1
|
Reyes-Pinto R, Rojas MJ, Letelier JC, Marín GJ, Mpodozis J. Early Development of the Thalamo-Pallial Stage of the Tectofugal Visual Pathway in the Chicken (Gallus gallus). J Comp Neurol 2024; 532:e25657. [PMID: 38987912 DOI: 10.1002/cne.25657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
The tectofugal pathway is a highly conserved visual pathway in all amniotes. In birds and mammals, retinorecipient neurons located in the midbrain roof (optic tectum/superior colliculus) are the source of ascending projections to thalamic relays (nucleus rotundus/caudal pulvinar), which in turn project to specific pallial regions (visual dorsal ventricular ridge [vDVR]/temporal cortex) organized according to a columnar recurrent arrangement of interlaminar circuits. Whether or to which extent these striking hodological correspondences arise from comparable developmental processes is at present an open question, mainly due to the scarcity of data about the ontogeny of the avian tectofugal system. Most of the previous developmental studies of this system in birds have focused on the establishment of the retino-tecto-thalamic connectivity, overlooking the development of the thalamo-pallial-intrapallial circuit. In this work, we studied the latter in chicken embryos by means of immunohistochemical assays and precise ex vivo crystalline injections of biocytin and DiI. We found that the layered organization of the vDVR as well as the system of homotopic reciprocal connections between vDVR layers were present as early as E8. A highly organized thalamo-vDVR projection was also present at this stage. Our immunohistochemical assays suggest that both systems of projections emerge simultaneously even earlier. Combined with previous findings, these results reveal that, in striking contrast with mammals, the peripheral and central stages of the avian tectofugal pathway develop along different timelines, with a tecto-thalamo-intrapallial organization arising before and possibly independently of the retino-isthmo-tectal circuit.
Collapse
Affiliation(s)
- Rosana Reyes-Pinto
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - María-José Rojas
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Juan-Carlos Letelier
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gonzalo J Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Katayama R, Kumamoto T, Wada K, Hanashima C, Ohtaka-Maruyama C. Thalamic activity-dependent specification of sensory input neurons in the developing chick entopallium. J Comp Neurol 2024; 532:e25627. [PMID: 38813969 DOI: 10.1002/cne.25627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
During development, cell-intrinsic and cell-extrinsic factors play important roles in neuronal differentiation; however, the underlying mechanisms in nonmammalian species remain largely unknown. We here investigated the mechanisms responsible for the differentiation of sensory input neurons in the chick entopallium, which receives its primary visual input via the tectofugal pathway from the nucleus rotundus. The results obtained revealed that input neurons in the entopallium expressed Potassium Voltage-Gated Channel Subfamily H Member 5 (KCNH5/EAG2) mRNA from embryonic day (E) 11. On the other hand, the onset of protein expression was E20, which was 1 day before hatching. We confirm that entopallium input neurons in chicks were generated during early neurogenesis in the lateral and ventral ventricular zones. Notably, neurons derived from the lateral (LP) and ventral pallium (VP) exhibited a spatially distinct distribution along the rostro-caudal axis. We further demonstrated that the expression of EAG2 was directly regulated by input activity from thalamic axons. Collectively, the present results reveal that thalamic input activity is essential for specifying input neurons among LP- and VP-derived early-generated neurons in the developing chick entopallium.
Collapse
Affiliation(s)
- Ryoka Katayama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyosuke Wada
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- School of Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Carina Hanashima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Chiaki Ohtaka-Maruyama
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- School of Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
3
|
Huerga-Gómez I, Martini FJ, López-Bendito G. Building thalamic neuronal networks during mouse development. Front Neural Circuits 2023; 17:1098913. [PMID: 36817644 PMCID: PMC9936079 DOI: 10.3389/fncir.2023.1098913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The thalamic nuclear complex contains excitatory projection neurons and inhibitory local neurons, the two cell types driving the main circuits in sensory nuclei. While excitatory neurons are born from progenitors that reside in the proliferative zone of the developing thalamus, inhibitory local neurons are born outside the thalamus and they migrate there during development. In addition to these cell types, which occupy most of the thalamus, there are two small thalamic regions where inhibitory neurons target extra-thalamic regions rather than neighboring neurons, the intergeniculate leaflet and the parahabenular nucleus. Like excitatory thalamic neurons, these inhibitory neurons are derived from progenitors residing in the developing thalamus. The assembly of these circuits follows fine-tuned genetic programs and it is coordinated by extrinsic factors that help the cells find their location, associate with thalamic partners, and establish connections with their corresponding extra-thalamic inputs and outputs. In this review, we bring together what is currently known about the development of the excitatory and inhibitory components of the thalamocortical sensory system, in particular focusing on the visual pathway and thalamic interneurons in mice.
Collapse
Affiliation(s)
- Irene Huerga-Gómez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | | | | |
Collapse
|
4
|
Cossart R, Garel S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci 2022; 23:395-410. [DOI: 10.1038/s41583-022-00585-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
|
5
|
Cunningham JG, Scripter JD, Nti SA, Tucker ES. Early construction of the thalamocortical axon pathway requires c-Jun N-terminal kinase signaling within the ventral forebrain. Dev Dyn 2022; 251:459-480. [PMID: 34494344 PMCID: PMC8891049 DOI: 10.1002/dvdy.416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Thalamocortical connectivity is essential for normal brain function. This important pathway is established during development, when thalamic axons extend a long distance through the forebrain before reaching the cerebral cortex. In this study, we identify a novel role for the c-Jun N-terminal kinase (JNK) signaling pathway in guiding thalamocortical axons through intermediate target territories. RESULTS Complete genetic removal of JNK signaling from the Distal-less 5/6 (Dlx5/6) domain in mice prevents thalamocortical axons from crossing the diencephalon-telencephalon boundary (DTB) and the internal capsule fails to form. Ventral telencephalic cells critical for thalamocortical axon extensions including corridor and guidepost neurons are also disrupted. In addition, corticothalamic, striatonigral, and nigrostriatal axons fail to cross the DTB. Analyses of different JNK mutants demonstrate that thalamocortical axon pathfinding has a non-autonomous requirement for JNK signaling. CONCLUSIONS We conclude that JNK signaling within the Dlx5/6 territory enables the construction of major axonal pathways in the developing forebrain. Further exploration of this intermediate axon guidance territory is needed to uncover mechanisms of axonal pathfinding during normal brain development and to elucidate how this vital process may be compromised in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jessica G. Cunningham
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - James D. Scripter
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Stephany A. Nti
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Eric S. Tucker
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
6
|
Ahmed G, Shinmyo Y. Multiple Functions of Draxin/Netrin-1 Signaling in the Development of Neural Circuits in the Spinal Cord and the Brain. Front Neuroanat 2021; 15:766911. [PMID: 34899198 PMCID: PMC8655782 DOI: 10.3389/fnana.2021.766911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Axon guidance proteins play key roles in the formation of neural circuits during development. We previously identified an axon guidance cue, named draxin, that has no homology with other axon guidance proteins. Draxin is essential for the development of various neural circuits including the spinal cord commissure, corpus callosum, and thalamocortical projections. Draxin has been shown to not only control axon guidance through netrin-1 receptors, deleted in colorectal cancer (Dcc), and neogenin (Neo1) but also modulate netrin-1-mediated axon guidance and fasciculation. In this review, we summarize the multifaceted functions of draxin and netrin-1 signaling in neural circuit formation in the central nervous system. Furthermore, because recent studies suggest that the distributions and functions of axon guidance cues are highly regulated by glycoproteins such as Dystroglycan and Heparan sulfate proteoglycans, we discuss a possible function of glycoproteins in draxin/netrin-1-mediated axon guidance.
Collapse
Affiliation(s)
- Giasuddin Ahmed
- Department of Neuroscience and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
7
|
Coordination of endothelial cell positioning and fate specification by the epicardium. Nat Commun 2021; 12:4155. [PMID: 34230480 PMCID: PMC8260743 DOI: 10.1038/s41467-021-24414-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart. It remains unclear how spatial information controls endothelial cell identity and behavior in the developing heart. Here the authors perform single cell RNA sequencing at key developmental timepoints in mice to interrogate cellular contributions to coronary vessel patterning and maturation in the epicardium.
Collapse
|
8
|
Moderate prenatal alcohol exposure increases total length of L1-expressing axons in E15.5 mice. Neurotoxicol Teratol 2021; 85:106962. [PMID: 33636300 DOI: 10.1016/j.ntt.2021.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Public health campaigns broadcast the link between heavy alcohol consumption during pregnancy and physical, cognitive, and behavioral birth defects; however, they appear less effective in deterring moderate consumption prevalent in women who are pregnant or of childbearing age. The incidence of mild Fetal Alcohol Spectrum Disorders (FASD) is likely underestimated because the affected individuals lack physical signs such as retarded growth and facial dysmorphology and cognitive/behavioral deficits are not commonly detected until late childhood. Sensory information processing is distorted in FASD, but alcohol's effects on the development of axons that mediate these functions are not widely investigated. We hypothesize that alcohol exposure alters axon growth and guidance contributing to the aberrant connectivity that is a hallmark of FASD. To test this, we administered alcohol to pregnant dams from embryonic day (E) 7.5 to 14.5, during the time that axons which form the major forebrain tracts are growing. We found that moderate alcohol exposure had no effect on body weight of E15.5 embryos, but significantly increased the length of L1+ axons. To investigate a possible cause of increased L1+ axon length, we investigated the number and distribution of corridor cells, one of multiple guidance cues for thalamocortical axons which are involved in sensory processing. Alcohol did not affect corridor cell number or distribution at the time when thalamocortical axons are migrating. Future studies will investigate the function of other guidance cues for thalamocortical axons, as well as lasting consequences of axon misguidance with prenatal alcohol exposure.
Collapse
|
9
|
García-Moreno F, Molnár Z. Variations of telencephalic development that paved the way for neocortical evolution. Prog Neurobiol 2020; 194:101865. [PMID: 32526253 PMCID: PMC7656292 DOI: 10.1016/j.pneurobio.2020.101865] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
Charles Darwin stated, "community in embryonic structure reveals community of descent". Thus, to understand how the neocortex emerged during mammalian evolution we need to understand the evolution of the development of the pallium, the source of the neocortex. In this article, we review the variations in the development of the pallium that enabled the production of the six-layered neocortex. We propose that an accumulation of subtle modifications from very early brain development accounted for the diversification of vertebrate pallia and the origin of the neocortex. Initially, faint differences of expression of secretable morphogens promote a wide variety in the proportions and organization of sectors of the early pallium in different vertebrates. It prompted different sectors to host varied progenitors and distinct germinative zones. These cells and germinative compartments generate diverse neuronal populations that migrate and mix with each other through radial and tangential migrations in a taxon-specific fashion. Together, these early variations had a profound influence on neurogenetic gradients, lamination, positioning, and connectivity. Gene expression, hodology, and physiological properties of pallial neurons are important features to suggest homologies, but the origin of cells and their developmental trajectory are fundamental to understand evolutionary changes. Our review compares the development of the homologous pallial sectors in sauropsids and mammals, with a particular focus on cell lineage, in search of the key changes that led to the appearance of the mammalian neocortex.
Collapse
Affiliation(s)
- Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; IKERBASQUE Foundation, María Díaz de Haro 3, 6th Floor, 48013, Bilbao, Spain; Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Bizkaia, Spain.
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
10
|
Bloch S, Hagio H, Thomas M, Heuzé A, Hermel JM, Lasserre E, Colin I, Saka K, Affaticati P, Jenett A, Kawakami K, Yamamoto N, Yamamoto K. Non-thalamic origin of zebrafish sensory nuclei implies convergent evolution of visual pathways in amniotes and teleosts. eLife 2020; 9:e54945. [PMID: 32896272 PMCID: PMC7478893 DOI: 10.7554/elife.54945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Ascending visual projections similar to the mammalian thalamocortical pathway are found in a wide range of vertebrate species, but their homology is debated. To get better insights into their evolutionary origin, we examined the developmental origin of a thalamic-like sensory structure of teleosts, the preglomerular complex (PG), focusing on the visual projection neurons. Similarly to the tectofugal thalamic nuclei in amniotes, the lateral nucleus of PG receives tectal information and projects to the pallium. However, our cell lineage study in zebrafish reveals that the majority of PG cells are derived from the midbrain, unlike the amniote thalamus. We also demonstrate that the PG projection neurons develop gradually until late juvenile stages. Our data suggest that teleost PG, as a whole, is not homologous to the amniote thalamus. Thus, the thalamocortical-like projections evolved from a non-forebrain cell population, which indicates a surprising degree of variation in the vertebrate sensory systems.
Collapse
Affiliation(s)
- Solal Bloch
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| | - Hanako Hagio
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
- Institute for Advanced Research, Nagoya UniversityNagoyaJapan
| | - Manon Thomas
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| | - Aurélie Heuzé
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| | - Jean-Michel Hermel
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| | - Elodie Lasserre
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| | - Ingrid Colin
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| | - Kimiko Saka
- Laboratory of Molecular and Developmental Biology, National Institute of GeneticsMishimaJapan
| | - Pierre Affaticati
- TEFOR Paris-Saclay, CNRS UMS2010, INRA UMS1451, Université Paris-SaclayGif-sur-YvetteFrance
| | - Arnim Jenett
- TEFOR Paris-Saclay, CNRS UMS2010, INRA UMS1451, Université Paris-SaclayGif-sur-YvetteFrance
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of GeneticsMishimaJapan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies)MishimaJapan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
| | - Kei Yamamoto
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| |
Collapse
|
11
|
Kaur N, Han W, Li Z, Madrigal MP, Shim S, Pochareddy S, Gulden FO, Li M, Xu X, Xing X, Takeo Y, Li Z, Lu K, Imamura Kawasawa Y, Ballester-Lurbe B, Moreno-Bravo JA, Chédotal A, Terrado J, Pérez-Roger I, Koleske AJ, Sestan N. Neural Stem Cells Direct Axon Guidance via Their Radial Fiber Scaffold. Neuron 2020; 107:1197-1211.e9. [PMID: 32707082 DOI: 10.1016/j.neuron.2020.06.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wenqi Han
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhuo Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Graduate Program in Histology and Embryology, Zhengzhou University, 450001 Zhengzhou, China
| | - M Pilar Madrigal
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Sungbo Shim
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biochemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Forrest O Gulden
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xuming Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaojun Xing
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Genome Editing Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yutaka Takeo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhen Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kangrong Lu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yuka Imamura Kawasawa
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology and of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Begoña Ballester-Lurbe
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | | | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - José Terrado
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Ignacio Pérez-Roger
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Anthony J Koleske
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Departments of Genetics, Psychiatry, and Comparative Medicine, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Yale Child Study Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
12
|
Scimone ML, Atabay KD, Fincher CT, Bonneau AR, Li DJ, Reddien PW. Muscle and neuronal guidepost-like cells facilitate planarian visual system regeneration. Science 2020; 368:368/6498/eaba3203. [PMID: 32586989 PMCID: PMC8128157 DOI: 10.1126/science.aba3203] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Neuronal circuits damaged or lost after injury can be regenerated in some adult organisms, but the mechanisms enabling this process are largely unknown. We used the planarian Schmidtea mediterranea to study visual system regeneration after injury. We identify a rare population of muscle cells tightly associated with photoreceptor axons at stereotyped positions in both uninjured and regenerating animals. Together with a neuronal population, these cells promote de novo assembly of the visual system in diverse injury and eye transplantation contexts. These muscle guidepost-like cells are specified independently of eyes, and their position is defined by an extrinsic array of positional information cues. These findings provide a mechanism, involving adult formation of guidepost-like cells typically observed in embryos, for axon pattern restoration in regeneration.
Collapse
Affiliation(s)
- M Lucila Scimone
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kutay D Atabay
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher T Fincher
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ashley R Bonneau
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dayan J Li
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Cadwell CR, Bhaduri A, Mostajo-Radji MA, Keefe MG, Nowakowski TJ. Development and Arealization of the Cerebral Cortex. Neuron 2019; 103:980-1004. [PMID: 31557462 PMCID: PMC9245854 DOI: 10.1016/j.neuron.2019.07.009] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Adult cortical areas consist of specialized cell types and circuits that support unique higher-order cognitive functions. How this regional diversity develops from an initially uniform neuroepithelium has been the subject of decades of seminal research, and emerging technologies, including single-cell transcriptomics, provide a new perspective on area-specific molecular diversity. Here, we review the early developmental processes that underlie cortical arealization, including both cortex intrinsic and extrinsic mechanisms as embodied by the protomap and protocortex hypotheses, respectively. We propose an integrated model of serial homology whereby intrinsic genetic programs and local factors establish early transcriptomic differences between excitatory neurons destined to give rise to broad "proto-regions," and activity-dependent mechanisms lead to progressive refinement and formation of sharp boundaries between functional areas. Finally, we explore the potential of these basic developmental processes to inform our understanding of the emergence of functional neural networks and circuit abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cathryn R Cadwell
- Department of Anatomic Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mohammed A Mostajo-Radji
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew G Keefe
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Tosches MA, Laurent G. Evolution of neuronal identity in the cerebral cortex. Curr Opin Neurobiol 2019; 56:199-208. [PMID: 31103814 DOI: 10.1016/j.conb.2019.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
To understand neocortex evolution, we must define a theory for the elaboration of cell types, circuits, and architectonics from an ancestral structure that is consistent with developmental, molecular, and genetic data. To this end, cross-species comparison of cortical cell types emerges as a very informative approach. We review recent results that illustrate the contribution of molecular and transcriptomic data to the construction of plausible models of cortical cell-type evolution.
Collapse
Affiliation(s)
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nat Rev Neurosci 2019; 20:318-329. [DOI: 10.1038/s41583-019-0148-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Lindenmaier LB, Parmentier N, Guo C, Tissir F, Wright KM. Dystroglycan is a scaffold for extracellular axon guidance decisions. eLife 2019; 8:42143. [PMID: 30758284 PMCID: PMC6395066 DOI: 10.7554/elife.42143] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Axon guidance requires interactions between extracellular signaling molecules and transmembrane receptors, but how appropriate context-dependent decisions are coordinated outside the cell remains unclear. Here we show that the transmembrane glycoprotein Dystroglycan interacts with a changing set of environmental cues that regulate the trajectories of extending axons throughout the mammalian brain and spinal cord. Dystroglycan operates primarily as an extracellular scaffold during axon guidance, as it functions non-cell autonomously and does not require signaling through its intracellular domain. We identify the transmembrane receptor Celsr3/Adgrc3 as a binding partner for Dystroglycan, and show that this interaction is critical for specific axon guidance events in vivo. These findings establish Dystroglycan as a multifunctional scaffold that coordinates extracellular matrix proteins, secreted cues, and transmembrane receptors to regulate axon guidance.
Collapse
Affiliation(s)
| | - Nicolas Parmentier
- Institiute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Caiying Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Fadel Tissir
- Institiute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
17
|
Active intermixing of indirect and direct neurons builds the striatal mosaic. Nat Commun 2018; 9:4725. [PMID: 30413696 PMCID: PMC6226429 DOI: 10.1038/s41467-018-07171-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
The striatum controls behaviors via the activity of direct and indirect pathway projection neurons (dSPN and iSPN) that are intermingled in all compartments. While such cellular mosaic ensures the balanced activity of the two pathways, its developmental origin and pattern remains largely unknown. Here, we show that both SPN populations are specified embryonically and intermix progressively through multidirectional iSPN migration. Using conditional mutant mice, we found that inactivation of the dSPN-specific transcription factor Ebf1 impairs selective dSPN properties, including axon pathfinding, while molecular and functional features of iSPN were preserved. Ebf1 mutation disrupted iSPN/dSPN intermixing, resulting in an uneven distribution. Such architectural defect was selective of the matrix compartment, highlighting that intermixing is a parallel process to compartment formation. Our study reveals while iSPN/dSPN specification is largely independent, their intermingling emerges from an active migration of iSPN, thereby providing a novel framework for the building of striatal architecture.
Collapse
|
18
|
Backer S, Lokmane L, Landragin C, Deck M, Garel S, Bloch-Gallego E. Trio GEF mediates RhoA activation downstream of Slit2 and coordinates telencephalic wiring. Development 2018; 145:dev.153692. [PMID: 30177526 DOI: 10.1242/dev.153692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/24/2018] [Indexed: 01/01/2023]
Abstract
Trio, a member of the Dbl family of guanine nucleotide exchange factors, activates Rac1 downstream of netrin 1/DCC signalling in axon outgrowth and guidance. Although it has been proposed that Trio also activates RhoA, the putative upstream factors remain unknown. Here, we show that Slit2 induces Trio-dependent RhoA activation, revealing a crosstalk between Slit and Trio/RhoA signalling. Consistently, we found that RhoA activity is hindered in vivo in T rio mutant mouse embryos. We next studied the development of the ventral telencephalon and thalamocortical axons, which have been previously shown to be controlled by Slit2. Remarkably, this analysis revealed that Trio knockout (KO) mice show phenotypes that bear strong similarities to the ones that have been reported in Slit2 KO mice in both guidepost corridor cells and thalamocortical axon pathfinding in the ventral telencephalon. Taken together, our results show that Trio induces RhoA activation downstream of Slit2, and support a functional role in ensuring the proper positioning of both guidepost cells and a major axonal tract. Our study indicates a novel role for Trio in Slit2 signalling and forebrain wiring, highlighting its role in multiple guidance pathways as well as in biological functions of importance for a factor involved in human brain disorders.
Collapse
Affiliation(s)
- Stéphanie Backer
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, 75014 Paris, France.,INSERM, U1016, Department of Development, Reproduction and Cancer, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, PSL research University, 75005 Paris, France
| | - Camille Landragin
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, 75014 Paris, France.,INSERM, U1016, Department of Development, Reproduction and Cancer, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Marie Deck
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, PSL research University, 75005 Paris, France
| | - Sonia Garel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, PSL research University, 75005 Paris, France
| | - Evelyne Bloch-Gallego
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, 75014 Paris, France .,INSERM, U1016, Department of Development, Reproduction and Cancer, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| |
Collapse
|
19
|
López-Bendito G. Development of the Thalamocortical Interactions: Past, Present and Future. Neuroscience 2018; 385:67-74. [PMID: 29932982 DOI: 10.1016/j.neuroscience.2018.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 01/11/2023]
Abstract
For the past two decades, we have advanced in our understanding of the mechanisms implicated in the formation of brain circuits. The connection between the cortex and thalamus has deserved much attention, as thalamocortical connectivity is crucial for sensory processing and motor learning. Classical dye tracing studies in wild-type and knockout mice initially helped to characterize the developmental progression of this connectivity and revealed key transcription factors involved. With the recent advances in technical tools to specifically label subsets of projecting neurons, knock-down genes individually and/or modify their activity, the field has gained further understanding on the rules operating in thalamocortical circuit formation and plasticity. In this review, I will summarize the most relevant discoveries that have been made in this field, from development to early plasticity processes covering three major aspects: axon guidance, thalamic influence on sensory cortical specification, and the role of spontaneous thalamic activity. I will emphasize how the implementation of new tools has helped the field to progress and what I consider to be open questions and the perspective for the future.
Collapse
Affiliation(s)
- Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
20
|
Abstract
During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such circuits results in disorders of the nervous system. Thus, understanding the molecular mechanisms that guide axons and lead to neural circuit formation is of interest not only to developmental neuroscientists but also for a better comprehension of neural disorders. Recent studies have demonstrated how crosstalk between different families of guidance receptors can regulate axonal navigation at choice points, and how changes in growth cone behaviour at intermediate targets require changes in the surface expression of receptors. These changes can be achieved by a variety of mechanisms, including transcription, translation, protein-protein interactions, and the specific trafficking of proteins and mRNAs. Here, I review these axon guidance mechanisms, highlighting the most recent advances in the field that challenge the textbook model of axon guidance.
Collapse
Affiliation(s)
- Esther T Stoeckli
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
21
|
Antón-Bolaños N, Espinosa A, López-Bendito G. Developmental interactions between thalamus and cortex: a true love reciprocal story. Curr Opin Neurobiol 2018; 52:33-41. [PMID: 29704748 DOI: 10.1016/j.conb.2018.04.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Abstract
The developmental programs that control the specification of cortical and thalamic territories are maintained largely as independent processes. However, bulk of evidence demonstrates the requirement of the reciprocal interactions between cortical and thalamic neurons as key for the correct development of functional thalamocortical circuits. This reciprocal loop of connections is essential for sensory processing as well as for the execution of complex sensory-motor tasks. Here, we review recent advances in our understanding of how mutual collaborations between both brain regions define area patterning and cell differentiation in the thalamus and cortex.
Collapse
Affiliation(s)
- Noelia Antón-Bolaños
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain
| | - Ana Espinosa
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain.
| |
Collapse
|
22
|
Tinterri A, Deck M, Keita M, Mailhes C, Rubin AN, Kessaris N, Lokmane L, Bielle F, Garel S. Tangential migration of corridor guidepost neurons contributes to anxiety circuits. J Comp Neurol 2017; 526:397-411. [DOI: 10.1002/cne.24330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Andrea Tinterri
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
- Boehringer Ingelheim Fonds, Foundation for Basic Research in Medicine; Mainz Germany
- Ecole de Neurosciences de Paris-Ile de France; Paris France
| | - Marie Deck
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
| | - Maryama Keita
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
| | - Caroline Mailhes
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Acute Transgenesis Facility
| | - Anna Noren Rubin
- University College of London, Wolfson Institute for Biomedical Research, Department of Cell and Developmental Biology; London United Kingdom
| | - Nicoletta Kessaris
- University College of London, Wolfson Institute for Biomedical Research, Department of Cell and Developmental Biology; London United Kingdom
| | - Ludmilla Lokmane
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
| | - Franck Bielle
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Service de Neuropathologie; Paris France
| | - Sonia Garel
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
- Ecole de Neurosciences de Paris-Ile de France; Paris France
| |
Collapse
|
23
|
Mercer A, Thomson AM. Cornu Ammonis Regions-Antecedents of Cortical Layers? Front Neuroanat 2017; 11:83. [PMID: 29018334 PMCID: PMC5622992 DOI: 10.3389/fnana.2017.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions-which might be seen as hippocampal antecedents of neocortical layers-lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the "cells that fire and wire together" into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five "pyramidal layers." If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can perhaps begin to understand why definitive classification, covering every aspect of each neurone's structure and function, is such a challenge. Here, we summarize and compare the development of these two cortices, the properties of their neurones, the circuits they form and the ordered, unidirectional flow of information from one hippocampal region, or one neocortical layer, to another.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Alex M. Thomson
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
24
|
The structure, splicing, synteny and expression of lamprey COE genes and the evolution of the COE gene family in chordates. Dev Genes Evol 2017; 227:319-338. [DOI: 10.1007/s00427-017-0591-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 08/20/2017] [Indexed: 10/18/2022]
|
25
|
Mitsogiannis MD, Little GE, Mitchell KJ. Semaphorin-Plexin signaling influences early ventral telencephalic development and thalamocortical axon guidance. Neural Dev 2017; 12:6. [PMID: 28438183 PMCID: PMC5402653 DOI: 10.1186/s13064-017-0083-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
Background Sensory processing relies on projections from the thalamus to the neocortex being established during development. Information from different sensory modalities reaching the thalamus is segregated into specialized nuclei, whose neurons then send inputs to cognate cortical areas through topographically defined axonal connections. Developing thalamocortical axons (TCAs) normally approach the cortex by extending through the subpallium; here, axonal navigation is aided by distributed guidance cues and discrete cell populations, such as the corridor neurons and the internal capsule (IC) guidepost cells. In mice lacking Semaphorin-6A, axons from the dorsal lateral geniculate nucleus (dLGN) bypass the IC and extend aberrantly in the ventral subpallium. The functions normally mediated by Semaphorin-6A in this system remain unknown, but might depend on interactions with Plexin-A2 and Plexin-A4, which have been implicated in other neurodevelopmental processes. Methods We performed immunohistochemical and neuroanatomical analyses of thalamocortical wiring and subpallial development in Sema6a and Plxna2; Plxna4 null mutant mice and analyzed the expression of these genes in relevant structures. Results In Plxna2; Plxna4 double mutants we discovered TCA pathfinding defects that mirrored those observed in Sema6a mutants, suggesting that Semaphorin-6A − Plexin-A2/Plexin-A4 signaling might mediate dLGN axon guidance at subpallial level. In order to understand where and when Semaphorin-6A, Plexin-A2 and Plexin-A4 may be required for proper subpallial TCA guidance, we then characterized their spatiotemporal expression dynamics during early TCA development. We observed that the thalamic neurons whose axons are misrouted in these mutants normally express Semaphorin-6A but not Plexin-A2 or Plexin-A4. By contrast, all three proteins are expressed in corridor cells and other structures in the developing basal ganglia. This finding could be consistent with an hypothetical action of Plexins as guidance signals through Sema6A as a receptor on dLGN axons, and/or with their indirect effect on TCA guidance due to functions in the morphogenesis of subpallial intermediate targets. In support of the latter possibility, we observed that in both Plxna2; Plxna4 and Sema6a mutants some IC guidepost cells abnormally localize in correspondence of the ventral path misrouted TCAs elongate into. Conclusions These findings implicate Semaphorin-6A − Plexin-A2/Plexin-A4 interactions in dLGN axon guidance and in the spatiotemporal organization of guidepost cell populations in the mammalian subpallium. Electronic supplementary material The online version of this article (doi:10.1186/s13064-017-0083-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuela D Mitsogiannis
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Graham E Little
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland.,MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Kevin J Mitchell
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland. .,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland. .,Developmental Neurogenetics, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
26
|
Abstract
During neural circuit formation, axons need to navigate to their target cells in a complex, constantly changing environment. Although we most likely have identified most axon guidance cues and their receptors, we still cannot explain the molecular background of pathfinding for any subpopulation of axons. We lack mechanistic insight into the regulation of interactions between guidance receptors and their ligands. Recent developments in the field of axon guidance suggest that the regulation of surface expression of guidance receptors comprises transcriptional, translational, and post-translational mechanisms, such as trafficking of vesicles with specific cargos, protein-protein interactions, and specific proteolysis of guidance receptors. Not only axon guidance molecules but also the regulatory mechanisms that control their spatial and temporal expression are involved in synaptogenesis and synaptic plasticity. Therefore, it is not surprising that genes associated with axon guidance are frequently found in genetic and genomic studies of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Esther Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Ke C, Gao F, Tian X, Li C, Shi D, He W, Tian Y. Slit2/Robo1 Mediation of Synaptic Plasticity Contributes to Bone Cancer Pain. Mol Neurobiol 2017; 54:295-307. [PMID: 26738857 DOI: 10.1007/s12035-015-9564-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
Abstract
Synaptic plasticity is fundamental to spinal sensitivity of bone cancer pain. Here, we have shown that excitatory synaptogenesis contributes to bone cancer pain. New synapse formation requires neurite outgrowth and an interaction between axons and dendrites, accompanied by the appositional organization of presynaptic and postsynaptic specializations. We have shown that Slit2, Robo1, and RhoA act as such cues that promote neurite outgrowth and guide the axon for synapse formation. Sarcoma inoculation induces excitatory synaptogenesis and bone cancer pain which are reversed by Slit2 knockdown but aggravated by Robo1 knockdown. Synaptogenesis of cultured neurons are inhibited by Slit2 knockdown but enhanced by Robo1 knockdown. Sarcoma implantation induces an increase in Slit2 and decreases Robo1 and RhoA, while Slit2 knockdown results in an increase of Robo1 and RhoA. These results have demonstrated a molecular mechanism of synaptogenesis in bone cancer pain.
Collapse
Affiliation(s)
- Changbin Ke
- Institute of Anesthesiology and Pain (IAP) and Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Caijuan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai Shi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wensheng He
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
28
|
Gezelius H, López-Bendito G. Thalamic neuronal specification and early circuit formation. Dev Neurobiol 2016; 77:830-843. [PMID: 27739248 DOI: 10.1002/dneu.22460] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/16/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
The thalamus is a central structure of the brain, primarily recognized for the relay of incoming sensory and motor information to the cerebral cortex but also key in high order intracortical communication. It consists of glutamatergic projection neurons organized in several distinct nuclei, each having a stereotype connectivity pattern and functional roles. In the adult, these nuclei can be appreciated by architectural boundaries, although their developmental origin and specification is only recently beginning to be revealed. Here, we summarize the current knowledge on the specification of the distinct thalamic neurons and nuclei, starting from early embryonic patterning until the postnatal days when active sensory experience is initiated and the overall system connectivity is already established. We also include an overview of the guidance processes important for establishing thalamocortical connections, with emphasis on the early topographical specification. The extensively studied thalamocortical axon branching in the cortex is briefly mentioned; however, the maturation and plasticity of this connection are beyond the scope of this review. In separate chapters, additional mechanisms and/or features that influence the specification and development of thalamic neurons and their circuits are also discussed. Finally, an outlook of future directions is given. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 830-843, 2017.
Collapse
Affiliation(s)
- Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Spain
| |
Collapse
|
29
|
Feng J, Xian Q, Guan T, Hu J, Wang M, Huang Y, So KF, Evans SM, Chai G, Goffinet AM, Qu Y, Zhou L. Celsr3 and Fzd3 Organize a Pioneer Neuron Scaffold to Steer Growing Thalamocortical Axons. Cereb Cortex 2016; 26:3323-34. [PMID: 27170656 PMCID: PMC4898681 DOI: 10.1093/cercor/bhw132] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Celsr3 and Fzd3 regulate the development of reciprocal thalamocortical projections independently of their expression in cortical or thalamic neurons. To understand this cell non autonomous mechanism further, we tested whether Celsr3 and Fzd3 could act via Isl1-positive guidepost cells. Isl1-positive cells appear in the forebrain at embryonic day (E) 9.5-E10.5 and, from E12.5, they form 2 contingents in ventral telencephalon and prethalamus. In control mice, corticothalamic axons run in the ventral telencephalic corridor in close contact with Isl1-positive cells. When Celsr3 or Fzd3 is inactivated in Isl1-expressing cells, corticofugal fibers stall and loop in the ventral telencephalic corridor of high Isl1 expression, and thalamic axons fail to cross the diencephalon–telencephalon junction (DTJ). At E12.5, before thalamic and cortical axons emerge, pioneer projections from Isl1-positive cells cross the DTJ from both sides in control but not mutant embryos. These early projections appear to act like a bridge to guide later growing thalamic axons through the DTJ. Our data suggest that Celsr3 and Fzd3 orchestrate the formation of a scaffold of pioneer neurons and their axons. This scaffold extends from prethalamus to ventral telencephalon and subcortex, and steers reciprocal corticothalamic fibers.
Collapse
Affiliation(s)
- Jia Feng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China
| | - Quanxiang Xian
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China
| | - Tingting Guan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China
| | - Jing Hu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China
| | - Meizhi Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China
| | - Yuhua Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China Department of Anatomy, The University of Hong Kong Pokfulam, Hong Kong SAR, PR China
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Guoliang Chai
- Institute of Neuroscience, Université catholique de Louvain, Brussels B1200, Belgium
| | - Andre M Goffinet
- Institute of Neuroscience, Université catholique de Louvain, Brussels B1200, Belgium
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China Co-innovation Center of Neuroregeneration, Jiangsu, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China Co-innovation Center of Neuroregeneration, Jiangsu, China
| |
Collapse
|
30
|
Frizzled3 Controls Axonal Polarity and Intermediate Target Entry during Striatal Pathway Development. J Neurosci 2016; 35:14205-19. [PMID: 26490861 DOI: 10.1523/jneurosci.1840-15.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The striatum is a large brain nucleus with an important role in the control of movement and emotions. Medium spiny neurons (MSNs) are striatal output neurons forming prominent descending axon tracts that target different brain nuclei. However, how MSN axon tracts in the forebrain develop remains poorly understood. Here, we implicate the Wnt binding receptor Frizzled3 in several uncharacterized aspects of MSN pathway formation [i.e., anterior-posterior guidance of MSN axons in the striatum and their subsequent growth into the globus pallidus (GP), an important (intermediate) target]. In Frizzled3 knock-out mice, MSN axons fail to extend along the anterior-posterior axis of the striatum, and many do not reach the GP. Wnt5a acts as an attractant for MSN axons in vitro, is expressed in a posterior high, anterior low gradient in the striatum, and Wnt5a knock-out mice phenocopy striatal anterior-posterior defects observed in Frizzled3 mutants. This suggests that Wnt5a controls anterior-posterior guidance of MSN axons through Frizzled3. Axons that reach the GP in Frizzled3 knock-out mice fail to enter this structure. Surprisingly, entry of MSN axons into the GP non-cell-autonomously requires Frizzled3, and our data suggest that GP entry may be contingent on the correct positioning of "corridor" guidepost cells for thalamocortical axons by Frizzled3. Together, these data dissect MSN pathway development and reveal (non)cell-autonomous roles for Frizzled3 in MSN axon guidance. Further, they are the first to identify a gene that provides anterior-posterior axon guidance in a large brain nucleus and link Frizzled3 to corridor cell development. SIGNIFICANCE STATEMENT Striatal axon pathways mediate complex physiological functions and are an important therapeutic target, underscoring the need to define how these connections are established. Remarkably, the molecular programs regulating striatal pathway development remain poorly characterized. Here, we determine the embryonic ontogeny of the two main striatal pathways (striatonigral and striatopallidal) and identify novel (non)cell-autonomous roles for the axon guidance receptor Frizzled3 in uncharacterized aspects of striatal pathway formation (i.e., anterior-posterior axon guidance in the striatum and axon entry into the globus pallidus). Further, our results link Frizzled3 to corridor guidepost cell development and suggest that an abnormal distribution of these cells has unexpected, widespread effects on the development of different axon tracts (i.e., striatal and thalamocortical axons).
Collapse
|
31
|
Draxin from neocortical neurons controls the guidance of thalamocortical projections into the neocortex. Nat Commun 2015; 6:10232. [PMID: 26659141 PMCID: PMC4682175 DOI: 10.1038/ncomms10232] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/19/2015] [Indexed: 11/21/2022] Open
Abstract
The thalamocortical tract carries sensory information to the neocortex. It has long been recognized that the neocortical pioneer axons of subplate neurons are essential for thalamocortical development. Herein we report that an axon guidance cue, draxin, is expressed in early-born neocortical neurons, including subplate neurons, and is necessary for thalamocortical development. In draxin−/− mice, thalamocortical axons do not enter the neocortex. This phenotype is sufficiently rescued by the transgenic expression of draxin in neocortical neurons. Genetic interaction data suggest that draxin acts through Deleted in colorectal cancer (DCC) and Neogenin (Neo1), to regulate thalamocortical projections in vivo. Draxin promotes the outgrowth of thalamic axons in vitro and this effect is abolished in thalamic neurons from Dcc and Neo1 double mutants. These results suggest that draxin from neocortical neurons controls thalamocortical projections into the neocortex, and that this effect is mediated through the DCC and Neo1 receptors. During neural development thalamocortical axons follow corticofugal projections into the neocortex. Here, using a combination of knock down and rescue experiments, the authors show that Draxin expression in neocortical cells promotes thalamic axon projections from the internal capsule.
Collapse
|
32
|
Clegg JM, Li Z, Molinek M, Caballero IM, Manuel MN, Price DJ. Pax6 is required intrinsically by thalamic progenitors for the normal molecular patterning of thalamic neurons but not the growth and guidance of their axons. Neural Dev 2015; 10:26. [PMID: 26520399 PMCID: PMC4628245 DOI: 10.1186/s13064-015-0053-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/23/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In mouse embryos, the Pax6 transcription factor is expressed in the progenitors of thalamic neurons but not in thalamic neurons themselves. Its null-mutation causes early mis-patterning of thalamic progenitors. It is known that thalamic neurons generated by Pax6 (-/-) progenitors do not develop their normal connections with the cortex, but it is not clear why. We investigated the extent to which defects intrinsic to the thalamus are responsible. RESULTS We first confirmed that, in constitutive Pax6 (-/-) mutants, the axons of thalamic neurons fail to enter the telencephalon and, instead, many of them take an abnormal path to the hypothalamus, whose expression of Slits would normally repel them. We found that thalamic neurons show reduced expression of the Slit receptor Robo2 in Pax6 (-/-) mutants, which might enhance the ability of their axons to enter the hypothalamus. Remarkably, however, in chimeras comprising a mixture of Pax6 (-/-) and Pax6 (+/+) cells, Pax6 (-/-) thalamic neurons are able to generate axons that exit the diencephalon, take normal trajectories through the telencephalon and avoid the hypothalamus. This occurs despite abnormalities in their molecular patterning (they express Nkx2.2, unlike normal thalamic neurons) and their reduced expression of Robo2. In conditional mutants, acute deletion of Pax6 from the forebrain at the time when thalamic axons are starting to grow does not prevent the development of the thalamocortical tract, suggesting that earlier extra-thalamic patterning and /or morphological defects are the main cause of thalamocortical tract failure in Pax6 (-/-) constitutive mutants. CONCLUSIONS Our results indicate that Pax6 is required by thalamic progenitors for the normal molecular patterning of the thalamic neurons that they generate but thalamic neurons do not need normal Pax6-dependent patterning to become competent to grow axons that can be guided appropriately.
Collapse
Affiliation(s)
- James M Clegg
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Ziwen Li
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Michael Molinek
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Isabel Martín Caballero
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Current address: Laboratory of Molecular Neurobiology, Karolinska Institute, 17177, Scheeles Väg 1, Sweden.
| | - Martine N Manuel
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - David J Price
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
33
|
Squarzoni P, Thion MS, Garel S. Neuronal and microglial regulators of cortical wiring: usual and novel guideposts. Front Neurosci 2015; 9:248. [PMID: 26236185 PMCID: PMC4505395 DOI: 10.3389/fnins.2015.00248] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022] Open
Abstract
Neocortex functioning relies on the formation of complex networks that begin to be assembled during embryogenesis by highly stereotyped processes of cell migration and axonal navigation. The guidance of cells and axons is driven by extracellular cues, released along by final targets or intermediate targets located along specific pathways. In particular, guidepost cells, originally described in the grasshopper, are considered discrete, specialized cell populations located at crucial decision points along axonal trajectories that regulate tract formation. These cells are usually early-born, transient and act at short-range or via cell-cell contact. The vast majority of guidepost cells initially identified were glial cells, which play a role in the formation of important axonal tracts in the forebrain, such as the corpus callosum, anterior, and post-optic commissures as well as optic chiasm. In the last decades, tangential migrating neurons have also been found to participate in the guidance of principal axonal tracts in the forebrain. This is the case for several examples such as guideposts for the lateral olfactory tract (LOT), corridor cells, which open an internal path for thalamo-cortical axons and Cajal-Retzius cells that have been involved in the formation of the entorhino-hippocampal connections. More recently, microglia, the resident macrophages of the brain, were specifically observed at the crossroads of important neuronal migratory routes and axonal tract pathways during forebrain development. We furthermore found that microglia participate to the shaping of prenatal forebrain circuits, thereby opening novel perspectives on forebrain development and wiring. Here we will review the last findings on already known guidepost cell populations and will discuss the role of microglia as a potentially new class of atypical guidepost cells.
Collapse
Affiliation(s)
- Paola Squarzoni
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| | - Morgane S Thion
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| | - Sonia Garel
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| |
Collapse
|
34
|
FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon. Brain Struct Funct 2015; 221:2905-17. [DOI: 10.1007/s00429-015-1079-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/22/2015] [Indexed: 02/05/2023]
|
35
|
Tang W, Tang J, He J, Zhou Z, Qin Y, Qin J, Li B, Xu X, Geng Q, Jiang W, Wu W, Wang X, Xia Y. SLIT2/ROBO1-miR-218-1-RET/PLAG1: a new disease pathway involved in Hirschsprung's disease. J Cell Mol Med 2015; 19:1197-207. [PMID: 25786906 PMCID: PMC4459835 DOI: 10.1111/jcmm.12454] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/28/2014] [Indexed: 12/19/2022] Open
Abstract
Hirschsprung's disease (HSCR) is a rare congenital disease caused by impaired proliferation and migration of neural crest cells. We investigated changes in expression of microRNAs (miRNAs) and the genes they regulate in tissues of patients with HSCR. Quantitative real-time PCR and immunoblot analyses were used to measure levels of miRNA, mRNAs, and proteins in colon tissues from 69 patients with HSCR and 49 individuals without HSCR (controls). Direct interactions between miRNAs and specific mRNAs were indentified in vitro, while the function role of miR-218-1 was investigated by using miR-218 transgenic mice. An increased level of miR-218-1 correlated with increased levels of SLIT2 and decreased levels of RET and PLAG1 mRNA and protein. The reductions in RET and PLAG1 by miR-218-1 reduced proliferation and migration of SH-SY5Y cells. Overexpression of the secreted form of SLIT2 inhibited cell migration via binding to its receptor ROBO1. Bowel tissues from miR-218-1 transgenic mice had nerve fibre hyperplasia and reduced numbers of gangliocytes, compared with wild-type mice. Altered miR-218-1 regulation of SLIT2, RET and PLAG1 might be involved in the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical UniversityNanjing, China
- Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of EducationChina
| | - Junwei Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical UniversityNanjing, China
- Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of EducationChina
| | - Jun He
- Department of Pathology, Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Zhigang Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical UniversityNanjing, China
- Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of EducationChina
| | - Yufeng Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical UniversityNanjing, China
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical UniversityNanjing, China
| | - Jingjing Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical UniversityNanjing, China
- Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of EducationChina
| | - Bo Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical UniversityNanjing, China
- Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of EducationChina
| | - Xiaoqun Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical UniversityNanjing, China
- Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of EducationChina
| | - Qiming Geng
- Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of EducationChina
| | - Weiwei Jiang
- Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of EducationChina
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical UniversityNanjing, China
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical UniversityNanjing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical UniversityNanjing, China
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical UniversityNanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical UniversityNanjing, China
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical UniversityNanjing, China
| |
Collapse
|
36
|
Abstract
Organization and development of the forebrain in crocodilians are reviewed. In juvenile Caiman crocodilus, the following features were examined: identification and classification of dorsal thalamic nuclei and their respective connections with the telencephalon, presence of local circuit neurons in the dorsal thalamic nuclei, telencephalic projections to the dorsal thalamus, and organization of the thalamic reticular nucleus. These results document many similarities between crocodilians and other reptiles and birds. While crocodilians, as well as other sauropsids, demonstrate several features of neural circuitry in common with mammals, certain striking differences in organization of the forebrain are present. These differences are the result of evolution. To explore a basis for these differences, embryos of Alligator misissippiensis were examined to address the following. First, very early development of the brain in Alligator is similar to that of other amniotes. Second, the developmental program for individual vesicles of the brain differs between the secondary prosencephalon, diencephalon, midbrain, and hindbrain in Alligator. This is likely to be the case for other amniotes. Third, initial development of the diencephalon in Alligator is similar to that in other amniotes. In Alligator, alar and basal parts likely follow a different developmental scheme.
Collapse
Affiliation(s)
- Michael B Pritz
- Molecular Neurosciences Department, Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, VA 22030, USA
| |
Collapse
|
37
|
Magnani D, Morlé L, Hasenpusch-Theil K, Paschaki M, Jacoby M, Schurmans S, Durand B, Theil T. The ciliogenic transcription factor Rfx3 is required for the formation of the thalamocortical tract by regulating the patterning of prethalamus and ventral telencephalon. Hum Mol Genet 2015; 24:2578-93. [PMID: 25631876 DOI: 10.1093/hmg/ddv021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/21/2015] [Indexed: 01/08/2023] Open
Abstract
Primary cilia are complex subcellular structures that play key roles during embryogenesis by controlling the cellular response to several signaling pathways. Defects in the function and/or structure of primary cilia underlie a large number of human syndromes collectively referred to as ciliopathies. Often, ciliopathies are associated with mental retardation (MR) and malformation of the corpus callosum. However, the possibility of defects in other forebrain axon tracts, which could contribute to the cognitive disorders of these patients, has not been explored. Here, we investigate the formation of the corticothalamic/thalamocortical tracts in mice mutant for Rfx3, which regulates the expression of many genes involved in ciliogenesis and cilia function. Using DiI axon tracing and immunohistochemistry experiments, we show that some Rfx3(-/-) corticothalamic axons abnormally migrate toward the pial surface of the ventral telencephalon (VT). Some thalamocortical axons (TCAs) also fail to leave the diencephalon or abnormally project toward the amygdala. Moreover, the Rfx3(-/-) VT displays heterotopias containing attractive guidance cues and expressing the guidance molecules Slit1 and Netrin1. Finally, the abnormal projection of TCAs toward the amygdala is also present in mice carrying a mutation in the Inpp5e gene, which is mutated in Joubert Syndrome and which controls cilia signaling and stability. The presence of identical thalamocortical malformations in two independent ciliary mutants indicates a novel role for primary cilia in the formation of the corticothalamic/thalamocortical tracts by establishing the correct cellular environment necessary for its development.
Collapse
Affiliation(s)
- Dario Magnani
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Laurette Morlé
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Université Claude Bernard Lyon 1, Villeurbanne, Lyon F69622, France
| | - Kerstin Hasenpusch-Theil
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Marie Paschaki
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Université Claude Bernard Lyon 1, Villeurbanne, Lyon F69622, France
| | - Monique Jacoby
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, Luxembourg, Luxembourg and
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA-Signal Transduction, GIGA B34, Université de Liège, Liège B-4000, Belgium
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Université Claude Bernard Lyon 1, Villeurbanne, Lyon F69622, France
| | - Thomas Theil
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK,
| |
Collapse
|
38
|
Lavado A, Ware M, Paré J, Cao X. The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap. Development 2014; 141:4182-93. [PMID: 25336744 DOI: 10.1242/dev.111260] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The corpus callosum connects cerebral hemispheres and is the largest axon tract in the mammalian brain. Callosal malformations are among the most common congenital brain anomalies and are associated with a wide range of neuropsychological deficits. Crossing of the midline by callosal axons relies on a proper midline environment that harbors guidepost cells emitting guidance cues to instruct callosal axon navigation. Little is known about what controls the formation of the midline environment. We find that two components of the Hippo pathway, the tumor suppressor Nf2 (Merlin) and the transcriptional coactivator Yap (Yap1), regulate guidepost development and expression of the guidance cue Slit2 in mouse. During normal brain development, Nf2 suppresses Yap activity in neural progenitor cells to promote guidepost cell differentiation and prevent ectopic Slit2 expression. Loss of Nf2 causes malformation of midline guideposts and Slit2 upregulation, resulting in callosal agenesis. Slit2 heterozygosity and Yap deletion both restore callosal formation in Nf2 mutants. Furthermore, selectively elevating Yap activity in midline neural progenitors is sufficient to disrupt guidepost formation, upregulate Slit2 and prevent midline crossing. The Hippo pathway is known for its role in controlling organ growth and tumorigenesis. Our study identifies a novel role of this pathway in axon guidance. Moreover, by linking axon pathfinding and neural progenitor behaviors, our results provide an example of the intricate coordination between growth and wiring during brain development.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Ware
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joshua Paré
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
39
|
Tosa Y, Hirao A, Matsubara I, Kawaguchi M, Fukui M, Kuratani S, Murakami Y. Development of the thalamo-dorsal ventricular ridge tract in the Chinese soft-shelled turtle, Pelodiscus sinensis. Dev Growth Differ 2014; 57:40-57. [PMID: 25494924 DOI: 10.1111/dgd.12186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 01/04/2023]
Abstract
With the exception of that from the olfactory system, the vertebrate sensory information is relayed by the dorsal thalamus (dTh) to be carried to the telencephalon via the thalamo-telencephalic tract. Although the trajectory of the tract from the dTh to the basal telencephalon seems to be highly conserved among amniotes, the axonal terminals vary in each group. In mammals, thalamic axons project onto the neocortex, whereas they project onto the dorsal pallium and the dorsal ventricular ridge (DVR) in reptiles and birds. To ascertain the evolutionary development of the thalamo-telencephalic connection in amniotes, we focused on reptiles. Using the Chinese soft-shelled turtle (Pelodiscus sinensis), we studied the developmental course of the thalamic axons projecting onto the DVR. We found, during the developmental period when the thalamo-DVR connection forms, that transcripts of axon guidance molecules, including EphA4 and Slit2, were expressed in the diencephalon, similar to the mouse embryo. These results suggest that the basic mechanisms responsible for the formation of the thalamo-telencephalic tract are shared across amniote lineages. Conversely, there was a characteristic difference in the expression patterns of Slit2, Netrin1, and EphrinA5 in the telencephalon between synapsid (mammalian) and diapsid (reptilian and avian) lineages. This indicates that changes in the expression domains of axon guidance molecules may modify the thalamic axon projection and lead to the diversity of neuronal circuits in amniotes.
Collapse
Affiliation(s)
- Yasuhiko Tosa
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Boeckx C, Benítez-Burraco A. Globularity and language-readiness: generating new predictions by expanding the set of genes of interest. Front Psychol 2014; 5:1324. [PMID: 25505436 PMCID: PMC4243498 DOI: 10.3389/fpsyg.2014.01324] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022] Open
Abstract
This study builds on the hypothesis put forth in Boeckx and Benítez-Burraco (2014), according to which the developmental changes expressed at the levels of brain morphology and neural connectivity that resulted in a more globular braincase in our species were crucial to understand the origins of our language-ready brain. Specifically, this paper explores the links between two well-known 'language-related' genes like FOXP2 and ROBO1 implicated in vocal learning and the initial set of genes of interest put forth in Boeckx and Benítez-Burraco (2014), with RUNX2 as focal point. Relying on the existing literature, we uncover potential molecular links that could be of interest to future experimental inquiries into the biological foundations of language and the testing of our initial hypothesis. Our discussion could also be relevant for clinical linguistics and for the interpretation of results from paleogenomics.
Collapse
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA)Barcelona, Spain
- Department of Linguistics, Universitat de BarcelonaBarcelona, Spain
| | | |
Collapse
|
41
|
Garel S, López-Bendito G. Inputs from the thalamocortical system on axon pathfinding mechanisms. Curr Opin Neurobiol 2014; 27:143-50. [DOI: 10.1016/j.conb.2014.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
42
|
Blockus H, Chédotal A. The multifaceted roles of Slits and Robos in cortical circuits: from proliferation to axon guidance and neurological diseases. Curr Opin Neurobiol 2014; 27:82-8. [PMID: 24698714 DOI: 10.1016/j.conb.2014.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/17/2014] [Accepted: 03/09/2014] [Indexed: 11/20/2022]
Abstract
Slit repulsion, mediated by Robo receptors, is known to play a major role in axon guidance in the nervous system. However, recent studies have revealed that in the mammalian cortex these molecules are highly versatile and that their function extends far beyond axon guidance. They act at all phases of development to control neurogenesis, neuronal migration, axon patterning, dendritic outgrowth and spinogenesis. The expression of Robo receptors in cortical and thalamocortical axons (TCAs) is tightly regulated by a combination of transcription factors (TFs), proteases and activity. These findings also suggest that Slit and Robos have influenced the evolution of cortical circuits. Last, novel genetic evidence associates various neurological disorders, such as autism, to abnormal Slit/Robo signaling.
Collapse
Affiliation(s)
- Heike Blockus
- INSERM UMR_S968, Institut de la Vision, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la vision, F-75012, France; CNRS, UMR7210, F-75012 Paris, France
| | - Alain Chédotal
- INSERM UMR_S968, Institut de la Vision, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la vision, F-75012, France; CNRS, UMR7210, F-75012 Paris, France.
| |
Collapse
|
43
|
Lokmane L, Garel S. Map transfer from the thalamus to the neocortex: inputs from the barrel field. Semin Cell Dev Biol 2014; 35:147-55. [PMID: 25020201 DOI: 10.1016/j.semcdb.2014.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 01/05/2023]
Abstract
Sensory perception relies on the formation of stereotyped maps inside the brain. This feature is particularly well illustrated in the mammalian neocortex, which is subdivided into distinct cortical sensory areas that comprise topological maps, such as the somatosensory homunculus in humans or the barrel field of the large whiskers in rodents. How somatosensory maps are formed and relayed into the neocortex remain essential questions in developmental neuroscience. Here, we will present our current knowledge on whisker map transfer in the mouse model, with the goal of linking embryonic and postnatal studies into a comprehensive framework.
Collapse
Affiliation(s)
- Ludmilla Lokmane
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, 46 rue d'Ulm, Paris F-75005, France; Inserm, U1024, Paris F-75005, France; CNRS, UMR 8197, Paris F-75005, France.
| | - Sonia Garel
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, 46 rue d'Ulm, Paris F-75005, France; Inserm, U1024, Paris F-75005, France; CNRS, UMR 8197, Paris F-75005, France.
| |
Collapse
|
44
|
Mandai K, Reimert DV, Ginty DD. Linx mediates interaxonal interactions and formation of the internal capsule. Neuron 2014; 83:93-103. [PMID: 24930700 PMCID: PMC4090613 DOI: 10.1016/j.neuron.2014.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
Abstract
During the development of forebrain connectivity, ascending thalamocortical and descending corticofugal axons first intermingle at the pallial-subpallial boundary to form the internal capsule (IC). However, the identity of molecular cues that guide these axons remains largely unknown. Here, we show that the transmembrane protein Linx is robustly expressed in the prethalamus and lateral ganglionic eminence-derived corridor and on corticofugal axons, but not on thalamocortical axons, and that mice with a null mutation of Linx exhibit a complete absence of the IC. Moreover, regional inactivation of Linx either in the prethalamus and LGE or in the neocortex leads to a failure of IC formation. Furthermore, Linx binds to thalamocortical projections, and it promotes outgrowth of thalamic axons. Thus, Linx guides the extension of thalamocortical axons in the ventral forebrain, and subsequently, it mediates reciprocal interactions between thalamocortical and corticofugal axons to form the IC.
Collapse
Affiliation(s)
- Kenji Mandai
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
| | - Dorothy V Reimert
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David D Ginty
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Richard M, Jamet S, Fouquet C, Dubacq C, Boggetto N, Pincet F, Gourier C, Trembleau A. Homotypic and heterotypic adhesion induced by odorant receptors and the β2-adrenergic receptor. PLoS One 2013; 8:e80100. [PMID: 24312457 PMCID: PMC3846556 DOI: 10.1371/journal.pone.0080100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/08/2013] [Indexed: 11/25/2022] Open
Abstract
In the mouse olfactory system regulated expression of a large family of G Protein-Coupled Receptors (GPCRs), the Odorant Receptors (ORs), provides each sensory neuron with a single OR identity. In the wiring of the olfactory sensory neuron projections, a complex axon sorting process ensures the segregation of >1,000 subpopulations of axons of the same OR identity into homogeneously innervated glomeruli. ORs are critical determinants in axon sorting, and their presence on olfactory axons raises the intriguing possibility that they may participate in axonal wiring through direct or indirect trans-interactions mediating adhesion or repulsion between axons. In the present work, we used a biophysical assay to test the capacity of ORs to induce adhesion of cell doublets overexpressing these receptors. We also tested the β2 Adrenergic Receptor, a non-OR GPCR known to recapitulate the functions of ORs in olfactory axon sorting. We report here the first evidence for homo- and heterotypic adhesion between cells overexpressing the ORs MOR256-17 or M71, supporting the hypothesis that ORs may contribute to olfactory axon sorting by mediating differential adhesion between axons.
Collapse
Affiliation(s)
- Marion Richard
- CNRS UMR 7102, Université Pierre et Marie Curie Paris 06, Team Development and Plasticity of Neural Networks, Paris, France
| | - Sophie Jamet
- CNRS UMR 7102, Université Pierre et Marie Curie Paris 06, Team Development and Plasticity of Neural Networks, Paris, France
| | - Coralie Fouquet
- CNRS UMR 7102, Université Pierre et Marie Curie Paris 06, Team Development and Plasticity of Neural Networks, Paris, France
| | - Caroline Dubacq
- CNRS UMR 7102, Université Pierre et Marie Curie Paris 06, Team Development and Plasticity of Neural Networks, Paris, France
| | - Nicole Boggetto
- Imaging Facility (ImagoSeine), Jacques Monod Institute, CNRS-Université Paris Diderot, Paris, France
| | - Frédéric Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Univ Paris 06, Université Paris Diderot, CNRS, Paris, France
| | - Christine Gourier
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Univ Paris 06, Université Paris Diderot, CNRS, Paris, France
| | - Alain Trembleau
- CNRS UMR 7102, Université Pierre et Marie Curie Paris 06, Team Development and Plasticity of Neural Networks, Paris, France
- * E-mail:
| |
Collapse
|
46
|
Leyva-Díaz E, López-Bendito G. In and out from the cortex: development of major forebrain connections. Neuroscience 2013; 254:26-44. [PMID: 24042037 DOI: 10.1016/j.neuroscience.2013.08.070] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022]
Abstract
In this review we discuss recent advances in the understanding of the development of forebrain projections attending to their origin, fate determination, and axon guidance. Major forebrain connections include callosal, corticospinal, corticothalamic and thalamocortical projections. Although distinct transcriptional programs specify these subpopulations of projecting neurons, the mechanisms involved in their axonal development are similar. Guidance by short- and long-range molecular cues, interaction with intermediate target populations and activity-dependent mechanisms contribute to their development. Moreover, some of these connections interact with each other showing that the development of these axonal tracts is a well-orchestrated event. Finally, we will recapitulate recent discoveries that challenge the field of neural wiring that show that these forebrain connections can be changed once formed. The field of reprogramming has arrived to postmitotic cortical neurons and has showed us that forebrain connectivity is not immutable and might be changed by manipulations in the transcriptional program of matured cells.
Collapse
Affiliation(s)
- E Leyva-Díaz
- Instituto de Neurociencias de Alicante, CSIC & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | | |
Collapse
|
47
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|
48
|
Lokmane L, Proville R, Narboux-Nême N, Györy I, Keita M, Mailhes C, Léna C, Gaspar P, Grosschedl R, Garel S. Sensory map transfer to the neocortex relies on pretarget ordering of thalamic axons. Curr Biol 2013; 23:810-6. [PMID: 23623550 DOI: 10.1016/j.cub.2013.03.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/21/2013] [Accepted: 03/22/2013] [Indexed: 01/08/2023]
Abstract
Sensory maps, such as the representation of mouse facial whiskers, are conveyed throughout the nervous system by topographic axonal projections that preserve neighboring relationships between adjacent neurons. In particular, the map transfer to the neocortex is ensured by thalamocortical axons (TCAs), whose terminals are topographically organized in response to intrinsic cortical signals. However, TCAs already show a topographic order early in development, as they navigate toward their target. Here, we show that this preordering of TCAs is required for the transfer of the whisker map to the neocortex. Using Ebf1 conditional inactivation that specifically perturbs the development of an intermediate target, the basal ganglia, we scrambled TCA topography en route to the neocortex without affecting the thalamus or neocortex. Notably, embryonic somatosensory TCAs were shifted toward the visual cortex and showed a substantial intermixing along their trajectory. Somatosensory TCAs rewired postnatally to reach the somatosensory cortex but failed to form a topographic anatomical or functional map. Our study reveals that sensory map transfer relies not only on positional information in the projecting and target structures but also on preordering of axons along their trajectory, thereby opening novel perspectives on brain wiring.
Collapse
Affiliation(s)
- Ludmilla Lokmane
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), 46 Rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron 2013; 77:472-84. [PMID: 23395374 DOI: 10.1016/j.neuron.2012.11.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2012] [Indexed: 12/11/2022]
Abstract
Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.
Collapse
|
50
|
Alfano C, Studer M. Neocortical arealization: evolution, mechanisms, and open questions. Dev Neurobiol 2013; 73:411-47. [PMID: 23239642 DOI: 10.1002/dneu.22067] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/03/2012] [Accepted: 12/06/2012] [Indexed: 12/13/2022]
Abstract
The mammalian neocortex is a structure with no equals in the vertebrates and is the seat of the highest cerebral functions, such as thoughts and consciousness. It is radially organized into six layers and tangentially subdivided into functional areas deputed to the elaboration of sensory information, association between different stimuli, and selection and triggering of voluntary movements. The process subdividing the neocortical field into several functional areas is called "arealization". Each area has its own cytoarchitecture, connectivity, and peculiar functions. In the last century, several neuroscientists have investigated areal structure and the mechanisms that have led during evolution to the rising of the neocortex and its organization. The extreme conservation in the positioning and wiring of neocortical areas among different mammalian families suggests a conserved genetic program orchestrating neocortical patterning. However, the impressive plasticity of the neocortex, which is able to rewire and reorganize areal structures and connectivity after impairments of sensory pathways, argues for a more complex scenario. Indeed, even if genetics and molecular biology helped in identifying several genes involved in the arealization process, the logic underlying the neocortical bauplan is still beyond our comprehension. In this review, we will introduce the present knowledge and hypotheses on the ontogenesis and evolution of neocortical areas. Then, we will focus our attention on some open issues, which are still unresolved, and discuss some recent studies that might open new directions to be explored in the next few years.
Collapse
Affiliation(s)
- Christian Alfano
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, Nice, F-06108, France.
| | | |
Collapse
|