1
|
Wang S, Song X, Xu J, Wang J, Yu L. Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. MATERIALS HORIZONS 2024. [PMID: 39688131 DOI: 10.1039/d4mh01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Silicon (Si) is currently the most mature and reliable semiconductor material in the industry, playing a pivotal role in the development of modern microelectronics, renewable energy, and bio-electronic technologies. In recent years, widespread research attention has been devoted to the development of advanced flexible electronics, photovoltaics, and bio-interfaced sensors/detectors, boosting their emerging applications in distributed energy sources, healthcare, environmental monitoring, and brain-computer interfaces (BCIs). Despite the rigid and brittle nature of Si, a series of new fabrication technologies and integration strategies have been developed to enable a wide range of c-Si-based high-performance flexible photovoltaics and electronics, which were previously only achievable with intrinsically soft organic and polymer semiconductors. More interestingly, programmable geometric engineering of crystalline silicon (c-Si) units and logic circuits has been explored to enable the fabrication of various highly flexible nanoprobes for intracellular sensing and the deployment of soft BCI matrices to record and understand brain neural activities for the development of advanced neuroprosthetics. This review will systematically examine the latest progress in the fabrication of Si-based flexible solar cells, photodetectors, and biological probing interfaces over the past decade, identifying key design principles, mechanisms, and technological milestones achieved through novel geometry, morphology, and composition control. These advancements, when combined, will not only promote the practical applications of sustainable energy and wearable electronics but also spur new breakthroughs in emerging human-machine interfaces (HMIs) and artificial intelligence applications, which hold significant implications for understanding neural activities, implementing more efficient artificial Intelligence (AI) algorithms, and developing new therapies or treatments. Finally, we will summarize and provide an outlook on the current challenges and future opportunities of Si-based electronics, flexible optoelectronics, and bio-sensing.
Collapse
Affiliation(s)
- Shuyi Wang
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| | - Xiaopan Song
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| | - Jun Xu
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
- School of Microelectronics and School of Integrated Circuits, Nantong University, 226019, Nantong, P. R. China.
| | - Junzhuan Wang
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| | - Linwei Yu
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| |
Collapse
|
2
|
Hwang DG, Kang W, Park SM, Jang J. Biohybrid printing approaches for cardiac pathophysiological studies. Biosens Bioelectron 2024; 260:116420. [PMID: 38805890 DOI: 10.1016/j.bios.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Bioengineered hearts, which include single cardiomyocytes, engineered heart tissue, and chamber-like models, generate various biosignals, such as contractility, electrophysiological, and volume-pressure dynamic signals. Monitoring changes in these signals is crucial for understanding the mechanisms of disease progression and developing potential treatments. However, current methodologies face challenges in the continuous monitoring of bioengineered hearts over extended periods and typically require sacrificing the sample post-experiment, thereby limiting in-depth analysis. Thus, a biohybrid system consisting of living and nonliving components was developed. This system primarily features heart tissue alongside nonliving elements designed to support or comprehend its functionality. Biohybrid printing technology has simplified the creation of such systems and facilitated the development of various functional biohybrid systems capable of measuring or even regulating multiple functions, such as pacemakers, which demonstrates its versatility and potential applications. The future of biohybrid printing appears promising, with the ongoing exploration of its capabilities and potential directions for advancement.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea
| | - Wonok Kang
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jinah Jang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea; Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Huan Y, Tibbetts BN, Richie JM, Chestek CA, Chiel HJ. Intracellular neural control of an active feeding structure in Aplysia using a carbon fiber electrode array. J Neurosci Methods 2024; 404:110077. [PMID: 38336092 PMCID: PMC11136531 DOI: 10.1016/j.jneumeth.2024.110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND To study neural control of behavior, intracellular recording and stimulation of many neurons in freely moving animals would be ideal. However, current technologies limit the number of neurons that can be monitored and manipulated. A new technology has become available for intracellular recording and stimulation which we demonstrate in the tractable nervous system of Aplysia. NEW METHOD Carbon fiber electrode arrays (whose tips are coated with platinum-iridium) were used with an in vitro feeding preparation to intracellularly record from and to control the activity of multiple neurons during feeding movements. RESULTS In an in vitro feeding preparation, the carbon fiber electrode arrays recorded action potentials and subthreshold synaptic potentials during feeding movements. Depolarizing or hyperpolarizing currents activated or inhibited identified neurons (respectively), manipulating the movements of the feeding apparatus. COMPARISON WITH EXISTING METHOD(S) Standard glass microelectrodes that are commonly used for intracellular recording are stiff, liable to break in response to movement, and require many micromanipulators to be precisely positioned. In contrast, carbon fiber arrays are less sensitive to movement, but are capable of multiple channels of intracellular recording and stimulation. CONCLUSIONS Carbon fiber arrays are a novel technology for intracellular recording that can be used in moving preparations. They can record both action potentials and synaptic activity in multiple neurons and can be used to stimulate multiple neurons in complex patterns.
Collapse
Affiliation(s)
- Yu Huan
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - Benjamin N Tibbetts
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - Julianna M Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA; Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106-7080, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7080, USA.
| |
Collapse
|
4
|
Xiang Y, Shi K, Li Y, Xue J, Tong Z, Li H, Li Z, Teng C, Fang J, Hu N. Active Micro-Nano-Collaborative Bioelectronic Device for Advanced Electrophysiological Recording. NANO-MICRO LETTERS 2024; 16:132. [PMID: 38411852 PMCID: PMC10899154 DOI: 10.1007/s40820-024-01336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 02/28/2024]
Abstract
The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience. In recent years, active micro/nano-bioelectronic devices have undergone significant advancements, thereby facilitating the study of electrophysiology. The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale. In this paper, we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electro-excitable cells, focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals. Looking forward to the possibilities, challenges, and wide prospects of active micro-nano-devices, we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, 523059, People's Republic of China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, 523059, People's Republic of China
| | - Keda Shi
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Ying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, People's Republic of China
| | - Zhicheng Tong
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China
| | - Huiming Li
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China
| | - Zhongjun Li
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, 523059, People's Republic of China.
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, 523059, People's Republic of China.
| | - Chong Teng
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China.
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
5
|
Qin C, Yuan Q, Liu M, Zhuang L, Xu L, Wang P. Biohybrid tongue based on hypothalamic neuronal network-on-a-chip for real-time blood glucose sensing and assessment. Biosens Bioelectron 2024; 244:115784. [PMID: 37939416 DOI: 10.1016/j.bios.2023.115784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023]
Abstract
The expression of sweet receptors in the hypothalamus has been implicated in energy homeostasis control and the pathogenesis of obesity and diabetes. However, the exact mechanism by which hypothalamic glucose-sensing neurons function remains unclear. Conventional detection methods, such as fiber photometry, optogenetics, brain-machine interfaces, patch clamp and calcium imaging, pose limitations for real-time glucose perception due to their complexity, cytotoxicity and so on. Therefore, this study proposes a biohybrid tongue based on hypothalamic neuronal network (HNN)-on-a-chip coupling with microelectrode array (MEA) for real-time glucose perception. Hypothalamic neuronal cultures were cultivated on a two-dimensional "brain-on-chip" device, enabling the formation of neuronal networks and electrophysiological signal detection. Additionally, we investigated the endogenous expression of sweet taste receptors (T1R2/T1R3) in hypothalamic neuronal cells, providing the basis for the biohybrid tongue based on HNN-on-a-chip's sweetness detection capabilities. The spike signal response to sucrose and glucose stimulation was detected, and concentration-dependent responses were explored with glucose concentrations ranging from 0.01 mM to 8 mM. MEAs allow for real-time recordings, enabling the observation of dynamic changes in neuronal responses to glucose fluctuations over time. The biohybrid tongue based on HNN-on-a-chip can measure various parameters, including spike frequency and amplitude, providing insights into neuronal firing patterns and excitability. Moreover, hypothalamic glucoregulatory neurons that sense and respond to changes in blood glucose was identified, including glucose-excited neurons (GE-Neurons) and glucose-inhibited neurons (GI-Neurons). The detection range for GE-Neurons spans from 0.4 to 6 mM, while GI-Neurons demonstrate sensitivity within the range of 1-8 mM. And the glucose detection limit was firmly established at 0.01 mM. Through non-linear regression analysis, the IC50 for GI-Neurons' spike firing was determined to be 4.18 mM. In conclusion, the biohybrid tongue based on HNN-on-a-chip offers a valuable in vitro tool for studying hypothalamic neurons, elucidating glucose sensing mechanisms, and understanding hypothalamic neuronal function.
Collapse
Affiliation(s)
- Chunlian Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China
| | - Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lizhou Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
6
|
Park W, Kim EM, Jeon Y, Lee J, Yi J, Jeong J, Kim B, Jeong BG, Kim DR, Kong H, Lee CH. Transparent Intracellular Sensing Platform with Si Needles for Simultaneous Live Imaging. ACS NANO 2023; 17:25014-25026. [PMID: 38059775 DOI: 10.1021/acsnano.3c07527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Vertically ordered Si needles are of particular interest for long-term intracellular recording owing to their capacity to infiltrate living cells with negligible damage and minimal toxicity. Such intracellular recordings could greatly benefit from simultaneous live cell imaging without disrupting their culture, contributing to an in-depth understanding of cellular function and activity. However, the use of standard live imaging techniques, such as inverted and confocal microscopy, is currently impeded by the opacity of Si wafers, typically employed for fabricating vertical Si needles. Here, we introduce a transparent intracellular sensing platform that combines vertical Si needles with a percolated network of Au-Ag nanowires on a transparent elastomeric substrate. This sensing platform meets all prerequisites for simultaneous intracellular recording and imaging, including electrochemical impedance, optical transparency, mechanical compliance, and cell viability. Proof-of-concept demonstrations of this sensing platform include monitoring electrical potentials in cardiomyocyte cells and in three-dimensionally engineered cardiovascular tissue, all while conducting live imaging with inverted and confocal microscopes. This sensing platform holds wide-ranging potential applications for intracellular research across various disciplines such as neuroscience, cardiology, muscle physiology, and drug screening.
Collapse
Affiliation(s)
- Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eun Mi Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yale Jeon
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Junsang Lee
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonghun Yi
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinheon Jeong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and System Design Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Byeong Guk Jeong
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chi Hwan Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Yadav H, Maini S. Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-45. [PMID: 37362726 PMCID: PMC10157593 DOI: 10.1007/s11042-023-15653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/17/2022] [Accepted: 04/22/2023] [Indexed: 06/28/2023]
Abstract
Brain-Computer Interfaces (BCI) is an exciting and emerging research area for researchers and scientists. It is a suitable combination of software and hardware to operate any device mentally. This review emphasizes the significant stages in the BCI domain, current problems, and state-of-the-art findings. This article also covers how current results can contribute to new knowledge about BCI, an overview of BCI from its early developments to recent advancements, BCI applications, challenges, and future directions. The authors pointed to unresolved issues and expressed how BCI is valuable for analyzing the human brain. Humans' dependence on machines has led humankind into a new future where BCI can play an essential role in improving this modern world.
Collapse
Affiliation(s)
- Hitesh Yadav
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| | - Surita Maini
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| |
Collapse
|
8
|
Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188808. [DOI: 10.1016/j.bbcan.2022.188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
9
|
Tchoe Y, Lee J, Liu R, Bourhis AM, Vatsyayan R, Tonsfeldt KJ, Dayeh SA. Considerations and recent advances in nanoscale interfaces with neuronal and cardiac networks. APPLIED PHYSICS REVIEWS 2021; 8:041317. [PMID: 34868443 PMCID: PMC8596389 DOI: 10.1063/5.0052666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/07/2021] [Indexed: 05/21/2023]
Abstract
Nanoscale interfaces with biological tissue, principally made with nanowires (NWs), are envisioned as minimally destructive to the tissue and as scalable tools to directly transduce the electrochemical activity of a neuron at its finest resolution. This review lays the foundations for understanding the material and device considerations required to interrogate neuronal activity at the nanoscale. We first discuss the electrochemical nanoelectrode-neuron interfaces and then present new results concerning the electrochemical impedance and charge injection capacities of millimeter, micrometer, and nanometer scale wires with Pt, PEDOT:PSS, Si, Ti, ITO, IrO x , Ag, and AgCl materials. Using established circuit models for NW-neuron interfaces, we discuss the impact of having multiple NWs interfacing with a single neuron on the amplitude and temporal characteristics of the recorded potentials. We review state of the art advances in nanoelectrode-neuron interfaces, the standard control experiments to investigate their electrophysiological behavior, and present recent high fidelity recordings of intracellular potentials obtained with ultrasharp NWs developed in our laboratory that naturally permeate neuronal cell bodies. Recordings from arrays and individually addressable electrically shorted NWs are presented, and the long-term stability of intracellular recording is discussed and put in the context of established techniques. Finally, a perspective on future research directions and applications is presented.
Collapse
Affiliation(s)
- Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Ren Liu
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Andrew M. Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
10
|
Kumar R, Aadil KR, Mondal K, Mishra YK, Oupicky D, Ramakrishna S, Kaushik A. Neurodegenerative disorders management: state-of-art and prospects of nano-biotechnology. Crit Rev Biotechnol 2021; 42:1180-1212. [PMID: 34823433 DOI: 10.1080/07388551.2021.1993126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurodegenerative disorders (NDs) are highly prevalent among the aging population. It affects primarily the central nervous system (CNS) but the effects are also observed in the peripheral nervous system. Neural degeneration is a progressive loss of structure and function of neurons, which may ultimately involve cell death. Such patients suffer from debilitating memory loss and altered motor coordination which bring up non-affordable and unavoidable socio-economic burdens. Due to the unavailability of specific therapeutics and diagnostics, the necessity to control or manage NDs raised the demand to investigate and develop efficient alternative approaches. Keeping trends and advancements in view, this report describes both state-of-the-art and challenges in nano-biotechnology-based approaches to manage NDs, toward personalized healthcare management. Sincere efforts are being made to customize nano-theragnostics to control: therapeutic cargo packaging, delivery to the brain, nanomedicine of higher efficacy, deep brain stimulation, implanted stimulation, and managing brain cell functioning. These advancements are useful to design future therapy based on the severity of the patient's neurodegenerative disease. However, we observe a lack of knowledge shared among scientists of a variety of expertise to explore this multi-disciplinary research field for NDs management. Consequently, this review will provide a guideline platform that will be useful in developing novel smart nano-therapies by considering the aspects and advantages of nano-biotechnology to manage NDs in a personalized manner. Nano-biotechnology-based approaches have been proposed as effective and affordable alternatives at the clinical level due to recent advancements in nanotechnology-assisted theragnostics, targeted delivery, higher efficacy, and minimal side effects.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Keshaw Ram Aadil
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, India
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID, USA
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark
| | - David Oupicky
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore, Singapore
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| |
Collapse
|
11
|
Unique molecular characteristics and microglial origin of Kv1.3 channel-positive brain myeloid cells in Alzheimer's disease. Proc Natl Acad Sci U S A 2021; 118:2013545118. [PMID: 33649184 DOI: 10.1073/pnas.2013545118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kv1.3 potassium channels, expressed by proinflammatory central nervous system mononuclear phagocytes (CNS-MPs), are promising therapeutic targets for modulating neuroinflammation in Alzheimer's disease (AD). The molecular characteristics of Kv1.3-high CNS-MPs and their cellular origin from microglia or CNS-infiltrating monocytes are unclear. While Kv1.3 blockade reduces amyloid beta (Aβ) burden in mouse models, the downstream immune effects on molecular profiles of CNS-MPs remain unknown. We show that functional Kv1.3 channels are selectively expressed by a subset of CD11b+CD45+ CNS-MPs acutely isolated from an Aβ mouse model (5xFAD) as well as fresh postmortem human AD brain. Transcriptomic profiling of purified CD11b+Kv1.3+ CNS-MPs, CD11b+CD45int Kv1.3neg microglia, and peripheral monocytes from 5xFAD mice revealed that Kv1.3-high CNS-MPs highly express canonical microglial markers (Tmem119, P2ry12) and are distinct from peripheral Ly6chigh/Ly6clow monocytes. Unlike homeostatic microglia, Kv1.3-high CNS-MPs express relatively lower levels of homeostatic genes, higher levels of CD11c, and increased levels of glutamatergic transcripts, potentially representing phagocytic uptake of neuronal elements. Using irradiation bone marrow CD45.1/CD45.2 chimerism in 5xFAD mice, we show that Kv1.3+ CNS-MPs originate from microglia and not blood-derived monocytes. We show that Kv1.3 channels regulate membrane potential and early signaling events in microglia. Finally, in vivo blockade of Kv1.3 channels in 5xFAD mice by ShK-223 reduced Aβ burden, increased CD11c+ CNS-MPs, and expression of phagocytic genes while suppressing proinflammatory genes (IL1b). Our results confirm the microglial origin and identify unique molecular features of Kv1.3-expressing CNS-MPs. In addition, we provide evidence for CNS immunomodulation by Kv1.3 blockers in AD mouse models resulting in a prophagocytic phenotype.
Collapse
|
12
|
Abstract
Bioelectronics explores the use of electronic devices for applications in signal transduction at their interfaces with biological systems. The miniaturization of the bioelectronic systems has enabled seamless integration at these interfaces and is providing new scientific and technological opportunities. In particular, nanowire-based devices can yield smaller sized and unique geometry detectors that are difficult to access with standard techniques, and thereby can provide advantages in sensitivity with reduced invasiveness. In this review, we focus on nanowire-enabled bioelectronics. First, we provide an overview of synthetic studies for designed growth of semiconductor nanowires of which structure and composition are controlled to enable key elements for bioelectronic devices. Second, we review nanowire field-effect transistor sensors for highly sensitive detection of biomolecules, their applications in diagnosis and drug discovery, and methods for sensitivity enhancement. We then turn to recent progress in nanowire-enabled studies of electrogenic cells, including cardiomyocytes and neurons. Representative advances in electrical recording using nanowire electronic devices for single cell measurements, cell network mapping, and three-dimensional recordings of synthetic and natural tissues, and in vivo brain mapping are highlighted. Finally, we overview the key challenges and opportunities of nanowires for fundamental research and translational applications.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jae-Hyun Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Advanced Science Institute, Yonsei University, Seoul, 03722, Korea
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
13
|
Nanotechnology Facilitated Cultured Neuronal Network and Its Applications. Int J Mol Sci 2021; 22:ijms22115552. [PMID: 34074027 PMCID: PMC8197344 DOI: 10.3390/ijms22115552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
The development of a biomimetic neuronal network from neural cells is a big challenge for researchers. Recent advances in nanotechnology, on the other hand, have enabled unprecedented tools and techniques for guiding and directing neural stem cell proliferation and differentiation in vitro to construct an in vivo-like neuronal network. Nanotechnology allows control over neural stem cells by means of scaffolds that guide neurons to reform synaptic networks in suitable directions in 3D architecture, surface modification/nanopatterning to decide cell fate and stimulate/record signals from neurons to find out the relationships between neuronal circuit connectivity and their pathophysiological functions. Overall, nanotechnology-mediated methods facilitate precise physiochemical controls essential to develop tools appropriate for applications in neuroscience. This review emphasizes the newest applications of nanotechnology for examining central nervous system (CNS) roles and, therefore, provides an insight into how these technologies can be tested in vitro before being used in preclinical and clinical research and their potential role in regenerative medicine and tissue engineering.
Collapse
|
14
|
Xu D, Mo J, Xie X, Hu N. In-Cell Nanoelectronics: Opening the Door to Intracellular Electrophysiology. NANO-MICRO LETTERS 2021; 13:127. [PMID: 34138366 PMCID: PMC8124030 DOI: 10.1007/s40820-021-00655-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 05/07/2023]
Abstract
Establishing a reliable electrophysiological recording platform is crucial for cardiology and neuroscience research. Noninvasive and label-free planar multitransistors and multielectrode arrays are conducive to perform the large-scale cellular electrical activity recordings, but the signal attenuation limits these extracellular devices to record subthreshold activities. In recent decade, in-cell nanoelectronics have been rapidly developed to open the door to intracellular electrophysiology. With the unique three-dimensional nanotopography and advanced penetration strategies, high-throughput and high-fidelity action potential like signal recordings is expected to be realized. This review summarizes in-cell nanoelectronics from versatile nano-biointerfaces, penetration strategies, active/passive nanodevices, systematically analyses the applications in electrogenic cells and especially evaluates the influence of nanodevices on the high-quality intracellular electrophysiological signals. Further, the opportunities, challenges and broad prospects of in-cell nanoelectronics are prospected, expecting to promote the development of in-cell electrophysiological platforms to meet the demand of theoretical investigation and clinical application.
Collapse
Affiliation(s)
- Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Jingshan Mo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| |
Collapse
|
15
|
Saha S, Mamun KA, Ahmed K, Mostafa R, Naik GR, Darvishi S, Khandoker AH, Baumert M. Progress in Brain Computer Interface: Challenges and Opportunities. Front Syst Neurosci 2021; 15:578875. [PMID: 33716680 PMCID: PMC7947348 DOI: 10.3389/fnsys.2021.578875] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Brain computer interfaces (BCI) provide a direct communication link between the brain and a computer or other external devices. They offer an extended degree of freedom either by strengthening or by substituting human peripheral working capacity and have potential applications in various fields such as rehabilitation, affective computing, robotics, gaming, and neuroscience. Significant research efforts on a global scale have delivered common platforms for technology standardization and help tackle highly complex and non-linear brain dynamics and related feature extraction and classification challenges. Time-variant psycho-neurophysiological fluctuations and their impact on brain signals impose another challenge for BCI researchers to transform the technology from laboratory experiments to plug-and-play daily life. This review summarizes state-of-the-art progress in the BCI field over the last decades and highlights critical challenges.
Collapse
Affiliation(s)
- Simanto Saha
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Khondaker A. Mamun
- Advanced Intelligent Multidisciplinary Systems (AIMS) Lab, Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | - Khawza Ahmed
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Raqibul Mostafa
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Ganesh R. Naik
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sam Darvishi
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Ahsan H. Khandoker
- Healthcare Engineering Innovation Center, Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
16
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
17
|
Cho KW, Lee WH, Kim BS, Kim DH. Sensors in heart-on-a-chip: A review on recent progress. Talanta 2020; 219:121269. [DOI: 10.1016/j.talanta.2020.121269] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
18
|
Memristor networks for real-time neural activity analysis. Nat Commun 2020; 11:2439. [PMID: 32415218 PMCID: PMC7228921 DOI: 10.1038/s41467-020-16261-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
The ability to efficiently analyze the activities of biological neural networks can significantly promote our understanding of neural communications and functionalities. However, conventional neural signal analysis approaches need to transmit and store large amounts of raw recording data, followed by extensive processing offline, posing significant challenges to the hardware and preventing real-time analysis and feedback. Here, we demonstrate a memristor-based reservoir computing (RC) system that can potentially analyze neural signals in real-time. We show that the perovskite halide-based memristor can be directly driven by emulated neural spikes, where the memristor state reflects temporal features in the neural spike train. The RC system is successfully used to recognize neural firing patterns, monitor the transition of the firing patterns, and identify neural synchronization states among different neurons. Advanced neuroelectronic systems with such memristor networks can enable efficient neural signal analysis with high spatiotemporal precision, and possibly closed-loop feedback control. Designing energy efficient artificial neural networks for real-time analysis remains a challenge. Here, the authors report the development of a perovskite halide (CsPbI3) memristor-based Reservoir Computing system for real-time recognition of neural firing patterns and neural synchronization states.
Collapse
|
19
|
Covalent Epitope Decoration of Carbon Electrodes using Solid Phase Peptide Synthesis. Sci Rep 2019; 9:17805. [PMID: 31780767 PMCID: PMC6882871 DOI: 10.1038/s41598-019-54000-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/06/2019] [Indexed: 11/08/2022] Open
Abstract
Long-term, minimally perturbative brain electrophysiology requires electrodes to seamlessly integrate into surrounding tissue. In this work, we demonstrate electrodes composed of covalently functionalized graphite, decorated with various functional affinity and epitope tags, and use them to detect changes in electrical potential on the surfaces of illuminated quantum dots and near fluorescing molecules. Affinity and epitope tagging of carbon was achieved using direct attachment of biotin and solid phase peptide synthesis (SPPS) of histidine (His)- and human influenza hemagglutinin (HA)-tags. Surface modification was confirmed with Auger, Energy-Dispersive X-ray (EDX), Raman, and fluorescence spectroscopy. Photoresponse was detected with compatible binding protein-surface tag combinations, confirming desired tag and electrode functionality. These results provide a path to organic, biofunctionalized, fully molecularly-defined electrodes for neuronal applications, and to a wide range of other secondary reactions and modifications of carbon; potential uses include affinity chromatography, DNA sequencing technologies, biomolecular sensors, and surfaces and scaffolds for targeted interfaces with biological tissues.
Collapse
|
20
|
Valero M, English DF. Head-mounted approaches for targeting single-cells in freely moving animals. J Neurosci Methods 2019; 326:108397. [DOI: 10.1016/j.jneumeth.2019.108397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
|
21
|
Zhao Y, You SS, Zhang A, Lee JH, Huang J, Lieber CM. Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. NATURE NANOTECHNOLOGY 2019; 14:783-790. [PMID: 31263191 DOI: 10.1038/s41565-019-0478-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/15/2019] [Indexed: 05/23/2023]
Abstract
New tools for intracellular electrophysiology that push the limits of spatiotemporal resolution while reducing invasiveness could provide a deeper understanding of electrogenic cells and their networks in tissues, and push progress towards human-machine interfaces. Although significant advances have been made in developing nanodevices for intracellular probes, current approaches exhibit a trade-off between device scalability and recording amplitude. We address this challenge by combining deterministic shape-controlled nanowire transfer with spatially defined semiconductor-to-metal transformation to realize scalable nanowire field-effect transistor probe arrays with controllable tip geometry and sensor size, which enable recording of up to 100 mV intracellular action potentials from primary neurons. Systematic studies on neurons and cardiomyocytes show that controlling device curvature and sensor size is critical for achieving high-amplitude intracellular recordings. In addition, this device design allows for multiplexed recording from single cells and cell networks and could enable future investigations of dynamics in the brain and other tissues.
Collapse
Affiliation(s)
- Yunlong Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, UK
| | - Siheng Sean You
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Anqi Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jae-Hyun Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea
| | - Jinlin Huang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
22
|
Abstract
Neural recording electrode technologies have contributed considerably to neuroscience by enabling the extracellular detection of low-frequency local field potential oscillations and high-frequency action potentials of single units. Nevertheless, several long-standing limitations exist, including low multiplexity, deleterious chronic immune responses and long-term recording instability. Driven by initiatives encouraging the generation of novel neurotechnologies and the maturation of technologies to fabricate high-density electronics, novel electrode technologies are emerging. Here, we provide an overview of recently developed neural recording electrode technologies with high spatial integration, long-term stability and multiple functionalities. We describe how these emergent neurotechnologies can approach the ultimate goal of illuminating chronic brain activity with minimal disruption of the neural environment, thereby providing unprecedented opportunities for neuroscience research in the future.
Collapse
Affiliation(s)
- Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
23
|
Bolaños Quiñones VA, Zhu H, Solovev AA, Mei Y, Gracias DH. Origami Biosystems: 3D Assembly Methods for Biomedical Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800230] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vladimir A. Bolaños Quiñones
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Hong Zhu
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Alexander A. Solovev
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Yongfeng Mei
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering Johns Hopkins University 3400 N Charles Street, 221 Maryland Hall Baltimore MD 21218 USA
| |
Collapse
|
24
|
Hong G, Viveros RD, Zwang TJ, Yang X, Lieber CM. Tissue-like Neural Probes for Understanding and Modulating the Brain. Biochemistry 2018; 57:3995-4004. [PMID: 29529359 PMCID: PMC6039269 DOI: 10.1021/acs.biochem.8b00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrophysiology tools have contributed substantially to understanding brain function, yet the capabilities of conventional electrophysiology probes have remained limited in key ways because of large structural and mechanical mismatches with respect to neural tissue. In this Perspective, we discuss how the general goal of probe design in biochemistry, that the probe or label have a minimal impact on the properties and function of the system being studied, can be realized by minimizing structural, mechanical, and topological differences between neural probes and brain tissue, thus leading to a new paradigm of tissue-like mesh electronics. The unique properties and capabilities of the tissue-like mesh electronics as well as future opportunities are summarized. First, we discuss the design of an ultraflexible and open mesh structure of electronics that is tissue-like and can be delivered in the brain via minimally invasive syringe injection like molecular and macromolecular pharmaceuticals. Second, we describe the unprecedented tissue healing without chronic immune response that leads to seamless three-dimensional integration with a natural distribution of neurons and other key cells through these tissue-like probes. These unique characteristics lead to unmatched stable long-term, multiplexed mapping and modulation of neural circuits at the single-neuron level on a year time scale. Last, we offer insights on several exciting future directions for the tissue-like electronics paradigm that capitalize on their unique properties to explore biochemical interactions and signaling in a "natural" brain environment.
Collapse
Affiliation(s)
- Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Robert D. Viveros
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Theodore J. Zwang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Charles M. Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
25
|
Hong G, Yang X, Zhou T, Lieber CM. Mesh electronics: a new paradigm for tissue-like brain probes. Curr Opin Neurobiol 2018; 50:33-41. [PMID: 29202327 PMCID: PMC5984112 DOI: 10.1016/j.conb.2017.11.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/21/2017] [Accepted: 11/18/2017] [Indexed: 01/10/2023]
Abstract
Existing implantable neurotechnologies for understanding the brain and treating neurological diseases have intrinsic properties that have limited their capability to achieve chronically-stable brain interfaces with single-neuron spatiotemporal resolution. These limitations reflect what has been dichotomy between the structure and mechanical properties of living brain tissue and non-living neural probes. To bridge the gap between neural and electronic networks, we have introduced the new concept of mesh electronics probes designed with structural and mechanical properties such that the implant begins to 'look and behave' like neural tissue. Syringe-implanted mesh electronics have led to the realization of probes that are neuro-attractive and free of the chronic immune response, as well as capable of stable long-term mapping and modulation of brain activity at the single-neuron level. This review provides a historical overview of a 10-year development of mesh electronics by highlighting the tissue-like design, syringe-assisted delivery, seamless neural tissue integration, and single-neuron level chronic recording stability of mesh electronics. We also offer insights on unique near-term opportunities and future directions for neuroscience and neurology that now are available or expected for mesh electronics neurotechnologies.
Collapse
Affiliation(s)
- Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tao Zhou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
26
|
Kim EH, Chin G, Rong G, Poskanzer KE, Clark HA. Optical Probes for Neurobiological Sensing and Imaging. Acc Chem Res 2018; 51:1023-1032. [PMID: 29652127 DOI: 10.1021/acs.accounts.7b00564] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent nanosensors and molecular probes are next-generation tools for imaging chemical signaling inside and between cells. Electrophysiology has long been considered the gold standard in elucidating neural dynamics with high temporal resolution and precision, particularly on the single-cell level. However, electrode-based techniques face challenges in illuminating the specific chemicals involved in neural cell activation with adequate spatial information. Measuring chemical dynamics is of fundamental importance to better understand synergistic interactions between neurons as well as interactions between neurons and non-neuronal cells. Over the past decade, significant technological advances in optical probes and imaging methods have enabled entirely new possibilities for studying neural cells and circuits at the chemical level. These optical imaging modalities have shown promise for combining chemical, temporal, and spatial information. This potential makes them ideal candidates to unravel the complex neural interactions at multiple scales in the brain, which could be complemented by traditional electrophysiological methods to obtain a full spatiotemporal picture of neurochemical dynamics. Despite the potential, only a handful of probe candidates have been utilized to provide detailed chemical information in the brain. To date, most live imaging and chemical mapping studies rely on fluorescent molecular indicators to report intracellular calcium (Ca2+) dynamics, which correlates with neuronal activity. Methodological advances for monitoring a full array of chemicals in the brain with improved spatial, temporal, and chemical resolution will thus enable mapping of neurochemical circuits with finer precision. On the basis of numerous studies in this exciting field, we review the current efforts to develop and apply a palette of optical probes and nanosensors for chemical sensing in the brain. There is a strong impetus to further develop technologies capable of probing entire neurobiological units with high spatiotemporal resolution. Thus, we introduce selected applications for ion and neurotransmitter detection to investigate both neurons and non-neuronal brain cells. We focus on families of optical probes because of their ability to sense a wide array of molecules and convey spatial information with minimal damage to tissue. We start with a discussion of currently available molecular probes, highlight recent advances in genetically modified fluorescent probes for ions and small molecules, and end with the latest research in nanosensors for biological imaging. Customizable, nanoscale optical sensors that accurately and dynamically monitor the local environment with high spatiotemporal resolution could lead to not only new insights into the function of all cell types but also a broader understanding of how diverse neural signaling systems act in conjunction with neighboring cells in a spatially relevant manner.
Collapse
Affiliation(s)
| | - Gregory Chin
- Department of Biochemistry & Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California 94143, United States
| | | | - Kira E. Poskanzer
- Department of Biochemistry & Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California 94143, United States
| | | |
Collapse
|
27
|
Pulikkathodi AK, Sarangadharan I, Chen YH, Lee GY, Chyi JI, Lee GB, Wang YL. Dynamic monitoring of transmembrane potential changes: a study of ion channels using an electrical double layer-gated FET biosensor. LAB ON A CHIP 2018; 18:1047-1056. [PMID: 29488525 DOI: 10.1039/c7lc01305a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this research, we have designed, fabricated and characterized an electrical double layer (EDL)-gated AlGaN/GaN high electron mobility transistor (HEMT) biosensor array to study the transmembrane potential changes of cells. The sensor array platform is designed to detect and count circulating tumor cells (CTCs) of colorectal cancer (CRC) and investigate cellular bioelectric signals. Using the EDL FET biosensor platform, cellular responses can be studied in physiological salt concentrations, thereby eliminating complex automation. Upon investigation, we discovered that our sensor response follows the transmembrane potential changes of captured cells. Our whole cell sensor platform can be used to monitor the dynamic changes in the membrane potential of cells. The effects of continuously changing electrolyte ion concentrations and ion channel blocking using cadmium are investigated. This methodology has the potential to be used as an electrophysiological probe for studying ion channel gating and the interaction of biomolecules in cells. The sensor can also be a point-of-care diagnostic tool for rapid screening of diseases.
Collapse
Affiliation(s)
- Anil Kumar Pulikkathodi
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C.
| | | | | | | | | | | | | |
Collapse
|
28
|
Tang J, Qin N, Chong Y, Diao Y, Yiliguma, Wang Z, Xue T, Jiang M, Zhang J, Zheng G. Nanowire arrays restore vision in blind mice. Nat Commun 2018; 9:786. [PMID: 29511183 PMCID: PMC5840349 DOI: 10.1038/s41467-018-03212-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
The restoration of light response with complex spatiotemporal features in retinal degenerative diseases towards retinal prosthesis has proven to be a considerable challenge over the past decades. Herein, inspired by the structure and function of photoreceptors in retinas, we develop artificial photoreceptors based on gold nanoparticle-decorated titania nanowire arrays, for restoration of visual responses in the blind mice with degenerated photoreceptors. Green, blue and near UV light responses in the retinal ganglion cells (RGCs) are restored with a spatial resolution better than 100 µm. ON responses in RGCs are blocked by glutamatergic antagonists, suggesting functional preservation of the remaining retinal circuits. Moreover, neurons in the primary visual cortex respond to light after subretinal implant of nanowire arrays. Improvement in pupillary light reflex suggests the behavioral recovery of light sensitivity. Our study will shed light on the development of a new generation of optoelectronic toolkits for subretinal prosthetic devices. The restoration of light response using retinal prosthesis could be a way to restore vision following retinal degenerative disease. Here the authors develop gold-titania nanowire arrays that restore visual response in blind mice.
Collapse
Affiliation(s)
- Jing Tang
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Nan Qin
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Chong
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yupu Diao
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiliguma
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhexuan Wang
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tian Xue
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Min Jiang
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiayi Zhang
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
29
|
Strakosas X, Selberg J, Hemmatian Z, Rolandi M. Taking Electrons out of Bioelectronics: From Bioprotonic Transistors to Ion Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600527. [PMID: 28725527 PMCID: PMC5515233 DOI: 10.1002/advs.201600527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/14/2017] [Indexed: 05/08/2023]
Abstract
From cell-to-cell communication to metabolic reactions, ions and protons (H+) play a central role in many biological processes. Examples of H+ in action include oxidative phosphorylation, acid sensitive ion channels, and pH dependent enzymatic reactions. To monitor and control biological reactions in biology and medicine, it is desirable to have electronic devices with ionic and protonic currents. Here, we summarize our latest efforts on bioprotonic devices that monitor and control a current of H+ in physiological conditions, and discuss future potential applications. Specifically, we describe the integration of these devices with enzymatic logic gates, bioluminescent reactions, and ion channels.
Collapse
Affiliation(s)
- Xenofon Strakosas
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - John Selberg
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - Zahra Hemmatian
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - Marco Rolandi
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| |
Collapse
|
30
|
Zhou W, Dai X, Lieber CM. Advances in nanowire bioelectronics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:016701. [PMID: 27823988 DOI: 10.1088/0034-4885/80/1/016701] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Semiconductor nanowires represent powerful building blocks for next generation bioelectronics given their attractive properties, including nanometer-scale footprint comparable to subcellular structures and bio-molecules, configurable in nonstandard device geometries readily interfaced with biological systems, high surface-to-volume ratios, fast signal responses, and minimum consumption of energy. In this review article, we summarize recent progress in the field of nanowire bioelectronics with a focus primarily on silicon nanowire field-effect transistor biosensors. First, the synthesis and assembly of semiconductor nanowires will be described, including the basics of nanowire FETs crucial to their configuration as biosensors. Second, we will introduce and review recent results in nanowire bioelectronics for biomedical applications ranging from label-free sensing of biomolecules, to extracellular and intracellular electrophysiological recording.
Collapse
Affiliation(s)
- Wei Zhou
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
31
|
Segev A, Garcia-Oscos F, Kourrich S. Whole-cell Patch-clamp Recordings in Brain Slices. J Vis Exp 2016. [PMID: 27341060 DOI: 10.3791/54024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Whole-cell patch-clamp recording is an electrophysiological technique that allows the study of the electrical properties of a substantial part of the neuron. In this configuration, the micropipette is in tight contact with the cell membrane, which prevents current leakage and thereby provides more accurate ionic current measurements than the previously used intracellular sharp electrode recording method. Classically, whole-cell recording can be performed on neurons in various types of preparations, including cell culture models, dissociated neurons, neurons in brain slices, and in intact anesthetized or awake animals. In summary, this technique has immensely contributed to the understanding of passive and active biophysical properties of excitable cells. A major advantage of this technique is that it provides information on how specific manipulations (e.g., pharmacological, experimenter-induced plasticity) may alter specific neuronal functions or channels in real-time. Additionally, significant opening of the plasma membrane allows the internal pipette solution to freely diffuse into the cytoplasm, providing means for introducing drugs, e.g., agonists or antagonists of specific intracellular proteins, and manipulating these targets without altering their functions in neighboring cells. This article will focus on whole-cell recording performed on neurons in brain slices, a preparation that has the advantage of recording neurons in relatively well preserved brain circuits, i.e., in a physiologically relevant context. In particular, when combined with appropriate pharmacology, this technique is a powerful tool allowing identification of specific neuroadaptations that occurred following any type of experiences, such as learning, exposure to drugs of abuse, and stress. In summary, whole-cell patch-clamp recordings in brain slices provide means to measure in ex vivo preparation long-lasting changes in neuronal functions that have developed in intact awake animals.
Collapse
Affiliation(s)
- Amir Segev
- Department of Psychiatry, University of Texas Southwestern Medical Center
| | | | - Saïd Kourrich
- Department of Psychiatry, University of Texas Southwestern Medical Center;
| |
Collapse
|
32
|
Soloperto A, Palazzolo G, Tsushima H, Chieregatti E, Vassalli M, Difato F. Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool. Front Neurosci 2016; 10:101. [PMID: 27013962 PMCID: PMC4786546 DOI: 10.3389/fnins.2016.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery.
Collapse
Affiliation(s)
- Alessandro Soloperto
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Gemma Palazzolo
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Hanako Tsushima
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Evelina Chieregatti
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council of Italy Genoa, Italy
| | - Francesco Difato
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
33
|
Xie C, Liu J, Fu TM, Dai X, Zhou W, Lieber CM. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. NATURE MATERIALS 2015; 14:1286-1292. [PMID: 26436341 DOI: 10.1038/nmat4427] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/19/2015] [Indexed: 06/05/2023]
Abstract
Direct electrical recording and stimulation of neural activity using micro-fabricated silicon and metal micro-wire probes have contributed extensively to basic neuroscience and therapeutic applications; however, the dimensional and mechanical mismatch of these probes with the brain tissue limits their stability in chronic implants and decreases the neuron-device contact. Here, we demonstrate the realization of a three-dimensional macroporous nanoelectronic brain probe that combines ultra-flexibility and subcellular feature sizes to overcome these limitations. Built-in strains controlling the local geometry of the macroporous devices are designed to optimize the neuron/probe interface and to promote integration with the brain tissue while introducing minimal mechanical perturbation. The ultra-flexible probes were implanted frozen into rodent brains and used to record multiplexed local field potentials and single-unit action potentials from the somatosensory cortex. Significantly, histology analysis revealed filling-in of neural tissue through the macroporous network and attractive neuron-probe interactions, consistent with long-term biocompatibility of the device.
Collapse
Affiliation(s)
- Chong Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jia Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Tian-Ming Fu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xiaochuan Dai
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Wei Zhou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
34
|
Choi J, Kim HJ, Wang MC, Leem J, King WP, Nam S. Three-Dimensional Integration of Graphene via Swelling, Shrinking, and Adaptation. NANO LETTERS 2015; 15:4525-31. [PMID: 26086170 DOI: 10.1021/acs.nanolett.5b01036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The transfer of graphene from its growth substrate to a target substrate has been widely investigated for its decisive role in subsequent device integration and performance. Thus far, various reported methods of graphene transfer have been mostly limited to planar or curvilinear surfaces due to the challenges associated with fractures from local stress during transfer onto three-dimensional (3D) microstructured surfaces. Here, we report a robust approach to integrate graphene onto 3D microstructured surfaces while maintaining the structural integrity of graphene, where the out-of-plane dimensions of the 3D features vary from 3.5 to 50 μm. We utilized three sequential steps: (1) substrate swelling, (2) shrinking, and (3) adaptation, in order to achieve damage-free, large area integration of graphene on 3D microstructures. Detailed scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and electrical resistance measurement studies show that the amount of substrate swelling as well as the flexural rigidities of the transfer film affect the integration yield and quality of the integrated graphene. We also demonstrate the versatility of our approach by extension to a variety of 3D microstructured geometries. Lastly, we show the integration of hybrid structures of graphene decorated with gold nanoparticles onto 3D microstructure substrates, demonstrating the compatibility of our integration method with other hybrid nanomaterials. We believe that the versatile, damage-free integration method based on swelling, shrinking, and adaptation will pave the way for 3D integration of two-dimensional (2D) materials and expand potential applications of graphene and 2D materials in the future.
Collapse
Affiliation(s)
- Jonghyun Choi
- †Department of Mechanical Science and Engineering and ‡Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hoe Joon Kim
- †Department of Mechanical Science and Engineering and ‡Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael Cai Wang
- †Department of Mechanical Science and Engineering and ‡Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Juyoung Leem
- †Department of Mechanical Science and Engineering and ‡Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - William P King
- †Department of Mechanical Science and Engineering and ‡Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - SungWoo Nam
- †Department of Mechanical Science and Engineering and ‡Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|