1
|
Pearson AC, Ostroumov A. Midbrain KCC2 downregulation: Implications for stress-related and substance use behaviors. Curr Opin Neurobiol 2024; 88:102901. [PMID: 39142020 PMCID: PMC11392611 DOI: 10.1016/j.conb.2024.102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Stress-related and substance use disorders are both characterized by disruptions in reward-related behaviors, and these disorders are often comorbid with one another. Recent investigations have identified a novel mechanism of inhibitory plasticity induced by both stress and substance use within the ventral tegmental area (VTA), a key region in reward processing. This mechanism involves the neuron-specific potassium chloride cotransporter isoform 2 (KCC2), which is essential in modulating inhibitory signaling through the regulation of intracellular chloride (Cl-) in VTA GABA neurons. Experiences, such as exposure to stress or substance use, diminish KCC2 expression in VTA GABA neurons, leading to abnormal reward-related behaviors. Here, we review literature suggesting that KCC2 downregulation contributes to irregular dopamine (DA) transmission, impacting multiple reward circuits and promoting maladaptive behaviors. Activating KCC2 restores canonical GABA functioning and reduces behavioral deficits in preclinical models, leading us to advocate for KCC2 as a target for therapies aimed at alleviating and mitigating various stress-related and substance use disorders.
Collapse
Affiliation(s)
- Anna C Pearson
- Department of Pharmacology & Physiology, Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, USA. https://twitter.com/AnnaCPearson
| | - Alexey Ostroumov
- Department of Pharmacology & Physiology, Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
2
|
Farnia V, Ahmadi Jouybari T, Salemi S, Moradinazar M, Khosravi Shadmani F, Rahami B, Alikhani M, Bahadorinia S, Mohammadi Majd T. The prevalence of alcohol consumption and its related factors in adolescents: Findings from Global School-based Student Health Survey. PLoS One 2024; 19:e0297225. [PMID: 38558070 PMCID: PMC10984532 DOI: 10.1371/journal.pone.0297225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 12/29/2023] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Alcohol consumption has become very common among adolescents in recent years and its prevalence varies in different countries. This study aimed to investigate the prevalence of alcohol consumption and related factors in adolescents aged 11 to 16 years. METHODS This descriptive cross-sectional study was performed on 288385 adolescents (girls, 53.9% of total) aged 11 to 16 years. In the present study, the GSHS data (2003-2018) available to public on the websites of the US Centers for Disease Control and Prevention (CDC) and WHO was used. To investigate the factors affecting alcohol consumption, univariate and multivariate logistics models with 95% confidence limits were used. RESULTS The overall prevalence of alcohol consumption in adolescents was 25.2%, which was 28.3% and 22.4% in boys and girls, respectively. Among the surveyed countries, the highest prevalence was in Seychelles (57.9%) and the lowest in Tajikistan (0.7). Multivariate analysis showed that the Age for 16 and more than 16 years old (OR = 3.08,95%CI: 2.54-3.74), truancy for more than 10 days (OR = 1.24, 95%CI: 1.08-1.43), loneliness at sometimes of the times (OR = 1.04, 95%CI: 1.01-1.07), insomnia at most of the times (OR = 1.85, 95%CI: 1.70-2.01), daily activity (OR = 1.03, 95%CI: 1.00-1.07), bullied for 1-9 Days in a month (OR = 1.24, 95%CI: 1.09-1.40), cigarette (OR = 4.01, 95%CI: 3.86-4.17), used marijuana for more than 10 days in a month (OR = 5.58, 95%CI: 4.59-7.78), had sex (OR = 2.76, 95%CI: 2.68-2.84), and suicide plan (OR = 1.48, 95%CI: 1.42-1.54) were important factors affecting drinking alcohol. (Table 4). In this study, the sensitivity, specificity, positive predictive value, and negative predictive value were 42.79%, 93.96%, 70.80%, and 82.75. CONCLUSIONS According to the results of the present study, the prevalence of alcohol consumption among teenagers was high. Therefore, it is suggested that demographic, family, and psychological factors should be taken into consideration in health programs for the prevention and treatment of alcohol consumption in adolescents.
Collapse
Affiliation(s)
- Vahid Farnia
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi Jouybari
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Safora Salemi
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Moradinazar
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khosravi Shadmani
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahareh Rahami
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Alikhani
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahab Bahadorinia
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tahereh Mohammadi Majd
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Robison CL, Cova N, Madore V, Allen T, Barrett S, Charntikov S. Assessment of ethanol and nicotine interactions using a reinforcer demand modeling with grouped and individual levels of analyses in a long-access self-administration model using male rats. Front Behav Neurosci 2023; 17:1291128. [PMID: 38098500 PMCID: PMC10720750 DOI: 10.3389/fnbeh.2023.1291128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Previous reports have indicated the reciprocal effects of nicotine and ethanol on their rewarding and reinforcing properties, but studies using methodological approaches resembling substance use in vulnerable populations are lacking. In our study, rats first self-administered ethanol, and their sensitivity to ethanol's reinforcing effects was assessed using a reinforcer demand modeling approach. Subsequently, rats were equipped with intravenous catheters to self-administer nicotine, and their sensitivity to nicotine's reinforcing effects was evaluated using the same approach. In the final phase, rats were allowed to self-administer ethanol and nicotine concurrently, investigating the influence of one substance on the rate of responding for the other substance. Group analyses revealed notable differences in demand among sucrose, sweetened ethanol, and ethanol-alone, with sucrose demonstrating the highest demand and ethanol-alone exhibiting greater sensitivity to changes in cost. At the individual level, our study finds significant correlations between rats' demand for sucrose and sweetened ethanol, suggesting parallel efforts for both substances. Our individual data also suggest interconnections in the elasticity of demand for sweetened ethanol and ethanol-alone, as well as a potential relationship in price response patterns between ethanol and nicotine. Furthermore, concurrent self-administration of ethanol and nicotine at the group level displayed reciprocal effects, with reduced responding for nicotine in the presence of ethanol and increased responding for ethanol in the presence of nicotine. This study provides valuable insights into modeling the co-use of ethanol and nicotine and assessing their interaction effects using reinforcer demand modeling and concurrent self-administration or noncontingent administration tests. These findings contribute to our understanding of the complex interplay between ethanol and nicotine and have implications for elucidating the underlying mechanisms involved in polydrug use.
Collapse
Affiliation(s)
| | - Nicole Cova
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Victoria Madore
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Tyler Allen
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Scott Barrett
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sergios Charntikov
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
4
|
Chen G, Rahman S, Lutfy K. E-cigarettes may serve as a gateway to conventional cigarettes and other addictive drugs. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11345. [PMID: 38389821 PMCID: PMC10880776 DOI: 10.3389/adar.2023.11345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 02/24/2024]
Abstract
Electronic cigarettes (e-cigarettes) are devices that allow the user to inhale nicotine in a vapor, and are primarily marketed as a means of quitting smoking and a less harmful replacement for traditional cigarette smoking. However, further research is needed to determine if vaping nicotine via e-cigarettes can be effective. Conversely, nicotine has been considered a gateway drug to alcohol and other addictive drugs and e-cigarettes containing nicotine may have the same effects. Previous reports have shown that e-cigarette use may open the gate for the use of other drugs including conventional cigarettes, cannabis, opioids, etc. The increasing prevalence of e-cigarettes, particularly among youth and adolescents in the last decade have led to an increase in the dual use of e-cigarettes with alcohol, cannabis, and other illicit drug use like heroin and 3-4-methylenedioxymethamphetamine (MDMA). The advent of e-cigarettes as a device to self-administer addictive agents such as cocaine and synthetic cathinones may bring about additional adverse health effects associated with their concurrent use. This review aims to briefly describe e-cigarettes and their different generations, and their co-use with other addictive drugs as well as the use of the device as a tool to self-administer addictive drugs, such as cocaine, etc.
Collapse
Affiliation(s)
- Grace Chen
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, United States
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
5
|
Wadsworth HA, Anderson EQ, Williams BM, Ronström JW, Moen JK, Lee AM, McIntosh JM, Wu J, Yorgason JT, Steffensen SC. Role of α6-Nicotinic Receptors in Alcohol-Induced GABAergic Synaptic Transmission and Plasticity to Cholinergic Interneurons in the Nucleus Accumbens. Mol Neurobiol 2023; 60:3113-3129. [PMID: 36802012 PMCID: PMC10690621 DOI: 10.1007/s12035-023-03263-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
The prevailing view is that enhancement of dopamine (DA) transmission in the mesolimbic system, consisting of DA neurons in the ventral tegmental area (VTA) that project to the nucleus accumbens (NAc), underlies the reward properties of ethanol (EtOH) and nicotine (NIC). We have shown previously that EtOH and NIC modulation of DA release in the NAc is mediated by α6-containing nicotinic acetylcholine receptors (α6*-nAChRs), that α6*-nAChRs mediate low-dose EtOH effects on VTA GABA neurons and EtOH preference, and that α6*-nAChRs may be a molecular target for low-dose EtOH. However, the most sensitive target for reward-relevant EtOH modulation of mesolimbic DA transmission and the involvement of α6*-nAChRs in the mesolimbic DA reward system remains to be elucidated. The aim of this study was to evaluate EtOH effects on GABAergic modulation of VTA GABA neurons and VTA GABAergic input to cholinergic interneurons (CINs) in the NAc. Low-dose EtOH enhanced GABAergic input to VTA GABA neurons that was blocked by knockdown of α6*-nAChRs. Knockdown was achieved either by α6-miRNA injected into the VTA of VGAT-Cre/GAD67-GFP mice or by superfusion of the α-conotoxin MII[H9A;L15A] (MII). Superfusion of MII blocked EtOH inhibition of mIPSCs in NAc CINs. Concomitantly, EtOH enhanced CIN firing rate, which was blocked by knockdown of α6*-nAChRs with α6-miRNA injected into the VTA of VGAT-Cre/GAD67-GFP mice. The firing rate of CINs was not enhanced by EtOH in EtOH-dependent mice, and low-frequency stimulation (LFS; 1 Hz, 240 pulses) caused inhibitory long-term depression at this synapse (VTA-NAc CIN-iLTD) which was blocked by knockdown of α6*-nAChR and MII. Ethanol inhibition of CIN-mediated evoked DA release in the NAc was blocked by MII. Taken together, these findings suggest that α6*-nAChRs in the VTA-NAc pathway are sensitive to low-dose EtOH and play a role in plasticity associated with chronic EtOH.
Collapse
Affiliation(s)
- Hillary A Wadsworth
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Elizabeth Q Anderson
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Benjamin M Williams
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Joakim W Ronström
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Janna K Moen
- Department of Pharmacology, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anna M Lee
- Department of Pharmacology, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - J Michael McIntosh
- School of Biological Sciences and Department of Psychiatry, University of Utah, Salt Lake City, UT, 84108, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jordan T Yorgason
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA.
| |
Collapse
|
6
|
Cruz B, Castañeda K, Aranda M, Hinojosa CA, Castro-Gutierrez R, Flores RJ, Spencer CT, Vozella V, Roberto M, Gadad BS, Roychowdhury S, O’Dell LE. Alcohol self-administration and nicotine withdrawal alter biomarkers of stress and inflammation and prefrontal cortex changes in Gβ subunits. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:321-332. [PMID: 36206520 PMCID: PMC10348398 DOI: 10.1080/00952990.2022.2121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2022]
Abstract
Background: Although alcohol and nicotine are often used together, the biological consequences of these substances are not well understood. Identifying shared targets will inform cessation pharmacotherapies and provide a deeper understanding of how co-use of alcohol and nicotine impacts health, including biomarkers of stress and inflammation.Objective: We examined the effects of nicotine exposure and withdrawal on alcohol self-administration (SA), stress and inflammatory biomarkers, and a G-protein coupled receptor subunit (Gβ) in brain areas associated with drug use.Methods: Male rats were trained to SA alcohol and then received a nicotine pump (n = 7-8 per group). We assessed alcohol intake for 12 days during nicotine exposure and then following pump removal to elicit withdrawal. After the behavioral studies, we assessed plasma leptin, corticosterone, and interleukin-1β (IL-1β), and Gβ protein expression in the amygdala, nucleus accumbens (NAc), and prefrontal cortex (PFC).Results: Nicotine exposure or withdrawal did not alter alcohol intake (p > .05). Alcohol and nicotine withdrawal elevated corticosterone levels (p = .015) and decreased Gβ levels in the PFC (p = .004). In the absence of nicotine, alcohol SA suppressed IL-1β levels (p = .039). Chronic exposure to nicotine or withdrawal during alcohol SA did not alter leptin levels or Gβ expression in the amygdala or NAc (p's > .05).Conclusions: The combination of alcohol SA and nicotine withdrawal produced a persistent increase in stress biomarkers and a suppression in Gβ expression in the PFC, providing an important first step toward understanding the common biological mechanisms of alcohol/nicotine misuse.
Collapse
Affiliation(s)
- Bryan Cruz
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Karen Castañeda
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Michelle Aranda
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Cecilia A. Hinojosa
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | | | - Rodolfo J. Flores
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Charles T. Spencer
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Bharathi S. Gadad
- Department of Psychiatry, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
- Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Sukla Roychowdhury
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Laura E. O’Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
7
|
Stringfield SJ, Sanders BE, Suppo JA, Sved AF, Torregrossa MM. Nicotine Enhances Intravenous Self-administration of Cannabinoids in Adult Rats. Nicotine Tob Res 2023; 25:1022-1029. [PMID: 36426873 PMCID: PMC10077937 DOI: 10.1093/ntr/ntac267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Nicotine and cannabis are commonly used together, yet few studies have investigated the effects of concurrent administration. Nicotine exhibits reinforcement enhancing effects by promoting the reinforcing properties of stimuli including other drugs. As many studies of this effect used non-contingent nicotine, we implemented a dual-self-administration model where rats have simultaneous access to two drugs and choose which to self-administer throughout a session. Here, we investigated the effect of self-administered or non-contingently delivered nicotine on cannabinoid self-administration. METHODS Adult male rats were allowed to self-administer the synthetic cannabinoid WIN 55,212-2 (WIN) intravenously, with or without subcutaneous nicotine injections before each session. A separate group of animals were allowed to self-administer WIN, nicotine, or saline using a dual-catheter procedure, where each solution was infused independently and associated with a separate operant response. A third group of male and female rats were allowed to self-administer delta-9-tetrahydrocannabinol (THC) with or without pre-session injections of nicotine. RESULTS Nicotine injections increased self-administration of WIN and THC. During dual self-administration, nicotine availability increased saline and WIN infusions but nicotine intake was not changed by WIN or saline availability. Rats preferred nicotine over saline, but preferred nicotine and WIN equally when both were available. The effect of nicotine on cannabinoid self-administration was acute and reversible when nicotine was no longer present. CONCLUSIONS These results expand our understanding of the ability of nicotine to enhance reinforcement of other drugs and suggest that co-use of nicotine and cannabinoids promotes cannabinoid use beyond what would be taken alone. IMPLICATIONS This study utilizes a dual intravenous self-administration model to investigate the ability of nicotine to enhance cannabinoid intake. Our results demonstrate that the reinforcement enhancing properties of nicotine on drug use extend to include cannabinoids, but that this effect occurs specifically when nicotine is administered alongside the cannabinoid. Interestingly, cannabinoid use did not promote nicotine intake, suggesting this mechanism of reinforcement is specific to nicotine.
Collapse
Affiliation(s)
| | - Bryson E Sanders
- Department of Neuroscience, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jude A Suppo
- Department of Neuroscience, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan F Sved
- Department of Neuroscience, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Rodd ZA, Swartzwelder HS, Waeiss RA, Soloviov SO, Lahiri DK, Engleman EA, Truitt WA, Bell RL, Hauser SR. Negative and positive allosteric modulators of the α7 nicotinic acetylcholine receptor regulates the ability of adolescent binge alcohol exposure to enhance adult alcohol consumption. Front Behav Neurosci 2023; 16:954319. [PMID: 37082421 PMCID: PMC10113115 DOI: 10.3389/fnbeh.2022.954319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/09/2022] [Indexed: 04/07/2023] Open
Abstract
Rationale and Objectives: Ethanol acts directly on the α7 Nicotinic acetylcholine receptor (α7). Adolescent-binge alcohol exposure (ABAE) produces deleterious consequences during adulthood, and data indicate that the α7 receptor regulates these damaging events. Administration of an α7 Negative Allosteric Modulator (NAM) or the cholinesterase inhibitor galantamine can prophylactically prevent adult consequences of ABAE. The goals of the experiments were to determine the effects of co-administration of ethanol and a α7 agonist in the mesolimbic dopamine system and to determine if administration of an α7 NAM or positive allosteric modulator (PAM) modulates the enhancement of adult alcohol drinking produced by ABAE. Methods: In adult rats, ethanol and the α7 agonist AR-R17779 (AR) were microinjected into the posterior ventral tegmental area (VTA), and dopamine levels were measured in the nucleus accumbens shell (AcbSh). In adolescence, rats were treated with the α7 NAM SB-277011-A (SB) or PNU-120596 (PAM) 2 h before administration of EtOH (ABAE). Ethanol consumption (acquisition, maintenance, and relapse) during adulthood was characterized. Results: Ethanol and AR co-administered into the posterior VTA stimulated dopamine release in the AcbSh in a synergistic manner. The increase in alcohol consumption during the acquisition and relapse drinking during adulthood following ABAE was prevented by administration of SB, or enhanced by administration of PNU, prior to EtOH exposure during adolescence. Discussion: Ethanol acts on the α7 receptor, and the α7 receptor regulates the critical effects of ethanol in the brain. The data replicate the findings that cholinergic agents (α7 NAMs) can act prophylactically to reduce the alterations in adult alcohol consumption following ABAE.
Collapse
Affiliation(s)
- Zachary A. Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - H. Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - R. Aaron Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Serhii O. Soloviov
- Department of Pharmacy, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
- Department of Industrial Biotechnology and Biopharmacy, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eric A. Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - William A. Truitt
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L. Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
9
|
Muralidharan A, Bauer CD, Katafiasz DM, Strah HM, Siddique A, Reid SP, Bailey KL, Wyatt TA. Synergistic Detrimental Effects of Cigarette Smoke, Alcohol, and SARS-CoV-2 in COPD Bronchial Epithelial Cells. Pathogens 2023; 12:498. [PMID: 36986420 PMCID: PMC10056639 DOI: 10.3390/pathogens12030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Lung conditions such as COPD, as well as risk factors such as alcohol misuse and cigarette smoking, can exacerbate COVID-19 disease severity. Synergistically, these risk factors can have a significant impact on immunity against pathogens. Here, we studied the effect of a short exposure to alcohol and/or cigarette smoke extract (CSE) in vitro on acute SARS-CoV-2 infection of ciliated human bronchial epithelial cells (HBECs) collected from healthy and COPD donors. We observed an increase in viral titer in CSE- or alcohol-treated COPD HBECs compared to untreated COPD HBECs. Furthermore, we treated healthy HBECs accompanied by enhanced lactate dehydrogenase activity, indicating exacerbated injury. Finally, IL-8 secretion was elevated due to the synergistic damage mediated by alcohol, CSE, and SARS-CoV-2 in COPD HBECs. Together, our data suggest that, with pre-existing COPD, short exposure to alcohol or CSE is sufficient to exacerbate SARS-CoV-2 infection and associated injury, impairing lung defences.
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Department of Pathology and Microbiology, College of Medicine, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher D. Bauer
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, College of Medicine, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dawn M. Katafiasz
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, College of Medicine, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heather M. Strah
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, College of Medicine, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aleem Siddique
- Department of Surgery, College of Medicine, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - St Patrick Reid
- Department of Pathology and Microbiology, College of Medicine, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kristina L. Bailey
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, College of Medicine, the University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Todd A. Wyatt
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, College of Medicine, the University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Environmental, Agricultural & Occupational Health, College of Public Health, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Muralidharan A, Bauer C, Katafiasz DM, Pham D, Oyewole OO, Morwitzer MJ, Roy E, Bailey KL, Reid SP, Wyatt TA. Malondialdehyde acetaldehyde adduction of surfactant protein D attenuates SARS-CoV-2 spike protein binding and virus neutralization. Alcohol Clin Exp Res 2023; 47:95-103. [PMID: 36352814 PMCID: PMC9878066 DOI: 10.1111/acer.14974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Over 43% of the world's population regularly consumes alcohol. Although not commonly known, alcohol can have a significant impact on the respiratory environment. Living in the time of the COVID-19 pandemic, alcohol misuse can have a particularly deleterious effect on SARS-CoV-2-infected individuals and, in turn, the overall healthcare system. Patients with alcohol use disorders have higher odds of COVID-19-associated hospitalization and mortality. Even though the detrimental role of alcohol on COVID-19 outcomes has been established, the underlying mechanisms are yet to be fully understood. Alcohol misuse has been shown to induce oxidative damage in the lungs through the production of reactive aldehydes such as malondialdehyde and acetaldehyde (MAA). MAA can then form adducts with proteins, altering their structure and function. One such protein is surfactant protein D (SPD), which plays an important role in innate immunity against pathogens. METHODS AND RESULTS In this study, we examined whether MAA adduction of SPD (SPD-MAA) attenuates the ability of SPD to bind SARS-CoV-2 spike protein, reversing SPD-mediated virus neutralization. Using ELISA, we show that SPD-MAA is unable to competitively bind spike protein and prevent ACE2 receptor binding. Similarly, SPD-MAA fails to inhibit entry of wild-type SARS-CoV-2 virus into Calu-3 cells, a lung epithelial cell line, as well as ciliated primary human bronchial epithelial cells isolated from healthy individuals. CONCLUSIONS Overall, MAA adduction of SPD, a consequence of alcohol overconsumption, represents one mechanism of compromised lung innate defense against SARS-CoV-2, highlighting a possible mechanism underlying COVID-19 severity and related mortality in patients who misuse alcohol.
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Christopher Bauer
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Dawn M. Katafiasz
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Danielle Pham
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Opeoluwa O. Oyewole
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - M. Jane Morwitzer
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Enakshi Roy
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kristina L. Bailey
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Veterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - St Patrick Reid
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Todd A. Wyatt
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Veterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Environmental, Agricultural and Occupational Health, College of Public HealthUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
11
|
Iftikhar A, Islam M, Shepherd S, Jones S, Ellis I. What is behind the lifestyle risk factors for head and neck cancer? Front Psychol 2022; 13:960638. [PMID: 36312160 PMCID: PMC9608174 DOI: 10.3389/fpsyg.2022.960638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Lifestyle factors are known to be influential determinants of health. According to the World Health Organization (WHO), approximately one third of deaths involve unhealthy lifestyle habits. Among lifestyle risk factors for head and neck cancers (HNC), alcohol consumption and smoking have an undeniable role in the multifactorial aetiology of the disease. In recent years, the promotion of healthy lifestyle choices has gained significant attention as contributory to improving health and disease prevention. Interventions to tackle these risk factors are vitally important in disease prevention and progression. However, in order to effectively prevent the disease and reduce the risk factors, it is crucial to identify what upstream reasons lead to the adoption of these lifestyle risk factors in the first place. Stress being a constant aspect of modern-day life is known to contribute to alcohol and smoking practices. In this review paper, relevant literature was searched in PubMed database for stress, lifestyle factors, HNC and cancer to explore the role of stress and its associated biological pathways as an upstream factor in the adoption of lifestyle risk factors that cause HNC. It highlights the importance of stress pathways and the Hypothalamus Pituitary Adrenal (HPA) axis as a locus of interaction between stress, alcohol, smoking and cancer. Despite their widely accepted harmful effects, alcohol and smoking remain deeply rooted in contemporary life. A greater understanding of the impact of stress on lifestyle choices and an exploration of the mechanisms resulting in stress, alcohol- and smoking- related cancer may highlight opportunities for improved prevention measures through the modification of unhealthy lifestyle choices.
Collapse
Affiliation(s)
- Anem Iftikhar
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee, Dundee,United Kingdom
| | - Mohammad Islam
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee, Dundee,United Kingdom
| | - Simon Shepherd
- Department of Oral Surgery and Medicine, Dundee Dental Hospital, Dundee, Scotland, United Kingdom
| | - Sarah Jones
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee, Dundee,United Kingdom
| | - Ian Ellis
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee, Dundee,United Kingdom
- *Correspondence: Ian Ellis,
| |
Collapse
|
12
|
Hudson KE, Grau JW. Ionic Plasticity: Common Mechanistic Underpinnings of Pathology in Spinal Cord Injury and the Brain. Cells 2022; 11:2910. [PMID: 36139484 PMCID: PMC9496934 DOI: 10.3390/cells11182910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The neurotransmitter GABA is normally characterized as having an inhibitory effect on neural activity in the adult central nervous system (CNS), which quells over-excitation and limits neural plasticity. Spinal cord injury (SCI) can bring about a modification that weakens the inhibitory effect of GABA in the central gray caudal to injury. This change is linked to the downregulation of the potassium/chloride cotransporter (KCC2) and the consequent rise in intracellular Cl- in the postsynaptic neuron. As the intracellular concentration increases, the inward flow of Cl- through an ionotropic GABA-A receptor is reduced, which decreases its hyperpolarizing (inhibitory) effect, a modulatory effect known as ionic plasticity. The loss of GABA-dependent inhibition enables a state of over-excitation within the spinal cord that fosters aberrant motor activity (spasticity) and chronic pain. A downregulation of KCC2 also contributes to the development of a number of brain-dependent pathologies linked to states of neural over-excitation, including epilepsy, addiction, and developmental disorders, along with other diseases such as hypertension, asthma, and irritable bowel syndrome. Pharmacological treatments that target ionic plasticity have been shown to bring therapeutic benefits.
Collapse
Affiliation(s)
- Kelsey E. Hudson
- Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - James W. Grau
- Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Nissen CG, Mosley DD, Kharbanda KK, Katafiasz DM, Bailey KL, Wyatt TA. Malondialdehyde Acetaldehyde-Adduction Changes Surfactant Protein D Structure and Function. Front Immunol 2022; 13:866795. [PMID: 35669781 PMCID: PMC9164268 DOI: 10.3389/fimmu.2022.866795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Alcohol consumption with concurrent cigarette smoking produces malondialdehyde acetaldehyde (MAA)-adducted lung proteins. Lung surfactant protein D (SPD) supports innate immunity via bacterial aggregation and lysis, as well as by enhancing macrophage-binding and phagocytosis. MAA-adducted SPD (SPD-MAA) has negative effects on lung cilia beating, macrophage function, and epithelial cell injury repair. Because changes in SPD multimer structure are known to impact SPD function, we hypothesized that MAA-adduction changes both SPD structure and function. Purified human SPD and SPD-MAA (1 mg/mL) were resolved by gel filtration using Sephadex G-200 and protein concentration of each fraction determined by Bradford assay. Fractions were immobilized onto nitrocellulose by slot blot and assayed by Western blot using antibodies to SPD and to MAA. Binding of SPD and SPD-MAA was determined fluorometrically using GFP-labeled Streptococcus pneumoniae (GFP-SP). Anti-bacterial aggregation of GFP-SP and macrophage bacterial phagocytosis were assayed by microscopy and permeability determined by bacterial phosphatase release. Viral injury was measured as LDH release in RSV-treated airway epithelial cells. Three sizes of SPD were resolved by gel chromatography as monomeric, trimeric, and multimeric forms. SPD multimer was the most prevalent, while the majority of SPD-MAA eluted as trimer and monomer. SPD dose-dependently bound to GFP-SP, but SPD-MAA binding to bacteria was significantly reduced. SPD enhanced, but MAA adduction of SPD prevented, both aggregation and macrophage phagocytosis of GFP-SP. Likewise, SPD increased bacterial permeability while SPD-MAA did not. In the presence of RSV, BEAS-2B cell viability was enhanced by SPD, but not protected by SPD-MAA. Our results demonstrate that MAA adduction changes the quaternary structure of SPD from multimer to trimer and monomer leading to a decrease in the native anti-microbial function of SPD. These findings suggest one mechanism for increased pneumonia observed in alcohol use disorders.
Collapse
Affiliation(s)
- Claire G. Nissen
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Deanna D. Mosley
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Research Service Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Dawn M. Katafiasz
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kristina L. Bailey
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Research Service Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Todd A. Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Research Service Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| |
Collapse
|
14
|
King CP, Meyer PJ. The incentive amplifying effects of nicotine: Roles in alcohol seeking and consumption. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:171-218. [PMID: 35341566 DOI: 10.1016/bs.apha.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nicotine has a unique profile among drugs of abuse. To the noninitiated user, nicotine has powerful aversive effects and its relatively weak euphorigenic effects undergo rapid tolerance. Despite this, nicotine is commonly abused despite negative heath consequences, and nicotine users have enormous difficulty quitting. Further, nicotine is one of the most commonly co-abused substances, in that it is often taken in combination with other drugs. One explanation of this polydrug use is that nicotine has multiple appetitive and consummatory conditioning effects. For example, nicotine is a reinforcement enhancer in that it can potently increase the incentive value of other stimuli, including those surrounding drugs of abuse such as alcohol. In addition, nicotine also has a unique profile of neurobiological effects that alter regulation of alcohol intake and interoception. This review discusses the psychological and biological mechanisms surrounding nicotine's appetitive conditioning and consummatory effects, particularly its interactions with alcohol.
Collapse
Affiliation(s)
- Christopher P King
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, United States; Clinical and Research Institute on Addictions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Paul J Meyer
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
15
|
Kimmey BA, Wittenberg RE, Croicu A, Shadani N, Ostroumov A, Dani JA. The serotonin 2A receptor agonist TCB-2 attenuates heavy alcohol drinking and alcohol-induced midbrain inhibitory plasticity. Addict Biol 2022; 27:e13147. [PMID: 35229942 PMCID: PMC8896307 DOI: 10.1111/adb.13147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/26/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
Disruption of neuronal chloride ion (Cl- ) homeostasis has been linked to several pathological conditions, including substance use disorder, yet targeted pharmacotherapies are lacking. In this study, we explored the potential of serotonin 2A receptor (5-HT2A R) agonism to reduce alcohol consumption in male wild-type C57Bl/6J mice and to ameliorate alcohol-induced inhibitory plasticity in the midbrain. We found that administration of the putative 5-HT2A R agonist TCB-2 attenuated alcohol consumption and preference but did not alter water or saccharin consumption. We hypothesized that the selective behavioural effects of TCB-2 on alcohol drinking were due, at least in part, to effects of the agonist on ventral tegmental area (VTA) neurocircuitry. Alcohol consumption impairs Cl- transport in VTA GABA neurons, which acts as a molecular adaptation leading to increased alcohol self-administration. Using ex vivo electrophysiological recordings, we found that exposure to either intermittent volitional alcohol drinking or an acute alcohol injection diminished homeostatic Cl- transport in VTA GABA neurons. Critically, in vivo TCB-2 administration normalized Cl- transport in the VTA after alcohol exposure. Thus, we show a potent effect of alcohol consumption on VTA inhibitory circuitry, in the form of dysregulated Cl- homeostasis that is reversible with agonism of 5-HT2A Rs. Our results provide insight into the potential therapeutic action of 5-HT2A R agonists for alcohol abuse.
Collapse
Affiliation(s)
| | | | | | | | - Alexey Ostroumov
- Co-corresponding authors: Alexey Ostroumov, Ph.D., Georgetown University, Department of Pharmacology and Physiology, New Research Building, Room W226, 3970 Reservoir Road, N.W., Washington D.C. 20057, USA, Phone: (832) 641-5562, , John A. Dani, Ph.D., University of Pennsylvania, Department of Neuroscience, Clinical Research Building, Room 211, 415 Curie Boulevard, Philadelphia, P.A. 19104, USA, Phone: (215) 898-8498,
| | - John A. Dani
- Co-corresponding authors: Alexey Ostroumov, Ph.D., Georgetown University, Department of Pharmacology and Physiology, New Research Building, Room W226, 3970 Reservoir Road, N.W., Washington D.C. 20057, USA, Phone: (832) 641-5562, , John A. Dani, Ph.D., University of Pennsylvania, Department of Neuroscience, Clinical Research Building, Room 211, 415 Curie Boulevard, Philadelphia, P.A. 19104, USA, Phone: (215) 898-8498,
| |
Collapse
|
16
|
Lee J, Salloum RG, Lindstrom K, Kathryn McHugh R. Benzodiazepine misuse and cigarette smoking status in US adults: Results from the National Survey on Drug Use and Health, 2015-2018. Addict Behav 2021; 123:107058. [PMID: 34315094 DOI: 10.1016/j.addbeh.2021.107058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Benzodiazepines are the third most commonly misused drugs in the U.S. POPULATION There is a growing public health concern related to recent increases in benzodiazepine-related overdose deaths, emergency department visits, and treatment admissions. Although benzodiazepine misuse often occurs along with other drug use, little is known about the association between benzodiazepine and cigarette smoking. METHODS We used a pooled dataset from the National Survey on Drug Use and Health (NSDUH) for 2015-2018 (N = 171,766). We estimated a multivariable logistic regression model of past-year benzodiazepine misuse as a function of past-year tobacco use (cigarette smoking, other tobacco use), controlling for survey years, sociodemographics, past-year substance use, and psychiatric comorbidities. RESULTS Among the analytic sample (N = 171,766), 2.1% (weighted; unweighted n = 4,942) reported they misused benzodiazepines in the past 12 months. In the multivariable logistic regression model, correlates of past-year benzodiazepine misuse were past-year cigarette smoking (aOR = 1.85, 95% CI = 1.67, 2.06) and other tobacco use (e.g., cigars and smokeless tobacco) (aOR = 1.17, 95% CI = 1.03, 1.34), female (aOR = 1.14, 95% CI = 1.04, 1.26), uninsured (aOR = 1.26, 95% CI = 1.12, 1.42), past-year use of alcohol (aOR = 1.48, 95% CI = 1.21, 1.80), cannabis (aOR = 2.76, 95% CI = 2.46, 3.10), and other drugs (aOR = 7.92, 95% CI = 7.08, 8.86), as well as, past-year distress (aOR = 1.84, 95% CI = 1.61, 2.10), and depressive symptoms (aOR = 1.32, 95% CI = 1.16, 1.51). CONCLUSION Nicotine is independently associated with benzodiazepine misuse, even after controlling for other drug use and psychiatric variables. Future studies examining potential mechanisms linking nicotine and benzodiazepine use are necessary.
Collapse
Affiliation(s)
- Juhan Lee
- Department of Health Education and Behavior, College of Health and Human Performance, University of Florida, United States; Department of Psychiatry, Yale School of Medicine, United States.
| | - Ramzi G Salloum
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, United States
| | - Katie Lindstrom
- Department of Health Education and Behavior, College of Health and Human Performance, University of Florida, United States
| | - R Kathryn McHugh
- Division of Alcohol, Drugs and Addiction, McLean Hospital, Belmont, MA, United States; Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Chen G, Ghazal M, Rahman S, Lutfy K. The impact of adolescent nicotine exposure on alcohol use during adulthood: The role of neuropeptides. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:53-93. [PMID: 34801174 DOI: 10.1016/bs.irn.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nicotine and alcohol abuse and co-dependence represent major public health crises. Indeed, previous research has shown that the prevalence of alcoholism is higher in smokers than in non-smokers. Adolescence is a susceptible period of life for the initiation of nicotine and alcohol use and the development of nicotine-alcohol codependence. However, there is a limited number of pharmacotherapeutic agents to treat addiction to nicotine or alcohol alone. Notably, there is no effective medication to treat this comorbid disorder. This chapter aims to review the early nicotine use and its impact on subsequent alcohol abuse during adolescence and adulthood as well as the role of neuropeptides in this comorbid disorder. The preclinical and clinical findings discussed in this chapter will advance our understanding of this comorbid disorder's neurobiology and lay a foundation for developing novel pharmacotherapies to treat nicotine and alcohol codependence.
Collapse
Affiliation(s)
- G Chen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States; Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - M Ghazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - K Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States.
| |
Collapse
|
18
|
Holly EN, Davatolhagh MF, España RA, Fuccillo MV. Striatal low-threshold spiking interneurons locally gate dopamine. Curr Biol 2021; 31:4139-4147.e6. [PMID: 34302742 DOI: 10.1016/j.cub.2021.06.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/02/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
The dorsomedial striatum (DMS) is a central hub supporting goal-directed learning and motor performance. Recent evidence has revealed unexpected roles for local inhibitory GABAergic networks in modulating striatal output and behavior.1 The sparse low-threshold spiking interneuron subtype (LTSI), which exhibits robust reward-circumscribed population activity, is a bidirectional regulator of initial goal-directed learning.2 Striatal dopamine signaling is a central reward-related neuromodulatory system mediating goal-directed action and performance, serving as a teaching signal,3 facilitating synaptic plasticity,4 and invigorating motor behaviors.5 Given the dynamic modulation of LTSIs during goal-directed behavior, we hypothesized that they could provide a novel GABAergic mechanism of local striatal dopaminergic regulation to shape early learning. We provide anatomical evidence for close proximation of LTSI terminals and dopaminergic processes in striatum, suggesting that LTSIs directly control dopaminergic axon activity. Using in vitro fast scan cyclic voltammetry, we demonstrate that LTSIs directly attenuate optogenetically evoked dopamine via GABAB receptor signaling. In vivo, GRABDA dopamine sensor imaging shows that LTSIs strongly modulate striatal dopamine dynamics during operant learning, while pharmacological stabilization of dopamine via intra-striatal aripiprazole microinjection suppresses the effects of LTSI inhibition on learning. Together, these results uncover an unexpected function for LTSIs in gating striatal dopamine to facilitate goal-directed learning.
Collapse
Affiliation(s)
- Elizabeth N Holly
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - M Felicia Davatolhagh
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Angelyn H, Loney GC, Meyer PJ. Nicotine Enhances Goal-Tracking in Ethanol and Food Pavlovian Conditioned Approach Paradigms. Front Neurosci 2021; 15:561766. [PMID: 34483813 PMCID: PMC8416423 DOI: 10.3389/fnins.2021.561766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale Nicotine promotes alcohol intake through pharmacological and behavioral interactions. As an example of the latter, nicotine can facilitate approach toward food- and alcohol-associated stimuli ("sign-tracking") in lever-Pavlovian conditioned approach (PavCA) paradigms. However, we recently reported that nicotine can also enhance approach toward locations of reward delivery ("goal-tracking") triggered by ethanol-predictive stimuli when the location of ethanol delivery is non-static (i.e., a retractable sipper bottle). Objective To determine whether the non-static nature of the reward location could have biased the development of goal-tracking in our previous study (Loney et al., 2019); we assessed the effect of nicotine in a lever-PavCA paradigm wherein the location of ethanol delivery was static (i.e., a stationary liquid receptacle). Then, to determine whether nicotine's enhancement of goal-tracking is unique to ethanol-predictive stimuli, we assessed the effect of systemic nicotine on approach triggered by food-predictive stimuli in a lever-PavCA paradigm. Methods Long-Evans rats were used in two PavCA experiments wherein a lever predicted the receipt of ethanol (15% vol/vol; experiment 1) or food (experiment 2) into a stationary receptacle. Prior to testing, rats were administered nicotine (0.4 mg/kg subcutaneously) or saline systemically. Results In both experiments, nicotine increased measures of goal-tracking, but not sign-tracking. Conclusion Nicotine can facilitate approach to reward locations without facilitating approach to reward-predictive stimuli. As such, conceptualization of the mechanisms by which nicotine affects behavior must be expanded to explain an enhancement of goal-tracking by nicotine.
Collapse
Affiliation(s)
- Hailley Angelyn
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Gregory C Loney
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Paul J Meyer
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
20
|
Abstract
Alcohol consumption is an important public health issue in Japan due to its association with numerous side effects. Recent studies find that financial literacy helps people abstain from risky health behaviors such as smoking, lack of exercise, and gambling. This study investigates how financial literacy, as a rational decision-making instrument, is associated with alcohol consumption behavior in Japan. Using data from the Preference Parameter Study (PPS) of Osaka University, we categorize respondents into daily drinkers and non-daily drinkers. We find that financial literacy is not significantly associated with alcohol consumption among Japanese people. We argue that the prevailing social belief that alcohol consumption is not entirely negative from the health perspective and can be beneficial for socialization to some extent overrides people’s rationality and plays a significant role in alcohol consumption decisions. However, our study provides evidence that respondents who are males, middle-aged, have children, have higher household income, have smoking habits, and place more importance on the future are more likely to be daily drinkers. We argue that the availability and easy access to alcohol drinking opportunities likely make people irrational and tempts them to drink frequently. Thus, authorities might consider revising current policies regarding alcohol availability and accessibility to limit alcohol consumption.
Collapse
|
21
|
Nguyen C, Mondoloni S, Le Borgne T, Centeno I, Come M, Jehl J, Solié C, Reynolds LM, Durand-de Cuttoli R, Tolu S, Valverde S, Didienne S, Hannesse B, Fiancette JF, Pons S, Maskos U, Deroche-Gamonet V, Dalkara D, Hardelin JP, Mourot A, Marti F, Faure P. Nicotine inhibits the VTA-to-amygdala dopamine pathway to promote anxiety. Neuron 2021; 109:2604-2615.e9. [PMID: 34242565 DOI: 10.1016/j.neuron.2021.06.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/27/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
Nicotine stimulates dopamine (DA) neurons of the ventral tegmental area (VTA) to establish and maintain reinforcement. Nicotine also induces anxiety through an as yet unknown circuitry. We found that nicotine injection drives opposite functional responses of two distinct populations of VTA DA neurons with anatomically segregated projections: it activates neurons that project to the nucleus accumbens (NAc), whereas it inhibits neurons that project to the amygdala nuclei (Amg). We further show that nicotine mediates anxiety-like behavior by acting on β2-subunit-containing nicotinic acetylcholine receptors of the VTA. Finally, using optogenetics, we bidirectionally manipulate the VTA-NAc and VTA-Amg pathways to dissociate their contributions to anxiety-like behavior. We show that inhibition of VTA-Amg DA neurons mediates anxiety-like behavior, while their activation prevents the anxiogenic effects of nicotine. These distinct subpopulations of VTA DA neurons with opposite responses to nicotine may differentially drive the anxiogenic and the reinforcing effects of nicotine.
Collapse
Affiliation(s)
- Claire Nguyen
- ESPCI, Laboratoire de plasticité du cerveau UMR8249, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Sarah Mondoloni
- Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Tinaïg Le Borgne
- ESPCI, Laboratoire de plasticité du cerveau UMR8249, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Ines Centeno
- Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Maxime Come
- ESPCI, Laboratoire de plasticité du cerveau UMR8249, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Joachim Jehl
- ESPCI, Laboratoire de plasticité du cerveau UMR8249, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Clément Solié
- ESPCI, Laboratoire de plasticité du cerveau UMR8249, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Lauren M Reynolds
- ESPCI, Laboratoire de plasticité du cerveau UMR8249, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | | | - Stefania Tolu
- Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Sébastien Valverde
- Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Steve Didienne
- ESPCI, Laboratoire de plasticité du cerveau UMR8249, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Bernadette Hannesse
- Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Jean-François Fiancette
- Neurocentre Magendie, Inserm U1215, Université de Bordeaux, 146 rue Léo Saignat, 33077 Bordeaux, France
| | - Stéphanie Pons
- Institut Pasteur, Unité Neurobiologie intégrative des systèmes cholinergiques, Département de neuroscience, 75724 Paris Cedex, France
| | - Uwe Maskos
- Institut Pasteur, Unité Neurobiologie intégrative des systèmes cholinergiques, Département de neuroscience, 75724 Paris Cedex, France
| | - Véronique Deroche-Gamonet
- Neurocentre Magendie, Inserm U1215, Université de Bordeaux, 146 rue Léo Saignat, 33077 Bordeaux, France
| | - Deniz Dalkara
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, Paris, France
| | - Jean-Pierre Hardelin
- ESPCI, Laboratoire de plasticité du cerveau UMR8249, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Alexandre Mourot
- ESPCI, Laboratoire de plasticité du cerveau UMR8249, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France
| | - Fabio Marti
- ESPCI, Laboratoire de plasticité du cerveau UMR8249, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France.
| | - Philippe Faure
- ESPCI, Laboratoire de plasticité du cerveau UMR8249, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Université, Inserm, UMR8246 CNRS, Neuroscience Paris Seine - IBPS, 75005 Paris, France.
| |
Collapse
|
22
|
DeCristofano L, Decker S, Schulte MK, Suryanarayanan A. Desformylflustrabromine (dFBr), a positive allosteric modulator of the α 4β 2 nicotinic receptor modulates the hypnotic response to ethanol. Alcohol 2021; 93:35-44. [PMID: 33652092 DOI: 10.1016/j.alcohol.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Binge drinking can increase an individual's risk of developing alcohol use disorder (AUD). Ethanol targets multiple neurotransmitter systems; however, not much is known about its effects on the cholinergic system. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels, the heteromeric α4β2 nAChR being a commonly expressed subtype. Desformylflustrabromine (dFBr), a positive allosteric modulator (PAM), increases the efficacy of α4β2 nAChR in vitro and has previously been shown to have translational potential. In this study, we investigated whether dFBr modulates the hypnotic response to ethanol. METHODS Ethanol-induced loss of righting reflex (LORR) duration was measured in the presence and absence of dFBr. The β2 nAChR selective antagonist dihydro-β-erythroidine (DHβE) was used to study the involvement of the β2 subunit. Additionally, we used a crosslinking-based western blot assay to estimate changes in total versus intracellular α4 nAChR protein in thalamic tissue of rats treated with vehicle, dFBr, ethanol, or ethanol and dFBr. Lastly, using Xenopus oocyte two-electrode voltage clamp (TEVC) studies, we determined the effects of ethanol and dFBr on α4β2 nAChR. RESULTS Pretreatment with 6 mg/kg dFBr reduced ethanol-induced LORR duration as compared to rats treated with ethanol alone. LORR studies with DHβE suggest that dFBr reduced ethanol-induced LORR duration via the β2 nAChR subunit. Crosslinking-based western analyses revealed that ethanol caused early increases in total and presumably surface thalamic α4 nAChR subunit protein levels. This ethanol-induced α4 nAChR upregulation was significantly reduced in rats pretreated with 6 mg/kg dFBr. In TEVC studies, ethanol potentiated ACh-induced currents in α4β2 nAChR, while it slightly reduced dFBr potentiation of maximal ACh currents. CONCLUSIONS Our results suggest that thalamic nAChRs containing the α4 subunit are rapidly upregulated by a single intoxicating dose of ethanol. Furthermore, dFBr, an α4β2 nAChR-selective PAM, significantly attenuates the hypnotic response to ethanol via actions on β2 nAChR. Overall, these results indicate that dFBr represents an option to reverse ethanol intoxication.
Collapse
|
23
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
24
|
Domi A, Barbier E, Adermark L, Domi E. Targeting the Opioid Receptors: A Promising Therapeutic Avenue for Treatment in “Heavy Drinking Smokers”. Alcohol Alcohol 2021; 56:127-138. [DOI: 10.1093/alcalc/agaa139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
Abstract
Aims
Despite a general decline in tobacco use in the last decades, the prevalence of tobacco smoking in individuals with alcohol use disorder (AUD) remains substantial (45–50%). Importantly, the co-use of both substances potentiates the adverse effects, making it a significant public health problem. Substantial evidence suggests that AUD and Tobacco use disorder (TUD) may share common mechanisms. Targeting these mechanisms may therefore provide more effective therapy. Numerous studies describe a potential role of the endogenous opioid system in both AUD and TUD. Reviewing this literature, we aim to evaluate the efficacy of molecules that target the opioid system as promising therapeutic interventions for treating alcohol and tobacco co-use disorders.
Methods
We provide a synthesis of the current epidemiological knowledge of alcohol and tobacco co-use disorders. We evaluate clinical and preclinical research that focuses on the regulation of the endogenous opioid system in alcohol, nicotine, and their interactions.
Results
The epidemiological data confirm that smoking stimulates heavy drinking and facilitates alcohol craving. Pharmacological findings suggest that treatments that are efficacious in the dual addiction provide a beneficial treatment outcome in comorbid AUD and TUD. In this regard, MOP, DOP and NOP-receptor antagonists show promising results, while the findings prompt caution when considering KOP-receptor antagonists as a treatment option in alcohol and tobacco co-use disorders.
Conclusions
Existing literature suggests a role of the opioid system in sustaining the high comorbidity rates of AUD and TUD. Molecules targeting opioid receptors may therefore represent promising therapeutic interventions in ‘heavy drinking smokers.’
Collapse
Affiliation(s)
- Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy University of Gothenburg, Box 410, Gothenburg 405 30, Sweden
| | - Estelle Barbier
- Center for Social and Affective Neuroscience, Linköping University, Campus US, Entrance 65, Linköping 581 85, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy University of Gothenburg, Box 410, Gothenburg 405 30, Sweden
| | - Esi Domi
- Center for Social and Affective Neuroscience, Linköping University, Campus US, Entrance 65, Linköping 581 85, Sweden
| |
Collapse
|
25
|
Dudai A, Yayon N, Soreq H, London M. Cortical VIP
+
/ChAT
+
interneurons: From genetics to function. J Neurochem 2021; 158:1320-1333. [DOI: 10.1111/jnc.15263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Amir Dudai
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Neurobiology The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| | - Nadav Yayon
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Biological Chemistry The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Biological Chemistry The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| | - Michael London
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Neurobiology The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
26
|
Montanari C, Secci ME, Driskell A, McDonald KO, Schratz CL, Gilpin NW. Chronic nicotine increases alcohol self-administration in adult male Wistar rats. Psychopharmacology (Berl) 2021; 238:201-213. [PMID: 33000333 PMCID: PMC7796964 DOI: 10.1007/s00213-020-05669-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE Alcohol and nicotine co-dependence is common in humans, and nicotine increases alcohol drinking in humans without alcohol use disorder (AUD). Nevertheless, there is little basic research on the interactions between the reinforcing effects of these two drugs. OBJECTIVES The aim of this study was to investigate the effects of chronic nicotine injections on oral alcohol self-administration in alcohol non-dependent rats. METHODS After stable alcohol self-administration was reached (baseline) and a period without alcohol access, adult male rats were treated with chronic nicotine or saline injections for 105 days during which time they were tested intermittently for alcohol self-administration. There were 3 experimental groups: (1) saline, rats treated with saline for 105 days; (2) early nicotine, rats treated with nicotine for 70 days, and then with saline for 35 days; and (3) late nicotine: rats treated with saline for 35 days, and then with nicotine for 70 days. RESULTS Our results indicate that (1) chronic nicotine increases alcohol consumption regardless of whether exposure to alcohol was interrupted (early nicotine) or not (late nicotine) before the start of nicotine treatment, (2) the number of alcohol reinforcements correlates to blood-alcohol levels, and (3) alcohol self-administration rapidly decreases when nicotine is no longer available (early nicotine). CONCLUSIONS These discoveries may have clinical implications in social drinkers that use nicotine products, in that chronic nicotine can escalate alcohol drinking and cessation of nicotine exposure may decrease alcohol use.
Collapse
Affiliation(s)
- Christian Montanari
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Maria E Secci
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ashlyn Driskell
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Katherine O McDonald
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Connor L Schratz
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Nicholas W Gilpin
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.,Alcohol & Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.,Southeast Louisiana VA Healthcare System (SLVHCS), New Orleans, LA, 70119, USA
| |
Collapse
|
27
|
Domi E, Xu L, Pätz M, Nordeman A, Augier G, Holm L, Toivainen S, Augier E, Hansson AC, Heilig M. Nicotine increases alcohol self-administration in male rats via a μ-opioid mechanism within the mesolimbic pathway. Br J Pharmacol 2020; 177:4516-4531. [PMID: 32697329 PMCID: PMC7484560 DOI: 10.1111/bph.15210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023] Open
Abstract
Background and Purpose Alcohol and nicotine use disorders are commonly comorbid. Both alcohol and nicotine can activate opioid systems in reward‐related brain regions, leading to adaptive changes in opioid signalling upon chronic exposure. The potential role of these adaptations for comorbidity is presently unknown. Here, we examined the contribution of μ and κ‐opioid receptors to nicotine‐induced escalation of alcohol self‐administration in rats. Experimental Approach Chronic nicotine was tested on alcohol self‐administration and motivation to obtain alcohol. We then tested the effect of the κ antagonist CERC‐501 and the preferential μ receptor antagonist naltrexone on basal and nicotine‐escalated alcohol self‐administration. To probe μ or κ receptor adaptations, receptor binding and G‐protein coupling assays were performed in reward‐related brain regions. Finally, dopaminergic activity in response to alcohol was examined, using phosphorylation of DARPP‐32 in nucleus accumbens as a biomarker. Key Results Nicotine robustly induced escalation of alcohol self‐administration and motivation to obtain alcohol. This was blocked by naltrexone but not by CERC‐501. Escalation of alcohol self‐administration was associated with decreased DAMGO‐stimulated μ receptor signalling in the ventral tegmental area (VTA) and decreased pDARPP‐32 in the nucleus accumbens shell in response to alcohol. Conclusions and Implications Collectively, these results suggest that nicotine contributes to escalate alcohol self‐administration through a dysregulation of μ receptor activity in the VTA. These data imply that targeting μ rather than κ receptors may be the preferred pharmacotherapeutic approach for the treatment of alcohol use disorder when nicotine use contributes to alcohol consumption.
Collapse
Affiliation(s)
- Esi Domi
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| | - Li Xu
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden.,Psychosomatic Medicine Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Marvin Pätz
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anton Nordeman
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| | - Gaëlle Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| | - Lovisa Holm
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| | - Sanne Toivainen
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, S-581 85, Sweden
| |
Collapse
|
28
|
Association Between Age at Smoking Onset and Binge Drinking Among Adults in the Republic of Korea. Int J Ment Health Addict 2020. [DOI: 10.1007/s11469-020-00344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
29
|
Ostroumov A, Wittenberg RE, Kimmey BA, Taormina MB, Holden WM, McHugh AT, Dani JA. Acute Nicotine Exposure Alters Ventral Tegmental Area Inhibitory Transmission and Promotes Diazepam Consumption. eNeuro 2020; 7:ENEURO.0348-19.2020. [PMID: 32102779 PMCID: PMC7082131 DOI: 10.1523/eneuro.0348-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/20/2020] [Accepted: 02/16/2020] [Indexed: 11/21/2022] Open
Abstract
Nicotine use increases the risk for subsequent abuse of other addictive drugs, but the biological basis underlying this risk remains largely unknown. Interactions between nicotine and other drugs of abuse may arise from nicotine-induced neural adaptations in the mesolimbic dopamine (DA) system, a common pathway for the reinforcing effects of many addictive substances. Previous work identified nicotine-induced neuroadaptations that alter inhibitory transmission in the ventral tegmental area (VTA). Here, we test whether nicotine-induced dysregulation of GABAergic signaling within the VTA increases the vulnerability for benzodiazepine abuse that has been reported in smokers. We demonstrate in rats that nicotine exposure dysregulates diazepam-induced inhibition of VTA GABA neurons and increases diazepam consumption. In VTA GABA neurons, nicotine impaired KCC2-mediated chloride extrusion, depolarized the GABAA reversal potential, and shifted the pharmacological effect of diazepam on GABA neurons from inhibition toward excitation. In parallel, nicotine-related alterations in GABA signaling observed ex vivo were associated with enhanced diazepam-induced inhibition of lateral VTA DA neurons in vivo Targeting KCC2 with the agonist CLP290 normalized diazepam-induced effects on VTA GABA transmission and reduced diazepam consumption following nicotine administration to the control level. Together, our results provide insights into midbrain circuit alterations resulting from nicotine exposure that contribute to the abuse of other drugs, such as benzodiazepines.
Collapse
Affiliation(s)
- Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruthie E Wittenberg
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Blake A Kimmey
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Madison B Taormina
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - William M Holden
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Albert T McHugh
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
30
|
Singh L, Joshi T, Tewari D, Echeverría J, Mocan A, Sah AN, Parvanov E, Tzvetkov NT, Ma ZF, Lee YY, Poznański P, Huminiecki L, Sacharczuk M, Jóźwik A, Horbańczuk JO, Feder-Kubis J, Atanasov AG. Ethnopharmacological Applications Targeting Alcohol Abuse: Overview and Outlook. Front Pharmacol 2020; 10:1593. [PMID: 32116660 PMCID: PMC7034411 DOI: 10.3389/fphar.2019.01593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is the cause of several diseases and thus is of a major concern for society. Worldwide alcohol consumption has increased by many folds over the past decades. This urgently calls for intervention and relapse counteract measures. Modern pharmacological solutions induce complete alcohol self-restraint and prevent relapse, but they have many side effects. Natural products are most promising as they cause fewer adverse effects. Here we discuss in detail the medicinal plants used in various traditional/folklore medicine systems for targeting alcohol abuse. We also comprehensively describe preclinical and clinical studies done on some of these plants along with the possible mechanisms of action.
Collapse
Affiliation(s)
- Laxman Singh
- Centre for Biodiversity Conservation & Management, G.B. Pant National Institute of Himalayan Environment & Sustainable Development, Almora, India
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University Bhimtal Campus, Nainital, India
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Javier Echeverría
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University Bhimtal Campus, Nainital, India
| | - Emil Parvanov
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Division BIOCEV, Prague, Czechia
| | - Nikolay T. Tzvetkov
- Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department Global R&D, NTZ Lab Ltd., Sofia, Bulgaria
| | - Zheng Feei Ma
- Department of Public Health, Xi’an Jiaotong-Liverpool University, Suzhou, China
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Piotr Poznański
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Feder-Kubis
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego, Wrocław, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Shahwan S, Abdin E, Shafie S, Chang S, Sambasivam R, Zhang Y, Vaingankar JA, Teo YY, Heng D, Chong SA, Subramaniam M. Prevalence and correlates of smoking and nicotine dependence: results of a nationwide cross-sectional survey among Singapore residents. BMJ Open 2019; 9:e032198. [PMID: 31630110 PMCID: PMC6803088 DOI: 10.1136/bmjopen-2019-032198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Since the Singapore Mental Health Study in 2010 which reported a 16.0% prevalence rate for current smokers and 4.5% for nicotine dependence, new anti-smoking strategies have been implemented. The aim of this study was to compare smoking trends from the 2010 study with the second Singapore Mental Health Study in 2016 (SMHS 2016). METHODS A survey of 6126 individuals aged 18 years and above randomly selected among Singapore residents was conducted using the same methodology as the 2010 study. The measures used in this analysis were sociodemographic questions, the Composite International Diagnostic Interview which assessed for psychiatric disorders, the Fagerstrom Test for Nicotine Dependence and a list of chronic physical conditions that were prevalent in Singapore. Logistic regression analyses were used to test for associations between smoking/nicotine-dependence and other measures. RESULTS In the SMHS 2016, 16.1% were current smokers and 3.3% were nicotine-dependent. As compared with non-smokers, current smokers were more likely to be younger, male gender, of ethnic minority and had lower/vocational education level. Younger age, male gender, lower/vocational education and psychiatric disorders (major depression, bipolar disorder and alcohol use disorders) predicted nicotine dependence. No associations were found between nicotine dependence and any of the chronic conditions. CONCLUSION The prevalence of current smokers in the population has plateaued while that of nicotine dependence has decreased from 2010. However, the study did not investigate the use of e-cigarettes. Inequalities in smoking and nicotine dependence continue to pervade the population particularly among those of ethnic minority, lower/vocational education and the mentally ill.
Collapse
Affiliation(s)
- Shazana Shahwan
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - Edimansyah Abdin
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - Saleha Shafie
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - Sherilyn Chang
- Research Division, Institute of Mental Health, Singapore, Singapore
| | | | - Yunjue Zhang
- Research Division, Institute of Mental Health, Singapore, Singapore
| | | | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Derrick Heng
- Epidemiology & Disease Control Division, Ministry of Health, Government of Singapore, Singapore, Singapore
| | - Siow Ann Chong
- Research Division, Institute of Mental Health, Singapore, Singapore
| | | |
Collapse
|
32
|
Thomas AM, Ostroumov A, Kimmey BA, Taormina MB, Holden WM, Kim K, Brown-Mangum T, Dani JA. Adolescent Nicotine Exposure Alters GABA A Receptor Signaling in the Ventral Tegmental Area and Increases Adult Ethanol Self-Administration. Cell Rep 2019; 23:68-77. [PMID: 29617674 PMCID: PMC5983379 DOI: 10.1016/j.celrep.2018.03.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/08/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
Adolescent smoking is associated with pathological drinking later in life, but the biological basis for this vulnerability is unknown. To examine how adolescent nicotine exposure influences subsequent ethanol intake, nicotine was administered during adolescence or adulthood, and responses to alcohol were measured 1 month later. We found that adolescent, but not adult, nicotine exposure altered GABA signaling within the ventral tegmental area (VTA) and led to a long-lasting enhancement of alcohol self-administration. We detected depolarizing shifts in GABAA reversal potentials arising from impaired chloride extrusion in VTA GABA neurons. Alterations in GABA signaling were dependent on glucocorticoid receptor activation and were associated with attenuated dopaminergic neuron responses to alcohol in the lateral VTA. Importantly, enhancing chloride extrusion in adolescent nicotine-treated animals restored VTA GABA signaling and alcohol self-administration to control levels. Taken together, this work suggests that adolescent nicotine exposure increases the risk profile for increased alcohol drinking in adulthood.
Collapse
Affiliation(s)
- Alyse M Thomas
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Blake A Kimmey
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Madison B Taormina
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William M Holden
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen Kim
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Brown-Mangum
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Pacek LR, Reboussin BA, Green KM, LaFlair LN, Storr CL, Alvanzo AAH, Mojtabai R, Cullen B, Young AS, Tormohen K, Riehm K, Crum RM. Current tobacco use, nicotine dependence, and transitions across stages of alcohol involvement: A latent transition analysis approach. Int J Methods Psychiatr Res 2019; 28:e1789. [PMID: 31141253 PMCID: PMC6791727 DOI: 10.1002/mpr.1789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES This study aims to examine the (a) probability of transition between stages of alcohol involvement and (b) influence of tobacco use and nicotine dependence on transitions. METHODS Data came from Waves 1 and 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Latent transition analysis estimated the probability of transitioning between stages of alcohol involvement across waves and the impact of tobacco use and nicotine dependence at Wave 1 on transitions. RESULTS Males reporting current tobacco use but no dependence at Wave 1 were more likely to progress from No Problems to Moderate Problems (adjusted odds ratio [aOR] = 1.79; 95% confidence interval [CI] [1.44, 2.22]) and from No Problems to Severe Problems (aOR = 2.44; 95% CI [1.25, 4.77]) than nontobacco users. Females reporting current tobacco use but no dependence were more likely to progress from No Problems to Moderate Problems (aOR = 2.00; 95% CI [1.37, 2.94]) and from No Problems to Severe Problems (aOR = 2.87; 95% CI [1.34, 6.13]). Females reporting current tobacco use and dependence were more likely than females not using tobacco to transition from Moderate to No Problems (aOR = 2.10; 95% CI [1.04, 4.22]). CONCLUSIONS Results suggest that tobacco use is a preceding correlate of progression in alcohol involvement among males and females. Among females, tobacco use and nicotine dependence are also related to alcohol involvement recovery.
Collapse
Affiliation(s)
- Lauren R Pacek
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Beth A Reboussin
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kerry M Green
- Department of Behavioral and Community Health, University of Maryland School of Public Health, College Park, MD, USA
| | | | - Carla L Storr
- Family and Community Health, University of Maryland School of Nursing, Baltimore, MD, USA.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anika A H Alvanzo
- Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ramin Mojtabai
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bernadette Cullen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea S Young
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kayla Tormohen
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kira Riehm
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rosa M Crum
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
34
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Thrul J, Gubner NR, Tice CL, Lisha NE, Ling PM. Young adults report increased pleasure from using e-cigarettes and smoking tobacco cigarettes when drinking alcohol. Addict Behav 2019; 93:135-140. [PMID: 30710807 DOI: 10.1016/j.addbeh.2019.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Cigarettes share a high rate of co-use with alcohol, particularly among young adults. Studies have demonstrated greater perceived pleasure from smoking cigarettes when drinking alcohol. However, little is known about co-use of electronic cigarettes (e-cigs) and alcohol. The current study sought to compare extent of use and perceived pleasure from cigarettes and e-cigs when drinking alcohol. METHODS Young adult bar patrons in California cities (San Diego, Los Angeles, and San Francisco) were recruited in 2015-16 using randomized time-location sampling. Participants completed cross-sectional surveys in bars, reporting the percent of cigarette smoking/e-cig use that occurred under the influence of alcohol, and reported if pleasure from smoking cigarettes/using e-cigs changed when drinking alcohol. Analyses are limited to participants reporting current (past 30-day) use of cigarettes, e-cigs, and alcohol (N = 269; M age = 24.1; 40.1% female, 36.1% Non-Hispanic White). RESULTS Participants reported a greater percentage of cigarette smoking compared to e-cig use under the influence of alcohol (cigarettes M = 63.6%; e-cigs M = 46.7%; p < .001). Participants also reported increased pleasure both from smoking cigarettes (M = 3.9; [compared to midpoint of scale 3 - "no change"] p < .001) and using e-cigs (M = 3.3; p < .001) when drinking alcohol. The increase in pleasure was more pronounced for cigarettes compared to e-cigs (p < .001). CONCLUSIONS Drinking alcohol is associated with increases in perceived rewarding effects of both cigarettes and e-cigs and thus may increase their abuse liability. This effect may be stronger for cigarettes, which could be an important barrier to switching completely from smoking cigarettes to using e-cigs, or quitting both entirely.
Collapse
|
36
|
Ostroumov A, Dani JA. Inhibitory Plasticity of Mesocorticolimbic Circuits in Addiction and Mental Illness. Trends Neurosci 2018; 41:898-910. [PMID: 30149979 PMCID: PMC6252277 DOI: 10.1016/j.tins.2018.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Behavioral adaptations occur through remodeling of brain circuits, as arising, for instance, from experience-dependent synaptic plasticity. Drugs of abuse and aversive stimuli, such as stress, act on the mesocorticolimbic system, dysregulating adaptive mechanisms and leading to a variety of aberrant behaviors associated with neuropsychiatric disorders. Until recently, research in the field has commonly focused on experience-dependent synaptic plasticity at excitatory synapses. However, there is growing evidence that synaptic plasticity within inhibitory circuits is an important contributor to maladaptive behaviors. We speculate that restoring normal inhibitory synaptic transmission is a promising therapeutic target for correcting some of the circuit abnormalities underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA.
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Goldfarb EV, Sinha R. Drug-Induced Glucocorticoids and Memory for Substance Use. Trends Neurosci 2018; 41:853-868. [PMID: 30170822 PMCID: PMC6204074 DOI: 10.1016/j.tins.2018.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 11/29/2022]
Abstract
The biological stress response of the body forms one of the foundations of adaptive behavior, including promoting (and impairing) different forms of memory. This response transcends stressful experiences and underlies reactions to challenges and even reinforcers such as addictive substances. Nevertheless, drug-induced stress responses are rarely incorporated into models of addiction. We propose here that drug-induced stress responses (particularly glucocorticoids) play a crucial role in addictive behavior by modulating the formation of memories for substance-use experiences. We review the contributions of amygdala-, striatum-, and hippocampus-based memory systems to addiction, and reveal common effects of addictive drugs and acute stress on these different memories. We suggest that the contributions of drug-induced stress responses to memory may provide insights into the mechanisms driving addictive behavior.
Collapse
Affiliation(s)
- Elizabeth V Goldfarb
- Department of Diagnostic Radiology; Yale Stress Center; Yale University School of Medicine, New Haven, CT, USA.
| | - Rajita Sinha
- Departments of Psychiatry and Neuroscience; Yale Stress Center; Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
38
|
Verweij KJH, Treur JL, Vink JM. Investigating causal associations between use of nicotine, alcohol, caffeine and cannabis: a two-sample bidirectional Mendelian randomization study. Addiction 2018; 113:1333-1338. [PMID: 29334416 DOI: 10.1111/add.14154] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/14/2017] [Accepted: 01/02/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIMS Epidemiological studies consistently show co-occurrence of use of different addictive substances. Whether these associations are causal or due to overlapping underlying influences remains an important question in addiction research. Methodological advances have made it possible to use published genetic associations to infer causal relationships between phenotypes. In this exploratory study, we used Mendelian randomization (MR) to examine the causality of well-established associations between nicotine, alcohol, caffeine and cannabis use. METHODS Two-sample MR was employed to estimate bidirectional causal effects between four addictive substances: nicotine (smoking initiation and cigarettes smoked per day), caffeine (cups of coffee per day), alcohol (units per week) and cannabis (initiation). Based on existing genome-wide association results we selected genetic variants associated with the exposure measure as an instrument to estimate causal effects. Where possible we applied sensitivity analyses (MR-Egger and weighted median) more robust to horizontal pleiotropy. RESULTS Most MR tests did not reveal causal associations. There was some weak evidence for a causal positive effect of genetically instrumented alcohol use on smoking initiation and of cigarettes per day on caffeine use, but these were not supported by the sensitivity analyses. There was also some suggestive evidence for a positive effect of alcohol use on caffeine use (only with MR-Egger) and smoking initiation on cannabis initiation (only with weighted median). None of the suggestive causal associations survived corrections for multiple testing. CONCLUSIONS Two-sample Mendelian randomization analyses found little evidence for causal relationships between nicotine, alcohol, caffeine and cannabis use.
Collapse
Affiliation(s)
- Karin J H Verweij
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Jorien L Treur
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Jacqueline M Vink
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
39
|
Silva CP, Horton WJ, Caruso MJ, Sebastian A, Klein LC, Albert I, Kamens HM. The influence of adolescent nicotine exposure on ethanol intake and brain gene expression. PLoS One 2018; 13:e0198935. [PMID: 29912970 PMCID: PMC6005571 DOI: 10.1371/journal.pone.0198935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
Nicotine and alcohol are often co-abused. Adolescence is a vulnerable period for the initiation of both nicotine and alcohol use, which can lead to subsequent neurodevelopmental and behavioral alterations. It is possible that during this vulnerable period, use of one drug leads to neurobiological alterations that affect subsequent consumption of the other drug. The aim of the present study was to determine the effect of nicotine exposure during adolescence on ethanol intake, and the effect of these substances on brain gene expression. Forty-three adolescent female C57BL/6J mice were assigned to four groups. In the first phase of the experiment, adolescent mice (PND 36-41 days) were exposed to three bottles filled with water or nicotine (200 μg/ml) for 22 h a day and a single bottle of water 2 h a day for six days. In the second phase (PND 42-45 days), the 4-day Drinking-in-the-Dark paradigm consisting of access to 20% v/v ethanol or water for 2h or 4h (the last day) was overlaid during the time when the mice did not have nicotine available. Ethanol consumption (g/kg) and blood ethanol concentrations (BEC, mg %) were measured on the final day and whole brains including the cerebellum, were dissected for RNA sequencing. Differentially expressed genes (DEG) were detected with CuffDiff and gene networks were built using WGCNA. Prior nicotine exposure increased ethanol consumption and resulting BEC. Significant DEG and biological pathways found in the group exposed to both nicotine and ethanol included genes important in stress-related neuropeptide signaling, hypothalamic-pituitary-adrenal (HPA) axis activity, glutamate release, GABA signaling, and dopamine release. These results replicate our earlier findings that nicotine exposure during adolescence increases ethanol consumption and extends this work by examining gene expression differences which could mediate these behavioral effects.
Collapse
Affiliation(s)
- Constanza P. Silva
- Biobehavioral Health Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - William J. Horton
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael J. Caruso
- Biobehavioral Health Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aswathy Sebastian
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Laura C. Klein
- Biobehavioral Health Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Istvan Albert
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Helen M. Kamens
- Biobehavioral Health Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
40
|
Cippitelli A, Brunori G, Schoch J, Armishaw CJ, Wu J, Zaveri NT, Giulianotti MA, Welmaker GS, Toll L. Differential regulation of alcohol taking and seeking by antagonism at α4β2 and α3β4 nAChRs. Psychopharmacology (Berl) 2018; 235:1745-1757. [PMID: 29572652 PMCID: PMC5949259 DOI: 10.1007/s00213-018-4883-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
RATIONALE Alcoholism is a serious public health problem throughout the world. Current pharmacotherapies for the treatment of this disorder are poorly effective. Preclinical and clinical findings point to nicotinic acetylcholine receptors (nAChRs) as a promising target for the development of novel and effective medications. Assuage Pharmaceuticals, in collaboration with Torrey Pines Institute for Molecular Studies, has discovered a new class of potent and selective α4β2 nAChR antagonists. OBJECTIVE Here, it was hypothesized that α4β2 nAChR antagonism is a viable approach for treatment of alcohol use disorders. RESULTS When tested in rats, one lead compound, AP-202, attenuated both operant alcohol and nicotine self-administration in a paradigm in which the two reinforcers were concurrently available. The conotoxin TP2212-59, a selective α3β4 nAChR antagonist, was only effective in reducing nicotine self-administration. AP-202 also reduced alcohol but not food responding when alcohol was presented as the only reinforcer, whereas the commercially available α4β2 nAChR antagonist dihydro-β-erythroidine failed to alter alcohol self-administration. AP-202 did not block relapse-like behavior induced by previously alcohol-associated stimuli or yohimbine stress. In a reinstatement paradigm, in which alcohol seeking was triggered by a nicotine challenge, a behavior successfully inhibited by the nonselective nAChR antagonist mecamylamine, AP-202 was not effective, while pretreatment with TP2212-59 abolished nicotine-induced reinstatement of alcohol seeking. CONCLUSIONS These findings suggest differential roles for α4β2 and α3β4 nAChR on alcohol taking and seeking with selective blockade of α4β2 nAChR being more implicated in modulating alcohol taking while selective blockade of α3β4 nAChR is involved in nicotine-induced alcohol seeking.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL, 34987, USA.
| | - Gloria Brunori
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Jennifer Schoch
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Christopher J. Armishaw
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Jinhua Wu
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA,Assuage Pharmaceuticals, Inc., 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Nurulain T. Zaveri
- Astraea Therapeutics, LLC, 320 Logue Avenue, Mountain View, CA 94043, USA
| | - Marc A. Giulianotti
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA,Assuage Pharmaceuticals, Inc., 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Gregory S. Welmaker
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA,Assuage Pharmaceuticals, Inc., 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Lawrence Toll
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA,Assuage Pharmaceuticals, Inc., 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| |
Collapse
|
41
|
The GABA A Receptor α2 Subunit Activates a Neuronal TLR4 Signal in the Ventral Tegmental Area that Regulates Alcohol and Nicotine Abuse. Brain Sci 2018; 8:brainsci8040072. [PMID: 29690521 PMCID: PMC5924408 DOI: 10.3390/brainsci8040072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 01/06/2023] Open
Abstract
Alcoholism initiates with episodes of excessive alcohol drinking, known as binge drinking, which is one form of excessive drinking (NIAAA Newsletter, 2004) that is related to impulsivity and anxiety (Ducci et al., 2007; Edenberg et al., 2004) and is also predictive of smoking status. The predisposition of non-alcohol exposed subjects to initiate binge drinking is controlled by neuroimmune signaling that includes an innately activated neuronal Toll-like receptor 4 (TLR4) signal. This signal also regulates cognitive impulsivity, a heritable trait that defines drug abuse initiation. However, the mechanism of signal activation, its function in dopaminergic (TH+) neurons within the reward circuitry implicated in drug-seeking behavior [viz. the ventral tegmental area (VTA)], and its contribution to nicotine co-abuse are still poorly understood. We report that the γ-aminobutyric acidA receptor (GABAAR) α2 subunit activates the TLR4 signal in neurons, culminating in the activation (phosphorylation/nuclear translocation) of cyclic AMP response element binding (CREB) but not NF-kB transcription factors and the upregulation of corticotropin-releasing factor (CRF) and tyrosine hydroxylase (TH). The signal is activated through α2/TLR4 interaction, as evidenced by co-immunoprecipitation, and it is present in the VTA from drug-untreated alcohol-preferring P rats. VTA infusion of neurotropic herpes simplex virus (HSV) vectors for α2 (pHSVsiLA2) or TLR4 (pHSVsiTLR4) but not scrambled (pHSVsiNC) siRNA inhibits signal activation and both binge alcohol drinking and nicotine sensitization, suggesting that the α2-activated TLR4 signal contributes to the regulation of both alcohol and nicotine abuse.
Collapse
|
42
|
Milivojevic V, Sinha R. Central and Peripheral Biomarkers of Stress Response for Addiction Risk and Relapse Vulnerability. Trends Mol Med 2018; 24:173-186. [PMID: 29396148 DOI: 10.1016/j.molmed.2017.12.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 01/20/2023]
Abstract
Substance use disorders (SUDs) are marked by heterogeneity in clinical symptomatology and high relapse rates following treatment. Here, we describe specific peripheral and central stress responses associated with the pathophysiology of SUDs. We outline potential stress response measures, including hypothalamus-pituitary-adrenal axis markers, autonomic responses, and central structural and functional brain alterations that could be exploited as putative biomarkers in SUDs. We posit that stress responses can be predictive of both the development of SUDs and their high relapsing nature. We examine their potential as candidate biomarkers, as well as the remaining challenges in developing and implementing their application for the prevention and treatment of SUDs.
Collapse
Affiliation(s)
- Verica Milivojevic
- The Yale Stress Center, Yale University School of Medicine, Department of Psychiatry, 2 Church Street South, Suite 209, New Haven, CT 06519, USA
| | - Rajita Sinha
- The Yale Stress Center, Yale University School of Medicine, Department of Psychiatry, 2 Church Street South, Suite 209, New Haven, CT 06519, USA.
| |
Collapse
|
43
|
Weera MM, Fields MA, Tapp DN, Grahame NJ, Chester JA. Effects of Nicotine on Alcohol Drinking in Female Mice Selectively Bred for High or Low Alcohol Preference. Alcohol Clin Exp Res 2017; 42:432-443. [PMID: 29144544 DOI: 10.1111/acer.13555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Studies show that repeated nicotine use associates with high alcohol consumption in humans and that nicotine exposure sometimes increases alcohol consumption in animal models. However, the relative roles of genetic predisposition to high alcohol consumption, the alcohol drinking patterns, and the timing of nicotine exposure both with respect to alcohol drinking and developmental stage remain unclear. The studies here manipulated all these variables, using mice selectively bred for differences in free-choice (FC) alcohol consumption to elucidate the role of genetics and nicotine exposure in alcohol consumption behaviors. METHODS In Experiments 1 and 2, we assessed the effects of repeated nicotine (0, 0.5, or 1.5 mg/kg) injections immediately before binge-like (drinking-in-the-dark; Experiment 1) or during FC alcohol access (Experiment 2) on these alcohol drinking behaviors (immediately after injections and during re-exposure to alcohol access 14 days later) in adult high- (HAP2) and low-alcohol-preferring (LAP2) female mice (co-exposure model). In Experiments 3 and 4, we assessed the effects of repeated nicotine (0, 0.5, or 1.5 mg/kg) injections 14 days prior to binge-like and FC alcohol access on these alcohol drinking behaviors in adolescent HAP2 and LAP2 female mice (Experiment 3) or adult HAP2 female mice (Experiment 4). RESULTS In Experiment 1, we found that repeated nicotine (0.5 and 1.5 mg/kg) and alcohol co-exposure significantly increased binge-like drinking behavior in HAP2 but not LAP2 mice during the re-exposure phase after a 14-day abstinence period. In Experiment 2, 1.5 mg/kg nicotine injections significantly reduced FC alcohol intake and preference in the third hour postinjection in HAP2 but not LAP2 mice. No significant effects of nicotine treatment on binge-like or FC alcohol drinking were observed in Experiments 3 and 4. CONCLUSIONS These results show that the temporal parameters of nicotine and alcohol exposure, pattern of alcohol access, and genetic predisposition for alcohol preference influence nicotine's effects on alcohol consumption. These findings in selectively bred mice suggest that humans with a genetic history of alcohol use disorders may be more vulnerable to develop nicotine and alcohol co-use disorders.
Collapse
Affiliation(s)
- Marcus M Weera
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Molly A Fields
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Danielle N Tapp
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Nicholas J Grahame
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Julia A Chester
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
44
|
Abreu-Villaça Y, Manhães AC, Krahe TE, Filgueiras CC, Ribeiro-Carvalho A. Tobacco and alcohol use during adolescence: Interactive mechanisms in animal models. Biochem Pharmacol 2017; 144:1-17. [DOI: 10.1016/j.bcp.2017.06.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
|
45
|
Ostroumov A, Dani JA. Convergent Neuronal Plasticity and Metaplasticity Mechanisms of Stress, Nicotine, and Alcohol. Annu Rev Pharmacol Toxicol 2017; 58:547-566. [PMID: 28977763 DOI: 10.1146/annurev-pharmtox-010617-052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stress and tobacco smoking are risk factors for alcoholism, but the underlying neural mechanisms are not well understood. Although stress, nicotine, and alcohol have broad, individual effects in the brain, some of their actions converge onto the same mechanisms and circuits. Stress and nicotine augment alcohol-related behaviors, in part via modulation of alcohol-evoked neuronal plasticity and metaplasticity mechanisms. Stress modulates alcohol-evoked plasticity via the release of signaling molecules that influence synaptic transmission. Nicotine also activates some of the same signaling molecules, cells, and circuits, producing a convergence of both stress and nicotine onto common plasticity mechanisms that influence alcohol self-administration. We describe several forms of alcohol-induced plasticity, including classic Hebbian plasticity at glutamatergic synapses, and we highlight less appreciated forms, such as non-Hebbian and GABAergic synaptic plasticity. Risk factors such as stress and nicotine initiate lasting neural changes that modify subsequent alcohol-induced synaptic plasticity and increase the vulnerability to alcohol addiction.
Collapse
Affiliation(s)
- Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, Pennsylvania 19104, USA; ,
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
46
|
Madayag AC, Czarnecki KS, Wangler LM, Robinson DL. Chronic Nicotine Exposure Initiated in Adolescence and Unpaired to Behavioral Context Fails to Enhance Sweetened Ethanol Seeking. Front Behav Neurosci 2017; 11:153. [PMID: 28860980 PMCID: PMC5562684 DOI: 10.3389/fnbeh.2017.00153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023] Open
Abstract
Nicotine use in adolescence is pervasive in the United States and, according to the Gateway Hypothesis, may lead to progression towards other addictive substances. Given the prevalence of nicotine and ethanol comorbidity, it is difficult to ascertain if nicotine is a gateway drug for ethanol. Our study investigated the relationship between adolescent exposure to nicotine and whether this exposure alters subsequent alcohol seeking behavior. We hypothesized that rats exposed to nicotine beginning in adolescence would exhibit greater alcohol seeking behavior than non-exposed siblings. To test our hypothesis, beginning at P28, female rats were initially exposed to once daily nicotine (0.4 mg/kg, SC) or saline for 5 days. Following these five initial injections, animals were trained to nose-poke for sucrose reinforcement (10%, w/v), gradually increasing to sweetened ethanol (10% sucrose; 10% ethanol, w/v) on an FR5 reinforcement schedule. Nicotine injections were administered after the behavioral sessions to minimize acute effects of nicotine on operant self-administration. We measured the effects of nicotine exposure on the following aspects of ethanol seeking: self-administration, naltrexone (NTX)-induced decreases, habit-directed behavior, motivation, extinction and reinstatement. Nicotine exposure did not alter self-administration or the effectiveness of NTX to reduce alcohol seeking. Nicotine exposure blocked habit-directed ethanol seeking. Finally, nicotine did not alter extinction learning or cue-induced reinstatement to sweetened ethanol seeking. Our findings suggest that nicotine exposure outside the behavioral context does not escalate ethanol seeking. Further, the Gateway Hypothesis likely applies to scenarios in which nicotine is either self-administered or physiologically active during the behavioral session.
Collapse
Affiliation(s)
- Aric C Madayag
- Bowles Center for Alcohol Studies, University of North CarolinaChapel Hill, NC, United States.,Department of Pharmacology, University of North CarolinaChapel Hill, NC, United States
| | - Kyle S Czarnecki
- Bowles Center for Alcohol Studies, University of North CarolinaChapel Hill, NC, United States
| | - Lynde M Wangler
- Bowles Center for Alcohol Studies, University of North CarolinaChapel Hill, NC, United States
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North CarolinaChapel Hill, NC, United States.,Department of Psychiatry, University of North CarolinaChapel Hill, NC, United States
| |
Collapse
|
47
|
Hufnagel A, Frick U, Ridinger M, Wodarz N. Recovery from alcohol dependence: Do smoking indicators predict abstinence? Am J Addict 2017; 26:366-373. [PMID: 28376287 DOI: 10.1111/ajad.12535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 02/01/2017] [Accepted: 03/04/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND OBJECTIVES There is inconsistent evidence about the potential influence of smoking on recovery from alcohol dependence. Our study aimed at assessing the impact of smoking-behavior on relapse during a 12 months follow-up period following a detoxification in patients with Alcohol Use Disorder (AUD). METHODS Three hundred Patients with AUD (74.9% smoking) were recruited from two inpatient detoxification units in psychiatric hospitals in Germany and their alcohol consumption was prospectively followed for 1 year. Data on different indicators of smoking behavior was gathered. Cox regression model was used to evaluate potential risk factors on time to relapse of alcohol consumption. Two hundred seventy-nine participants (n = 279) were included in the final analysis. RESULTS Smoking increased the risk for alcohol relapse (hazard ratio = 3.962, 95% CI 1.582-9.921). However, this increased risk is slightly reduced with higher numbers of daily consumed cigarettes (hazard ratio per cigarette = .986, 95% CI .976-.995). CONCLUSION Smoking reduced the probability of maintaining alcohol abstinence significantly, whereas higher number of cigarettes smoked daily diminished the increased risk of alcohol relapse in alcohol-dependent patients. SCIENTIFIC SIGNIFICANCE Coordinated psychiatric and substance abuse interventions for different subgroups of patients with AUD in the post-acute treatment phase are necessary. Individualized treatment planning is especially important in smoking patients with AUD who are vulnerable for a relapse to alcohol drinking and for somatic complications. Our findings might support individualized treatment plans. (Am J Addict 2017;26:366-373).
Collapse
Affiliation(s)
- Anna Hufnagel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Ulrich Frick
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Swiss Research Institute on Public Health and Addiction, University of Zurich, Zürich, Switzerland
| | - Monika Ridinger
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Norbert Wodarz
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
48
|
Tolu S, Marti F, Morel C, Perrier C, Torquet N, Pons S, de Beaurepaire R, Faure P. Nicotine enhances alcohol intake and dopaminergic responses through β2* and β4* nicotinic acetylcholine receptors. Sci Rep 2017; 7:45116. [PMID: 28332590 PMCID: PMC5362818 DOI: 10.1038/srep45116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 12/25/2022] Open
Abstract
Alcohol and nicotine are the most widely co-abused drugs. Both modify the activity of dopaminergic (DA) neurons of the Ventral Tegmental Area (VTA) and lead to an increase in DA release in the Nucleus Accumbens, thereby affecting the reward system. Evidences support the hypothesis that distinct nicotinic acetylcholine receptors (nAChRs), the molecular target of acetylcholine (ACh) and exogenous nicotine, are also in addition implicated in the response to alcohol. The precise molecular and neuronal substrates of this interaction are however not well understood. Here we used in vivo electrophysiology in the VTA to characterise acute and chronic interactions between nicotine and alcohol. Simultaneous injections of the two drugs enhanced their responses on VTA DA neuron firing and chronic exposure to nicotine increased alcohol-induced DA responses and alcohol intake. Then, we assessed the role of β4 * nAChRs, but not β2 * nAChRs, in mediating acute responses to alcohol using nAChR subtypes knockout mice (β2-/- and β4-/- mice). Finally, we showed that nicotine-induced modifications of alcohol responses were absent in β2-/- and β4-/- mice, suggesting that nicotine triggers β2* and β4 * nAChR-dependent neuroadaptations that subsequently modify the responses to alcohol and thus indicating these receptors as key mediators in the complex interactions between these two drugs.
Collapse
Affiliation(s)
- Stefania Tolu
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Fabio Marti
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Carole Morel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Carole Perrier
- Groupe Hospitalier Paul Guiraud, BP 20065, F-94806, Villejuif, France
| | - Nicolas Torquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Stephanie Pons
- Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, F-75724, Paris, France.,CNRS, UMR 3571, F-75724, Paris, France
| | | | - Philippe Faure
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| |
Collapse
|
49
|
Nicotine-induced enhancement of Pavlovian alcohol-seeking behavior in rats. Psychopharmacology (Berl) 2017; 234:727-738. [PMID: 28011981 DOI: 10.1007/s00213-016-4508-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/09/2016] [Indexed: 01/02/2023]
Abstract
RATIONALE Nicotine enhances responding elicited by Pavlovian cues that predict positive outcomes. OBJECTIVES We tested the hypothesis that nicotine acting at nicotinic acetylcholine receptors (nAChRs) would augment Pavlovian alcohol-seeking. METHODS Male, Long-Evans rats with unrestricted access to food and water were acclimated to drinking 15% ethanol in their home cages and then given Pavlovian conditioning sessions in which each trial of a 15-s conditioned stimulus (CS, 12 trials/session) was paired with 0.2 ml of ethanol (unconditioned stimulus, US, 2.4 ml/session). Entries into a port where ethanol was delivered were used to assess conditioning. Control groups received explicitly unpaired trials of the CS and US. In experiment 1, systemic injections of saline (1 ml/kg) or nicotine (0.4 mg/kg, freebase) were administered before each session. In experiments 2 and 3, an identical regimen of saline or nicotine injections was administered before the start of Pavlovian conditioning sessions. RESULTS All paired groups acquired conditioned port-entry responding to the CS, indicative of Pavlovian alcohol-seeking, whereas unpaired control group did not. Pre-session nicotine injections increased CS port-entries relative to saline, only in the paired group. This nicotine-induced enhancement of Pavlovian alcohol-seeking was blocked by pre-treatment with the nAChR antagonist mecamylamine. Prior exposure to nicotine did not influence the subsequent acquisition of Pavlovian alcohol-seeking. CONCLUSIONS These findings highlight for the first time that nicotine acting at nAChRs augments Pavlovian alcohol-seeking, specifically in non-restricted rats. Individuals who smoke and drink may thus be particularly susceptible to alcohol cues that could trigger further drinking.
Collapse
|
50
|
McGinn MA, Paulsen RI, Itoga CA, Farooq MA, Reppel JE, Edwards KN, Whitaker AM, Gilpin NW, Edwards S. Withdrawal from Chronic Nicotine Exposure Produces Region-Specific Tolerance to Alcohol-Stimulated GluA1 Phosphorylation. Alcohol Clin Exp Res 2016; 40:2537-2547. [PMID: 27796078 DOI: 10.1111/acer.13258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/26/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nicotine use increases alcohol drinking, suggesting that the combination of these drugs may produce synergistic effects in activating reward circuitry. Alternatively, use of either of these drugs may facilitate the development of cross-tolerance to the other to promote intake escalation. METHODS In this study, adult male Wistar rats were chronically exposed to room air or chronic, intermittent nicotine vapor, which has been shown to produce symptoms of nicotine dependence as evidenced by elevated nicotine self-administration and a host of somatic and motivational withdrawal symptoms. We examined regional neuroadaptations in nicotine-experienced versus nonexperienced animals, focusing on changes in phosphorylation of the AMPA glutamate channel subunit GluA1 in reward-related brain regions as excitatory neuroadaptations are heavily implicated in both alcohol and nicotine addiction. RESULTS During withdrawal, nicotine exposure and alcohol challenge (1 g/kg) interactively produced neuroadaptations in GluA1 phosphorylation in a brain region-dependent manner. Alcohol robustly increased protein kinase A-mediated phosphorylation of GluA1 at serine 845 in multiple regions. However, this neuroadaptation was largely absent in 3 areas (dorsomedial prefrontal cortex, dorsal striatum, and central amygdala) in nicotine-experienced animals. This interactive effect suggests a molecular tolerance to alcohol-stimulated phosphorylation of GluA1 in the context of nicotine dependence. CONCLUSIONS Nicotine may modify the rewarding or reinforcing effects of alcohol by altering glutamate signaling in a region-specific manner, thereby leading to increased drinking in heavy smokers.
Collapse
Affiliation(s)
- M Adrienne McGinn
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Rod I Paulsen
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Christy A Itoga
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Muhammad A Farooq
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jonathan E Reppel
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Kimberly N Edwards
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Annie M Whitaker
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott Edwards
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|