1
|
Lin J, Shen Y, Xia Y, Li Y, Jiang T, Shen X, Fu Y, Zhang D, Yang L, Xu H, Xu Z, Wang L. Vagotomy suppresses food intake by increasing GLP-1 secretion via the M3 AChR-AMPKα pathway in mice. Mol Cell Endocrinol 2025; 599:112464. [PMID: 39848433 DOI: 10.1016/j.mce.2025.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
OBJECTIVE The gut-brain axis (GBA) is involved in the modulation of multiple physiological activities, and the vagus nerve plays an important role in this process. However, the association between vagus nerve function and nutritional regulation remains unclear. Here, we explored changes in the nutritional status of mice after vagotomy and investigated the underlying mechanisms responsible for these changes. METHODS We performed vagotomies in mice and verified nerve resection using immunofluorescence staining. We then observed the food intake and body weight of the mice and tested nutritional and inflammation-related markers using enzyme-linked immunosorbent assay (ELISA) kits. The role of glucagon-like peptide 1 (GLP-1) in the GBA was determined using qRT-PCR and ELISA kits. Western blot and ELISA kits were used to explore the underlying mechanisms. RESULTS After vagotomy, the mice experienced a deterioration in their nutritional status, which manifested as a significant reduction in body weight and food intake. The expression of the proglucagon gene (GCG), which encodes GLP-1, significantly increased after vagotomy. Mechanistically, acetylcholine (ACh) reversed the HG (high glucose) -induced elevation of GLP-1 secretion. ACh upregulated AMPKα phosphorylation, thereby reducing GLP-1 secretion. Moreover, the level of AMPKα phosphorylation was enhanced by ACh via M3AChR. CONCLUSIONS ACh released by the vagus nerve counteracts the anorectic effects of GLP-1 under normal physiological conditions. Vagotomy blocks this feedback, resulting in a loss of food intake and body weight in mice.
Collapse
Affiliation(s)
- Jie Lin
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yikai Shen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xia
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianlu Jiang
- Department of General Surgery, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Peolple's Hospital, Wuxi, Jiangsu Province, China
| | - Xusheng Shen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwang Fu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Linjun Wang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Akinrinde AS, Adeoye BO, Samuel ES, Mustapha OA. Protective effect of cholecalciferol against cobalt-induced neurotoxicity in rats: ZO-1/iFABP, ChAT/AchE and antioxidant pathways as potential therapeutic targets. Biol Trace Elem Res 2025; 203:1555-1570. [PMID: 38836989 DOI: 10.1007/s12011-024-04258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Cobalt (Co) toxicity has been reported to produce central nervous system and gastrointestinal abnormalities. This study assessed the therapeutic effect of cholecalciferol (Cho) supplementation against damages caused by sub-acute (14-day) cobalt chloride (CoCl2) exposure in the brain and intestines. Thirty-five male Wistar rats were divided equally into five groups: Group I (control) received no treatment; Group II received oral CoCl2 (100 mg/kg) only; Groups III, IV, and V received 1000, 3000 and 6000 IU/kg of cholecalciferol, respectively by oral gavage, and concurrently with CoCl2. Cobalt-treated rats showed neuronal vacuolation and presence of pyknotic nuclei in the cerebral cortex and hippocampus, depletion of Purkinje cells in the cerebellum, as well as inflammation and congestion in the intestinal mucosa. Cobalt also increased brain and intestinal hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations, while simultaneously reducing glutathione (GSH) content, superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities. Further, CoCl2 induced increases in brain acetylcholinesterase (AchE) activity and serum zonulin (ZO-1) levels. Conversely, Cho administration suppressed CoCl2-induced damages in the brain and intestines by reducing lipid peroxidation and increasing the activities of antioxidant enzymes. Remarkably, Cho produced stimulation of brain choline acetyltransferase (ChAT) and suppression of AchE activity, along with dose-dependent reduction in serum levels of ZO-1, intestinal fatty acid-binding protein (iFABP) and nitric oxide. In conclusion, the protective role of cholecalciferol against cobalt-induced toxicity occurred via modulation of cholinergic, intestinal permeability and antioxidant pathways. The results may prove significant in the context of the role of gut-brain connections in neuroprotection.
Collapse
Affiliation(s)
- A S Akinrinde
- Gastrointestinal and Environmental Toxicology Laboratory, Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - B O Adeoye
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - E S Samuel
- Gastrointestinal and Environmental Toxicology Laboratory, Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O A Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun state, Nigeria
| |
Collapse
|
3
|
Shanazz K, Xie K, Oliver T, Bogan J, Vale FL, Sword J, Kirov SA, Terry A, O'Herron P, Blake DT. Cortical acetylcholine response to deep brain stimulation of the basal forebrain in mice. J Neurophysiol 2025; 133:825-838. [PMID: 39829107 DOI: 10.1152/jn.00476.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
Deep brain stimulation (DBS) using electrical stimulation of neuronal tissue in the basal forebrain to enhance release of the neurotransmitter acetylcholine is under consideration to improve executive function in patients with dementia. Although some small studies indicate a positive response in the clinical setting, the relationship between DBS and acetylcholine pharmacokinetics is incompletely understood. We examined the cortical acetylcholine response to different stimulation parameters of the basal forebrain. Two-photon in vivo imaging was combined with deep brain stimulation in C57BL/6J mice. Stimulating electrodes were implanted in the subpallidal basal forebrain, and the ipsilateral somatosensory cortex was imaged. Acetylcholine activity was determined using the GRABACh-3.0 acetylcholine receptor sensor, and blood vessels were visualized with Texas red. Experiments manipulating stimulation frequency demonstrated that integrated acetylcholine-induced fluorescence was insensitive to frequency with the same number of pulses, and that maximum peak levels were achieved with frequencies from 60 to 130 Hz. Altering pulse train length indicated that longer stimulation resulted in higher peaks and more activation with sublinear summation. The acetylcholinesterase inhibitor, donepezil, increased the peak response to 600 pulses of stimulation at 60 Hz, and the integrated response increased by 57% with the 2 mg/kg dose and 126% with the 4 mg/kg dose. Acetylcholine levels returned to baseline with a time constant of 14-18 s. Donepezil increases total acetylcholine receptor activation associated with DBS but does not change temporal kinetics. The long time constants observed in the cerebral cortex add to the evidence supporting volume and synaptic neurotransmission.NEW & NOTEWORTHY Peak acetylcholine responses to deep brain stimulation of the subpallidal basal forebrain increases with increased frequency and number of pulses. Long recovery periods in the 10s of seconds support "volume" versus "phasic" transmission of acetylcholine. Donepezil administration enhances the effect of stimulation on cortical acetylcholine release.
Collapse
Affiliation(s)
- Khadijah Shanazz
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Kun Xie
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Tucker Oliver
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Jamal Bogan
- Department of Science and Mathematics, Augusta University, Augusta, Georgia, United States
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Jeremy Sword
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Sergei A Kirov
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Alvin Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Philip O'Herron
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - David T Blake
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
4
|
Bandiwadekar A, Jose J, Gopan G, Augustin V, Ashtekar H, Khot KB. Transdermal delivery of resveratrol loaded solid lipid nanoparticle as a microneedle patch: a novel approach for the treatment of Parkinson's disease. Drug Deliv Transl Res 2025; 15:1043-1073. [PMID: 38949746 DOI: 10.1007/s13346-024-01656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Parkinson's disease (PD), affecting millions of people worldwide and expected to impact 10 million by 2030, manifests a spectrum of motor and non-motor symptoms linked to the decline of dopaminergic neurons. Current therapies manage PD symptoms but lack efficacy in slowing disease progression, emphasizing the urgency for more effective treatments. Resveratrol (RSV), recognized for its neuroprotective and antioxidative properties, encounters challenges in clinical use for PD due to limited bioavailability. Researchers have investigated lipid-based nanoformulations, specifically solid lipid nanoparticles (SLNs), to enhance RSV stability. Oral drug delivery via SLNs faces obstacles, prompting exploration into transdermal delivery using SLNs integrated with microneedles (MNs) for improved patient compliance. In this study, an RSV-loaded SLNs (RSV -SLNs) incorporated into the MN patch was developed for transdermal RSV delivery to improve its stability and patient compliance. Characterization studies demonstrated favorable physical properties of SLNs with a sustained drug release profile of 78.36 ± 0.74%. The developed MNs exhibited mechanical robustness and skin penetration capabilities. Ex vivo permeation studies displayed substantial drug permeation of 68.39 ± 1.4% through the skin. In an in vivo pharmacokinetic study, the RSV-SLNs delivered through MNs exhibited a significant increase in Cmax, Tmax, and AUC0 - t values, alongside a reduced elimination rate in blood plasma in contrast to the administration of pure RSV via MNs. Moreover, an in vivo study showcased enhanced behavioral functioning and increased brain antioxidant levels in the treated animals. In-vivo skin irritation study revealed no signs of irritation till 24 h which permits long-term MNs application. Histopathological analysis showed notable changes in the brain regions of the rat, specifically the striatum and substantia nigra, after the completion of the treatment. Based on these findings, the development of an RSV-SLN loaded MNs (RSVSNLMP) patch presents a novel approach, with the potential to enhance the drug's efficiency, patient compliance, and therapeutic outcomes for PD, offering a promising avenue for advanced PD therapy.
Collapse
Affiliation(s)
- Akshay Bandiwadekar
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Jobin Jose
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India.
| | - Gopika Gopan
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Varsha Augustin
- NGSM Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Department of NITTE University Center for Animal Research & Experimentation (NUCARE), Mangalore, 575018, India
| | - Harsha Ashtekar
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Kartik Bhairu Khot
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| |
Collapse
|
5
|
Leitzke M, Roach DT, Hesse S, Schönknecht P, Becker GA, Rullmann M, Sattler B, Sabri O. Long COVID - a critical disruption of cholinergic neurotransmission? Bioelectron Med 2025; 11:5. [PMID: 40011942 DOI: 10.1186/s42234-025-00167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Following the COVID-19 pandemic, there are many chronically ill Long COVID (LC) patients with different symptoms of varying degrees of severity. The pathological pathways of LC remain unclear until recently and make identification of path mechanisms and exploration of therapeutic options an urgent challenge. There is an apparent relationship between LC symptoms and impaired cholinergic neurotransmission. METHODS This paper reviews the current literature on the effects of blocked nicotinic acetylcholine receptors (nAChRs) on the main affected organ and cell systems and contrasts this with the unblocking effects of the alkaloid nicotine. In addition, mechanisms are presented that could explain the previously unexplained phenomenon of post-vaccination syndrome (PVS). The fact that not only SARS-CoV-2 but numerous other viruses can bind to nAChRs is discussed under the assumption that numerous other post-viral diseases and autoimmune diseases (ADs) may also be due to impaired cholinergic transmission. We also present a case report that demonstrates changes in cholinergic transmission, specifically, the availability of α4β2 nAChRs by using (-)-[18F]Flubatine whole-body positron emission tomography (PET) imaging of cholinergic dysfunction in a LC patient along with a significant neurological improvement before and after low-dose transcutaneous nicotine (LDTN) administration. Lastly, a descriptive analysis and evaluation were conducted on the results of a survey involving 231 users of LDTN. RESULTS A substantial body of research has emerged that offers a compelling explanation for the phenomenon of LC, suggesting that it can be plausibly explained because of impaired nAChR function in the human body. Following a ten-day course of transcutaneous nicotine administration, no enduring neuropathological manifestations were observed in the patient. This observation was accompanied by a significant increase in the number of free ligand binding sites (LBS) of nAChRs, as determined by (-)-[18F]Flubatine PET imaging. The analysis of the survey shows that the majority of patients (73.5%) report a significant improvement in the symptoms of their LC/MEF/CFS disease as a result of LDTN. CONCLUSIONS In conclusion, based on current knowledge, LDTN appears to be a promising and safe procedure to relieve LC symptoms with no expected long-term harm.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany.
- Department of Anesthesiology, Intensive Care Medicine, Pain- and Palliative Therapy Helios Clinics, Colditzer Straße 48, Leisnig, 04703, Germany.
| | - Donald Troy Roach
- School of Comillas University, Renegade Research, Madrid, 28015, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Peter Schönknecht
- Department of Psychiatry and Neurology Altscherbitz, Schkeuditz, 04435, Germany
- Outpatient Department for Forensic-Psychiatric Research, University of Leipzig, Leipzig, 04103, Germany
| | - Georg-Alexander Becker
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Bernhardt Sattler
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| |
Collapse
|
6
|
Xie Y, Hou Y, Hu M, Chen H, Wang H, Zhao L, Xu J. Dual Monitoring of Blood Acetylcholinesterase Content and Catalytic Activity Utilizing Fluorometry-Integrated Surface Plasmon Resonance. BIOSENSORS 2025; 15:118. [PMID: 39997020 PMCID: PMC11853072 DOI: 10.3390/bios15020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Acetylcholinesterase inhibitors (AChEIs), particularly donepezil, are commonly used to treat mild-to-moderate Alzheimer's disease (AD). However, drug accumulation during long-term use could change AChE activity and content, leading to peripheral side effects and prompting medication discontinuation. However, there are a lack of methods to simultaneously determine the content and catalytic activity of AChE. By using phosphatidylinositol-specific phospholipase C to strip AChE from erythrocyte surfaces, we developed a novel method combining surface plasmon resonance and fluorescence detection for the simultaneous detection of AChE content and activity, producing stable, reliable, and accurate results. The established determination range spans from 263.37 ng/mL to 3000 ng/mL (4.05 nM to 46.15 nM) for concentration, and from 39.02 mU/mL to 1000 mU/mL for activity. Compared to traditional methods, this approach simplifies operations, reduces detection time, expands the dynamic range, and lowers detection limits, potentially advancing AChE-related research and supporting clinical diagnostics and drug development.
Collapse
Affiliation(s)
- Yuanyuan Xie
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Hou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Mengwei Hu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Clinical Trial Center of Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Hongzhuan Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shuguang Lab of Future Health, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianrong Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shuguang Lab of Future Health, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
7
|
Chen G, Zhao X, Xie M, Chen H, Shao C, Zhang X, Wu Y, Liu N, Zhang N. Serum metabolites and inflammation predict brain functional connectivity changes in Obsessive-Compulsive disorder. Brain Behav Immun 2025; 126:113-125. [PMID: 39952302 DOI: 10.1016/j.bbi.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025] Open
Abstract
Currently, our understanding of the metabolic and immune pathways involved in obsessive-compulsive disorder (OCD), as well as the precise mechanisms by which metabolism and immunity impact brain activity and function, is limited. This study aimed to examine the alterations in serum metabolites, inflammatory markers, brain activity, and brain functional connectivity (FC) among individuals with OCD and investigate the relationship between these factors. The study included 55 individuals with moderate-to-severe OCD (either drug-naïve or not taking medication for at least eight weeks) and 54 healthy controls (HCs). The High-Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS) technique was used to detect serum metabolites, whereas the enzyme-linked immunosorbent assay (ELISA) was utilized to identify inflammatory markers. The FC of the brain was investigated using resting-state functional magnetic resonance immaging(rs-fMRI). The findings demonstrated that individuals with OCD exhibited significant alterations in 11 metabolites compared to HCs. In particular, 10 of these metabolites exhibited an increase, while one metabolite displayed a decrease. Additionally, individuals with OCD experienced a marked elevation in the levels of five inflammatory factors (TNF-α, IL-1β, IL-2, IL-6, and IL-12). Rs-fMRI analysis revealed that individuals with OCD exhibited atypical FC in various brain regions, such as the postcentral gyrus, angular gyrus, and middle temporal gyrus. These specific brain areas are closely associated with sensory-motor processing, cognitive control, and emotion regulation. Further stepwise multiple regression analysis revealed that serum metabolite levels, particularly phosphatidylcholine, and inflammatory markers such as IL-1β could predict alterations in brain FC among individuals diagnosed with OCD. In summary, this study uncovered that individuals with OCD exhibit alterations in serum metabolites, inflammatory markers, brain activity, and FC. The findings suggest that these metabolites and inflammatory markers might play a role in the development and progression of OCD by affecting brain activity and the FC of neural networks.
Collapse
Affiliation(s)
- Guoqing Chen
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiao Zhao
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Minyao Xie
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Haocheng Chen
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chenchen Shao
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xuedi Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yu Wu
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Ning Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
8
|
Qiu Y, Gao Y, Bai Q, Zhao Y. Ion coupling and inhibitory mechanisms of the human presynaptic high-affinity choline transporter CHT1. Structure 2025; 33:321-329.e5. [PMID: 39657660 DOI: 10.1016/j.str.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
In cholinergic neurons, choline is the precursor of the excitatory neurotransmitter acetylcholine (ACh), which plays a fundamental role in the brain. The high-affinity choline transporter, CHT1, mediates the efficient recycling of choline to facilitate ACh synthesis in the presynapse. Here, we report high-resolution cryoelectron microscopic (cryo-EM) structures of CHT1 in complex with the inhibitors HC-3 and ML352, the substrate choline, and a substrate-free state. Our structures show distinct binding modes of the inhibitors with different chemical structures, revealing their inhibition mechanisms. Additionally, we observed a chloride ion that directly interacts with the substrate choline, thereby stabilizing its binding with CHT1. Two sodium ions, Na2 and Na3, were clearly identified, which we speculate might be involved in substrate binding and conformational transitions, respectively. Our structures provide molecular insights into the coupling mechanism of ion binding with substrate binding and conformational transitions, promoting our understanding of the ion-coupled substrate transport mechanism.
Collapse
Affiliation(s)
- Yunlong Qiu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwei Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Cao G, Zhang S, He Z, Wang Z, Guo L, Yan Z, Han J, Jiang X, Zhang T. Gyral peak variations between HCP and CHCP: functional and structural implications. Brain Struct Funct 2025; 230:37. [PMID: 39903275 DOI: 10.1007/s00429-025-02894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/11/2025] [Indexed: 02/06/2025]
Abstract
Significant culture and ethnic diversity play an important role in shaping brain structure and function. Many attempts have been undertaken to connect ethnic variations with brain function, which, however, fluctuates over time and is costly, limiting its utility to identify consistent brain markers as well as its application to a broad population. In contrast, brain anatomy is less altered during a short period of time, but it is not fully understood whether it could serve as the ethnicity-sensitive landmark, or its variation is associated with functional one. In this study, We utilized gyral peaks, a set of early cortical folds, as cortical landmarks to explore the role of ethnic factors in brain anatomy and their relationship to brain function. Comparative experiments were conducted using the Human Connectome Project and the Chinese Human Connectome Project. In populations with similar ethnic backgrounds, gyral peak patterns showed greater consistency. For groups with significantly different ethnic backgrounds, we identified both shared peaks and peaks unique to each group. Compared to shared peaks, unique peaks showed significant differences in anatomical and functional network attributes and were spatially associated with working memory networks, which exhibited increased activation in their presence. Gene enrichment analysis provided additional support, suggesting that the unique peaks are associated with genes linked to working memory functions. These findings could provide new knowledge to understanding how ethnic diversity interplay with brain functions and associate with brain shapes.
Collapse
Affiliation(s)
- Guannan Cao
- School of Automation, Northwestern Polytechnic University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| | - Songyao Zhang
- Faculty of Medicine, Dalian University of Technology, No. 2 Lingong Road, Dalian, 116081, Liaoning, China
| | - Zhibin He
- School of Automation, Northwestern Polytechnic University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| | - Zifan Wang
- School of Life Sciences and Technology, University of Electronic Science and Technology, 2006 Xiyuan Avenue, Chengdu, 611731, Sichuan, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnic University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| | - Zhiqiang Yan
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710072, Shaanxi, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnic University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| | - Xi Jiang
- School of Life Sciences and Technology, University of Electronic Science and Technology, 2006 Xiyuan Avenue, Chengdu, 611731, Sichuan, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnic University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
11
|
Ignatavicius A, Matar E, Lewis SJG. Visual hallucinations in Parkinson's disease: spotlight on central cholinergic dysfunction. Brain 2025; 148:376-393. [PMID: 39252645 PMCID: PMC11788216 DOI: 10.1093/brain/awae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Visual hallucinations are a common non-motor feature of Parkinson's disease and have been associated with accelerated cognitive decline, increased mortality and early institutionalization. Despite their prevalence and negative impact on patient outcomes, the repertoire of treatments aimed at addressing this troubling symptom is limited. Over the past two decades, significant contributions have been made in uncovering the pathological and functional mechanisms of visual hallucinations, bringing us closer to the development of a comprehensive neurobiological framework. Convergent evidence now suggests that degeneration within the central cholinergic system may play a significant role in the genesis and progression of visual hallucinations. Here, we outline how cholinergic dysfunction may serve as a potential unifying neurobiological substrate underlying the multifactorial and dynamic nature of visual hallucinations. Drawing upon previous theoretical models, we explore the impact that alterations in cholinergic neurotransmission has on the core cognitive processes pertinent to abnormal perceptual experiences. We conclude by highlighting that a deeper understanding of cholinergic neurobiology and individual pathophysiology may help to improve established and emerging treatment strategies for the management of visual hallucinations and psychotic symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Anna Ignatavicius
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Elie Matar
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Simon J G Lewis
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Parkinson’s Disease Research, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
12
|
El Brouzi MY, Adadi N, Lamtai M, Boulahfa H, Zghari O, Fath N, Rezqaoui A, El Hamzaoui A, Njimat S, El Hessni A, Mesfioui A. Effects of Nickel Bioaccumulation on Hematological, Biochemical, Immune Responses, Neuroinflammatory, Oxidative Stress Parameters, and Neurotoxicity in Rats. Biol Trace Elem Res 2025:10.1007/s12011-025-04528-x. [PMID: 39891830 DOI: 10.1007/s12011-025-04528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
Nickel (Ni) exposure is linked to numerous health issues, including dermatitis, immunotoxicity, and cancer. Emerging evidence suggests Ni may cross the blood-brain barrier, accumulating in the brain and causing neuroinflammation, oxidative stress, and neuronal apoptosis. Herein, we investigated the effect of Ni exposure through the intraperitoneal route, studying the Ni effect in subacute and chronic toxicity, on various health parameters in Wistar rats. Rats were randomly divided into four groups (n = 10 per group): two groups received a daily intraperitoneal injection of NiCl₂ at a dose of 0.25 mg/kg for subacute (21 days) or chronic (60 days) exposure periods, while the other two groups were treated with NaCl solution (0.9%) as a control for equivalent durations. The study assessed behavioral, biochemical, hematological, immunological, neurobiochemical, and histopathological effects over 21 and 60 days. Neurobehavioral tests, blood and tissue analyses, and organ examinations were conducted. This study demonstrates that Ni bioaccumulation in subacute and chronic exposure has significant health impacts in Wistar rats, including hematological, immunological, biochemical, AchE activity, neuroinflammatory, oxidative stress, and neurobehavioral changes. Chronic exposure results in higher Ni accumulation, particularly in the brain, causing neurotoxicity, inflammation, and behavioral disorders such as anxiety, depression, and memory impairment. The findings highlight the importance of limiting Ni exposure to prevent adverse health effects.
Collapse
Affiliation(s)
- Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco.
| | - Najlae Adadi
- Higher Institute of Nursing and Health Professions of Dakhla, Dakhla, Morocco
| | - Mouloud Lamtai
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Hafsa Boulahfa
- Laboratory of Biology and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Oussama Zghari
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Nada Fath
- Compared Anatomy Unit, School of Veterinary Medicine, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
- Physiology and Pathophysiology Laboratory, Department of Biology, Faculty of Sciences, Mohamed V University, Rabat, Morocco
| | - Ayoub Rezqaoui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Smail Njimat
- Laboratory of Materials, Electrochemistry and Environment, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
13
|
Tucker RM, Tjahjono IE, Atta G, Roberts J, Vickers KE, Tran L, Stewart E, Kelly AH, Silver BS, Tan S. The influence of sleep on human taste function and perception: A systematic review. J Sleep Res 2025; 34:e14257. [PMID: 38888109 PMCID: PMC11744243 DOI: 10.1111/jsr.14257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024]
Abstract
Sleep problems are associated with increased risk of obesity. Multiple mechanisms have been identified to support this relationship, including changes in sensory processing and food choice. Taste researchers have recently begun to explore whether changes in taste occur as a result of short-term or long-term sleep habits. A systematic review was conducted to investigate these relationships. A total of 13 studies were included in the review. Heterogeneity in both the sleep and taste measurements used was noted, and most studies failed to assess sour, bitter and umami tastes. Still, the available evidence suggests that sweet taste hedonic perception appears to be undesirably influenced by short sleep when viewed through the lens of health. That is, preferred sweetness concentration increases as sleep duration decreases. Habitual sleep and interventions curtailing sleep had minimal associations or effects on sweet taste sensitivity. Salt taste sensitivity and hedonic responses appear to be relatively unaffected by insufficient sleep, but more work is needed. Solid evidence on other taste qualities is not available at the present time.
Collapse
Affiliation(s)
- Robin M. Tucker
- Department of Food Science and Human NutritionMichigan State UniversityEast LansingMichiganUSA
| | | | - Grace Atta
- School of Exercise and Nutrition SciencesDeakin UniversityBurwoodVictoriaAustralia
| | - Jessica Roberts
- School of Exercise and Nutrition SciencesDeakin UniversityBurwoodVictoriaAustralia
| | - Katie E. Vickers
- School of Exercise and Nutrition SciencesDeakin UniversityBurwoodVictoriaAustralia
| | - Linh Tran
- School of Exercise and Nutrition SciencesDeakin UniversityBurwoodVictoriaAustralia
| | - Erin Stewart
- School of Exercise and Nutrition SciencesDeakin UniversityBurwoodVictoriaAustralia
| | - Ashlee H. Kelly
- School of Exercise and Nutrition SciencesDeakin UniversityBurwoodVictoriaAustralia
| | - Bianca S. Silver
- School of Exercise and Nutrition SciencesDeakin UniversityBurwoodVictoriaAustralia
| | - Sze‐Yen Tan
- School of Exercise and Nutrition SciencesDeakin UniversityBurwoodVictoriaAustralia
- Institute for Physical Activity and Nutrition (IPAN)Deakin UniversityBurwoodVictoriaAustralia
| |
Collapse
|
14
|
Tang X, Zhu C, Liu TC, Zhu R, Deng G, Zhou P, Liu D. Sunflower Oil Fortified with Vitamins D and A and Sunflower Lecithin Ameliorated Scopolamine-Induced Cognitive Dysfunction in Mice and Exploration of the Underlying Protective Pathways. Nutrients 2025; 17:553. [PMID: 39940410 PMCID: PMC11819866 DOI: 10.3390/nu17030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The incidence of cognitive disorders is increasing globally, with a reported prevalence of over 50 million individuals affected, and current interventions offer limited efficacy. This study investigates the effects of sunflower oil fortified with sunflower lecithin, vitamin D, and vitamin A on scopolamine-induced cognitive dysfunction in mice and explores the underlying mechanisms. The incidence of cognitive disorders, such as Alzheimer's disease, is increasing yearly, and current interventions offer limited efficacy. Therefore, this research aims to evaluate the cognitive improvement effects of the three added functional factors on mice with learning and memory impairments, along with the associated molecular mechanisms. Behavioral tests, biochemical assays, and real-time quantitative polymerase chain reaction (RT-qPCR) were utilized to examine the intervention effects of these functional factors on scopolamine-induced cognitive impairment in mice. The results revealed that the groups treated with sunflower lecithin and vitamin D significantly enhanced the mice's exploratory behavior, working memory, and spatial memory, with increases of 1.6 times and 4.5 times, respectively, in the open field and novel object recognition tests (VD group). Additionally, these treatments reduced levels of inflammatory markers and IL-6, increased antioxidant GSH levels, and decreased oxidative stress marker MDA levels, with all effects showing significant differences (p < 0.01). The effects were further enhanced when vitamin A was combined with these treatments. Transcriptomic analysis demonstrated that the intervention groups had markedly improved learning and memory abilities through upregulation of key gene expression levels in the PI3K-AKT signaling pathway, cholinergic pathway, and folate biosynthesis pathway. These findings provide a theoretical basis for the development of nutritionally fortified edible oils with added sunflower lecithin, vitamin D, and vitamin A, which may help prevent and ameliorate cognitive disorders.
Collapse
Grants
- Standard Foods (China) Co., Ltd., No. 88 Dalian West Road, Taicang Port Economic and Technological Development Zone New Zone, Suzhou, Jiangsu 215400, China Standard Foods (China) Co., Ltd., No. 88 Dalian West Road, Taicang Port Economic and Technological Development Zone New Zone, Suzhou, Jiangsu 215400, China
Collapse
Affiliation(s)
- Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.T.); (C.Z.); (R.Z.); (G.D.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; (P.Z.); (D.L.)
| | - Chengkai Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.T.); (C.Z.); (R.Z.); (G.D.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; (P.Z.); (D.L.)
| | - Tristan C. Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.T.); (C.Z.); (R.Z.); (G.D.)
| | - Rongxiang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.T.); (C.Z.); (R.Z.); (G.D.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; (P.Z.); (D.L.)
| | - Guoliang Deng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.T.); (C.Z.); (R.Z.); (G.D.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; (P.Z.); (D.L.)
| | - Peng Zhou
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; (P.Z.); (D.L.)
| | - Dasong Liu
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; (P.Z.); (D.L.)
| |
Collapse
|
15
|
Yoo J, Lee J, Ahn B, Han J, Lim MH. Multi-target-directed therapeutic strategies for Alzheimer's disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem Sci 2025; 16:2105-2135. [PMID: 39810997 PMCID: PMC11726323 DOI: 10.1039/d4sc06762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death. This review illustrates their interrelationships, with a particular emphasis on the interplay among Aβ, metal ions, and AD-related enzymes, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), matrix metalloproteinase 9 (MMP9), lysyl oxidase-like 2 (LOXL2), acetylcholinesterase (AChE), and monoamine oxidase B (MAOB). We further underscore the potential of therapeutic strategies that simultaneously inhibit Aβ aggregation and address other pathogenic mechanisms. These approaches offer a more comprehensive and effective method for combating AD, overcoming the limitations of conventional therapies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jimin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeongha Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
16
|
Liu Y(A, Nong Y, Feng J, Li G, Sajda P, Li Y, Wang Q. Phase synchrony between prefrontal noradrenergic and cholinergic signals indexes inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.17.594562. [PMID: 38798371 PMCID: PMC11118516 DOI: 10.1101/2024.05.17.594562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Inhibitory control is a critical executive function that allows animals to suppress their impulsive behavior in order to achieve certain goals or avoid punishment. We investigated norepinephrine (NE) and acetylcholine (ACh) dynamics and population neuronal activity in the prefrontal cortex (PFC) during inhibitory control. Using fluorescent sensors to measure extracellular levels of NE and ACh, we simultaneously recorded prefrontal NE and ACh dynamics in mice performing inhibitory control tasks. The prefrontal NE and ACh signals exhibited strong coherence at 0.4-0.8 Hz. Although inhibition of locus coeruleus (LC) neurons projecting to the PFC impaired inhibitory control, inhibiting LC neurons projecting to the basal forebrain (BF) caused a more profound impairment, despite an approximately 30% overlap between LC neurons projecting to the PFC and BF, as revealed by our tracing studies. The inhibition of LC neurons projecting to the BF did not diminish the difference in prefrontal NE/ACh signals between successful and failed trials; instead, it abolished the difference in NE-ACh phase synchrony between successful and failed trials, indicating that NE-ACh phase synchrony is a task-relevant neuromodulatory feature. Chemogenetic inhibition of cholinergic neurons that project to the LC region did not impair inhibitory control, nor did it abolish the difference in NE-ACh phase synchrony between successful or failed trials, further confirming the relevance of NE-ACh phase synchrony to inhibitory control. To understand the possible effect of NE-ACh synchrony on prefrontal population activity, we employed Neuropixels to record from the PFC during inhibitory control. The inhibition of LC neurons projecting to the BF not only reduced the number of prefrontal neurons encoding inhibitory control, but also disrupted population firing patterns representing inhibitory control, as revealed by a demixed principal component (dPCA) analysis. Taken together, these findings suggest that the LC modulates inhibitory control through its collective effect with cholinergic systems on population activity in the prefrontal cortex. Our results further indicate that NE-ACh phase synchrony is a critical neuromodulatory feature with important implications for cognitive control.
Collapse
Affiliation(s)
- Yuxiang (Andy) Liu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yuhan Nong
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| |
Collapse
|
17
|
Thakur P, Mittal N, Chaudhary J, Kamboj S, Jain A. Unveiling the substantial role of rutin in the management of drug-induced nephropathy using network pharmacology and molecular docking. Int Immunopharmacol 2025; 146:113911. [PMID: 39733639 DOI: 10.1016/j.intimp.2024.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
INTRODUCTION Flavonoids including quercetin, kaempferol, myricetin, rutin etc. have always been a part of traditional Chinese medicine for the treatment of several ailments. Rutin (RT), also known as rutoside, sophorin is one of the flavanol glycoside having structure resemblance with quercetin. It is found to exhibit several biological activities viz. anti-inflammatory, anticancer, antioxidant, cardioprotective, antidepressant, neuroprotective etc. but the mechanisms by which it exhibits these effects is still under research. AIM The protective effects of rutin against drug induced nephropathy have already been discovered. Therefore, in this study, the main focus is to explore the mechanism by which rutin provides protection against drug-induced nephropathy using modern method like network pharmacology and molecular docking. MATERIALS AND METHODS Genes linked to drug-induced nephropathy and targets connected with rutin were obtained by searching through a number of extensive databases, including David software, Venn plot database, Swiss target prediction database, String database, Gene card & OMIM database, and Pubchem. In order to locate mapping targets, the acquired targets were examined and intersected. A protein-protein interaction (PPI) network was then built to find potential targets. RESULTS From the KEGG pathway, the target pathway responsible for drug-induced nephropathy were found to be XDH, HSD17B2, MET, PRKCB, CD38, ALDH2, CDK1, PTK2, CYP19A1, TNF, F2, PTGS2, ESR1, GSK3B, GLO1, ALOX12, MMP3, PRKCZ, CXCR1, CA4, EGFR, PDE5A, F10, AKR1B1, DRD4, TERT, CA3, PLG, TP53, PRKCH, PIK3R1, PRKACA, CYP1B1, ALOX5, PLK1, CHEK1, KCNH2, PRKCD, MAPT, MPO, NOX4, AVPR2, ACHE, MCL1, KDR, ABCG2, CCR1, PIK3CG, FLT3, ADORA1, IL2, SYK, IGF1R, CA2, SERPINE1, INSR, PRKCA, APP, MMP9. From these identified targets, the 14 selected pathways which have major role in providing protection in drug-induced nephropathy have been discussed. CONCLUSION As RT can inhibit various metabolic and proinflammatory pathways involved, it can help in prevention and treatment of drug-induced nephropathy. FUTURE ASPECTS The revelation of mode of action of bioactive constituent rutin against drug-induced nephropathy provides a theoretical basis for designing more promising compounds in future for treatment of nephropathy.
Collapse
Affiliation(s)
- Prashant Thakur
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, India
| | - Nitish Mittal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, India
| | - Jasmine Chaudhary
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, India
| | - Sonia Kamboj
- Ch. Devi Lal College of Pharmacy, Jagadhri, Haryana, India
| | - Akash Jain
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, India.
| |
Collapse
|
18
|
Kumar A, Qian M, Xu Y, Benz A, Covey DF, Zorumski CF, Mennerick S. Multifaceted Actions of Neurosteroids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634297. [PMID: 39896603 PMCID: PMC11785204 DOI: 10.1101/2025.01.22.634297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Background and purpose Neurosteroids modulate neuronal function and are promising therapeutic agents for neuropsychiatric disorders. Neurosteroid analogues are approved for treating postpartum depression and are of interest in other disorders. GABA-A receptors are well characterized targets of natural neurosteroids, but other biological pathways are likely relevant to therapeutic mechanisms and/or to off-target effects. We performed hypothesis-generating in silico analyses and broad in vitro biological screens to assess the range of actions of neurosteroids analogues of varying structural attributes. Key Results We employed in silico molecular similarity analysis and network pharmacology to elucidate likely targets. This analysis confirmed likely targets beyond GABA-A receptors. We then functionally screened 19 distinct neurosteroid structures across 78 targets representing interconnected signaling pathways, complemented with a limited screen of kinase activation. Results revealed unanticipated modulation of targets by neurosteroids with some structural selectivity. Many compounds-initiated androgen receptor translocation with little or no enantioselectivity. Modulation of multiple G-protein receptors was also unexpected. Conclusions and implications Neurosteroids are ascendant treatments in neuropsychiatry, but their full spectrum of actions remains unclear. This virtual and biological screening discovery approach opens new vistas for exploring mechanism of neurosteroids analogues. The multifaceted approach provides an unbiased, holistic exploration of the potential effects of neurosteroids across various molecular targets and provides a platform for future validation studies to aid drug discovery.
Collapse
|
19
|
Rodríguez Casal M. [Anticholinergic burden in the elderly]. FARMACEUTICOS COMUNITARIOS 2025; 17:5-10. [PMID: 39829987 PMCID: PMC11739899 DOI: 10.33620/fc.2173-9218.(2025).02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/26/2024] [Indexed: 01/22/2025]
Abstract
Anticholinergic drugs are widely used for very common diseases such as Parkinson's disease, depression or allergies, but it has been observed in previous studies that high anticholinergic burden can lead to physical and cognitive dysfunctions in polymedicated elderly people. The objective of this project is to review these hypotheses and study the possible relationship between high anticholinergic burden and cognitive and physical dysfunctions.In terms of methodology, a bibliographic review has been carried out of the information that exists to date on the hypothesis that high anticholinergic burden can lead to both physical and cognitive dysfunctions in elderly people taking multiple medications, and a cross-sectional study has been designed that included patients over 70 years and taking multiple medications to calculate the anticholinergic burden of their medication and determine whether high levels of it could have any influence on the deterioration of the patients.At the end of the study, it was observed high prevalence of prescriptions of medications with high anticholinergic burden in elderly patients, with its consequences in terms of adverse effects. These results lead us to the conclusion of the need to take into account the anticholinergic burden of medications when prescribing.
Collapse
|
20
|
Gargus M, Ben-Azu B, Landwehr A, Dunn J, Errico JP, Tremblay MÈ. Mechanisms of vagus nerve stimulation for the treatment of neurodevelopmental disorders: a focus on microglia and neuroinflammation. Front Neurosci 2025; 18:1527842. [PMID: 39881804 PMCID: PMC11774973 DOI: 10.3389/fnins.2024.1527842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The vagus nerve (VN) is the primary parasympathetic nerve, providing two-way communication between the body and brain through a network of afferent and efferent fibers. Evidence suggests that altered VN signaling is linked to changes in the neuroimmune system, including microglia. Dysfunction of microglia, the resident innate immune cells of the brain, is associated with various neurodevelopmental disorders, including schizophrenia, attention deficit hyperactive disorder (ADHD), autism spectrum disorder (ASD), and epilepsy. While the mechanistic understanding linking the VN, microglia, and neurodevelopmental disorders remains incomplete, vagus nerve stimulation (VNS) may provide a better understanding of the VN's mechanisms and act as a possible treatment modality. In this review we examine the VN's important role in modulating the immune system through the inflammatory reflex, which involves the cholinergic anti-inflammatory pathway, which releases acetylcholine. Within the central nervous system (CNS), the direct release of acetylcholine can also be triggered by VNS. Homeostatic balance in the CNS is notably maintained by microglia. Microglia facilitate neurogenesis, oligodendrogenesis, and astrogenesis, and promote neuronal survival via trophic factor release. These cells also monitor the CNS microenvironment through a complex sensome, including groups of receptors and proteins enabling microglia to modify neuroimmune health and CNS neurochemistry. Given the limitations of pharmacological interventions for the treatment of neurodevelopmental disorders, this review seeks to explore the application of VNS as an intervention for neurodevelopmental conditions. Accordingly, we review the established mechanisms of VNS action, e.g., modulation of microglia and various neurotransmitter pathways, as well as emerging preclinical and clinical evidence supporting VNS's impact on symptoms associated with neurodevelopmental disorders, such as those related to CNS inflammation induced by infections. We also discuss the potential of adapting non-invasive VNS for the prevention and treatment of these conditions. Overall, this review is intended to increase the understanding of VN's potential for alleviating microglial dysfunction involved in schizophrenia, ADHD, ASD, and epilepsy. Additionally, we aim to reveal new concepts in the field of CNS inflammation and microglia, which could serve to understand the mechanisms of VNS in the development of new therapies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Makenna Gargus
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Jaclyn Dunn
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Ma Q, Ma K, Dong Y, Meng Y, Zhao J, Li R, Bai Q, Wu D, Jiang D, Sun J, Zhao Y. Binding mechanism and antagonism of the vesicular acetylcholine transporter VAChT. Nat Struct Mol Biol 2025:10.1038/s41594-024-01462-9. [PMID: 39806024 DOI: 10.1038/s41594-024-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
The vesicular acetylcholine transporter (VAChT) has a pivotal role in packaging and transporting acetylcholine for exocytotic release, serving as a vital component of cholinergic neurotransmission. Dysregulation of its function can result in neurological disorders. It also serves as a target for developing radiotracers to quantify cholinergic neuron deficits in neurodegenerative conditions. Here we unveil the cryo-electron microscopy structures of human VAChT in its apo state, the substrate acetylcholine-bound state and the inhibitor vesamicol-bound state. These structures assume a lumen-facing conformation, offering a clear depiction of architecture of VAChT. The acetylcholine-bound structure provides a detailed understanding of how VAChT recognizes its substrate, shedding light on the coupling mechanism of protonation and substrate binding. Meanwhile, the vesamicol-bound structure reveals the binding mode of vesamicol to VAChT, laying the structural foundation for the design of the next generation of radioligands targeting VAChT.
Collapse
Affiliation(s)
- Qiao Ma
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunpeng Ma
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanli Dong
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yufei Meng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Renjie Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Wu
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Daohua Jiang
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jianyuan Sun
- University of Chinese Academy of Sciences, Beijing, China
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
Shivakumar AB, Mehak SF, Gupta A, Gangadharan G. Medial septal cholinergic neurotransmission is essential for social memory in mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111207. [PMID: 39615870 DOI: 10.1016/j.pnpbp.2024.111207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 01/29/2025]
Abstract
Social memory, a fundamental component of social behavior, is essential for the recognition and recall of familiar and novel animals/humans which is disrupted in several neuropsychiatric disorders. Although hippocampal circuitry is crucial for social memory, the role of extra-hippocampal regions in this behavior remains elusive. Here, we identified the physiological link between medial septal dependent cholinergic theta oscillations in the hippocampus and social memory behavior. We found that selective ablation of cholinergic neurons in the medial septum impaired social memory in mice, while their sociability and social novelty remained intact. Additionally, these mice showed an attenuation of cholinergic theta oscillations (3-7 Hz) in the hippocampal dorsal CA2 (dCA2) region. Furthermore, enhancing dCA2 theta oscillations by elevating cholinergic signaling using acetylcholinesterase inhibitor rescued social memory deficit. Together, these results indicate that 1) medial septal cholinergic neurons are essential for modulating social memory 2) cholinergic hippocampal theta oscillations contribute to social memory processes.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sonam Fathima Mehak
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Amritanshu Gupta
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Gireesh Gangadharan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
23
|
Song Y, Gordon PC, Roy O, Metsomaa J, Belardinelli P, Rostami M, Ziemann U. Involvement of muscarinic acetylcholine receptor-mediated cholinergic neurotransmission in TMS-EEG responses. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111167. [PMID: 39383933 DOI: 10.1016/j.pnpbp.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a valuable tool for investigating brain functions in health and disease. However, the detailed neural mechanisms underlying TMS-EEG responses, including TMS-evoked EEG potentials (TEPs) and TMS-induced EEG oscillations (TIOs), remain largely unknown. Combining TMS-EEG with pharmacological interventions provides a unique opportunity to elucidate the roles of specific receptor-mediated neurotransmissions in these responses. Here, we investigated the involvement of muscarinic acetylcholine receptor (mAChR)-mediated cholinergic neurotransmission in TMS-EEG responses by evaluating the effects of mAChR antagonists on TEPs and TIOs in twenty-four healthy participants using a randomized, placebo-controlled crossover design. TEPs and TIOs were measured before and after administering a single oral dose of scopolamine (a non-selective mAChR antagonist), biperiden (an M1 mAChR antagonist), or placebo, with TMS targeting the left medial prefrontal cortex (mPFC), angular gyrus (AG), and supplementary motor area (SMA). The results indicated that mAChR-mediated cholinergic neurotransmission played a role in TEPs, but not TIOs, in a target-specific manner. Specifically, scopolamine significantly increased the amplitude of a local TEP component between approximately 40 and 63 ms post-stimulus when TMS was applied to the SMA, but not the mPFC or AG. Biperiden produced a similar but less pronounced effect. Importantly, the effects of these mAChR antagonists on TEPs were independent of those on sensory-evoked EEG potentials caused by TMS-associated sensory stimulation. These findings expand our understanding of TMS-EEG physiology, providing insights for its application in physiological and clinical research.
Collapse
Affiliation(s)
- Yufei Song
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Pedro C Gordon
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Olivier Roy
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CERVO Brain Research Centre, Quebec, Canada; Department of Psychiatry and Neurosciences, Université Laval, Quebec, Canada
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Finland
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Maryam Rostami
- Faculty of Electrical and Computer Engineering, University of Tehran, Iran
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|
24
|
Wang YH, Yang X, Liu CC, Wang X, Yu KD. Unraveling the peripheral nervous System's role in tumor: A Double-edged Sword. Cancer Lett 2025; 611:217451. [PMID: 39793755 DOI: 10.1016/j.canlet.2025.217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The peripheral nervous system (PNS) includes all nerves outside the brain and spinal cord, comprising various cells like neurons and glial cells, such as schwann and satellite cells. The PNS is increasingly recognized for its bidirectional interactions with tumors, exhibiting both pro- and anti-tumor effects. Our review delves into the complex mechanisms underlying these interactions, highlighting recent findings that challenge the conventional understanding of PNS's role in tumorigenesis. We emphasize the contradictory results in the literature and propose novel perspectives on how these discrepancies can be resolved. By focusing on the PNS's influence on tumor initiation, progression, and microenvironment remodeling, we provide a comprehensive analysis that goes beyond the structural description of the PNS. Our review suggests that a deeper comprehension of the PNS-tumor crosstalk is pivotal for developing targeted anticancer strategies. We conclude by emphasizing the need for future research to unravel the intricate dynamics of the PNS in cancer, which may lead to innovative diagnostic tools and therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, PR China
| | - Cui-Cui Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
25
|
Türkdönmez Ak E, Okuyucu B, Arslan G, Ağar E, Ayyildiz M. The Role of Acetylcholinesterase Enzyme Inhibitor Rivastigmine on Spike-Wave Discharges, Learning-Memory, Anxiety, and TRPV1 Channel Expression in Genetic Absence Epileptic WAG/Rij Rats. Neurochem Res 2025; 50:67. [PMID: 39751932 DOI: 10.1007/s11064-024-04318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
In the present study, the effects of the acetylcholinesterase (AChE) enzyme inhibitor rivastigmine (RIVA) on spike-wave discharges (SWDs), memory impairment, anxiety-like behavior, and the transient receptor potential vanilloid 1 (TRPV1) gene expression were investigated in genetic absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. After tripolar electrodes were implanted on the WAG/Rij rats' skulls, single doses of 0.125, 0.25, 0.5, 1, and 2 mg/kg RIVA were intraperitoneally (i.p.) administered, and electrocorticogram (ECoG) recordings of SWDs were recorded for three hours before and after injections. Additionally, once significant doses were determined in acute studies, WAG/Rij rats were administered low-dose (0.5 mg/kg) and high-dose (2 mg/kg) of RIVA for 21 consecutive days and SWDs were recorded. Learning-memory abilities (Y-maze test), anxiety-like behavior (elevated plus maze test), and TRPV1 gene expression were determined and compared in 8-month-old WAG/Rij and age-matched Wistar rats. Acute RIVA administration dose-dependently reduced the total number of SWDs and was even entirely inhibited at 1 and 2 mg/kg RIVA doses. On the other hand, long-term high-dose RIVA administration increased the total number of SWDs. Long-term high-dose RIVA treatment reduced learning-memory and anxiety-like behavior in WAG/Rij rats, while only anxiety-like behavior decreased in Wistar rats. TRPV1 gene expression increased in WAG/Rij rats and decreased in Wistar rats with long-term RIVA administration. These data indicate that the sudden increase of acetylcholine (ACh) causes a significant decrease in absence seizures. In contrast, prolonged maintenance of ACh elevation causes an increase in absence seizures, probably by altering the expression of channels such as TRPV1.
Collapse
Affiliation(s)
- Elif Türkdönmez Ak
- Department of Physiology, Faculty of Medicine, University of Ordu, Ordu, Türkiye
| | - Büşra Okuyucu
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye.
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Mustafa Ayyildiz
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| |
Collapse
|
26
|
Kenny TC, Scharenberg S, Abu-Remaileh M, Birsoy K. Cellular and organismal function of choline metabolism. Nat Metab 2025; 7:35-52. [PMID: 39779890 DOI: 10.1038/s42255-024-01203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation. Consistent with its pleiotropic role in cellular physiology, choline metabolism contributes to numerous developmental and physiological processes in the brain, liver, kidney, lung and immune system, and both choline deficiency and excess are implicated in human disease. Mutations in the genes encoding choline metabolism proteins lead to inborn errors of metabolism, which manifest in diverse clinical pathologies. While the identities of many enzymes involved in choline metabolism were identified decades ago, only recently has the field begun to understand the diverse mechanisms by which choline availability is regulated and fuelled via metabolite transport/recycling and nutrient acquisition. This review provides a comprehensive overview of choline metabolism, emphasizing emerging concepts and their implications for human health and disease.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Samantha Scharenberg
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
27
|
Schwarze‐Taufiq TA, Pranoto IKA, Hui K, Kinoshita C, Yu O, Crane PK, Gray SL, Young JE. Anticholinergic drugs and dementia risk: Using stem cell-based studies to complement pharmacoepidemiology. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70040. [PMID: 39911736 PMCID: PMC11795422 DOI: 10.1002/trc2.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 02/07/2025]
Abstract
BACKGROUND Anticholinergic (AC) use remains common in older adults despite evidence of safety risks, including increased risk in dementia. Pharmacoepidemiology studies from various populations report associations between specific anticholinergic classes - antidepressants and bladder antimuscarinics - and increased dementia incidence. However, it is difficult to determine whether these associations are directly caused by the neurotoxic effects of anticholinergic drugs or by the underlying health conditions which the medications are taken for, known as confounding by indication. Here, we leverage human induced pluripotent stem cells-derived-neurons (hiPSC-Ns) to complement the pharmacoepidemiology studies by directly examining the effects of various anticholinergic classes on dementia-related cellular phenotypes. METHODS We treated human induced pluripotent stem cell (hiPSC)-derived neurons with eight drugs representing different AC medication classes, including antidepressants, bladder antimuscarinics, antihistamines, and antispasmodics. We analyzed these neurons for cytotoxicity, amyloid beta (Aβ) peptide levels in the conditioned medium, and the level of intracellular phosphorylated tau from these cultures. RESULTS We observed that antidepressants and bladder antimuscarinics were consistently cytotoxic, whereas antihistamines and antispasmodics did not show overt cytotoxicity at the times and concentrations that we tested. Some of the cytotoxic medications altered the amounts of Aβ1-42 peptides, but there were no significant differences in the intracellular ratio of phosphorylated tau/total tau between AC drug treatments. CONCLUSIONS These results corroborate population-based studies and suggest a molecular basis for the differences in dementia risk observed according to AC class. This warrants future work examining the effect of AC medications on hiPSC-derived cells from multiple subjects and examining other molecular outcomes including synaptic function and neuroinflammation in hiPSC-based models. Highlights Certain classes of anticholinergic (AC) medications are linked to dementia.Human-induced pluripotent stem cell (hiPSC) models are used to directly test the cytotoxicity of AC medications.AC classes that are associated with dementia are more neurotoxic.
Collapse
Affiliation(s)
- Tiara A. Schwarze‐Taufiq
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Inez K. A. Pranoto
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Katherine Hui
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Onchee Yu
- Kaiser Permanente Washington Health Research InstituteSeattleWashingtonUSA
| | - Paul K. Crane
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Shelly L. Gray
- School of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Jessica E. Young
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
28
|
Hua Y, Habicher J, Carl M, Manuel R, Boije H. Novel Transgenic Zebrafish Lines to Study the CHRNA3-B4-A5 Gene Cluster. Dev Neurobiol 2025; 85:e22956. [PMID: 39686588 DOI: 10.1002/dneu.22956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/13/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024]
Abstract
Acetylcholine (ACh), a vital neurotransmitter for both the peripheral (PNS) and central nervous systems (CNS), signals through nicotinic ACh receptors (nAChRs) and muscarinic ACh receptors (mAChR). Here, we explore the expression patterns of three nAChR subunits, chrna3, chrnb4, and chrna5, which are located in an evolutionary conserved cluster. This close genomic positioning, in a range of vertebrates, may indicate co-functionality and/or co-expression. Through novel transgenic zebrafish lines, we observe widespread expression within both the PNS and CNS. In the PNS, we observed expression of chrna3tdTomato, chrnb4eGFP, and chrna5tdTomato in the intestinal enteric nervous system; chrna5tdTomato and chrnb4eGFP in sensory ganglia of the lateral line; and chrnb4eGFP in the ear. In the CNS, the expression of chrnb4eGFP and chrna5tdTomato was found in the retina, all three expressed in diverse regions of the brain, where a portion of chrna3tdTomato and chrnb4eGFP cells were found to be inhibitory efferent neurons projecting to the lateral line. Within the spinal cord, we identify distinct populations of chrna3tdTomato-, chrnb4eGFP-, and chrna5tdTomato-expressing neurons within the locomotor network, including dmrt3a-expressing interneurons and mnx1-expressing motor neurons. Notably, three to four primary motor neurons per hemisegment were labeled by both chrna3tdTomato and chrnb4eGFP. Interestingly, we identified an sl-type secondary motor neuron per hemisegement that strongly expressed chrna5tdTomato and co-expressed chrnb4eGFP. These transgenic lines provide insights into the potential roles of nAChRs within the locomotor network and open avenues for exploring their role in nicotine exposure and addiction in a range of tissues throughout the nervous system.
Collapse
Affiliation(s)
- Yuanqi Hua
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Judith Habicher
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Remy Manuel
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Boije
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Olasehinde TA, Olaniran AO. Assessment of Neurotoxic Mechanisms of Individual and Binary Mixtures of Cobalt, Nickel and Lead in Hippocampal Neuronal Cells. ENVIRONMENTAL TOXICOLOGY 2025; 40:128-139. [PMID: 39365032 PMCID: PMC11628647 DOI: 10.1002/tox.24418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024]
Abstract
Many studies have focused on the neurotoxic effects of single metals, while investigation on the exposure to metal mixtures, which mainly occur in real-life situations, is scarce. This study sought to assess the neurotoxic effect of Ni, Co, and Pb binary mixtures and their individual effects in hippocampal neuronal cells (HT-22). Cells were exposed to Ni, Co, and Pb separately for 48 h at 37°C and 5% CO2, and cell viability was assessed. Morphological assessment of the cells exposed to binary mixtures of Co, Ni, and Pb and single metals was assessed using a microscope. Furthermore, acetylcholinesterase (AChE) activity, oxidative stress biomarkers (glutathione [GSH] and malondialdehyde [MDA] levels, catalase [CAT], and glutathione-S transferase [GST] activities) and nitric oxide [NO] levels were evaluated after treatment with the binary mixtures and single metals. Binary mixtures of the metals reduced cell viability, exerting an additivity action. The combinations also exerted synergistic action, as revealed by the combination index. Furthermore, a significant reduction in AChE activity, GSH levels, CAT and GST activities, and high MDA and NO levels were observed in neuronal cells. The additive interactions and synergistic actions of the binary mixtures might contribute to the significant reduction of AChE activity, GSH levels, GST, and CAT activities, and an increase in MDA and NO levels. The findings from this study revealed significant evidence that binary mixtures of Co, Pb, and Ni may induce impaired neuronal function and, ultimately, neurodegeneration.
Collapse
Affiliation(s)
- Tosin A. Olasehinde
- Nutrition and Toxicology Division, Food Technology DepartmentFederal Institute of Industrial ResearchLagosNigeria
- Discipline of Microbiology, School of Life SciencesUniversity of Kwazulu‐NatalDurbanSouth Africa
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life SciencesUniversity of Kwazulu‐NatalDurbanSouth Africa
| |
Collapse
|
30
|
Owumi S, Chimezie J, Emmanuel PD, Okeibuno AC, Owoeye O. Diethyl nitrosamine-induces neurobehavioral deficit, oxido-nitrosative stress in rats' brain: a neuroprotective role of diphenyl diselenide. BMC Neurosci 2024; 25:77. [PMID: 39722026 DOI: 10.1186/s12868-024-00922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Diethylnitrosamine (DEN), a common dietary carcinogen, is associated with neurotoxicity in humans and animals. This study investigated the neuroprotective effects of diphenyl diselenide (DPDS) against DEN-induced neurotoxicity in male Albino Wistar rats (n = 40). Rats were randomly distributed into cohorts and treated as follows: vehicle control (corn oil 2 mL/kg; gavage), DPDS-only (5 mg/kg; gavage) and DEN-only (200 mg/kg; single dose i.p.). Also, two other rat cohorts were pre-treated with DPDS (3 or 5 mg/kg) for 15 days (day: 0-15), subsequently administered with DEN (200 mg/kg) and continuously treated with DPDS for another 7 days, (days:15-21). Behavioural tests (OFT- using the open field test; NORT- novel object recognition test; FST- forced swimming test and Y-maze) were conducted from days 19-21, followed by biochemical analysis of the hippocampus and prefrontal cortex for oxidative stress, inflammation, neurotransmitter metabolic enzyme, and histopathology. DEN-treated rats exhibited decreased locomotor activity, spatial memory function and antioxidant activity, increased oxidative and nitration stress, anxiety, and depressive-like behaviour, causing histoarchitectural damage in prefrontal and hippocampal cortices. DPDS treatment (pre- and post-DEN exposure) significantly alleviated these neurotoxic, oxidative, and nitration effects, reversed DEN-induced histopathological alterations, and improved locomotive and cognitive functions. In conclusion, DPDS demonstrates potent neuroprotective effects against DEN-induced toxicity, likely through enhanced endogenous antioxidant capacity that mitigates oxido-nitrative damage. These findings suggest that the organo-selenium -DPDS- is a promising chemotherapeutic agent potent in alleviating DEN-mediated neurotoxicity and maintaining brain health.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria.
| | - Joseph Chimezie
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Praise Dyap Emmanuel
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria
| | - Anthony Chukwuma Okeibuno
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
31
|
Sieu LA, Singla S, Liu J, Zheng X, Sharafeldin A, Chandrasekaran G, Valcarce-Aspegren M, Niknahad A, Fu I, Doilicho N, Gummadavelli A, McCafferty C, Crouse RB, Perrenoud Q, Picciotto MR, Cardin JA, Blumenfeld H. Slow and fast cortical cholinergic arousal is reduced in a mouse model of focal seizures with impaired consciousness. Cell Rep 2024; 43:115012. [PMID: 39643969 PMCID: PMC11817788 DOI: 10.1016/j.celrep.2024.115012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024] Open
Abstract
Patients with focal temporal lobe seizures often experience loss of consciousness associated with cortical slow waves, like those in deep sleep. Previous work in rat models suggests that decreased subcortical arousal causes depressed cortical function during focal seizures. However, these studies were performed under light anesthesia, making it impossible to correlate conscious behavior with physiology. We show in an awake mouse model that electrically induced focal seizures in the hippocampus cause impaired behavioral responses to auditory stimuli, cortical slow waves, and reduced mean cortical high-frequency activity. Behavioral responses are related to cortical cholinergic release at two different timescales. Slow state-related decreases in acetylcholine correlate with overall impaired behavior during seizures. Fast phasic acetylcholine release is related to variable spared or impaired behavioral responses with each auditory stimulus. These findings establish a strong relationship between decreased cortical arousal and impaired consciousness in focal seizures, which may help guide future treatment.
Collapse
Affiliation(s)
- Lim-Anna Sieu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shobhit Singla
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiayang Liu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xinyuan Zheng
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Ganesh Chandrasekaran
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Ava Niknahad
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ivory Fu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Natnael Doilicho
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abhijeet Gummadavelli
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cian McCafferty
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy and Neuroscience Program, University College Cork, Cork, Ireland
| | - Richard B Crouse
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Quentin Perrenoud
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marina R Picciotto
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
32
|
Xie S, Miao X, Li G, Zheng Y, Li M, Ji E, Wang J, Li S, Cai R, Geng L, Feng J, Wei C, Li Y. Red-shifted GRAB acetylcholine sensors for multiplex imaging in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.627112. [PMID: 39763957 PMCID: PMC11703214 DOI: 10.1101/2024.12.22.627112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The neurotransmitter acetylcholine (ACh) is essential in both the central and peripheral nervous systems. Recent studies highlight the significance of interactions between ACh and various neuromodulators in regulating complex behaviors. The ability to simultaneously image ACh and other neuromodulators can provide valuable information regarding the mechanisms underlying these behaviors. Here, we developed a series of red fluorescent G protein-coupled receptor activation-based (GRAB) ACh sensors, with a wide detection range and expanded spectral profile. The high-affinity sensor, rACh1h, reliably detects ACh release in various brain regions, including the nucleus accumbens, amygdala, hippocampus, and cortex. Moreover, rACh1h can be co-expressed with green fluorescent sensors in order to record ACh release together with other neurochemicals in various behavioral contexts using fiber photometry and two-photon imaging, with high spatiotemporal resolution. These new ACh sensors can therefore provide valuable new insights regarding the functional role of the cholinergic system under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Shu Xie
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- These authors contributed equally
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- These authors contributed equally
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- These authors contributed equally
| | - Yu Zheng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mengyao Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - En Ji
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jinxu Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shaochuang Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Lan Geng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Qu D, Schürmann P, Rothämel T, Dörk T, Klintschar M. Genetic Association Study of Acetylcholinesterase ( ACHE) and Butyrylcholinesterase ( BCHE) Variants in Sudden Infant Death Syndrome (SIDS). Genes (Basel) 2024; 15:1656. [PMID: 39766923 PMCID: PMC11727802 DOI: 10.3390/genes15121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Sudden infant death syndrome (SIDS) is the leading cause of death among infants aged between one month and one year. Altered enzyme activities or expression of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) have been observed in SIDS patients that might lead to disturbed autonomic function and, together with other risk factors, might trigger SIDS. To explore the contribution of AChE and BChE from a genomic viewpoint, we sought to investigate the association between SIDS and selected single nucleotide polymorphisms (SNPs) in the ACHE and BCHE genes. METHODS In this case-control study, 13 potentially regulatory SNPs were selected from ACHE and BCHE and were genotyped in 201 SIDS cases and 338 controls. The association of SIDS with the 11 successfully genotyped candidate variants was examined using statistical analyses of overall or stratified cases and haplotype analyses. RESULTS No significant overall associations were observed between SIDS and ACHE and BCHE variants in allele, genotype, and haplotype analyses. In subgroup analyses, eight variants were found to be nominally associated with SIDS, though these associations did not remain statistically significant after correction for multiple comparisons. One haplotype (T-C-G-C-C in rs3495-rs1803274-rs1355538-rs2048493-rs1126680) of BCHE was associated with the female SIDS subgroup (57.3% in controls vs. 46.3% in female SIDS cases, p = 0.010). CONCLUSIONS The selected variants in ACHE and BCHE were not overall associated with SIDS in this study, and thus cannot generally explain the previously reported dysregulation of enzyme activities in SIDS. However, some evidence of association in subgroups and a possible contribution of variants other than those tested here would need to be explored in larger studies.
Collapse
Affiliation(s)
- Dong Qu
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (D.Q.); (T.R.)
- Department of Forensic Medicine, School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing 211166, China
| | - Peter Schürmann
- Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (P.S.); (T.D.)
| | - Thomas Rothämel
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (D.Q.); (T.R.)
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (P.S.); (T.D.)
| | - Michael Klintschar
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (D.Q.); (T.R.)
| |
Collapse
|
34
|
Tsotsokou G, Fassea M, Papatheodoropoulos C. Muscarinic Modulation of Network Excitability and Short-Term Dynamics in the Dorsal and Ventral Hippocampus. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001367. [PMID: 39758582 PMCID: PMC11696349 DOI: 10.17912/micropub.biology.001367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Cholinergic transmission fundamentally modulates information processing in the brain via muscarinic receptors. Using in vitro electrophysiological recordings of population spikes from the CA1 region, we found that the muscarinic receptor agonist carbachol (CCh, 1 μM) enhances the basal excitation level in the dorsal but not ventral hippocampus. Using a frequency stimulation protocol, we found that CCh transforms depression of neuronal output into facilitation (at 3-30 Hz) in the ventral hippocampus while only lessening depression in the dorsal hippocampus, suggesting that muscarinic transmission boosts basal neuronal activation in the dorsal hippocampus and strongly facilitates the output of the ventral hippocampus in a frequency-dependent manner.
Collapse
Affiliation(s)
- Giota Tsotsokou
- Laboratory of Physiology, Department of Medicine, University of Patras, Pátrai, West Greece, Greece
| | - Milena Fassea
- Laboratory of Physiology, Department of Medicine, University of Patras, Pátrai, West Greece, Greece
| | | |
Collapse
|
35
|
Elhabbari K, Sireci S, Rothermel M, Brunert D. Olfactory deficits in aging and Alzheimer's-spotlight on inhibitory interneurons. Front Neurosci 2024; 18:1503069. [PMID: 39737436 PMCID: PMC11683112 DOI: 10.3389/fnins.2024.1503069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Cognitive function in healthy aging and neurodegenerative diseases like Alzheimer's disease (AD) correlates to olfactory performance. Aging and disease progression both show marked olfactory deficits in humans and rodents. As a clear understanding of what causes olfactory deficits is still missing, research on this topic is paramount to diagnostics and early intervention therapy. A recent development of this research is focusing on GABAergic interneurons. Both aging and AD show a change in excitation/inhibition balance, indicating reduced inhibitory network functions. In the olfactory system, inhibition has an especially prominent role in processing information, as the olfactory bulb (OB), the first relay station of olfactory information in the brain, contains an unusually high number of inhibitory interneurons. This review summarizes the current knowledge on inhibitory interneurons at the level of the OB and the primary olfactory cortices to gain an overview of how these neurons might influence olfactory behavior. We also compare changes in interneuron composition in different olfactory brain areas between healthy aging and AD as the most common neurodegenerative disease. We find that pathophysiological changes in olfactory areas mirror findings from hippocampal and cortical regions that describe a marked cell loss for GABAergic interneurons in AD but not aging. Rather than differences in brain areas, differences in vulnerability were shown for different interneuron populations through all olfactory regions, with somatostatin-positive cells most strongly affected.
Collapse
Affiliation(s)
| | | | | | - Daniela Brunert
- Institute of Physiology, RG Neurophysiology and Optogenetics, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
36
|
Marins K, Bianco CD, Henrique da Silva A, Zamoner A. Maternal exposure to glyphosate increased the risk of adverse neurodevelopmental outcomes in rodent offspring: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125086. [PMID: 39374765 DOI: 10.1016/j.envpol.2024.125086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
The potential neurotoxicity of environmental contaminants, such as pesticides, is implicated in the etiology of neurodevelopmental disorders, particularly given the heightened vulnerability of the developing brain. Among these contaminants, glyphosate, a widely used herbicide, has been linked to alterations in neurodevelopment, though its precise neurotoxic mechanisms are not fully elucidated. In this context, our systematic review evaluates the impact of maternal exposure to glyphosate alone (GLY) or glyphosate-based-herbicide (GBH) on neurodevelopmental and behavioral outcomes in rodent offspring. This assessment encompasses a comprehensive examination of behavioral, biochemical, morphological, and genetic alterations resulting from perinatal glyphosate exposure. The Systematic review protocol was registered in the platform Open Science Framework (OSF) following the guidelines of the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). Our analysis demonstrate that glyphosate disrupts redox signaling, metabolic pathways, and neurotransmitter systems, thereby affecting brain architecture and function across genders and developmental stages in rodents. The results of this review elucidate the extensive neurochemical and behavioral disruptions attributed to glyphosate, highlighting the critical need for advanced neurodevelopmental risk assessment methodologies. Such refined evaluations are vital to inform targeted prevention and intervention strategies in the context of environmental neurotoxicants.
Collapse
Affiliation(s)
- Katiuska Marins
- Laboratory of Biochemistry and Cell Signaling - LaBioSignal, Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, 88037-000, SC, Brazil
| | - Cláudia Daniele Bianco
- Laboratory of Biochemistry and Cell Signaling - LaBioSignal, Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, 88037-000, SC, Brazil
| | - Adny Henrique da Silva
- Laboratory of Biochemistry and Cell Signaling - LaBioSignal, Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, 88037-000, SC, Brazil
| | - Ariane Zamoner
- Laboratory of Biochemistry and Cell Signaling - LaBioSignal, Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, 88037-000, SC, Brazil.
| |
Collapse
|
37
|
Ak ET, Okuyucu B, Hatipoğlu B, Arslan G. The effect of acetylcholinesterase inhibitor rivastigmine in pentylenetetrazole-induced kindling model of epilepsy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03679-3. [PMID: 39643806 DOI: 10.1007/s00210-024-03679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
This study aimed to investigate the role of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitor rivastigmine (RIVA) in the pentylenetetrazole (PTZ)- induced kindling model of epilepsy. The current study consists of three steps; 1) Saline or RIVA (0.5, 1, and 2 mg/kg) was administered intraperitoneally (i.p.) 15 min before PTZ (35 mg/kg) during the kindling process and seizure behaviors were observed; 2) Single doses of RIVA (0.25, 0.5, and 1 mg/kg; i.p.) was administered to the electrode implanted kindled rats 15 min before PTZ and electrocorticogram (ECoG) recordings were obtained; 3) Low-dose of RIVA (0.5 mg/kg) was administered to the kindled rats for 14 consecutive days and after 24 h PTZ was administered and ECoG recordings were obtained. In addition, 24 h after the PTZ injection, the hippocampus was extracted and mRNA expression levels of N-methyl D-aspartate receptor subunit 2B (NR2B) and brain-derived neurotrophic factor (BDNF) were measured by qPCR analysis. Only low-dose of RIVA increased resistance against kindling. Single and long-term administration of low-dose RIVA increased the latency to the first myoclonic jerk, decreased the duration of generalized tonic-clonic seizures, and reduced the seizure stage in kindled rats. Long-term low-dose RIVA treatment decreased the mRNA expressions of NR2B and BDNF, which were increased after PTZ kindling. Low-dose of RIVA showed anticonvulsant properties, while high doses did not. RIVA exerts its anticonvulsant effect probably through NMDAR-BDNF pathways. Our results suggest that the use of RIVA may not be harmful and even reduce seizure severity in epileptic patients with convulsions.
Collapse
Affiliation(s)
- Elif Türkdönmez Ak
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye
| | - Büşra Okuyucu
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye
| | - Burcu Hatipoğlu
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye
| | - Gökhan Arslan
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye.
| |
Collapse
|
38
|
Szpręgiel I, Bysiek A. Psilocybin and the glutamatergic pathway: implications for the treatment of neuropsychiatric diseases. Pharmacol Rep 2024; 76:1297-1304. [PMID: 39412581 PMCID: PMC11582295 DOI: 10.1007/s43440-024-00660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024]
Abstract
In recent decades, psilocybin has gained attention as a potential drug for several mental disorders. Clinical and preclinical studies have provided evidence that psilocybin can be used as a fast-acting antidepressant. However, the exact mechanisms of action of psilocybin have not been clearly defined. Data show that psilocybin as an agonist of 5-HT2A receptors located in cortical pyramidal cells exerted a significant effect on glutamate (GLU) extracellular levels in both the frontal cortex and hippocampus. Increased GLU release from pyramidal cells in the prefrontal cortex results in increased activity of γ-aminobutyric acid (GABA)ergic interneurons and, consequently, increased release of the GABA neurotransmitter. It seems that this mechanism appears to promote the antidepressant effects of psilocybin. By interacting with the glutamatergic pathway, psilocybin seems to participate also in the process of neuroplasticity. Therefore, the aim of this mini-review is to discuss the available literature data indicating the impact of psilocybin on glutamatergic neurotransmission and its therapeutic effects in the treatment of depression and other diseases of the nervous system.
Collapse
Affiliation(s)
- Izabela Szpręgiel
- Department of Pharmacology and Brain Biostructure, Unit II, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| | - Agnieszka Bysiek
- Department of Pharmacology and Brain Biostructure, Unit II, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| |
Collapse
|
39
|
Halder N, Yadav S, Lal G. Neuroimmune communication of the cholinergic system in gut inflammation and autoimmunity. Autoimmun Rev 2024; 23:103678. [PMID: 39500481 DOI: 10.1016/j.autrev.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Neuroimmune communication in the body forms a bridge between two central regulatory systems of the body, i.e., nervous and immune systems. The cholinergic system is a crucial modulatory neurotransmitter in the central and peripheral nervous system. It includes the neurotransmitter acetylcholine (ACh), the enzyme required for the synthesis of ACh (choline acetyltransferase, ChAT), the enzyme required for its degradation (acetylcholinesterase, AChE), and cholinergic receptors (Nicotinic acetylcholine receptors and muscarinic acetylcholine receptors). The cholinergic system in neurons is well known for its role in cognitive function, sensory perception, motor control, learning, and memory processes. It has been shown that the non-neuronal cholinergic system (NNCS) is present in various tissues and immune cells and forms a neuroimmune communications system. In the present review, we discussed the NNCS on immune cells, its role in homeostasis and inflammatory reactions in the gut, and how it can be exploited in treating inflammatory responses.
Collapse
Affiliation(s)
- Namrita Halder
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Sourabh Yadav
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
40
|
Agrawal P, Singh P, Singh KP. Vilazodone exposure during pregnancy: Effects on embryo-fetal development, pregnancy outcomes and fetal neurotoxicity by BDNF/Bax-Bcl2/5-HT mediated mechanisms. Neurotoxicology 2024; 105:280-292. [PMID: 39532268 DOI: 10.1016/j.neuro.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The high prevalence of major depressive disorder (MDD) among women of childbearing age necessitates careful consideration of antidepressant use during pregnancy. Although newer antidepressants, such as Vilazodone (VLZ), are preferred for their enhanced therapeutic profiles; however, their safety during pregnancy and long-term effects on offspring brains remain inadequately addressed. Therefore, this study aimed to investigate the reproductive and developmental neurotoxicity of VLZ given at equivalent therapeutic doses during gestation in a rat model. Pregnant Wistar dams were orally administered either with 1 mg/day or 2 mg/day of VLZ from gestation day (GD) 6-21. The dams were sacrificed at GD 21, and the placentas and fetuses were collected. Fetal brains were then subjected to neurohistopathological, neurochemical, and biochemical analysis. Prenatal exposure to VLZ at 2 mg/day resulted in significant maternal, reproductive, and embryo-fetal toxicity, characterized by reduced food intake, diminished weight gain in pregnant dams, and smaller litter sizes, along with decreased fetal and placental weights. These effects were associated with developmental neurotoxicity, which manifested as decreased fetal brain size and weight, a substantial reduction in neocortical layer thickness, brain-derived neurotrophic factor (BDNF) expression, serotonin, dopamine, and norepinephrine neurotransmitter levels (5-HT, DA, and NE), and increased apoptotic activity (Bax and Bcl-2 ratio) and acetylcholinesterase levels in the developing brain. Our findings indicate that prenatal VLZ exposure interfere with crucial brain development processes involving the BDNF/Bax-Bcl2/5-HT signalling pathways, leading to long-lasting neurodevelopmental impairments. This study is the first to document the adverse effects of VLZ on fetal brain development, highlighting the need for further research to assess the safety of VLZ use during pregnancy.
Collapse
Affiliation(s)
- Priyanka Agrawal
- Neurobiology Lab., Department of Zoology, University of Allahabad, Prayagraj, UP 211002, India.
| | - Pallavi Singh
- Neurobiology Lab., Department of Zoology, University of Allahabad, Prayagraj, UP 211002, India.
| | - K P Singh
- Neurobiology Lab., Department of Zoology, University of Allahabad, Prayagraj, UP 211002, India.
| |
Collapse
|
41
|
Singh AD, Chawda M, Kulkarni YA. Vasant Kusumakar Rasa Ameliorates Diabetic Encephalopathy by Reducing Oxidative Stress and Neuroinflammation and Improving Neurotransmitter Levels in Experimental Animals. Cureus 2024; 16:e75905. [PMID: 39830570 PMCID: PMC11739537 DOI: 10.7759/cureus.75905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 01/22/2025] Open
Abstract
PURPOSE Diabetic encephalopathy (DE) is one of the complications of diabetes that affects the brain. In the Ayurveda system of medicine, Vasant Kusumakar Rasa (VKR) is cited as a classical herbo-mineral formulation for diabetes. However, the role of VKR in DE is still unclear. METHODS High-fat diet and streptozotocin (35 mg/kg, i.p.) were used to induce type 2 DE in Sprague Dawley rats. VKR at doses 28 mg/kg and 56 mg/kg was given via intragastric route to diabetic rats for 16 weeks. Estimation of plasma glucose, serum insulin, glycohemoglobin, and C-reactive protein (C-RP) was analyzed. Furthermore, the Morris water maze test was performed to assess cognitive behavior. Pro-inflammatory, such as TNF-α, IL-1β, and IL-6, were measured in brain tissue homogenate. Antioxidant enzyme assays were performed to estimate the levels of malondialdehyde, reduced glutathione, superoxide dismutase, and catalase in brain tissue. Histopathology of brain sections was performed using hematoxylin and eosin (H & E) staining. Neurotransmitters (viz., serotonin (5-HT), dopamine (DA), and norepinephrine (NE)) were estimated in the brain by high-performance liquid chromatography (HPLC). The data were analyzed by using ANOVA, followed by Dunnett's multiple comparison test. RESULTS VKR treatment, at a dose of 28 and 56 mg/kg, reduced the plasma glucose level significantly (236.7±17.08 and 221.8±17.50, respectively; p<0.001) when compared with diabetic control (461.7±13.03). The treatment also reduced serum insulin and glycated hemoglobin levels and improved the escape latency in VKR-treated animals as compared to diabetic animals. Brain tissue pro-inflammatory marker levels were reduced, and oxidative stress enzymes showed positive marks in diabetic rats treated with VKR. Histopathology of the brain demonstrated a reduction in neuronal damage in the VKR-treated diabetic animals. VKR treatment at doses of 28 and 56 mg/kg also improved the levels of 5-HT (1.78±0.11 and 1.72±0.18, respectively) when compared with diabetic control (0.91±0.08) significantly (p<0.01). DA levels were significantly (p<0.01) increased in VKR-treated animals when compared with diabetic animals. The treatment of VKR for 16 weeks also improved the NE levels significantly when compared with diabetic control animals. CONCLUSION The result of the study indicates that the treatment with VKR for 16 weeks has significant therapeutic potential in the management of type 2 DE.
Collapse
Affiliation(s)
- Alok D Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, IND
| | - Mukesh Chawda
- Medical Services, Shree Dhootapapeshwar Limited, Mumbai, IND
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, IND
| |
Collapse
|
42
|
Lavoie N, Blanco-Duque C, Kahn M, Nawaid H, Loon A, Seguin A, Raju R, Davison A, Yang CY, Tsai LH. The role of cholinergic signaling in multi-sensory gamma stimulation induced perivascular clearance of amyloid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625739. [PMID: 39651179 PMCID: PMC11623630 DOI: 10.1101/2024.11.27.625739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Modulatory neurotransmitters exert powerful control over neurons and the brain vasculature. Gamma Entrainment Using Sensory Stimuli (GENUS) promotes amyloid clearance via increased perivascular cerebral spinal fluid (CSF) flux in mouse models of Alzheimer's Disease. Here we use whole-brain activity mapping to identify the cholinergic basal forebrain as a key region responding to GENUS. In line with this, GENUS promoted cortical acetylcholine release, vascular dilation, vasomotion and perivascular clearance. Inhibiting cholinergic signaling abolished the effects of GENUS, including the promotion of arterial pulsatility, periarterial CSF influx, and the reduction of cortical amyloid levels. Our findings establish cholinergic signaling as an essential component of the brain's ability to promote perivascular amyloid clearance via non-invasive sensory stimulation.
Collapse
|
43
|
Xue J, Chen H, Wang Y, Jiang Y. Structural mechanisms of human sodium-coupled high-affinity choline transporter CHT1. Cell Discov 2024; 10:116. [PMID: 39587078 PMCID: PMC11589582 DOI: 10.1038/s41421-024-00731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 11/27/2024] Open
Abstract
Mammalian sodium-coupled high-affinity choline transporter CHT1 uptakes choline in cholinergic neurons for acetylcholine synthesis and plays a critical role in cholinergic neurotransmission. Here, we present the high-resolution cryo-EM structures of human CHT1 in apo, substrate- and ion-bound, hemicholinium-3-inhibited, and ML352-inhibited states. These structures represent three distinct conformational states, elucidating the structural basis of the CHT1-mediated choline uptake mechanism. Three ion-binding sites, two for Na+ and one for Cl-, are unambiguously defined in the structures, demonstrating that both ions are indispensable cofactors for high-affinity choline-binding and are likely transported together with the substrate in a 2:1:1 stoichiometry. The two inhibitor-bound CHT1 structures reveal two distinct inhibitory mechanisms and provide a potential structural platform for designing therapeutic drugs to manipulate cholinergic neuron activity. Combined with the functional analysis, this study provides a comprehensive view of the structural mechanisms underlying substrate specificity, substrate/ion co-transport, and drug inhibition of a physiologically important symporter.
Collapse
Affiliation(s)
- Jing Xue
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
44
|
Zhu Y, Wang F, Ning P, Zhu Y, Zhang L, Li K, Liu B, Ren H, Xu Z, Pang A, Yang X. Multimodal neuroimaging-based prediction of Parkinson's disease with mild cognitive impairment using machine learning technique. NPJ Parkinsons Dis 2024; 10:218. [PMID: 39528560 PMCID: PMC11555067 DOI: 10.1038/s41531-024-00828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to identify potential markers that can predict Parkinson's disease with mild cognitive impairment (PDMCI). We retrospectively collected general demographic data, clinically relevant scales, plasma samples, and neuroimaging data (T1-weighted magnetic resonance imaging (MRI) data as well as resting-state functional MRI [Rs-fMRI] data) from 173 individuals. Subsequently, based on the aforementioned multimodal indices, a support vector machine was employed to investigate the machine learning (ML) classification of PD patients with normal cognition (PDNC) and PDMCI. The performance of 29 classifiers was assessed based on various combinations of indicators. Results demonstrated that the optimal classifier in the validation set was composed by clinical + Rs-fMRI+ neurofilament light chain, exhibiting a mean Accuracy of 0.762, a mean area under curve of 0.840, a mean sensitivity of 0.745, along with a mean specificity of 0.783. The ML algorithm based on multimodal data demonstrated enhanced discriminative ability between PDNC and PDMCI patients.
Collapse
Affiliation(s)
- Yongyun Zhu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Pingping Ning
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shanxi, China
| | - Yangfan Zhu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lingfeng Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kelu Li
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hui Ren
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhong Xu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ailan Pang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Xinglong Yang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
45
|
Merkulyeva N. Comparative review of the brain development in Acomys cahirinus. Neurosci Biobehav Rev 2024; 167:105939. [PMID: 39521311 DOI: 10.1016/j.neubiorev.2024.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Acomys cahirinus (referred to as "acomys" in this article) is a precocial rodent, born well-developed and mobile, capable of feeding independently and escaping predators shortly after birth. Notable for its advanced regenerative abilities and menstrual cycle, acomys serves as a unique model for studying diverse aspects of physiology and neuroscience, including developmental and regenerative neuroscience. Despite its significance, only sporadic and unsystematic data on the structure and development of the acomys brain are available. Therefore, the aim of this study was to systematically organize the existing information on the structure and development of the acomys brain and to compare it with that of commonly studied altricial rodent species (rats, mice, hamsters, and gerbils). This review is organized into several sections, focusing on general aspects of brain development, such as myelination and brain growth. It also discusses the development of brain structures involved in sensory processing (olfactory, visual, and auditory), motor control, learning and memory, and social behavior.
Collapse
Affiliation(s)
- Natalia Merkulyeva
- Neuromorphology lab, Pavlov Institute of Physiology Russian Academy of Sciences, Makarov enb., 6, St. Petersburg 199034, Russia.
| |
Collapse
|
46
|
Ongnok B, Prathumsap N, Chunchai T, Pantiya P, Arunsak B, Chattipakorn N, Chattipakorn SC. Nicotinic and Muscarinic Acetylcholine Receptor Agonists Counteract Cognitive Impairment in a Rat Model of Doxorubicin-Induced Chemobrain via Attenuation of Multiple Programmed Cell Death Pathways. Mol Neurobiol 2024; 61:8831-8850. [PMID: 38568417 DOI: 10.1007/s12035-024-04145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/21/2024] [Indexed: 10/23/2024]
Abstract
Chemotherapy causes undesirable long-term neurological sequelae, chemotherapy-induced cognitive impairment (CICI), or chemobrain in cancer survivors. Activation of programmed cell death (PCD) has been proposed to implicate in the development and progression of chemobrain. Neuronal apoptosis has been extensively recognized in experimental models of chemobrain, but little is known about alternative forms of PCD in response to chemotherapy. Activation of acetylcholine receptors (AChRs) is emerging as a promising target in attenuating a wide variety of the neuronal death associated with neurodegeneration. Thus, this study aimed to investigate the therapeutic capacity of AChR agonists on cognitive function and molecular hallmarks of multiple PCD against chemotherapy neurotoxicity. To establish the chemobrain model, male Wistar rats were assigned to receive six doses of doxorubicin (DOX: 3 mg/kg) via intraperitoneal injection. The DOX-treated rats received either an a7nAChR agonist (PNU-282987: 3 mg/kg/day), mAChR agonists (bethanechol: 12 mg/kg/day), or the two as a combined treatment. DOX administration led to impaired cognitive function via neuroinflammation, glial activation, reduced synaptic/blood-brain barrier integrity, defective mitochondrial ROS-detoxifying capacity, and dynamic imbalance. DOX insult also mediated hyperphosphorylation of Tau and simultaneously induced various PCD, including apoptosis, necroptosis, and pyroptosis in the hippocampus. Concomitant treatment with either PNU-282987, bethanechol, or a combination of the two potently attenuated neuroinflammation, mitochondrial dyshomeostasis, and Tau hyperphosphorylation, thereby suppressing excessive apoptosis, necroptosis, and pyroptosis and improving cognitive function in DOX-treated rats. Our findings suggest that activation of AChRs using their agonists effectively protected against DOX-induced neuronal death and chemobrain.
Collapse
Affiliation(s)
- Benjamin Ongnok
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Nanthip Prathumsap
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Patcharapong Pantiya
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Busarin Arunsak
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand.
| |
Collapse
|
47
|
Luo F, Jiang L, Desai NS, Bai L, Watkins GV, Eldridge MAG, Plotnikova AS, Mohanty A, Cummins AC, Averbeck BB, Talmage DA, Role LW. Comparative Physiology and Morphology of BLA-Projecting NBM/SI Cholinergic Neurons in Mouse and Macaque. J Comp Neurol 2024; 532:e70001. [PMID: 39576005 PMCID: PMC11583843 DOI: 10.1002/cne.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Cholinergic projection neurons of the nucleus basalis and substantia innominata (NBM/SI) densely innervate the basolateral amygdala (BLA) and have been shown to contribute to the encoding of fundamental and life-threatening experiences. Given the vital importance of these circuits in the acquisition and retention of memories that are essential for survival in a changing environment, it is not surprising that the basic anatomical organization of the NBM/SI is well conserved across animal classes as diverse as teleost and mammal. What is not known is the extent to which the physiology and morphology of NBM/SI neurons have also been conserved. To address this issue, we made patch-clamp recordings from NBM/SI neurons in ex vivo slices of two widely divergent mammalian species, mouse and rhesus macaque, focusing our efforts on cholinergic neurons that project to the BLA. We then reconstructed most of these recorded neurons post hoc to characterize neuronal morphology. We found that rhesus macaque BLA-projecting cholinergic neurons were both more intrinsically excitable and less morphologically compact than their mouse homologs. Combining measurements of 18 physiological features and 13 morphological features, we illustrate the extent of the separation. Although macaque and mouse neurons both exhibited considerable within-group diversity and overlapped with each other on multiple individual metrics, a combined morphoelectric analysis demonstrates that they form two distinct neuronal classes. Given the shared purpose of the circuits in which these neurons participate, this finding raises questions about (and offers constraints on) how these distinct classes result in similar behavior.
Collapse
Affiliation(s)
- Feng Luo
- Section on Circuits, Synapses, and Molecular SignalingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Li Jiang
- Section on Genetics of Neuronal Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Niraj S. Desai
- Section on Circuits, Synapses, and Molecular SignalingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Li Bai
- Section on Circuits, Synapses, and Molecular SignalingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Gabrielle V. Watkins
- Section on Circuits, Synapses, and Molecular SignalingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Mark A. G. Eldridge
- Laboratory of NeuropsychologyNational Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Anya S. Plotnikova
- Laboratory of NeuropsychologyNational Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Arya Mohanty
- Laboratory of NeuropsychologyNational Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Alex C. Cummins
- Laboratory of NeuropsychologyNational Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Bruno B. Averbeck
- Laboratory of NeuropsychologyNational Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - David A. Talmage
- Section on Genetics of Neuronal Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Lorna W. Role
- Section on Circuits, Synapses, and Molecular SignalingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
48
|
Higginson LA, Wang X, He K, Torstrick M, Kim M, Benayoun BA, MacLean A, Chanfreau GF, Morton DJ. The RNA exosome maintains cellular RNA homeostasis by controlling transcript abundance in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620488. [PMID: 39554067 PMCID: PMC11565928 DOI: 10.1101/2024.10.30.620488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Intracellular ribonucleases (RNases) are essential in all aspects of RNA metabolism, including maintaining accurate RNA levels. Inherited mutations in genes encoding ubiquitous RNases are associated with human diseases, primarily affecting the nervous system. Recessive mutations in genes encoding an evolutionarily conserved RNase complex, the RNA exosome, lead to syndromic neurodevelopmental disorders characterized by progressive neurodegeneration, such as Pontocerebellar Hypoplasia Type 1b (PCH1b). We establish a CRISPR/Cas9-engineered Drosophila model of PCH1b to study cell-type-specific post-transcriptional regulatory functions of the nuclear RNA exosome complex within fly head tissue. Here, we report that pathogenic RNA exosome mutations alter activity of the complex, causing widespread dysregulation of brain-enriched cellular transcriptomes, including rRNA processing defects-resulting in tissue-specific, progressive neurodegenerative effects in flies. These findings provide a comprehensive understanding of RNA exosome function within a developed animal brain and underscore the critical role of post-transcriptional regulatory machinery in maintaining cellular RNA homeostasis within the brain.
Collapse
|
49
|
Hu Q, Fan S, Liu K, Shi F, Cao X, Lin Y, Meng R, Liu Z. Impact of Sublethal Insecticides Exposure on Vespa magnifica: Insights from Physiological and Transcriptomic Analyses. INSECTS 2024; 15:839. [PMID: 39590438 PMCID: PMC11594290 DOI: 10.3390/insects15110839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Insecticides are widely used to boost crop yields, but their effects on non-target insects like Vespa magnifica are still poorly understood. Despite its ecological and economic significance, Vespa magnifica has been largely neglected in risk assessments. This study employed physiological, biochemical, and transcriptomic analyses to investigate the impact of sublethal concentrations of thiamethoxam, avermectin, chlorfenapyr, and β-cypermethrin on Vespa magnifica. Although larval survival rates remained unchanged, both pupation and fledge rates were significantly reduced. Enzymatic assays indicated an upregulation of superoxide dismutase and catalase activity alongside a suppression of peroxidase under insecticide stress. Transcriptomic analysis revealed increased adenosine triphosphate-related processes and mitochondrial electron transport activity, suggesting elevated energy expenditure to counter insecticide exposure, potentially impairing essential functions like flight, hunting, and immune response. The enrichment of pathways such as glycolysis, hypoxia-inducible factor signaling, and cholinergic synaptic metabolism under insecticide stress highlights the complexity of the molecular response with notable effects on learning, memory, and detoxification processes. These findings underscore the broader ecological risks of insecticide exposure to non-target insects and highlight the need for further research into the long-term effects of newer insecticides along with the development of strategies to safeguard beneficial insect populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zichao Liu
- School of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Q.H.); (S.F.); (K.L.); (F.S.); (X.C.); (Y.L.); (R.M.)
| |
Collapse
|
50
|
Schneider E, Balasubramanian R, Ferri A, Cotter PD, Clarke G, Cryan JF. Fibre & fermented foods: differential effects on the microbiota-gut-brain axis. Proc Nutr Soc 2024:1-16. [PMID: 39449646 DOI: 10.1017/s0029665124004907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The ability to manipulate brain function through the communication between the microorganisms in the gastrointestinal tract and the brain along the gut-brain axis has emerged as a potential option to improve cognitive and emotional health. Dietary composition and patterns have demonstrated a robust capacity to modulate the microbiota-gut-brain axis. With their potential to possess pre-, pro-, post-, and synbiotic properties, dietary fibre and fermented foods stand out as potent shapers of the gut microbiota and subsequent signalling to the brain. Despite this potential, few studies have directly examined the mechanisms that might explain the beneficial action of dietary fibre and fermented foods on the microbiota-gut-brain axis, thus limiting insight and treatments for brain dysfunction. Herein, we evaluate the differential effects of dietary fibre and fermented foods from whole food sources on cognitive and emotional functioning. Potential mediating effects of dietary fibre and fermented foods on brain health via the microbiota-gut-brain axis are described. Although more multimodal research that combines psychological assessments and biological sampling to compare each food type is needed, the evidence accumulated to date suggests that dietary fibre, fermented foods, and/or their combination within a psychobiotic diet can be a cost-effective and convenient approach to improve cognitive and emotional functioning across the lifespan.
Collapse
Affiliation(s)
| | - Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Aimone Ferri
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|