information, such as by potentiation. Yet its role in the processing of potentiation in mouse superior colliculus (SC) neurons is less studied. Here, we used electrophysiological recording, optogenetics, and drug infusion methods to investigate the mechanism of potentiation in SC neurons. We found that visual experience potentiated SC neurons several minutes later in different developmental stages, and the similarity between spontaneous and visually-evoked activity increased with age. Before eye-opening, activation of retinal ganglion cells that expressed ChR2 also induced the potentiation of spontaneous activity in the mouse SC. Potentiation was dependent on stimulus number and showed feature selectivity for direction and orientation. Optogenetic activation of parvalbumin neurons in the SC attenuated the potentiation induced by visual experience. Furthermore, potentiation in SC neurons was blocked by inhibiting the glutamate transporter GLT1. These results indicated that the potentiation induced by a visual stimulus might play a key role in shaping the internal representation of the environment, and serves as a carrier for short-term memory consolidation.
Collapse
Affiliation(s)
- Qingpeng Yu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Hang Fu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Gang Wang
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Biao Yan
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
43
|
Lu J, Luo L, Wang Q, Fang F, Chen N. Cue-triggered activity replay in human early visual cortex. SCIENCE CHINA-LIFE SCIENCES 2020; 64:144-151. [PMID: 32557289 DOI: 10.1007/s11427-020-1726-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/23/2020] [Accepted: 05/09/2020] [Indexed: 10/24/2022]
Abstract
The recall of learned temporal sequences by a visual cue is an important form of experience-based neural plasticity. Here we observed such reactivation in awake human visual cortex using intracranial recording. After repeated exposure to a moving dot, a flash of the dot was able to trigger neural reactivation in the downstream receptive field along the motion path. This effect was observed only when the cue appeared near the receptive field. The estimated traveling speed was faster compared to the activation induced by the real motion. We suggest a range-limited, time-compressed reactivation as a result of repeated visual exposure in awake human visual cortex.
Collapse
Affiliation(s)
- Junshi Lu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Lu Luo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Qian Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.,Department of Clinical Neuropsychology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China. .,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Nihong Chen
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, 100084, China. .,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
44
|
Oprea L, Pack CC, Khadra A. Machine classification of spatiotemporal patterns: automated parameter search in a rebounding spiking network. Cogn Neurodyn 2020; 14:267-280. [PMID: 32399070 PMCID: PMC7203379 DOI: 10.1007/s11571-020-09568-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2019] [Revised: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Various patterns of electrical activities, including travelling waves, have been observed in cortical experimental data from animal models as well as humans. By applying machine learning techniques, we investigate the spatiotemporal patterns, found in a spiking neuronal network with inhibition-induced firing (rebounding). Our cortical sheet model produces a wide variety of network activities including synchrony, target waves, and travelling wavelets. Pattern formation is controlled by modifying a Gaussian derivative coupling kernel through varying the level of inhibition, coupling strength, and kernel geometry. We have designed a computationally efficient machine classifier, based on statistical, textural, and temporal features, to identify the parameter regimes associated with different spatiotemporal patterns. Our results reveal that switching between synchrony and travelling waves can occur transiently and spontaneously without a stimulus, in a noise-dependent fashion, or in the presence of stimulus when the coupling strength and level of inhibition are at moderate values. They also demonstrate that when a target wave is formed, its wave speed is most sensitive to perturbations in the coupling strength between model neurons. This study provides an automated method to characterize activities produced by a novel spiking network that phenomenologically models large scale dynamics in the cortex.
Collapse
Affiliation(s)
- Lawrence Oprea
- Department of Physiology, McGill University, Montréal, QC Canada
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montréal, QC Canada
| |
Collapse
|
45
|
Balasubramanian K, Papadourakis V, Liang W, Takahashi K, Best MD, Suminski AJ, Hatsopoulos NG. Propagating Motor Cortical Dynamics Facilitate Movement Initiation. Neuron 2020; 106:526-536.e4. [PMID: 32145183 PMCID: PMC7210059 DOI: 10.1016/j.neuron.2020.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2019] [Revised: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 01/08/2023]
Abstract
Voluntary movement initiation involves the modulations of large groups of neurons in the primary motor cortex (M1). Yet similar modulations occur during movement planning when no movement occurs. Here, we show that a sequential spatiotemporal pattern of excitability propagates across M1 prior to the movement initiation in one of two oppositely oriented directions along the rostro-caudal axis. Using spatiotemporal patterns of intracortical microstimulation, we find that reaction time increases significantly when stimulation is delivered against, but not with, the natural propagation direction. Functional connections among M1 units emerge at movement that are oriented along the same rostro-caudal axis but not during movement planning. Finally, we show that beta amplitude profiles can more accurately decode muscle activity when they conform to the natural propagating patterns. These findings provide the first causal evidence that large-scale, propagating patterns of cortical excitability are behaviorally relevant and may be a necessary component of movement initiation.
Collapse
Affiliation(s)
| | - Vasileios Papadourakis
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Wei Liang
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Kazutaka Takahashi
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Matthew D Best
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Aaron J Suminski
- Department of Neurological Surgery, University of Wisconsin, Madison, Madison, WI 53792, USA; Department of Biomedical Engineering, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA; Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Capone C, Rebollo B, Muñoz A, Illa X, Del Giudice P, Sanchez-Vives MV, Mattia M. Slow Waves in Cortical Slices: How Spontaneous Activity is Shaped by Laminar Structure. Cereb Cortex 2020; 29:319-335. [PMID: 29190336 DOI: 10.1093/cercor/bhx326] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2017] [Accepted: 11/07/2017] [Indexed: 12/29/2022] Open
Abstract
Cortical slow oscillations (SO) of neural activity spontaneously emerge and propagate during deep sleep and anesthesia and are also expressed in isolated brain slices and cortical slabs. We lack full understanding of how SO integrate the different structural levels underlying local excitability of cell assemblies and their mutual interaction. Here, we focus on ongoing slow waves (SWs) in cortical slices reconstructed from a 16-electrode array designed to probe the neuronal activity at multiple spatial scales. In spite of the variable propagation patterns observed, we reproducibly found a smooth strip of loci leading the SW fronts, overlapping cortical layers 4 and 5, along which Up states were the longest and displayed the highest firing rate. Propagation modes were uncorrelated in time, signaling a memoryless generation of SWs. All these features could be modeled by a multimodular large-scale network of spiking neurons with a specific balance between local and intermodular connectivity. Modules work as relaxation oscillators with a weakly stable Down state and a peak of local excitability to model layers 4 and 5. These conditions allow for both optimal sensitivity to the network structure and richness of propagation modes, both of which are potential substrates for dynamic flexibility in more general contexts.
Collapse
Affiliation(s)
- Cristiano Capone
- PhD Program in Physics, Sapienza University, Rome, Italy.,Istituto Superiore di Sanità, Rome, Italy
| | - Beatriz Rebollo
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | | | - Xavi Illa
- IMB-CNM-CSIC (Instituto de Microelectrónica de Barcelona), Universitat Autónoma de Barcelona, Barcelona, Spain.,CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Paolo Del Giudice
- Istituto Superiore di Sanità, Rome, Italy.,INFN-Roma1 (Istituto Nazionale di Fisica Nucleare), Rome, Italy
| | - Maria V Sanchez-Vives
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain.,ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| | | |
Collapse
|
47
|
McGirr A, LeDue J, Chan AW, Boyd JD, Metzak PD, Murphy TH. Stress impacts sensory variability through cortical sensory activity motifs. Transl Psychiatry 2020; 10:20. [PMID: 32066714 PMCID: PMC7026117 DOI: 10.1038/s41398-020-0713-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/04/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
Medically unexplained symptoms in depression are common. These individual-specific complaints are often considered an 'idiom of distress', yet animal studies suggest that cortical sensory representations are flexible and influenced by spontaneous cortical activity. We hypothesized that stress would reveal activity dynamics in somatosensory cortex resulting in greater sensory-evoked response variability. Using millisecond resolution in vivo voltage sensitive dye (VSD) imaging in mouse neocortex, we characterized spontaneous regional depolarizations within limb and barrel regions of somatosensory cortex, or spontaneous sensory motifs, and their influence on sensory variability. Stress revealed an idiosyncratic increase in spontaneous sensory motifs that is normalized by selective serotonin reuptake inhibitor treatment. Spontaneous motif frequency is associated with increased variability in sensory-evoked responses, and we optogenetically demonstrate that regional depolarization in somatosensory cortex increases sensory-evoked variability for seconds. This reveals a putative circuit level target for changes in sensory processing and for unexplained physical complaints in stress-related psychopathology.
Collapse
Affiliation(s)
- Alexander McGirr
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute & The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.
| | - Jeffrey LeDue
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Djavad Mowafaghian Brain Research Centre, University of British Columbia, Vancouver, BC Canada
| | - Allen W. Chan
- grid.17089.37Department of Psychiatry, University of Alberta, Edmonton, AB Canada
| | - James D. Boyd
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Djavad Mowafaghian Brain Research Centre, University of British Columbia, Vancouver, BC Canada
| | - Paul D. Metzak
- grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute & The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB Canada
| | - Timothy H. Murphy
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Djavad Mowafaghian Brain Research Centre, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
48
|
Audio-visual experience strengthens multisensory assemblies in adult mouse visual cortex. Nat Commun 2019; 10:5684. [PMID: 31831751 PMCID: PMC6908602 DOI: 10.1038/s41467-019-13607-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2018] [Accepted: 11/07/2019] [Indexed: 11/09/2022] Open
Abstract
We experience the world through multiple senses simultaneously. To better understand mechanisms of multisensory processing we ask whether inputs from two senses (auditory and visual) can interact and drive plasticity in neural-circuits of the primary visual cortex (V1). Using genetically-encoded voltage and calcium indicators, we find coincident audio-visual experience modifies both the supra and subthreshold response properties of neurons in L2/3 of mouse V1. Specifically, we find that after audio-visual pairing, a subset of multimodal neurons develops enhanced auditory responses to the paired auditory stimulus. This cross-modal plasticity persists over days and is reflected in the strengthening of small functional networks of L2/3 neurons. We find V1 processes coincident auditory and visual events by strengthening functional associations between feature specific assemblies of multimodal neurons during bouts of sensory driven co-activity, leaving a trace of multisensory experience in the cortical network.
Collapse
|
49
|
Abstract
The alpha rhythm is the longest-studied brain oscillation and has been theorized to play a key role in cognition. Still, its physiology is poorly understood. In this study, we used microelectrodes and macroelectrodes in surgical epilepsy patients to measure the intracortical and thalamic generators of the alpha rhythm during quiet wakefulness. We first found that alpha in both visual and somatosensory cortex propagates from higher-order to lower-order areas. In posterior cortex, alpha propagates from higher-order anterosuperior areas toward the occipital pole, whereas alpha in somatosensory cortex propagates from associative regions toward primary cortex. Several analyses suggest that this cortical alpha leads pulvinar alpha, complicating prevailing theories of a thalamic pacemaker. Finally, alpha is dominated by currents and firing in supragranular cortical layers. Together, these results suggest that the alpha rhythm likely reflects short-range supragranular feedback, which propagates from higher- to lower-order cortex and cortex to thalamus. These physiological insights suggest how alpha could mediate feedback throughout the thalamocortical system.
Collapse
|
50
|
Gross A, Ivzan NH, Farah N, Mandel Y. High-resolution VSDI retinotopic mapping via a DLP-based projection system. BIOMEDICAL OPTICS EXPRESS 2019; 10:5117-5129. [PMID: 31646034 PMCID: PMC6788600 DOI: 10.1364/boe.10.005117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
High-resolution recording of visual cortex activity is an important tool for vision research. Using a customized digital mirror device (DMD) - based system equipped with retinal imaging, we projected visual stimuli directly on the rat retina and recorded cortical responses by voltage-sensitive dye imaging. We obtained robust cortical responses and generated high-resolution retinotopic maps at an unprecedented retinal resolution of 4.6 degrees in the field of view, while further distinguishing between normal and pathological retinal areas. This system is a useful tool for studying the cortical response to localized retinal stimulation and may shed light on various cortical plasticity processes.
Collapse
Affiliation(s)
- Adi Gross
- Faculty of Life Sciences, School of Optometry and Vision Science, Bar-Ilan University, Ramat Gan, 5290002, Israel
- These authors equally contributed to this research
| | - Nadav H. Ivzan
- Faculty of Life Sciences, School of Optometry and Vision Science, Bar-Ilan University, Ramat Gan, 5290002, Israel
- These authors equally contributed to this research
| | - Nairouz Farah
- Faculty of Life Sciences, School of Optometry and Vision Science, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Yossi Mandel
- Faculty of Life Sciences, School of Optometry and Vision Science, Bar-Ilan University, Ramat Gan, 5290002, Israel
- Bar Ilan’s Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|