1
|
Zhao J, Yin J, Wang Z, Shen J, Dong M, Yan S. Complicated gene network for regulating feeding behavior: novel efficient target for pest management. PEST MANAGEMENT SCIENCE 2025; 81:10-21. [PMID: 39390706 DOI: 10.1002/ps.8459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Feeding behavior is a fundamental activity for insects, which is essential for their growth, development and reproduction. The regulation of their feeding behavior is a complicated process influenced by a variety of factors, including external stimuli and internal physiological signals. The current review introduces the signaling pathways in brain, gut and fat body involved in insect feeding behavior, and provides a series of target genes for developing RNA pesticides. Additionally, this review summaries the current challenges for the identification and application of functional genes involved in feeding behavior, and finally proposes the future research direction. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiajia Zhao
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiaming Yin
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zeng Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Min Dong
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Chong B, Kumar V, Nguyen DL, Hopkins MA, Ferry FS, Spera LK, Paul EM, Hutson AN, Tabuchi M. Neuropeptide-dependent spike time precision and plasticity in circadian output neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616871. [PMID: 39411164 PMCID: PMC11476009 DOI: 10.1101/2024.10.06.616871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Circadian rhythms influence various physiological and behavioral processes such as sleep-wake cycles, hormone secretion, and metabolism. In Drosophila, an important set of circadian output neurons are called pars intercerebralis (PI) neurons, which receive input from specific clock neurons called DN1. These DN1 neurons can further be subdivided into functionally and anatomically distinctive anterior (DN1a) and posterior (DN1p) clusters. The neuropeptide diuretic hormones 31 (Dh31) and 44 (Dh44) are the insect neuropeptides known to activate PI neurons to control activity rhythms. However, the neurophysiological basis of how Dh31 and Dh44 affect circadian clock neural coding mechanisms underlying sleep in Drosophila is not well understood. Here, we identify Dh31/Dh44-dependent spike time precision and plasticity in PI neurons. We first find that a mixture of Dh31 and Dh44 enhanced the firing of PI neurons, compared to the application of Dh31 alone and Dh44 alone. We next find that the application of synthesized Dh31 and Dh44 affects membrane potential dynamics of PI neurons in the precise timing of the neuronal firing through their synergistic interaction, possibly mediated by calcium-activated potassium channel conductance. Further, we characterize that Dh31/Dh44 enhances postsynaptic potentials in PI neurons. Together, these results suggest multiplexed neuropeptide-dependent spike time precision and plasticity as circadian clock neural coding mechanisms underlying sleep in Drosophila.
Collapse
Affiliation(s)
- Bryan Chong
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Vipin Kumar
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Dieu Linh Nguyen
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Makenzie A. Hopkins
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Faith S. Ferry
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lucia K. Spera
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elizabeth M. Paul
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Anelise N. Hutson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
3
|
Yoon H, Price B, Parks R, Jang HS, Hafeez M, Corcoran J, Ahn SJ, Choi MY. Corticotropin-releasing factor-like diuretic hormone 44 and five corresponding GPCRs in Drosophila suzukii: Structural and functional characterization. JOURNAL OF INSECT PHYSIOLOGY 2024; 161:104740. [PMID: 39647602 DOI: 10.1016/j.jinsphys.2024.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Diuretic hormones (DHs) activate corresponding G protein-coupled receptors (GPCRs), mediating the water and ion homeostasis in arthropods. There are two different DHs known to be expressed in insects, calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized a DH44 and five GPCR variants, DH44-R1 and DH44-R2a/b/c/d, in Drosophila suzukii (spotted-wing drosophila), causing detrimental damage to fresh and soft-skinned fruits. Among the five DH44 receptors, DH44-R1 was the longest GPCR and most strongly responded to DH44, and the other DH44-R2 splicing variants were relatively shorter and over 90 % similar to each other. Some DH44-Rs including DH44-R1 utilized both cAMP and Ca2+ as second messengers. Interestingly, DH44-R1 was dominantly expressed in the brain, whereas DH44-R2 variants were dominant in the digestive organs, particularly the Malpighian tubules (MTs) by their gene expressions. The results suggest that DH44 may have multiple physiological functions, including the regulation of the sleep-wake cycle and diuretic activity. Injection of DH44 stimulated fluid secretion in adults, and the rate of the excretion increased in a dose-dependent manner. Moreover, when the flies were injected with a mixture of DH31 and DH44, a high mortality rate was observed. Here, we demonstrate the gene structures, expressions, characterization of DH44 and five GPCRs, their second messengers, and the effects of DH peptides on the fly. These investigations offer molecular insights into the physiological roles of the DH system and may assist in the fundamental aspects of developing D. suzukii management in the field.
Collapse
Affiliation(s)
- Hojung Yoon
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR 97330, USA
| | - Briana Price
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA
| | - Ryssa Parks
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA
| | - Hyo Sang Jang
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR 97330, USA
| | - Muhammad Hafeez
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR 97330, USA
| | - Jacob Corcoran
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; The Biological Control of Insects Research Unit, 1503 S Providence, Research Park, Columbia, MO 65203, USA
| | - Seung-Joon Ahn
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA.
| |
Collapse
|
4
|
Francés R, Rabah Y, Preat T, Plaçais PY. Diverting glial glycolytic flux towards neurons is a memory-relevant role of Drosophila CRH-like signalling. Nat Commun 2024; 15:10467. [PMID: 39622834 PMCID: PMC11612226 DOI: 10.1038/s41467-024-54778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
An essential role of glial cells is to comply with the large and fluctuating energy needs of neurons. Metabolic adaptation is integral to the acute stress response, suggesting that glial cells could be major, yet overlooked, targets of stress hormones. Here we show that Dh44 neuropeptide, Drosophila homologue of mammalian corticotropin-releasing hormone (CRH), acts as an experience-dependent metabolic switch for glycolytic output in glia. Dh44 released by dopamine neurons limits glial fatty acid synthesis and build-up of lipid stores. Although basally active, this hormonal axis is acutely stimulated following learning of a danger-predictive cue. This results in transient suppression of glial anabolic use of pyruvate, sparing it for memory-relevant energy supply to neurons. Diverting pyruvate destination may dampen the need to upregulate glial glycolysis in response to increased neuronal demand. Although beneficial for the energy efficiency of memory formation, this mechanism reveals an ongoing competition between neuronal fuelling and glial anabolism.
Collapse
Affiliation(s)
- Raquel Francés
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Yasmine Rabah
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
5
|
Herzog H, Zhang L, Fontana L, Neely GG. Impact of non-sugar sweeteners on metabolism beyond sweet taste perception. Trends Endocrinol Metab 2024:S1043-2760(24)00276-5. [PMID: 39551640 DOI: 10.1016/j.tem.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Non-sugar sweeteners (NSS), low- or no-calorie alternatives to sugar, are marketed for weight loss and improved blood glucose control in people with diabetes. However, their health effects remain controversial. This review provides a brief overview of sweet taste perception and summarizes experimental findings of the impact of NSS on cardiometabolic health in animal models and humans. We also review evidence suggesting that many NSS are not metabolically inert, highlighting the challenges in related human studies. Given the conflicting and unclear data on health outcomes, additional mechanistic studies, particularly in animal models, are necessary to clarify how NSS influence feeding behaviors and energy homoeostasis.
Collapse
Affiliation(s)
- Herbert Herzog
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia.
| | - Lei Zhang
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia
| | - Luigi Fontana
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - G Gregory Neely
- Dr John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
6
|
Mahishi D, Agrawal N, Jiang W, Yapici N. From Mammals to Insects: Exploring the Genetic and Neural Basis of Eating Behavior. Annu Rev Genet 2024; 58:455-485. [PMID: 39585905 DOI: 10.1146/annurev-genet-111523-102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity and anorexia are life-threatening diseases that are still poorly understood at the genetic and neuronal levels. Patients suffering from these conditions experience disrupted regulation of food consumption, leading to extreme weight gain or loss and, in severe situations, death from metabolic dysfunction. Despite the development of various behavioral and pharmacological interventions, current treatments often yield limited and short-lived success. To address this, a deeper understanding of the genetic and neural mechanisms underlying food perception and appetite regulation is essential for identifying new drug targets and developing more effective treatment methods. This review summarizes the progress of past research in understanding the genetic and neural mechanisms controlling food consumption and appetite regulation, focusing on two key model organisms: the fruit fly Drosophila melanogaster and the mouse Mus musculus. These studies investigate how the brain senses energy and nutrient deficiency, how sensory signals trigger appetitive behaviors, and how food intake is regulated through interconnected neural circuits in the brain.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Naman Agrawal
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Wenshuai Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
7
|
Lin YC, Wu T, Wu CL. The Neural Correlations of Olfactory Associative Reward Memories in Drosophila. Cells 2024; 13:1716. [PMID: 39451234 PMCID: PMC11506542 DOI: 10.3390/cells13201716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Advancing treatment to resolve human cognitive disorders requires a comprehensive understanding of the molecular signaling pathways underlying learning and memory. While most organ systems evolved to maintain homeostasis, the brain developed the capacity to perceive and adapt to environmental stimuli through the continuous modification of interactions within a gene network functioning within a broader neural network. This distinctive characteristic enables significant neural plasticity, but complicates experimental investigations. A thorough examination of the mechanisms underlying behavioral plasticity must integrate multiple levels of biological organization, encompassing genetic pathways within individual neurons, interactions among neural networks providing feedback on gene expression, and observable phenotypic behaviors. Model organisms, such as Drosophila melanogaster, which possess more simple and manipulable nervous systems and genomes than mammals, facilitate such investigations. The evolutionary conservation of behavioral phenotypes and the associated genetics and neural systems indicates that insights gained from flies are pertinent to understanding human cognition. Rather than providing a comprehensive review of the entire field of Drosophila memory research, we focus on olfactory associative reward memories and their related neural circuitry in fly brains, with the objective of elucidating the underlying neural mechanisms, thereby advancing our understanding of brain mechanisms linked to cognitive systems.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
8
|
Kim SJ, Lee KM, Park SH, Yang T, Song I, Rai F, Hoshino R, Yun M, Zhang C, Kim JI, Lee S, Suh GSB, Niwa R, Park ZY, Kim YJ. A sexually transmitted sugar orchestrates reproductive responses to nutritional stress. Nat Commun 2024; 15:8477. [PMID: 39353950 PMCID: PMC11445483 DOI: 10.1038/s41467-024-52807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Seminal fluid is rich in sugars, but their role beyond supporting sperm motility is unknown. In this study, we found Drosophila melanogaster males transfer a substantial amount of a phospho-galactoside to females during mating, but only half as much when undernourished. This seminal substance, which we named venerose, induces an increase in germline stem cells (GSCs) and promotes sperm storage in females, especially undernourished ones. Venerose enters the hemolymph and directly activates nutrient-sensing Dh44+ neurons in the brain. Food deprivation directs the nutrient-sensing neurons to secrete more of the neuropeptide Dh44 in response to infused venerose. The secreted Dh44 then enhances the local niche signal, stimulating GSC proliferation. It also extends the retention of ejaculate by females, resulting in greater venerose absorption and increased sperm storage. In this study, we uncovered the role of a sugar-like seminal substance produced by males that coordinates reproductive responses to nutritional challenges in females.
Collapse
Affiliation(s)
- Seong-Jin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Kang-Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Si Hyung Park
- School of Horticulture and Forestry, College of Bio and Medical Sciences, Mokpo National University, Muan, 58554, Republic of Korea
| | - Taekyun Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ingyu Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Fumika Rai
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryo Hoshino
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Minsik Yun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Chen Zhang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jae-Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
9
|
Cui X, Meiselman MR, Thornton SN, Yapici N. A gut-brain-gut interoceptive circuit loop gates sugar ingestion in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610892. [PMID: 39282336 PMCID: PMC11398398 DOI: 10.1101/2024.09.02.610892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The communication between the brain and digestive tract is critical for optimising nutrient preference and food intake, yet the underlying neural mechanisms remain poorly understood1-7. Here, we show that a gut-brain-gut circuit loop gates sugar ingestion in flies. We discovered that brain neurons regulating food ingestion, IN18, receive excitatory input from enteric sensory neurons, which innervate the oesophagus and express the sugar receptor Gr43a. These enteric sensory neurons monitor the sugar content of food within the oesophagus during ingestion and send positive feedback signals to IN1s, stimulating the consumption of high-sugar foods. Connectome analyses reveal that IN1s form a core ingestion circuit. This interoceptive circuit receives synaptic input from enteric afferents and provides synaptic output to enteric motor neurons, which modulate the activity of muscles at the entry segments of the crop, a stomach-like food storage organ. While IN1s are persistently activated upon ingestion of sugar-rich foods, enteric motor neurons are continuously inhibited, causing the crop muscles to relax and enabling flies to consume large volumes of sugar. Our findings reveal a key interoceptive mechanism that underlies the rapid sensory monitoring and motor control of sugar ingestion within the digestive tract, optimising the diet of flies across varying metabolic states.
Collapse
Affiliation(s)
- Xinyue Cui
- Department of Neurobiology and Behaviour, Cornell University, 14853, Ithaca, NY, USA
| | - Matthew R. Meiselman
- Department of Neurobiology and Behaviour, Cornell University, 14853, Ithaca, NY, USA
- Current address: School of Life Sciences, University of Nevada, 89154, Las Vegas, NV, US
| | - Staci N. Thornton
- Department of Neurobiology and Behaviour, Cornell University, 14853, Ithaca, NY, USA
- Current address: the Department of Kinesiology, University of Connecticut, 06269, Storrs, CT
| | - Nilay Yapici
- Department of Neurobiology and Behaviour, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
10
|
Tagorti G, Yalçın B, Güneş M, Burgazlı AY, Kaya B. Comparative evaluation of natural and artificial sweeteners from DNA damage, oxidative stress, apoptosis, to development using Drosophila melanogaster. Drug Chem Toxicol 2024; 47:606-617. [PMID: 37386929 DOI: 10.1080/01480545.2023.2228522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
The overconsumption of added sugars makes people vulnerable to a myriad of diseases. Several biochemical and developmental assays were performed in the current study to assess the effect of fructose on Drosophila melanogaster and to find substitutes for fructose by comparing it to well-known sweeteners. Drosophila was exposed separately to the same ratio of sugar 9.21% (w/v) of several types of sweeteners (sucrose, fructose, glucose syrup, high-fructose corn syrup and stevia). Results revealed that fructose might induce recombination, whereas stevia lacks genotoxic potential. No developmental delay, growth defects, or neurotoxic effects were recorded for any of the sweeteners. We also observed no striking differences in reactive oxygen species levels. Thus, stevia seems to be an alternative sweetener to fructose that can be consumed to reduce fructose-induced anomalies.
Collapse
Affiliation(s)
- Ghada Tagorti
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | | | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
11
|
McKim TH, Gera J, Gayban AJ, Reinhard N, Manoli G, Hilpert S, Helfrich-Förster C, Zandawala M. Synaptic connectome of a neurosecretory network in the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609616. [PMID: 39257829 PMCID: PMC11384003 DOI: 10.1101/2024.08.28.609616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Hormones mediate inter-organ signaling which is crucial in orchestrating diverse behaviors and physiological processes including sleep and activity, feeding, growth, metabolism and reproduction. The pars intercerebralis and pars lateralis in insects represent major hubs which contain neurosecretory cells (NSC) that produce various hormones. To obtain insight into how hormonal signaling is regulated, we have characterized the synaptic connectome of NSC in the adult Drosophila brain. Identification of neurons providing inputs to multiple NSC subtypes implicates diuretic hormone 44-expressing NSC as a major coordinator of physiology and behavior. Surprisingly, despite most NSC having dendrites in the subesophageal zone (primary taste processing center), gustatory inputs to NSC are largely indirect. We also deciphered pathways via which diverse olfactory inputs are relayed to NSC. Further, our analyses revealed substantial inputs from descending neurons to NSC, suggesting that descending neurons regulate both endocrine and motor output to synchronize physiological changes with appropriate behaviors. In contrast to NSC inputs, synaptic output from NSC is sparse and mostly mediated by corazonin NSC. Therefore, we additionally determine putative paracrine interconnectivity between NSC subtypes and hormonal pathways from NSC to peripheral tissues by analyzing single-cell transcriptomic datasets. Our comprehensive characterization of the Drosophila neurosecretory network connectome provides a platform to understand complex hormonal networks and how they orchestrate animal behaviors and physiology.
Collapse
Affiliation(s)
- Theresa H. McKim
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Department of Biology, University of Nevada Reno, Reno, 89557, NV, USA
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Ariana J. Gayban
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, 89557, NV, USA
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Giulia Manoli
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Selina Hilpert
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Meet Zandawala
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, 89557, NV, USA
| |
Collapse
|
12
|
Poe AR, Zhu L, Tang SH, Valencia E, Kayser MS. Energetic demands regulate sleep-wake rhythm circuit development. eLife 2024; 13:RP97256. [PMID: 39037919 PMCID: PMC11262794 DOI: 10.7554/elife.97256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors.
Collapse
Affiliation(s)
- Amy R Poe
- Department of Psychiatry, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Lucy Zhu
- Department of Psychiatry, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Si Hao Tang
- Department of Psychiatry, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ella Valencia
- Department of Psychiatry, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
13
|
Sukumar SK, Antonydhason V, Molander L, Sandakly J, Kleit M, Umapathy G, Mendoza-Garcia P, Masudi T, Schlosser A, Nässel DR, Wegener C, Shirinian M, Palmer RH. The Alk receptor tyrosine kinase regulates Sparkly, a novel activity regulating neuropeptide precursor in the Drosophila central nervous system. eLife 2024; 12:RP88985. [PMID: 38904987 PMCID: PMC11196111 DOI: 10.7554/elife.88985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Numerous roles for the Alk receptor tyrosine kinase have been described in Drosophila, including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output. The resulting TaDa data were analyzed together with larval CNS scRNA-seq datasets performed under similar conditions, identifying a role for Alk in the transcriptional regulation of neuroendocrine gene expression. Further integration with bulk and scRNA-seq datasets from larval brains in which Alk signaling was manipulated identified a previously uncharacterized Drosophila neuropeptide precursor encoded by CG4577 as an Alk signaling transcriptional target. CG4577, which we named Sparkly (Spar), is expressed in a subset of Alk-positive neuroendocrine cells in the developing larval CNS, including circadian clock neurons. In agreement with our TaDa analysis, overexpression of the Drosophila Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS. We show that Spar protein is expressed in circadian (clock) neurons, and flies lacking Spar exhibit defects in sleep and circadian activity control. In summary, we report a novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling in the Drosophila CNS.
Collapse
Affiliation(s)
- Sanjay Kumar Sukumar
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Vimala Antonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Linnea Molander
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Jawdat Sandakly
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of BeirutBeirutLebanon
| | - Malak Kleit
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of BeirutBeirutLebanon
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Andreas Schlosser
- Julius-Maximilians-Universität Würzburg, Rudolf-Virchow-Center, Center for Integrative and Translational BioimagingWürzburgGermany
| | - Dick R Nässel
- Department of Zoology, Stockholm UniversityStockholmSweden
| | - Christian Wegener
- Julius-Maximilians-Universität Würzburg, Biocenter, Theodor-Boveri-Institute, Neurobiology and GeneticsWürzburgGermany
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of BeirutBeirutLebanon
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| |
Collapse
|
14
|
Helfrich-Förster C. Neuropeptidergic regulation of insect diapause by the circadian clock. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101198. [PMID: 38588944 DOI: 10.1016/j.cois.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Diapause is an endocrine-mediated strategy used by insects to survive seasons of adverse environmental conditions. Insects living in temperate zones are regularly exposed to such conditions in the form of winter. To survive winter, they must prepare for it long before it arrives. A reliable indicator of impending winter is the shortening of day length. To measure day length, insects need their circadian clock as internal time reference. In this article, I provide an overview of the current state of knowledge on the neuropeptides that link the clock to the diapause inducing hormonal brain centers.
Collapse
|
15
|
Yip C, Wyler SC, Liang K, Yamazaki S, Cobb T, Safdar M, Metai A, Merchant W, Wessells R, Rothenfluh A, Lee S, Elmquist J, You YJ. Neuronal E93 is required for adaptation to adult metabolism and behavior. Mol Metab 2024; 84:101939. [PMID: 38621602 PMCID: PMC11053319 DOI: 10.1016/j.molmet.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVE Metamorphosis is a transition from growth to reproduction, through which an animal adopts adult behavior and metabolism. Yet the neural mechanisms underlying the switch are unclear. Here we report that neuronal E93, a transcription factor essential for metamorphosis, regulates the adult metabolism, physiology, and behavior in Drosophila melanogaster. METHODS To find new neuronal regulators of metabolism, we performed a targeted RNAi-based screen of 70 Drosophila orthologs of the mammalian genes enriched in ventromedial hypothalamus (VMH). Once E93 was identified from the screen, we characterized changes in physiology and behavior when neuronal expression of E93 is knocked down. To identify the neurons where E93 acts, we performed an additional screen targeting subsets of neurons or endocrine cells. RESULTS E93 is required to control appetite, metabolism, exercise endurance, and circadian rhythms. The diverse phenotypes caused by pan-neuronal knockdown of E93, including obesity, exercise intolerance and circadian disruption, can all be phenocopied by knockdown of E93 specifically in either GABA or MIP neurons, suggesting these neurons are key sites of E93 action. Knockdown of the Ecdysone Receptor specifically in MIP neurons partially phenocopies the MIP neuron-specific knockdown of E93, suggesting the steroid signal coordinates adult metabolism via E93 and a neuropeptidergic signal. Finally, E93 expression in GABA and MIP neurons also serves as a key switch for the adaptation to adult behavior, as animals with reduced expression of E93 in the two subsets of neurons exhibit reduced reproductive activity. CONCLUSIONS Our study reveals that E93 is a new monogenic factor essential for metabolic, physiological, and behavioral adaptation from larval behavior to adult behavior.
Collapse
Affiliation(s)
- Cecilia Yip
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven C Wyler
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katrina Liang
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shin Yamazaki
- Department of Neuroscience and Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tyler Cobb
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maryam Safdar
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aarav Metai
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Warda Merchant
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adrian Rothenfluh
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Syann Lee
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel Elmquist
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Young-Jai You
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Poe AR, Zhu L, Tang SH, Valencia E, Kayser MS. Energetic Demands Regulate Sleep-Wake Rhythm Circuit Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.19.558472. [PMID: 37786713 PMCID: PMC10541615 DOI: 10.1101/2023.09.19.558472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors.
Collapse
Affiliation(s)
- Amy R. Poe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucy Zhu
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Si Hao Tang
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ella Valencia
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Wang S, Li M, Wang N, Song Y, Peng X, Chen M. Functional characterization of two DH44R genes associated with starvation and desiccation in Rhopalosiphum padi (Hemiptera: Aphididae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105902. [PMID: 38685224 DOI: 10.1016/j.pestbp.2024.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
CRF-like diuretic hormone receptor (CRF/DHR), also known as DH44R in insects, are G-protein coupled receptors (GPCRs) that play a role in regulating osmotic balance in various insect species. These receptors have the potential to be targeted for the development of insecticides. However, our understanding of the role of DHR genes in aphids, including Rhopalosiphum padi, a major wheat pest, is currently limited. In this study, we isolated and characterized two R. padi DHRs (RpDHR1 and RpDHR2). The expression levels of RpDHR1 increased after starvation and were restored after re-feeding. The expression levels of RpDHR1 gene decreased significantly 24 h after injection of dsRNA targeting the gene. Knockdown of RpDHR1 increased aphid mortality under starvation conditions (24, 36, 48 and 60 h). Under starvation and desiccation condition, the aphid mortality decreased after knockdown of RpDHR1. This is the first study to report the role of DHR genes in the starvation and desiccation response of aphids. The results suggest that RpDHR1 is involved in the resistance of R. padi to starvation and dehydration, making it a potential target for insecticide development. Novel insecticides could be created by utilizing DHR agonists to disrupt the physiological processes of insect pests.
Collapse
Affiliation(s)
- Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengtian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yue Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
18
|
Kim B, Hwang G, Yoon SE, Kuang MC, Wang JW, Kim YJ, Suh GSB. Postprandial sodium sensing by enteric neurons in Drosophila. Nat Metab 2024; 6:837-846. [PMID: 38570627 DOI: 10.1038/s42255-024-01020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
Sodium is essential for all living organisms1. Animals including insects and mammals detect sodium primarily through peripheral taste cells2-7. It is not known, however, whether animals can detect this essential micronutrient independently of the taste system. Here, we report that Drosophila Ir76b mutants that were unable to detect sodium2 became capable of responding to sodium following a period of salt deprivation. From a screen for cells required for the deprivation-induced sodium preference, we identified a population of anterior enteric neurons, which we named internal sodium-sensing (INSO) neurons, that are essential for directing a behavioural preference for sodium. Enteric INSO neurons innervate the gut epithelia mainly through their dendritic processes and send their axonal projections along the oesophagus to the brain and to the crop duct. Through calcium imaging and CaLexA experiments, we found that INSO neurons respond immediately and specifically to sodium ions. Notably, the sodium-evoked responses were observed only after a period of sodium deprivation. Taken together, we have identified a taste-independent sodium sensor that is essential for the maintenance of sodium homeostasis.
Collapse
Affiliation(s)
- Byoungsoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gayoung Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sung-Eun Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Korea Drosophila Resource Center (KDRC), Gwangju, Republic of Korea
| | - Meihua Christina Kuang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Korea Drosophila Resource Center (KDRC), Gwangju, Republic of Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
19
|
Zandawala M, Gera J. Leptin- and cytokine-like unpaired signaling in Drosophila. Mol Cell Endocrinol 2024; 584:112165. [PMID: 38266772 DOI: 10.1016/j.mce.2024.112165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Animals have evolved a multitude of signaling pathways that enable them to orchestrate diverse physiological processes to tightly regulate systemic homeostasis. This signaling is mediated by various families of peptide hormones and cytokines that are conserved across the animal kingdom. In this review, we primarily focus on the unpaired (Upd) family of proteins in Drosophila which are evolutionarily related to mammalian leptin and the cytokine interleukin 6. We summarize expression patterns of Upd in Drosophila and discuss the parallels in structure, signaling pathway, and functions between Upd and their mammalian counterparts. In particular, we focus on the roles of Upd in governing metabolic homeostasis, growth and development, and immune responses. We aim to stimulate future studies on leptin-like signaling in other phyla which can help bridge the evolutionary gap between insect Upd and vertebrate leptin and cytokines like interleukin 6.
Collapse
Affiliation(s)
- Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
20
|
Kim DH, Jang YH, Yun M, Lee KM, Kim YJ. Long-term neuropeptide modulation of female sexual drive via the TRP channel in Drosophila melanogaster. Proc Natl Acad Sci U S A 2024; 121:e2310841121. [PMID: 38412134 PMCID: PMC10927590 DOI: 10.1073/pnas.2310841121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Connectomics research has made it more feasible to explore how neural circuits can generate multiple outputs. Female sexual drive provides a good model for understanding reversible, long-term functional changes in motivational circuits. After emerging, female flies avoid male courtship, but they become sexually receptive over 2 d. Mating causes females to reject further mating for several days. Here, we report that pC1 neurons, which process male courtship and regulate copulation behavior, exhibit increased CREB (cAMP response element binding protein) activity during sexual maturation and decreased CREB activity after mating. This increased CREB activity requires the neuropeptide Dh44 (Diuretic hormone 44) and its receptors. A subset of the pC1 neurons secretes Dh44, which stimulates CREB activity and increases expression of the TRP channel Pyrexia (Pyx) in more pC1 neurons. This, in turn, increases pC1 excitability and sexual drive. Mating suppresses pyx expression and pC1 excitability. Dh44 is orthologous to the conserved corticotrophin-releasing hormone family, suggesting similar roles in other species.
Collapse
Affiliation(s)
- Do-Hyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Yong-Hoon Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Minsik Yun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Kang-Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| |
Collapse
|
21
|
Halberg KV, Denholm B. Mechanisms of Systemic Osmoregulation in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:415-438. [PMID: 37758224 DOI: 10.1146/annurev-ento-040323-021222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Water is essential to life. Terrestrial insects lose water by evaporation from the body surface and respiratory surfaces, as well as in the excretory products, posing a challenge made more acute by their high surface-to-volume ratio. These losses must be kept to a minimum and be offset by water gained from other sources. By contrast, insects such as the blood-sucking bug Rhodnius prolixus consume up to 10 times their body weight in a single blood meal, necessitating rapid expulsion of excess water and ions. How do insects manage their ion and water budgets? A century of study has revealed a great deal about the organ systems that insects use to maintain their ion and water balance and their regulation. Traditionally, a taxonomically wide range of species were studied, whereas more recent research has focused on model organisms to leverage the power of the molecular genetic approach. Key advances in new technologies have become available for a wider range of species in the past decade. We document how these approaches have already begun to inform our understanding of the diversity and conservation of insect systemic osmoregulation. We advocate that these technologies be combined with traditional approaches to study a broader range of nonmodel species to gain a comprehensive overview of the mechanism underpinning systemic osmoregulation in the most species-rich group of animals on earth, the insects.
Collapse
Affiliation(s)
- Kenneth Veland Halberg
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark;
| | - Barry Denholm
- Department of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Favrel P, Dubos MP, Bernay B, Pasquier J, Schwartz J, Lefranc B, Mouret L, Rivière G, Leprince J, Bondon A. Structural and functional characterization of an egg-laying hormone signaling system in a lophotrochozoan - The pacific oyster (Crassostrea gigas). Gen Comp Endocrinol 2024; 346:114417. [PMID: 38030018 DOI: 10.1016/j.ygcen.2023.114417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
The egg-laying hormones (ELHs) of gastropod mollusks were characterized more than forty years ago. Yet, they have remained little explored in other mollusks. To gain insights into the functionality of the ELH signaling system in a bivalve mollusk - the oyster Crassostrea gigas, this study investigates the processing of its ELH precursor (Cragi-ELH) by mass spectrometry. Some of the ELH mature peptides identified in this study were subsequently investigated by nuclear magnetic resonance and shown to adopt an extended alpha-helix structure in a micellar medium mimicking the plasma membrane. To further characterize the ELH signaling system in C. gigas, a G protein-coupled receptor phylogenetically related to ecdysozoan diuretic hormone DH44 and corticotropin-releasing hormone (CRH) receptors named Cragi-ELHR was also characterized functionally and shown to be specifically activated by the two predicted mature ELH peptides and their N-terminal fragments. Both Cragi-ELH and Cragi-ELHR encoding genes were mostly expressed in the visceral ganglia (VG). Cragi-ELH expression was significantly increased in the VG of both fully mature male and female oysters at the spawning stage. When the oysters were submitted to a nutritional or hyposaline stress, no change in the expression of the ligand or receptor genes was recorded, except for Cragi-ELHR only during a mild acclimation episode to brackish water. These results suggest a role of Cragi-ELH signaling in the regulation of reproduction but not in mediating the stress response in our experimental conditions.
Collapse
Affiliation(s)
- P Favrel
- Université Caen Normandie, Normandie Univ, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, Esplanade de la Paix, 14032 Caen, Cedex 5, France.
| | - M P Dubos
- Université Caen Normandie, Normandie Univ, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, Esplanade de la Paix, 14032 Caen, Cedex 5, France
| | - B Bernay
- Université Caen Normandie, Normandie Univ, US EMERODE, PROTEOGEN Core Facility, Esplanade de la Paix, 14032 Caen, cedex 05, France
| | - J Pasquier
- Université Caen Normandie, Normandie Univ, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, Esplanade de la Paix, 14032 Caen, Cedex 5, France
| | - J Schwartz
- Université Caen Normandie, Normandie Univ, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, Esplanade de la Paix, 14032 Caen, Cedex 5, France
| | - B Lefranc
- Université Rouen Normandie, INSERM, Normandie Univ, NorDic UMR1239, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, F-76000 Rouen, France
| | - L Mouret
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - G Rivière
- Université Caen Normandie, Normandie Univ, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, Esplanade de la Paix, 14032 Caen, Cedex 5, France
| | - J Leprince
- Université Rouen Normandie, INSERM, Normandie Univ, NorDic UMR1239, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, F-76000 Rouen, France
| | - A Bondon
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
23
|
Ahmed OM, Crocker A, Murthy M. Transcriptional profiling of Drosophila male-specific P1 (pC1) neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566045. [PMID: 37986870 PMCID: PMC10659367 DOI: 10.1101/2023.11.07.566045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In Drosophila melanogaster, the P1 (pC1) cluster of male-specific neurons both integrates sensory cues and drives or modulates behavioral programs such as courtship, in addition to contributing to a social arousal state. The behavioral function of these neurons is linked to the genes they express, which underpin their capacity for synaptic signaling, neuromodulation, and physiology. Yet, P1 (pC1) neurons have not been fully characterized at the transcriptome level. Moreover, it is unknown how the molecular landscape of P1 (pC1) neurons acutely changes after flies engage in social behaviors, where baseline P1 (pC1) neural activity is expected to increase. To address these two gaps, we use single cell-type RNA sequencing to profile and compare the transcriptomes of P1 (pC1) neurons harvested from socially paired versus solitary male flies. Compared to control transcriptome datasets, we find that P1 (pC1) neurons are enriched in 2,665 genes, including those encoding receptors, neuropeptides, and cell-adhesion molecules (dprs/DIPs). Furthermore, courtship is characterized by changes in ~300 genes, including those previously implicated in regulating behavior (e.g. DopEcR, Octβ3R, Fife, kairos, rad). Finally, we identify a suite of genes that link conspecific courtship with the innate immune system. Together, these data serve as a molecular map for future studies of an important set of higher-order and sexually-dimorphic neurons.
Collapse
Affiliation(s)
- Osama M Ahmed
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
- Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Amanda Crocker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
24
|
Ruedenauer FA, Parreño MA, Grunwald Kadow IC, Spaethe J, Leonhardt SD. The ecology of nutrient sensation and perception in insects. Trends Ecol Evol 2023; 38:994-1004. [PMID: 37328389 DOI: 10.1016/j.tree.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/18/2023]
Abstract
Insects are equipped with neurological, physiological, and behavioral tools to locate potential food sources and assess their nutritional quality based on volatile and chemotactile cues. We summarize current knowledge on insect taste perception and the different modalities of reception and perception. We suggest that the neurophysiological mechanisms of reception and perception are closely linked to the species-specific ecology of different insects. Understanding these links consequently requires a multidisciplinary approach. We also highlight existing knowledge gaps, especially in terms of the exact ligands of receptors, and provide evidence for a perceptional hierarchy suggesting that insects have adapted their reception and perception to preferentially perceive nutrient stimuli that are important for their fitness.
Collapse
Affiliation(s)
- Fabian A Ruedenauer
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany.
| | - Maria Alejandra Parreño
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Ilona C Grunwald Kadow
- Institute of Physiology II, University of Bonn, University Clinic Bonn (UKB), Bonn, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Sara D Leonhardt
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
25
|
Manoli G, Zandawala M, Yoshii T, Helfrich-Förster C. Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause. J Comp Neurol 2023; 531:1525-1549. [PMID: 37493077 DOI: 10.1002/cne.25522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Insects from high latitudes spend the winter in a state of overwintering diapause, which is characterized by arrested reproduction, reduced food intake and metabolism, and increased life span. The main trigger to enter diapause is the decreasing day length in summer-autumn. It is thus assumed that the circadian clock acts as an internal sensor for measuring photoperiod and orchestrates appropriate seasonal changes in physiology and metabolism through various neurohormones. However, little is known about the neuronal organization of the circadian clock network and the neurosecretory system that controls diapause in high-latitude insects. We addressed this here by mapping the expression of clock proteins and neuropeptides/neurohormones in the high-latitude fly Drosophila littoralis. We found that the principal organization of both systems is similar to that in Drosophila melanogaster, but with some striking differences in neuropeptide expression levels and patterns. The small ventrolateral clock neurons that express pigment-dispersing factor (PDF) and short neuropeptide F (sNPF) and are most important for robust circadian rhythmicity in D. melanogaster virtually lack PDF and sNPF expression in D. littoralis. In contrast, dorsolateral clock neurons that express ion transport peptide in D. melanogaster additionally express allatostatin-C and appear suited to transfer day-length information to the neurosecretory system of D. littoralis. The lateral neurosecretory cells of D. littoralis contain more neuropeptides than D. melanogaster. Among them, the cells that coexpress corazonin, PDF, and diuretic hormone 44 appear most suited to control diapause. Our work sets the stage to investigate the roles of these diverse neuropeptides in regulating insect diapause.
Collapse
Affiliation(s)
- Giulia Manoli
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | |
Collapse
|
26
|
Ju L, Glastad KM, Sheng L, Gospocic J, Kingwell CJ, Davidson SM, Kocher SD, Bonasio R, Berger SL. Hormonal gatekeeping via the blood-brain barrier governs caste-specific behavior in ants. Cell 2023; 186:4289-4309.e23. [PMID: 37683635 PMCID: PMC10807403 DOI: 10.1016/j.cell.2023.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.
Collapse
Affiliation(s)
- Linyang Ju
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Karl M Glastad
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Lihong Sheng
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janko Gospocic
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Koyama T, Rana DW, Halberg KV. Managing fuels and fluids: Network integration of osmoregulatory and metabolic hormonal circuits in the polymodal control of homeostasis in insects. Bioessays 2023; 45:e2300011. [PMID: 37327252 DOI: 10.1002/bies.202300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Osmoregulation in insects is an essential process whereby changes in hemolymph osmotic pressure induce the release of diuretic or antidiuretic hormones to recruit individual osmoregulatory responses in a manner that optimizes overall homeostasis. However, the mechanisms by which different osmoregulatory circuits interact with other homeostatic networks to implement the correct homeostatic program remain largely unexplored. Surprisingly, recent advances in insect genetics have revealed several important metabolic functions are regulated by classic osmoregulatory pathways, suggesting that internal cues related to osmotic and metabolic perturbations are integrated by the same hormonal networks. Here, we review our current knowledge on the network mechanisms that underpin systemic osmoregulation and discuss the remarkable parallels between the hormonal networks that regulate body fluid balance and those involved in energy homeostasis to provide a framework for understanding the polymodal optimization of homeostasis in insects.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Danial Wasim Rana
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
28
|
Singh P, Aleman A, Omoto JJ, Nguyen BC, Kandimalla P, Hartenstein V, Donlea JM. Examining Sleep Modulation by Drosophila Ellipsoid Body Neurons. eNeuro 2023; 10:ENEURO.0281-23.2023. [PMID: 37679041 PMCID: PMC10523840 DOI: 10.1523/eneuro.0281-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
Recent work in Drosophila has uncovered several neighboring classes of sleep-regulatory neurons within the central complex. However, the logic of connectivity and network motifs remains limited by the incomplete examination of relevant cell types. Using a recent genetic-anatomic classification of ellipsoid body ring neurons, we conducted a thermogenetic screen in female flies to assess sleep/wake behavior and identified two wake-promoting drivers that label ER3d neurons and two sleep-promoting drivers that express in ER3m cells. We then used intersectional genetics to refine driver expression patterns. Activation of ER3d cells shortened sleep bouts, suggesting a key role in sleep maintenance. While sleep-promoting drivers from our mini-screen label overlapping ER3m neurons, intersectional strategies cannot rule out sleep regulatory roles for additional neurons in their expression patterns. Suppressing GABA synthesis in ER3m neurons prevents postinjury sleep, and GABAergic ER3d cells are required for thermogenetically induced wakefulness. Finally, we use an activity-dependent fluorescent reporter for putative synaptic contacts to embed these neurons within the known sleep-regulatory network. ER3m and ER3d neurons may receive connections from wake-active Helicon/ExR1 cells, and ER3m neurons likely inhibit ER3d neurons. Together, these data suggest a neural mechanism by which previously uncharacterized circuit elements stabilize sleep-wake states.
Collapse
Affiliation(s)
- Prabhjit Singh
- Department of Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Abigail Aleman
- Department of Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
- Molecular, Cellular & Integrative Physiology Interdepartmental Program, University of California-Los Angeles, Los Angeles, California 90095
| | - Jaison Jiro Omoto
- Department of Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Bao-Chau Nguyen
- Department of Molecular, Cell, & Developmental Biology, University of California-Los Angeles, Los Angeles, California 90095
| | - Pratyush Kandimalla
- Department of Molecular, Cell, & Developmental Biology, University of California-Los Angeles, Los Angeles, California 90095
| | - Volker Hartenstein
- Department of Molecular, Cell, & Developmental Biology, University of California-Los Angeles, Los Angeles, California 90095
| | - Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| |
Collapse
|
29
|
Oh Y, Suh GSB. Starvation-induced sleep suppression requires the Drosophila brain nutrient sensor. J Neurogenet 2023:1-8. [PMID: 37267057 DOI: 10.1080/01677063.2023.2203489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/12/2023] [Indexed: 06/04/2023]
Abstract
Animals increase their locomotion activity and reduce sleep duration under starved conditions. This suggests that sleep and metabolic status are closely interconnected. The nutrient and hunger sensors in the Drosophila brain, including diuretic hormone 44 (DH44)-, CN-, and cupcake-expressing neurons, detect circulating glucose levels in the internal milieu, regulate the insulin and glucagon secretion and promote food consumption. Food deprivation is known to reduce sleep duration, but a potential role mediated by the nutrient and hunger sensors in regulating sleep and locomotion activity remains unclear. Here, we show that DH44 neurons are involved in regulating starvation-induced sleep suppression, but CN neurons or cupcake neurons may not be involved in regulating starvation-induced sleep suppression or baseline sleep patterns. Inactivation of DH44 neurons resulted in normal daily sleep durations and patterns under fed conditions, whereas it ablated sleep reduction under starved conditions. Inactivation of CN neurons or cupcake neurons, which were proposed to be nutrient and hunger sensors in the fly brain, did not affect sleep patterns under both fed and starved conditions. We propose that the glucose-sensing DH44 neurons play an important role in mediating starvation-induced sleep reduction.
Collapse
Affiliation(s)
- Yangkyun Oh
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul, South Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
30
|
Lee G, Jang H, Oh Y. The role of diuretic hormones (DHs) and their receptors in Drosophila. BMB Rep 2023; 56:209-215. [PMID: 36977606 PMCID: PMC10140481 DOI: 10.5483/bmbrep.2023-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 10/11/2023] Open
Abstract
Maintaining internal homeostasis and regulating innate behaviors are essential for animal survival. In various animal species, a highly conserved neuroendocrine system integrates sensory inputs and regulates physiological responses to environmental and internal changes. Diuretic hormones 44 and 31, which are homologs of mammalian corticotropin-releasing factor (CRF) and calcitonin gene-related peptide (CGRP), respectively, control body fluid secretion in Drosophila. These neuropeptides and their receptors have multiple physiological roles, including the regulation of body-fluid secretion, sleep:wake cycle, internal nutrientsensing, and CO2-dependent response. This review discusses the physiological and behavioral roles of DH44 and DH31 signaling pathways, consisting of neuroendocrine cells that secrete DH44 or DH31 peptides and their receptor-expressing organs. Further research is needed to understand the regulatory mechanisms of the behavioral processes mediated by these neuroendocrine systems. [BMB Reports 2023; 56(4): 209-215].
Collapse
Affiliation(s)
- Gahbien Lee
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Heejin Jang
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Yangkyun Oh
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
31
|
Kim J, Kim DG, Jung W, Suh GSB. Evaluation of mouse behavioral responses to nutritive versus nonnutritive sugar using a deep learning-based 3D real-time pose estimation system. J Neurogenet 2023:1-6. [PMID: 36790034 DOI: 10.1080/01677063.2023.2174982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Animals are able to detect the nutritional content of sugar independently of taste. When given a choice between nutritive sugar and nonnutritive sugar, animals develop a preference for nutritive sugar over nonnutritive sugar during a period of food deprivation (Buchanan et al., 2022; Dus et al., 2011; 2015; Tan et al., 2020; Tellez et al., 2016). To quantify behavioral features during an episode of licking nutritive versus nonnutritive sugar, we implemented a multi-vision, deep learning-based 3D pose estimation system, termed the AI Vision Analysis for Three-dimensional Action in Real-Time (AVATAR)(Kim et al., 2022). Using this method, we found that mice exhibit significantly different approach behavioral responses toward nutritive sugar versus nonnutritive sugar even before licking a sugar solution. Notably, the behavioral sequences during the approach toward nutritive versus nonnutritive sugar became significantly different over time. These results suggest that the nutritional value of sugar not only promotes its consumption but also elicits distinct repertoires of feeding behavior in deprived mice.
Collapse
Affiliation(s)
- Jineun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dae-Gun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wongyo Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
32
|
Kotronarou K, Charalambous A, Evangelou A, Georgiou O, Demetriou A, Apidianakis Y. Dietary Stimuli, Intestinal Bacteria and Peptide Hormones Regulate Female Drosophila Defecation Rate. Metabolites 2023; 13:metabo13020264. [PMID: 36837883 PMCID: PMC9965912 DOI: 10.3390/metabo13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Peptide hormones control Drosophila gut motility, but the intestinal stimuli and the gene networks coordinating this trait remain poorly defined. Here, we customized an assay to quantify female Drosophila defecation rate as a proxy of intestinal motility. We found that bacterial infection with the human opportunistic bacterial pathogen Pseudomonas aeruginosa (strain PA14) increases defecation rate in wild-type female flies, and we identified specific bacteria of the fly microbiota able to increase defecation rate. In contrast, dietary stress, imposed by either water-only feeding or high ethanol consumption, decreased defecation rate and the expression of enteroendocrine-produced hormones in the fly midgut, such as Diuretic hormone 31 (Dh31). The decrease in defecation due to dietary stress was proportional to the impact of each stressor on fly survival. Furthermore, we exploited the Drosophila Genetic Reference Panel wild type strain collection and identified strains displaying high and low defecation rates. We calculated the narrow-sense heritability of defecation rate to be 91%, indicating that the genetic variance observed using our assay is mostly additive and polygenic in nature. Accordingly, we performed a genome-wide association (GWA) analysis revealing 17 candidate genes linked to defecation rate. Downregulation of four of them (Pmp70, CG11307, meso18E and mub) in either the midgut enteroendocrine cells or in neurons reduced defecation rate and altered the midgut expression of Dh31, that in turn regulates defecation rate via signaling to the visceral muscle. Hence, microbial and dietary stimuli, and Dh31-controlling genes, regulate defecation rate involving signaling within and among neuronal, enteroendocrine, and visceral muscle cells.
Collapse
|
33
|
Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM. Behavioral state-dependent modulation of insulin-producing cells in Drosophila. Curr Biol 2023; 33:449-463.e5. [PMID: 36580915 DOI: 10.1016/j.cub.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells (IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited during walking and flight and that their activity rebounded and overshot after cessation of locomotion. Moreover, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is independent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-dependent modulation of sensorimotor processing.
Collapse
Affiliation(s)
- Sander Liessem
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Held
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rituja S Bisen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hannah Haberkern
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Haluk Lacin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Till Bockemühl
- Department of Biology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Jan M Ache
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
34
|
Pardo-Garcia TR, Gu K, Woerner RKR, Dus M. Food memory circuits regulate eating and energy balance. Curr Biol 2023; 33:215-227.e3. [PMID: 36528025 PMCID: PMC9877168 DOI: 10.1016/j.cub.2022.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
In mammals, learning circuits play an essential role in energy balance by creating associations between sensory cues and the rewarding qualities of food. This process is altered by diet-induced obesity, but the causes and mechanisms are poorly understood. Here, we exploited the relative simplicity and wealth of knowledge about the D. melanogaster reinforcement learning network, the mushroom body, in order to study the relationship between the dietary environment, dopamine-induced plasticity, and food associations. We show flies that are fed a high-sugar diet cannot make associations between sensory cues and the rewarding properties of sugar. This deficit was caused by diet exposure, not fat accumulation, and specifically by lower dopamine-induced plasticity onto mushroom body output neurons (MBONs) during learning. Importantly, food memories dynamically tune the output of MBONs during eating, which instead remains fixed in sugar-diet animals. Interestingly, manipulating the activity of MBONs influenced eating and fat mass, depending on the diet. Altogether, this work advances our fundamental understanding of the mechanisms, causes, and consequences of the dietary environment on reinforcement learning and ingestive behavior.
Collapse
Affiliation(s)
- Thibaut R Pardo-Garcia
- The Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; The Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathleen Gu
- The Undergraduate Program in Neuroscience, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Riley K R Woerner
- The Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica Dus
- The Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; The Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA; The Undergraduate Program in Neuroscience, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Cai W, Egertová M, Zampronio CG, Jones AM, Elphick MR. Molecular Identification and Cellular Localization of a Corticotropin-Releasing Hormone-Type Neuropeptide in an Echinoderm. Neuroendocrinology 2023; 113:231-250. [PMID: 33965952 DOI: 10.1159/000517087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) mediates physiological responses to stressors in mammals by triggering pituitary secretion of adrenocorticotropic hormone, which stimulates adrenal release of cortisol. CRH belongs to a family of related neuropeptides that include sauvagine, urotensin-I, and urocortins in vertebrates and the diuretic hormone DH44 in insects, indicating that the evolutionary origin of this neuropeptide family can be traced to the common ancestor of the Bilateria. However, little is known about CRH-type neuropeptides in deuterostome invertebrates. METHODS Here, we used mass spectrometry, mRNA in situ hybridization, and immunohistochemistry to investigate the structure and expression of a CRH-type neuropeptide (ArCRH) in the starfish Asterias rubens (phylum Echinodermata). RESULTS ArCRH is a 40-residue peptide with N-terminal pyroglutamylation and C-terminal amidation, and it has a widespread pattern of expression in A. rubens. In the central nervous system comprising the circumoral nerve ring and 5 radial nerve cords, ArCRH-expressing cells and fibres were revealed in both the ectoneural region and the hyponeural region, which contains the cell bodies of motoneurons. Accordingly, ArCRH immunoreactivity was detected in innervation of the ampulla and podium of locomotory organs (tube feet), and ArCRH is the first neuropeptide to be identified as a marker for nerve fibres located in the muscle layer of these organs. ArCRH immunoreactivity was also revealed in protractile organs that mediate gas exchange (papulae), the apical muscle, and the digestive system. CONCLUSIONS Our findings provide the first insights into CRH-type neuropeptide expression and function in the unique context of the pentaradially symmetrical body plan of an echinoderm.
Collapse
Affiliation(s)
- Weigang Cai
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Michaela Egertová
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
36
|
Hedgehog-mediated gut-taste neuron axis controls sweet perception in Drosophila. Nat Commun 2022; 13:7810. [PMID: 36535958 PMCID: PMC9763350 DOI: 10.1038/s41467-022-35527-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Dietary composition affects food preference in animals. High sugar intake suppresses sweet sensation from insects to humans, but the molecular basis of this suppression is largely unknown. Here, we reveal that sugar intake in Drosophila induces the gut to express and secrete Hedgehog (Hh) into the circulation. We show that the midgut secreted Hh localize to taste sensilla and suppresses sweet sensation, perception, and preference. We further find that the midgut Hh inhibits Hh signalling in the sweet taste neurons. Our electrophysiology studies demonstrate that the midgut Hh signal also suppresses bitter taste and some odour responses, affecting overall food perception and preference. We further show that the level of sugar intake during a critical window early in life, sets the adult gut Hh expression and sugar perception. Our results together reveal a bottom-up feedback mechanism involving a "gut-taste neuron axis" that regulates food sensation and preference.
Collapse
|
37
|
Yoon S, Shin M, Shim J. Inter-organ regulation by the brain in Drosophila development and physiology. J Neurogenet 2022:1-13. [DOI: 10.1080/01677063.2022.2137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Sunggyu Yoon
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Mingyu Shin
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Jiwon Shim
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Science, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Malita A, Kubrak O, Koyama T, Ahrentløv N, Texada MJ, Nagy S, Halberg KV, Rewitz K. A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. Nat Metab 2022; 4:1532-1550. [PMID: 36344765 PMCID: PMC9684077 DOI: 10.1038/s42255-022-00672-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Animals must adapt their dietary choices to meet their nutritional needs. How these needs are detected and translated into nutrient-specific appetites that drive food-choice behaviours is poorly understood. Here we show that enteroendocrine cells of the adult female Drosophila midgut sense nutrients and in response release neuropeptide F (NPF), which is an ortholog of mammalian neuropeptide Y-family gut-brain hormones. Gut-derived NPF acts on glucagon-like adipokinetic hormone (AKH) signalling to induce sugar satiety and increase consumption of protein-rich food, and on adipose tissue to promote storage of ingested nutrients. Suppression of NPF-mediated gut signalling leads to overconsumption of dietary sugar while simultaneously decreasing intake of protein-rich yeast. Furthermore, gut-derived NPF has a female-specific function in promoting consumption of protein-containing food in mated females. Together, our findings suggest that gut NPF-to-AKH signalling modulates specific appetites and regulates food choice to ensure homeostatic consumption of nutrients, providing insight into the hormonal mechanisms that underlie nutrient-specific hungers.
Collapse
Affiliation(s)
- Alina Malita
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Olga Kubrak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nadja Ahrentløv
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
39
|
De Backer JF, Grunwald Kadow IC. A role for glia in cellular and systemic metabolism: insights from the fly. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100947. [PMID: 35772690 DOI: 10.1016/j.cois.2022.100947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Excitability and synaptic transmission make neurons high-energy consumers. However, neurons do not store carbohydrates or lipids. Instead, they need support cells to fuel their metabolic demands. This role is assumed by glia, both in vertebrates and invertebrates. Many questions remain regarding the coupling between neuronal activity and energy demand on the one hand, and nutrient supply by glia on the other hand. Here, we review recent advances showing that fly glia, similar to their role in vertebrates, fuel neurons in times of high energetic demand, such as during memory formation and long-term storage. Vertebrate glia also play a role in the modulation of neurons, their communication, and behavior, including food search and feeding. We discuss recent literature pointing to similar roles of fly glia in behavior and metabolism.
Collapse
Affiliation(s)
- Jean-François De Backer
- Technical University of Munich, School of Life Sciences, Liesel-Beckmann-Str. 4, 85354 Freising, Germany; University of Bonn, Faculty of Medicine, UKB, Institute of Physiology II, Nussallee 11, 53115 Bonn, Germany
| | - Ilona C Grunwald Kadow
- Technical University of Munich, School of Life Sciences, Liesel-Beckmann-Str. 4, 85354 Freising, Germany; University of Bonn, Faculty of Medicine, UKB, Institute of Physiology II, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
40
|
Suh GSB, Yu K, Kim YJ, Oh Y, Park JJ. History of Drosophila neurogenetic research in South Korea. J Neurogenet 2022:1-7. [PMID: 36165786 DOI: 10.1080/01677063.2022.2115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Neurogenetic research using the Drosophila model has immensely expanded around the world. Likewise, scientists in South Korea have leveraged the advantages of Drosophila genetic tools to understand various neurobiological processes. In this special issue, we will overview the history of Drosophila neurogenetic research in South Korea that led to significant discoveries and notably implications. We will describe how Drosophila system was first introduced to elevate neural developmental studies in 1990s. Establishing Drosophila-related resources has been a key venture, which led to the generation of over 100,000 mutant lines and the launch of the K-Gut initiative with Korea Drosophila Research Center (KDRC). These resources have supported the pioneer studies in modeling human disease and understanding genes and neural circuits that regulate animal behavior and physiology.
Collapse
Affiliation(s)
- Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kweon Yu
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Metabolism and Neurophysiology Research Group, Daejeon, Republic of Korea
| | - Young-Joon Kim
- Department of Biological Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yangkyun Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Joong-Jean Park
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
41
|
Strilbytska O, Semaniuk U, Bubalo V, Storey KB, Lushchak O. Dietary Choice Reshapes Metabolism in Drosophila by Affecting Consumption of Macronutrients. Biomolecules 2022; 12:biom12091201. [PMID: 36139040 PMCID: PMC9496580 DOI: 10.3390/biom12091201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The precise regulation of metabolism and feeding behavior is important for preventing the development of metabolic diseases. Here we examine the effects on Drosophila metabolism of dietary choice. These changes are predicted to be dependent on both the quantity and quality of the chosen diet. Using a geometric framework for both no-choice and two-choice conditions, we found that feeding decisions led to higher glucose and trehalose levels but lower triglycerides pools. The feeding regimens had similar strategies for macronutrient balancing, and both maximized hemolymph glucose and glycogen content under low protein intake. In addition, the flies showed significant differences in the way they regulated trehalose and triglyceride levels in response to carbohydrate and protein consumption between choice and no-choice nutrition. Under choice conditions, trehalose and triglyceride levels were maximized at the lowest protein and carbohydrate consumption. Thus, we suggest that these changes in carbohydrate and lipid metabolism are caused by differences in the macronutrients consumed by flies. Food choice elicits rapid metabolic changes to maintain energy homeostasis. These results contribute to our understanding of how metabolism is regulated by the revealed nutrient variation in response to food decisions.
Collapse
Affiliation(s)
- Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Street, 76018 Ivano-Frankivsk, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Street, 76018 Ivano-Frankivsk, Ukraine
| | - Volodymyr Bubalo
- Laboratory of Experimental Toxicology and Mutagenesis, L.I. Medved’s Research Center of Preventive Toxicology, Food and Chemical Safety, MHU, 03680 Kyiv, Ukraine
| | - Kenneth B. Storey
- Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Street, 76018 Ivano-Frankivsk, Ukraine
- Research and Development University, 13a Shota Rustaveli Street, 76018 Ivano-Frankivsk, Ukraine
- Correspondence:
| |
Collapse
|
42
|
Nässel DR, Zandawala M. Endocrine cybernetics: neuropeptides as molecular switches in behavioural decisions. Open Biol 2022; 12:220174. [PMID: 35892199 PMCID: PMC9326288 DOI: 10.1098/rsob.220174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plasticity in animal behaviour relies on the ability to integrate external and internal cues from the changing environment and hence modulate activity in synaptic circuits of the brain. This context-dependent neuromodulation is largely based on non-synaptic signalling with neuropeptides. Here, we describe select peptidergic systems in the Drosophila brain that act at different levels of a hierarchy to modulate behaviour and associated physiology. These systems modulate circuits in brain regions, such as the central complex and the mushroom bodies, which supervise specific behaviours. At the top level of the hierarchy there are small numbers of large peptidergic neurons that arborize widely in multiple areas of the brain to orchestrate or modulate global activity in a state and context-dependent manner. At the bottom level local peptidergic neurons provide executive neuromodulation of sensory gain and intrinsically in restricted parts of specific neuronal circuits. The orchestrating neurons receive interoceptive signals that mediate energy and sleep homeostasis, metabolic state and circadian timing, as well as external cues that affect food search, aggression or mating. Some of these cues can be triggers of conflicting behaviours such as mating versus aggression, or sleep versus feeding, and peptidergic neurons participate in circuits, enabling behaviour choices and switches.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland Würzburg 97074, Germany
| |
Collapse
|
43
|
Dhakal S, Ren Q, Liu J, Akitake B, Tekin I, Montell C, Lee Y. Drosophila TRPg is required in neuroendocrine cells for post-ingestive food selection. eLife 2022; 11:56726. [PMID: 35416769 PMCID: PMC9068209 DOI: 10.7554/elife.56726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanism through which the brain senses the metabolic state, enabling an animal to regulate food consumption, and discriminate between nutritional and non-nutritional foods is a fundamental question. Flies choose the sweeter non-nutritive sugar, L-glucose, over the nutritive D-glucose if they are not starved. However, under starvation conditions, they switch their preference to D-glucose, and this occurs independent of peripheral taste neurons. Here, we found that eliminating the TRPγ channel impairs the ability of starved flies to choose D-glucose. This food selection depends on trpγ expression in neurosecretory cells in the brain that express Diuretic hormone 44 (DH44). Loss of trpγ increases feeding, alters the physiology of the crop, which is the fly stomach equivalent, and decreases intracellular sugars and glycogen levels. Moreover, survival of starved trpγ flies is reduced. Expression of trpγ in DH44 neurons reverses these deficits. These results highlight roles for TRPγ in coordinating feeding with the metabolic state through expression in DH44 neuroendocrine cells.
Collapse
Affiliation(s)
- Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| | - Qiuting Ren
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jiangqu Liu
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Bradley Akitake
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Izel Tekin
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Youngseok Lee
- Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Cui X, Gruzdeva A, Kim H, Yapici N. Of flies, mice and neural control of food intake: lessons to learn from both models. Curr Opin Neurobiol 2022; 73:102531. [PMID: 35390643 PMCID: PMC9167741 DOI: 10.1016/j.conb.2022.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
In her book, A Room of One's Own, the famous author Virginia Woolf writes "One cannot think well, love well, sleep well if one has not dined well". This is true. All animals need to forage for food and consume specific nutrients to maintain their physiological homeostasis, maximize their fitness and their reproduction. After decades of research in humans and many model organisms, we now know that our brain is one of the key players that control what, when, and how much we eat. In this review, we discuss the recent literature on neural control of food intake behaviors in mice and flies with the view that these two model organisms complement one another in efforts to uncover conserved principles brains use to regulate energy metabolism and food ingestion.
Collapse
Affiliation(s)
- Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Anna Gruzdeva
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
45
|
Nässel DR, Wu SF. Cholecystokinin/sulfakinin peptide signaling: conserved roles at the intersection between feeding, mating and aggression. Cell Mol Life Sci 2022; 79:188. [PMID: 35286508 PMCID: PMC8921109 DOI: 10.1007/s00018-022-04214-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Neuropeptides are the most diverse messenger molecules in metazoans and are involved in regulation of daily physiology and a wide array of behaviors. Some neuropeptides and their cognate receptors are structurally and functionally well conserved over evolution in bilaterian animals. Among these are peptides related to gastrin and cholecystokinin (CCK). In mammals, CCK is produced by intestinal endocrine cells and brain neurons, and regulates gall bladder contractions, pancreatic enzyme secretion, gut functions, satiety and food intake. Additionally, CCK plays important roles in neuromodulation in several brain circuits that regulate reward, anxiety, aggression and sexual behavior. In invertebrates, CCK-type peptides (sulfakinins, SKs) are, with a few exceptions, produced by brain neurons only. Common among invertebrates is that SKs mediate satiety and regulate food ingestion by a variety of mechanisms. Also regulation of secretion of digestive enzymes has been reported. Studies of the genetically tractable fly Drosophila have advanced our understanding of SK signaling mechanisms in regulation of satiety and feeding, but also in gustatory sensitivity, locomotor activity, aggression and reproductive behavior. A set of eight SK-expressing brain neurons plays important roles in regulation of these competing behaviors. In males, they integrate internal state and external stimuli to diminish sex drive and increase aggression. The same neurons also diminish sugar gustation, induce satiety and reduce feeding. Although several functional roles of CCK/SK signaling appear conserved between Drosophila and mammals, available data suggest that the underlying mechanisms differ.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Shun-Fan Wu
- College of Plant Protection/Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
46
|
Medina A, Bellec K, Polcowñuk S, Cordero JB. Investigating local and systemic intestinal signalling in health and disease with Drosophila. Dis Model Mech 2022; 15:274860. [PMID: 35344037 PMCID: PMC8990086 DOI: 10.1242/dmm.049332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Whole-body health relies on complex inter-organ signalling networks that enable organisms to adapt to environmental perturbations and to changes in tissue homeostasis. The intestine plays a major role as a signalling centre by producing local and systemic signals that are relayed to the body and that maintain intestinal and organismal homeostasis. Consequently, disruption of intestinal homeostasis and signalling are associated with systemic diseases and multi-organ dysfunction. In recent years, the fruit fly Drosophila melanogaster has emerged as a prime model organism to study tissue-intrinsic and systemic signalling networks of the adult intestine due to its genetic tractability and functional conservation with mammals. In this Review, we highlight Drosophila research that has contributed to our understanding of how the adult intestine interacts with its microenvironment and with distant organs. We discuss the implications of these findings for understanding intestinal and whole-body pathophysiology, and how future Drosophila studies might advance our knowledge of the complex interplay between the intestine and the rest of the body in health and disease. Summary: We outline work in the fruit fly Drosophila melanogaster that has contributed knowledge on local and whole-body signalling coordinated by the adult intestine, and discuss its implications in intestinal pathophysiology and associated systemic dysfunction.
Collapse
Affiliation(s)
- Andre Medina
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karen Bellec
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Sofia Polcowñuk
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Julia B Cordero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
47
|
Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23052694. [PMID: 35269834 PMCID: PMC8910450 DOI: 10.3390/ijms23052694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Nutrient-sensing mechanisms in animals' sense available nutrients to generate a physiological regulatory response involving absorption, digestion, and regulation of food intake and to maintain glucose and energy homeostasis. During nutrient sensing via the gastrointestinal tract, nutrients interact with receptors on the enteroendocrine cells in the gut, which in return respond by secreting various hormones. Sensing of nutrients by the gut plays a critical role in transmitting food-related signals to the brain and other tissues informing the composition of ingested food to digestive processes. These signals modulate feeding behaviors, food intake, metabolism, insulin secretion, and energy balance. The increasing significance of fly genetics with the availability of a vast toolbox for studying physiological function, expression of chemosensory receptors, and monitoring the gene expression in specific cells of the intestine makes the fly gut the most useful tissue for studying the nutrient-sensing mechanisms. In this review, we emphasize on the role of Drosophila gut in nutrient-sensing to maintain metabolic homeostasis and gut-brain cross talk using endocrine and neuronal signaling pathways stimulated by internal state or the consumption of various dietary nutrients. Overall, this review will be useful in understanding the post-ingestive nutrient-sensing mechanisms having a physiological and pathological impact on health and diseases.
Collapse
|
48
|
Lin HH, Kuang MC, Hossain I, Xuan Y, Beebe L, Shepherd AK, Rolandi M, Wang JW. A nutrient-specific gut hormone arbitrates between courtship and feeding. Nature 2022; 602:632-638. [PMID: 35140404 PMCID: PMC9271372 DOI: 10.1038/s41586-022-04408-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Abstract
Animals must set behavioural priority in a context-dependent manner and switch from one behaviour to another at the appropriate moment1-3. Here we probe the molecular and neuronal mechanisms that orchestrate the transition from feeding to courtship in Drosophila melanogaster. We find that feeding is prioritized over courtship in starved males, and the consumption of protein-rich food rapidly reverses this order within a few minutes. At the molecular level, a gut-derived, nutrient-specific neuropeptide hormone-Diuretic hormone 31 (Dh31)-propels a switch from feeding to courtship. We further address the underlying kinetics with calcium imaging experiments. Amino acids from food acutely activate Dh31+ enteroendocrine cells in the gut, increasing Dh31 levels in the circulation. In addition, three-photon functional imaging of intact flies shows that optogenetic stimulation of Dh31+ enteroendocrine cells rapidly excites a subset of brain neurons that express Dh31 receptor (Dh31R). Gut-derived Dh31 excites the brain neurons through the circulatory system within a few minutes, in line with the speed of the feeding-courtship behavioural switch. At the circuit level, there are two distinct populations of Dh31R+ neurons in the brain, with one population inhibiting feeding through allatostatin-C and the other promoting courtship through corazonin. Together, our findings illustrate a mechanism by which the consumption of protein-rich food triggers the release of a gut hormone, which in turn prioritizes courtship over feeding through two parallel pathways.
Collapse
Affiliation(s)
- Hui-Hao Lin
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Meihua Christina Kuang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Imran Hossain
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Yinan Xuan
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Laura Beebe
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Andrew K Shepherd
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
49
|
Yao Z, Scott K. Serotonergic neurons translate taste detection into internal nutrient regulation. Neuron 2022; 110:1036-1050.e7. [PMID: 35051377 DOI: 10.1016/j.neuron.2021.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/26/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
The nervous and endocrine systems coordinately monitor and regulate nutrient availability to maintain energy homeostasis. Sensory detection of food regulates internal nutrient availability in a manner that anticipates food intake, but sensory pathways that promote anticipatory physiological changes remain unclear. Here, we identify serotonergic (5-HT) neurons as critical mediators that transform gustatory detection by sensory neurons into the activation of insulin-producing cells and enteric neurons in Drosophila. One class of 5-HT neurons responds to gustatory detection of sugars, excites insulin-producing cells, and limits consumption, suggesting that they anticipate increased nutrient levels and prevent overconsumption. A second class of 5-HT neurons responds to gustatory detection of bitter compounds and activates enteric neurons to promote gastric motility, likely to stimulate digestion and increase circulating nutrients upon food rejection. These studies demonstrate that 5-HT neurons relay acute gustatory detection to divergent pathways for longer-term stabilization of circulating nutrients.
Collapse
Affiliation(s)
- Zepeng Yao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
50
|
The Statin Target HMG-Coenzyme a Reductase (Hmgcr) Regulates Sleep Homeostasis in Drosophila. Pharmaceuticals (Basel) 2022; 15:ph15010079. [PMID: 35056136 PMCID: PMC8781969 DOI: 10.3390/ph15010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Statins, HMG Coenzyme A Reductase (HMGCR) inhibitors, are a first-line therapy, used to reduce hypercholesterolemia and the risk for cardiovascular events. While sleep disturbances are recognized as a side-effect of statin treatment, the impact of statins on sleep is under debate. Using Drosophila, we discovered a novel role for Hmgcr in sleep modulation. Loss of pan-neuronal Hmgcr expression affects fly sleep behavior, causing a decrease in sleep latency and an increase in sleep episode duration. We localized the pars intercerebralis (PI), equivalent to the mammalian hypothalamus, as the region within the fly brain requiring Hmgcr activity for proper sleep maintenance. Lack of Hmgcr expression in the PI insulin-producing cells recapitulates the sleep effects of pan-neuronal Hmgcr knockdown. Conversely, loss of Hmgcr in a different PI subpopulation, the corticotropin releasing factor (CRF) homologue-expressing neurons (DH44 neurons), increases sleep latency and decreases sleep duration. The requirement for Hmgcr activity in different neurons signifies its importance in sleep regulation. Interestingly, loss of Hmgcr in the PI does not affect circadian rhythm, suggesting that Hmgcr regulates sleep by pathways distinct from the circadian clock. Taken together, these findings suggest that Hmgcr activity in the PI is essential for proper sleep homeostasis in flies.
Collapse
|