1
|
Albert-Lyons R, Desrochers SS, Fengler C, Nautiyal KM. Fractionating impulsivity and reward-related phenotypes in adolescent mice. Behav Brain Res 2025; 480:115396. [PMID: 39681176 DOI: 10.1016/j.bbr.2024.115396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Adolescence is a developmental period characterized by changes in the brain and behavior, including heightened reward seeking, increased impulsivity, and elevated risk-taking behavior. It is also a sensitive period for the development of a number of behavioral and psychiatric disorders associated with pathological phenotypes of reward processing and impulsivity. Landmark human studies are charting the development of impulsivity and other reward-related phenotypes to identify the facets and timecourse of the adolescent phenotype. Collecting similar data from mice is important to enable molecular, cellular, and circuit-level interrogation of adolescent maturation of reward, motivation, and impulsive behavior. These complex phenotypes have traditionally been difficult to assay in adolescent mice. Here, using a combination of approaches including homecage testing, we tested a number of facets of reward seeking, impulsivity, motivation, and incentive salience attribution during adolescent development. We found that adolescent mice show increased reward seeking, impulsive action, and motivation. Interestingly, we found no effect of adolescence on impulsive choice, sign-tracking, reward-learning, or conditioned reinforcement. Overall, our studies set the stage for approaches to study multi-faceted phenotypes related to impulsivity and other reward-related behaviors in adolescent mice to examine the developmental trajectories of brain and behavior.
Collapse
Affiliation(s)
- Ruth Albert-Lyons
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA
| | - Stephanie S Desrochers
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA
| | - Catherine Fengler
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA
| | - Katherine M Nautiyal
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA.
| |
Collapse
|
2
|
Sbeglia C, Simmons C, Icenogle G, Levick M, Peniche M, Beardslee J, Cauffman E. Life after life: Recidivism among individuals formerly sentenced to mandatory juvenile life without parole. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2025; 35:e12989. [PMID: 38845089 PMCID: PMC11758475 DOI: 10.1111/jora.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/21/2024] [Indexed: 01/25/2025]
Abstract
In Miller v. Alabama (2012), the Supreme Court abolished mandatory juvenile life without parole (JLWOP) sentences and subsequently decided that the ruling applied retroactively (Montgomery v. Louisiana, 2016), effectively rendering thousands of inmates eligible for resentencing and potential release from prison. In its decisions, the Court cited developmental science, noting that youth, by virtue of their transient immaturity, are less culpable and more amenable to rehabilitation relative to their adult counterparts. Specifically, the Court notes adolescents' propensity for impulsive action, sensitivity to social influence, and difficulty understanding long-term consequences. Even so, these rulings raised concerns regarding the consequences of releasing prisoners who had committed heinous crimes as juveniles. Several years after the Court's decision, preliminary data are now available to shed light on rates of recidivism among those released. The current paper comprises three goals. First, we discuss the science of adolescent development and how it intersects with legal practice, contextualizing the Court's decision. Second, we present recidivism data from a sample of individuals formerly sentenced to JLWOP in Pennsylvania who were resentenced and released under Miller and Montgomery (N = 287). Results indicate that 15 individuals received new criminal charges up to 7 years postrelease (5.2%), the majority of which were nonviolent offenses. This low rate of recidivism is consistent with the developmental science documenting compromised decision-making during the adolescent years, followed by desistance from criminal behavior in adulthood. Lastly, we discuss the importance of interdisciplinary collaborations between researchers and legal practitioners, as well as critical future avenues of research in this area.
Collapse
Affiliation(s)
| | | | - Grace Icenogle
- Washington State Department of Children, Youth, and FamiliesWashingtonUSA
| | | | | | | | | |
Collapse
|
3
|
Schaaf JV, Miletić S, van Duijvenvoorde ACK, Huizenga HM. Interpretation of individual differences in computational neuroscience using a latent input approach. Dev Cogn Neurosci 2025; 72:101512. [PMID: 39854872 DOI: 10.1016/j.dcn.2025.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Computational neuroscience offers a valuable opportunity to understand the neural mechanisms underlying behavior. However, interpreting individual differences in these mechanisms, such as developmental differences, is less straightforward. We illustrate this challenge through studies that examine individual differences in reinforcement learning. In these studies, a computational model generates an individual-specific prediction error regressor to model activity in a brain region of interest. Individual differences in the resulting regression weight are typically interpreted as individual differences in neural coding. We first demonstrate that the absence of individual differences in neural coding is not problematic, as such differences are already captured in the individual specific regressor. We then review that the presence of individual differences is typically interpreted as individual differences in the use of brain resources. However, through simulations, we illustrate that these differences could also stem from other factors such as the standardization of the prediction error, individual differences in brain networks outside the region of interest, individual differences in the duration of the prediction error response, individual differences in outcome valuation, and in overlooked individual differences in computational model parameters or the type of computational model. To clarify these interpretations, we provide several recommendations. In this manner we aim to advance the understanding and interpretation of individual differences in computational neuroscience.
Collapse
Affiliation(s)
- Jessica V Schaaf
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Steven Miletić
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, the Netherlands; Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, the Netherlands.
| | - Anna C K van Duijvenvoorde
- Developmental and Educational Psychology Unit, Institute of Psychology, Leiden University, the Netherlands.
| | - Hilde M Huizenga
- Department of Developmental Psychology, University of Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Lloyd A, McKay R, Furl N. Stochastic decisions support optimal foraging of volatile environments, and are disrupted by anxiety. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025:10.3758/s13415-024-01256-y. [PMID: 39789398 DOI: 10.3758/s13415-024-01256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
Adolescence is a developmental period of relative volatility, where the individual experiences significant changes to their physical and social environment. The ability to adapt to the volatility of one's surroundings is an important cognitive ability, particularly while foraging, a near-ubiquitous behaviour across the animal kingdom. As adolescents experience more volatility in their surroundings, we predicted that this age group would be more adept than adults at using exploration to adjust to volatility. We employed a foraging task with a well-validated computational model to characterise the mechanisms of exploration in volatile environments, preregistering the hypothesis that adolescents (aged 16-17; N = 91) would exhibit more optimal adaptation of their learning rate to changes in environmental volatility compared with adults (aged 24+; N = 90). However, surprisingly, both adolescents and adults exhibited suboptimal adjustment of their learning rate to environmental volatility. In contrast to the learning rate, it was instead participants' stochasticity (i.e., decision variability) that better resembled the adjustment to volatility made by the optimal RL agent. Although heightened stochasticity in the volatile environment led participants to more often trial different responses that facilitated discovery of changes to the environment, we also found that anxiety impaired this adaptive ability. The finding of heightened stochasticity in volatile environments contradicts expectations that the learning rate is responsible for successful adaptation and motivates future work on the deleterious role that anxiety plays when adolescents manage periods of transition.
Collapse
Affiliation(s)
- Alex Lloyd
- Clinical, Educational and Health Psychology, Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP, UK.
- Department of Psychology, Royal Holloway, University of London, London, UK.
| | - Ryan McKay
- Department of Psychology, Royal Holloway, University of London, London, UK
| | - Nicholas Furl
- Department of Psychology, Royal Holloway, University of London, London, UK
| |
Collapse
|
5
|
Casey BJ, Lin YC, Meyer HC. Examining threat responses through a developmental lens. Cereb Cortex 2025; 35:19-33. [PMID: 39562146 DOI: 10.1093/cercor/bhae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Adolescence has been characterized by risk taking and fearlessness. Yet, the emergence of anxiety disorders that are associated with fear peaks during this developmental period. Moreover, adolescents show heightened sensitivity to stress relative to children and adults. To address inconsistencies between the common characterization of adolescents as fearless and the evidence of heightened anxiety and stress during this time, we build upon foundational discoveries of threat-related circuitry and behavior in adult rodents by Joseph LeDoux and colleagues. Specifically, the conservation of this circuitry across species has provided opportunities for identifying mechanisms underlying threat responses that we have extended to developing humans and rodents. We elucidate situations in which adolescents show heightened threat responses and others where they appear fearless and link them to developmental changes of threat circuitry during this period. We discuss the potential adaptiveness of these threat responses for survival of the individual and species but also the potential risks for anxiety and stress. We end by offering potential new ways in which behavioral treatments for youth with anxiety and stress-related disorders may be optimized to target the developing vs developed brain.
Collapse
Affiliation(s)
- B J Casey
- Department of Neuroscience and Behavior, Barnard College-Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Yen-Chu Lin
- Department of Neuroscience and Behavior, Barnard College-Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Heidi C Meyer
- Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215, United States
| |
Collapse
|
6
|
Do KT, Paolizzi SG, Hallquist MN. How adolescents learn to build social bonds: A developmental computational account of social explore-exploit decision-making. Dev Cogn Neurosci 2024; 69:101415. [PMID: 39089173 PMCID: PMC11342119 DOI: 10.1016/j.dcn.2024.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 08/03/2024] Open
Abstract
Building social bonds is a critical task of adolescence that affords opportunities for learning, identity formation, and social support. Failing to develop close relationships in adolescence hinders adult interpersonal functioning and contributes to problems such as loneliness and depression. During adolescence, increased reward sensitivity and greater social flexibility both contribute to healthy social development, yet we lack a clear theory of how these processes interact to support social functioning. Here, we propose synthesizing these two literatures using a computational reinforcement learning framework that recasts how adolescents pursue and learn from social rewards as a social explore-exploit problem. To become socially skilled, adolescents must balance both their efforts to form individual bonds within specific groups and manage memberships across multiple groups to maximize access to social resources. We draw on insights from sociological studies on social capital in collective networks and neurocognitive research on foraging and cooperation to describe the social explore-exploit dilemma faced by adolescents navigating a modern world with increasing access to diverse resources and group memberships. Our account provides important new directions for examining the dynamics of adolescent behavior in social groups and understanding how social value computations can support positive relationships into adulthood.
Collapse
Affiliation(s)
- Kathy T Do
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States.
| | - Sophie G Paolizzi
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States
| | - Michael N Hallquist
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States
| |
Collapse
|
7
|
Kudaravalli R, Kathios N, Loui P, Davidow JY. Revisiting the musical reminiscence bump: insights from neurocognitive and social brain development in adolescence. Front Psychol 2024; 15:1472767. [PMID: 39411555 PMCID: PMC11473360 DOI: 10.3389/fpsyg.2024.1472767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Music listening is enjoyed across the lifespan and around the world. This has spurred many theories on the evolutionary purpose of music. The Music for Social Bonding hypothesis posits that the human capacity to make music evolved for the purpose of creating and preserving relationships between one another. Considering different time periods of music use across the lifespan, adolescence is especially a period of social reorientation away from family towards peers, characterized by new social bonds and increased prosocial behavior. This shift is accompanied by notable structural and functional changes in brain networks supporting reward processing and prosocial behavior. Reviewing the extant literature on developmental cognitive neuroscience and adolescent music use, we propose that neurocognitive changes in the reward system make adolescence an ideal developmental time window for investigating interactions between prosocial behavior and reward processing, as adolescence constitutes a time of relative increase in music reward valuation. Testing this hypothesis may clarify our understanding of developmental trajectories in music reward valuation, and offer insights into why music from adults' adolescence holds a great deal of personal significance.
Collapse
Affiliation(s)
| | - Nicholas Kathios
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Psyche Loui
- Department of Music, Northeastern University, Boston, MA, United States
| | - Juliet Y. Davidow
- Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
8
|
Ding Z, Li W, Chen C, Yang Z, Wang S, Xu J, Liu X, Zhang M. The effect of choice on memory across development. J Exp Child Psychol 2024; 246:105982. [PMID: 38879930 DOI: 10.1016/j.jecp.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
Numerous studies have demonstrated the role of making choices as an internal motivator to improve performance, and recent studies in the domain of memory have focused on adults. To chart the developmental trend of the choice effect on memory, we conducted a series of seven experiments involving children, adolescents, and young adults. Participants (N = 512) aged 5 to 26 years performed a choice encoding task that manipulated the opportunities to choose and then took a memory test. Using different types of experimental materials and corroborated by a mini meta-analysis, we found that the choice effect on memory was significant in childhood and early adolescence but not significant in late adolescence and early adulthood. The developmental changes were statistically significant, particularly evident during the transition from early to late adolescence. These findings suggest that the internal value of choice decreases across development and contributes to our understanding of developmental differences in the role of choice in memory.
Collapse
Affiliation(s)
- Zhuolei Ding
- Faculty of Education, Beijing Normal University, Beijing 100875, China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqing Li
- Facuty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Chuansheng Chen
- School of Social Ecology, University of California, Irvine, Irvine, CA 92617, USA
| | - Zhong Yang
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310030, China
| | - Songxue Wang
- Department of Applied Psychology, Faculty of Social and Public Management, Guangdong Baiyun University, Guangdong 510450, China
| | - Juanjuan Xu
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xun Liu
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingxia Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Rosenberg BM, Moreira JFG, Leal ASM, Saragosa-Harris NM, Gaines E, Meredith WJ, Waizman Y, Ninova E, Silvers JA. Functional connectivity between the nucleus accumbens and amygdala underlies avoidance learning during adolescence: Implications for developmental psychopathology. Dev Psychopathol 2024:1-13. [PMID: 39324228 DOI: 10.1017/s095457942400141x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
BACKGROUND Reward and threat processes work together to support adaptive learning during development. Adolescence is associated with increasing approach behavior (e.g., novelty-seeking, risk-taking) but often also coincides with emerging internalizing symptoms, which are characterized by heightened avoidance behavior. Peaking engagement of the nucleus accumbens (NAcc) during adolescence, often studied in reward paradigms, may also relate to threat mechanisms of adolescent psychopathology. METHODS 47 typically developing adolescents (9.9-22.9 years) completed an aversive learning task during functional magnetic resonance imaging, wherein visual cues were paired with an aversive sound or no sound. Task blocks involved an escapable aversively reinforced stimulus (CS+r), the same stimulus without reinforcement (CS+nr), or a stimulus that was never reinforced (CS-). Parent-reported internalizing symptoms were measured using Revised Child Anxiety and Depression Scales. RESULTS Functional connectivity between the NAcc and amygdala differentiated the stimuli, such that connectivity increased for the CS+r (p = .023) but not for the CS+nr and CS-. Adolescents with greater internalizing symptoms demonstrated greater positive functional connectivity for the CS- (p = .041). CONCLUSIONS Adolescents show heightened NAcc-amygdala functional connectivity during escape from threat. Higher anxiety and depression symptoms are associated with elevated NAcc-amygdala connectivity during safety, which may reflect poor safety versus threat discrimination.
Collapse
Affiliation(s)
- Benjamin M Rosenberg
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - João F Guassi Moreira
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Adriana S Méndez Leal
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | - Elizabeth Gaines
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wesley J Meredith
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yael Waizman
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Emilia Ninova
- College of Social Work, Florida State University, Tallahassee, FL, USA
| | - Jennifer A Silvers
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
10
|
Bains A, Barber A, Nell T, Ripollés P, Krishnan S. The role of intrinsic reward in adolescent word learning. Dev Sci 2024; 27:e13513. [PMID: 38685611 DOI: 10.1111/desc.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Relatively little work has focused on why we are motivated to learn words. In adults, recent experiments have shown that intrinsic reward signals accompany successful word learning from context. In addition, the experience of reward facilitated long-term memory for words. In adolescence, developmental changes are seen in reward and motivation systems as well as in reading and language systems. Here, in the face of this developmental change, we ask whether adolescents experience reward from word learning, and how the reward and memory benefit seen in adults is modulated by age. We used a naturalistic reading paradigm, which involved extracting novel word meanings from sentence context without the need for explicit feedback. By exploring ratings of enjoyment during the learning phase, as well as recognition memory for words a day later, we assessed whether adolescents show the same reward and learning patterns as adults. We tested 345 children between the ages of 10-18 (N > 84 in each 2-year age-band) using this paradigm. We found evidence for our first prediction: children aged 10-18 report greater enjoyment for successful word learning. However, we did not find evidence for age-related change in this developmental period, or memory benefits. This work gives us greater insight into the process of language acquisition and sets the stage for further investigations of intrinsic reward in typical and atypical development. RESEARCH HIGHLIGHTS: We constantly learn words from context, even in the absence of explicit rewards or feedback. In adults, intrinsic reward experienced during word learning is linked to a dopaminergic circuit in the brain, which also fuels enhancements in memory for words. We find adolescents also report enhanced reward or enjoyment when they successfully learn words from sentence context. The relationship between reward and learning is maintained between the ages of 10 and 18. Unlike in adults, we did not observe ensuing memory benefits.
Collapse
Affiliation(s)
- Amrita Bains
- Department of Psychology, Royal Holloway, University of London, Egham Hill, UK
| | - Annaliese Barber
- Department of Psychology, Royal Holloway, University of London, Egham Hill, UK
| | - Tau Nell
- Department of Psychology, Royal Holloway, University of London, Egham Hill, UK
| | - Pablo Ripollés
- Department of Psychology, New York University, New York, New York, USA
- Music and Audio Research Lab (MARL), New York University, New York, New York, USA
- Center for Language, Music and Emotion (CLaME), New York University, Max-Planck Institute, New York, New York, USA
| | - Saloni Krishnan
- Department of Psychology, Royal Holloway, University of London, Egham Hill, UK
| |
Collapse
|
11
|
Uniacke B, van den Bos W, Wonderlich J, Ojeda J, Posner J, Steinglass JE, Foerde K. Altered learning from positive feedback in adolescents with anorexia nervosa. J Int Neuropsychol Soc 2024; 30:651-659. [PMID: 39291440 PMCID: PMC11773347 DOI: 10.1017/s1355617724000237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
OBJECTIVE Anorexia nervosa (AN) is characterized by severe restriction of calorie intake, which persists despite serious medical and psychological sequelae of starvation. Several prior studies have identified impaired feedback learning among individuals with AN, but whether it reflects a disturbance in learning from positive feedback (i.e., reward), negative feedback (i.e., punishment), or both, and the extent to which this impairment is related to severity and duration of illness, has not been clarified. METHOD Participants were female adolescents with AN (n = 76) and healthy teen volunteers (HC; n = 38) between the ages of 12-18 years who completed a probabilistic reinforcement learning task. A Bayesian reinforcement learning model was used to calculate separate learning rates for positive and negative feedback. Exploratory analyses examined associations between feedback learning and duration of illness, eating disorder severity, and self/parent reports of reward and punishment sensitivity. RESULTS Adolescents with AN had a significantly lower rate of learning from positive feedback relative to HC. Patients and HC did not differ in learning from negative feedback or on overall task performance measures. Feedback learning parameters were not significantly associated with duration of illness, eating disorder severity, or questionnaire-based reports of reward and punishment sensitivity. CONCLUSION Adolescents with AN showed a circumscribed deficit in learning from reward that was not associated with duration of illness or reported sensitivity to reward or punishment. Subsequent longitudinal research should explore whether differences in learning from positive feedback relate to course of illness in youth with AN.
Collapse
Affiliation(s)
- Blair Uniacke
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Wouter van den Bos
- Department of Psychology – Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
- Max Planck Institute for Human Development, Center for Adaptive Rationality, Berlin, Germany
| | - Joseph Wonderlich
- Sanford Center for Biobehavioral Research, Sanford Health, Fargo, ND, USA
| | - Jessica Ojeda
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | | | - Joanna E. Steinglass
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Karin Foerde
- Department of Psychology – Brain & Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Shi R, Xiang S, Jia T, Robbins TW, Kang J, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Lin X, Sahakian BJ, Feng J. Investigating grey matter volumetric trajectories through the lifespan at the individual level. Nat Commun 2024; 15:5954. [PMID: 39009591 PMCID: PMC11251262 DOI: 10.1038/s41467-024-50305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Adolescents exhibit remarkable heterogeneity in the structural architecture of brain development. However, due to limited large-scale longitudinal neuroimaging studies, existing research has largely focused on population averages, and the neurobiological basis underlying individual heterogeneity remains poorly understood. Here we identify, using the IMAGEN adolescent cohort followed up over 9 years (14-23 y), three groups of adolescents characterized by distinct developmental patterns of whole-brain gray matter volume (GMV). Group 1 show continuously decreasing GMV associated with higher neurocognitive performances than the other two groups during adolescence. Group 2 exhibit a slower rate of GMV decrease and lower neurocognitive performances compared with Group 1, which was associated with epigenetic differences and greater environmental burden. Group 3 show increasing GMV and lower baseline neurocognitive performances due to a genetic variation. Using the UK Biobank, we show these differences may be attenuated in mid-to-late adulthood. Our study reveals clusters of adolescent neurodevelopment based on GMV and the potential long-term impact.
Collapse
Grants
- U24 DA041147 NIDA NIH HHS
- U54 EB020403 NIBIB NIH HHS
- R56 AG058854 NIA NIH HHS
- MR/N000390/1 Medical Research Council
- MR/S020306/1 Medical Research Council
- R01 DA049238 NIDA NIH HHS
- MR/R00465X/1 Medical Research Council
- R01 MH085772 NIMH NIH HHS
- National Key R&D Program of China (No.2023YFE0199700 [to X.L.])
- the Medical Research Foundation and Medical Research Council (grants MR/R00465X/1 and MR/S020306/1 [to S.D.]), the National Institutes of Health (NIH) funded ENIGMA (grants 5U54EB020403-05 and 1R56AG058854-01 [to S.D.])
- NSFC grant 82150710554 and environMENTAL grant. Further support was provided by grants from: - the ANR (ANR-12-SAMA-0004, AAPG2019 - GeBra [to J.-L.M.]), the Eranet Neuron (AF12-NEUR0008-01 - WM2NA; and ANR-18-NEUR00002-01 - ADORe [to J.-L.M.]), the Fondation de France (00081242 [to J.-L.M.]), the Fondation pour la Recherche Médicale (DPA20140629802 [to J.-L.M.]), the Mission Interministérielle de Lutte-contre-les-Drogues-et-les-Conduites-Addictives (MILDECA [to J.-L.M.]), Paris Sud University IDEX 2012 [to J.-L.M.]
- the Assistance-Publique-Hôpitaux-de-Paris and INSERM (interface grant [to M.-L.P.M.]), the Fondation de l’Avenir (grant AP-RM-17-013 [to M.-L.P.M.])
- the Fédération pour la Recherche sur le Cerveau; the National Institutes of Health, Science Foundation Ireland (16/ERCD/3797 [to R.W.])
- the European Union-funded FP6 Integrated Project IMAGEN (Reinforcement-related behaviour in normal brain function and psychopathology) (LSHM-CT- 2007-037286 [to G.S.]), the Horizon 2020 funded ERC Advanced Grant ‘STRATIFY’ (Brain network based stratification of reinforcement-related disorders) (695313 [to G.S.]), Human Brain Project (HBP SGA 2, 785907, and HBP SGA 3, 945539 [to G.S.]), the Medical Research Council Grant 'c-VEDA’ (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1 [to G.S.]), the National Institute of Health (NIH) (R01DA049238 [to G.S.], A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers), the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, the Bundesministeriumfür Bildung und Forschung (BMBF grants 01GS08152; 01EV0711 [to G.S.]; Forschungsnetz AERIAL 01EE1406A, 01EE1406B; Forschungsnetz IMAC-Mind 01GL1745B [to G.S.]), the Deutsche Forschungsgemeinschaft (DFG grants SM 80/7-2, SFB 940, TRR 265, NE 1383/14-1 [to G.S.])
- National Key R&D Program of China (No.2019YFA0709502 [to J.F.], No.2018YFC1312904 [to J.F.]),No.2019YFA0709502 [to J.F.], No.2018YFC1312904 [to J.F.]), Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01 [to J.F.], ZJ Lab [to J.F.], and Shanghai Center for Brain Science and Brain-Inspired Technology [to J.F.]), the 111 Project (No.B18015 [to J.F.])
Collapse
Affiliation(s)
- Runye Shi
- School of Data Science, Fudan University, Shanghai, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China
- School of Psychology, University of Southampton, Southampton, UK
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Department of Child and Adolescent Psychiatry, AP-HP, Sorbonne Université, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Department of Psychiatry, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Xiaolei Lin
- School of Data Science, Fudan University, Shanghai, China.
- Huashan Institute of Medicine, Huashan Hospital affiliated to Fudan University, Shanghai, China.
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Jianfeng Feng
- School of Data Science, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
13
|
Falck J, Zhang L, Raffington L, Mohn JJ, Triesch J, Heim C, Shing YL. Hippocampus and striatum show distinct contributions to longitudinal changes in value-based learning in middle childhood. eLife 2024; 12:RP89483. [PMID: 38953517 PMCID: PMC11219037 DOI: 10.7554/elife.89483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
The hippocampal-dependent memory system and striatal-dependent memory system modulate reinforcement learning depending on feedback timing in adults, but their contributions during development remain unclear. In a 2-year longitudinal study, 6-to-7-year-old children performed a reinforcement learning task in which they received feedback immediately or with a short delay following their response. Children's learning was found to be sensitive to feedback timing modulations in their reaction time and inverse temperature parameter, which quantifies value-guided decision-making. They showed longitudinal improvements towards more optimal value-based learning, and their hippocampal volume showed protracted maturation. Better delayed model-derived learning covaried with larger hippocampal volume longitudinally, in line with the adult literature. In contrast, a larger striatal volume in children was associated with both better immediate and delayed model-derived learning longitudinally. These findings show, for the first time, an early hippocampal contribution to the dynamic development of reinforcement learning in middle childhood, with neurally less differentiated and more cooperative memory systems than in adults.
Collapse
Affiliation(s)
- Johannes Falck
- Department of Psychology, Goethe University FrankfurtFrankfurtGermany
| | - Lei Zhang
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Institute for Mental Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Centre for Developmental Science, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of ViennaViennaAustria
| | - Laurel Raffington
- Max Planck Research Group Biosocial, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Johannes Julius Mohn
- Charité – Universitätsmedizin Berlin, Institute of Medical PsychologyBerlinGermany
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany
| | - Christine Heim
- Charité – Universitätsmedizin Berlin, Institute of Medical PsychologyBerlinGermany
- Center for Safe & Healthy Children, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Yee Lee Shing
- Department of Psychology, Goethe University FrankfurtFrankfurtGermany
| |
Collapse
|
14
|
Elliott BL, Mohyee RA, Ballard IC, Olson IR, Ellman LM, Murty VP. In vivo structural connectivity of the reward system along the hippocampal long axis. Hippocampus 2024; 34:327-341. [PMID: 38700259 DOI: 10.1002/hipo.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Recent work has identified a critical role for the hippocampus in reward-sensitive behaviors, including motivated memory, reinforcement learning, and decision-making. Animal histology and human functional neuroimaging have shown that brain regions involved in reward processing and motivation are more interconnected with the ventral/anterior hippocampus. However, direct evidence examining gradients of structural connectivity between reward regions and the hippocampus in humans is lacking. The present study used diffusion MRI (dMRI) and probabilistic tractography to quantify the structural connectivity of the hippocampus with key reward processing regions in vivo. Using a large sample of subjects (N = 628) from the human connectome dMRI data release, we found that connectivity profiles with the hippocampus varied widely between different regions of the reward circuit. While the dopaminergic midbrain (ventral tegmental area) showed stronger connectivity with the anterior versus posterior hippocampus, the ventromedial prefrontal cortex showed stronger connectivity with the posterior hippocampus. The limbic (ventral) striatum demonstrated a more homogeneous connectivity profile along the hippocampal long axis. This is the first study to generate a probabilistic atlas of the hippocampal structural connectivity with reward-related networks, which is essential to investigating how these circuits contribute to normative adaptive behavior and maladaptive behaviors in psychiatric illness. These findings describe nuanced structural connectivity that sets the foundation to better understand how the hippocampus influences reward-guided behavior in humans.
Collapse
Affiliation(s)
- Blake L Elliott
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Raana A Mohyee
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian C Ballard
- Department of Psychology, University of California, Riverside, California, USA
| | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Lauren M Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Vishnu P Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Mosley AJ, White CJM, Solomon LH. Children's moral evaluations of and behaviors toward people who are curious about religion and science. Child Dev 2024; 95:e224-e235. [PMID: 38533587 DOI: 10.1111/cdev.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Although children exhibit curiosity regarding science, questions remain regarding how children evaluate others' curiosity and whether evaluations differ across domains that prioritize faith (e.g., religion) versus those that value questioning (e.g., science). In Study 1 (n = 115 5- to 8-year-olds; 49% female; 66% White), children evaluated actors who were curious, ignorant and non-curious, or knowledgeable about religion or science; curiosity elicited relatively favorable moral evaluations (ds > .40). Study 2 (n = 62 7- to 8-year-olds; 48% female; 63% White) found that these evaluations generalized to behaviors, as children acted more pro-socially and less punitively toward curious, versus not curious, individuals (η p 2 = .37). These findings (data collected 2020-2022) demonstrate children's positive moral evaluations of curiosity and contribute to debates regarding overlap between scientific and religious cognition.
Collapse
|
16
|
Chung YS, van den Berg B, Roberts KC, Bagdasarov A, Woldorff MG, Gaffrey MS. Electrical brain activations in preadolescents during a probabilistic reward-learning task reflect cognitive processes and behavioral strategy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562326. [PMID: 37905129 PMCID: PMC10614771 DOI: 10.1101/2023.10.16.562326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Both adults and children learn through feedback which environmental events and choices are associated with higher probability of reward, an ability thought to be supported by the development of fronto-striatal reward circuits. Recent developmental studies have applied computational models of reward learning to investigate such learning in children. However, tasks and measures effective for assaying the cascade of reward-learning neural processes in children have been limited. Using a child-version of a probabilistic reward-learning task while recording event-related-potential (ERP) measures of electrical brain activity, this study examined key processes of reward learning in preadolescents (8-12 years old; n=30), namely: (1) reward-feedback sensitivity, as measured by the early-latency, reward-related, frontal ERP positivity, (2) rapid attentional shifting of processing toward favored visual stimuli, as measured by the N2pc component, and (3) longer-latency attention-related responses to reward feedback as a function of behavioral strategies (i.e., Win-Stay-Lose-Shift), as measured by the central-parietal P300. Consistent with our prior work in adults, the behavioral findings indicate preadolescents can learn stimulus-reward outcome associations, but at varying levels of performance. Neurally, poor preadolescent learners (those with slower learning rates) showed greater reward-related positivity amplitudes relative to good learners, suggesting greater reward-feedback sensitivity. We also found attention shifting towards to-be-chosen stimuli, as evidenced by the N2pc, but not to more highly rewarded stimuli as we have observed in adults. Lastly, we found the behavioral learning strategy (i.e., Win-Stay-Lose-Shift) reflected by the feedback-elicited parietal P300. These findings provide novel insights into the key neural processes underlying reinforcement learning in preadolescents.
Collapse
|
17
|
Qasim SE, Deswal A, Saez I, Gu X. Positive affect modulates memory by regulating the influence of reward prediction errors. COMMUNICATIONS PSYCHOLOGY 2024; 2:52. [PMID: 39242805 PMCID: PMC11332028 DOI: 10.1038/s44271-024-00106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/28/2024] [Indexed: 09/09/2024]
Abstract
How our decisions impact our memories is not well understood. Reward prediction errors (RPEs), the difference between expected and obtained reward, help us learn to make optimal decisions-providing a signal that may influence subsequent memory. To measure this influence and how it might go awry in mood disorders, we recruited a large cohort of human participants to perform a decision-making task in which perceptually memorable stimuli were associated with probabilistic rewards, followed by a recognition test for those stimuli. Computational modeling revealed that positive RPEs enhanced both the accuracy of memory and the temporal efficiency of memory search, beyond the contribution of perceptual information. Critically, positive affect upregulated the beneficial effect of RPEs on memory. These findings demonstrate how affect selectively regulates the impact of RPEs on memory, providing a computational mechanism for biased memory in mood disorders.
Collapse
Affiliation(s)
- Salman E Qasim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ignacio Saez
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaosi Gu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Gregorová K, Eldar E, Deserno L, Reiter AMF. A cognitive-computational account of mood swings in adolescence. Trends Cogn Sci 2024; 28:290-303. [PMID: 38503636 DOI: 10.1016/j.tics.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/21/2024]
Abstract
Teenagers have a reputation for being fickle, in both their choices and their moods. This variability may help adolescents as they begin to independently navigate novel environments. Recently, however, adolescent moodiness has also been linked to psychopathology. Here, we consider adolescents' mood swings from a novel computational perspective, grounded in reinforcement learning (RL). This model proposes that mood is determined by surprises about outcomes in the environment, and how much we learn from these surprises. It additionally suggests that mood biases learning and choice in a bidirectional manner. Integrating independent lines of research, we sketch a cognitive-computational account of how adolescents' mood, learning, and choice dynamics influence each other, with implications for normative and psychopathological development.
Collapse
Affiliation(s)
- Klára Gregorová
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg 97080, Germany; Department of Psychology, Julius-Maximilians-Universität, Würzburg 97070, Germany; German Center of Prevention Research on Mental Health, Würzburg 97080, Germany
| | - Eran Eldar
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 9190501, Israel; Department of Cognitive & Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg 97080, Germany; Department of Psychology, Julius-Maximilians-Universität, Würzburg 97070, Germany; Department of Cognitive & Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel; Department of Psychiatry and Psychotherapy, Technical University of Dresden, Dresden 01069, Germany
| | - Andrea M F Reiter
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg 97080, Germany; Department of Psychology, Julius-Maximilians-Universität, Würzburg 97070, Germany; German Center of Prevention Research on Mental Health, Würzburg 97080, Germany; Collaborative Research Centre 940 Volition and Cognitive Control, Technical University of Dresden, Dresden 01069, Germany.
| |
Collapse
|
19
|
Decker AL, Meisler SL, Hubbard NA, Bauer CCC, Leonard J, Grotzinger H, Giebler MA, Torres YC, Imhof A, Romeo R, Gabrieli JDE. Striatal and Behavioral Responses to Reward Vary by Socioeconomic Status in Adolescents. J Neurosci 2024; 44:e1633232023. [PMID: 38253532 PMCID: PMC10941242 DOI: 10.1523/jneurosci.1633-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Disparities in socioeconomic status (SES) lead to unequal access to financial and social support. These disparities are believed to influence reward sensitivity, which in turn are hypothesized to shape how individuals respond to and pursue rewarding experiences. However, surprisingly little is known about how SES shapes reward sensitivity in adolescence. Here, we investigated how SES influenced adolescent responses to reward, both in behavior and the striatum-a brain region that is highly sensitive to reward. We examined responses to both immediate reward (tracked by phasic dopamine) and average reward rate fluctuations (tracked by tonic dopamine) as these distinct signals independently shape learning and motivation. Adolescents (n = 114; 12-14 years; 58 female) performed a gambling task during functional magnetic resonance imaging. We manipulated trial-by-trial reward and loss outcomes, leading to fluctuations between periods of reward scarcity and abundance. We found that a higher reward rate hastened behavioral responses, and increased guess switching, consistent with the idea that reward abundance increases response vigor and exploration. Moreover, immediate reward reinforced previously rewarding decisions (win-stay, lose-switch) and slowed responses (postreward pausing), particularly when rewards were scarce. Notably, lower-SES adolescents slowed down less after rare rewards than higher-SES adolescents. In the brain, striatal activations covaried with the average reward rate across time and showed greater activations during rewarding blocks. However, these striatal effects were diminished in lower-SES adolescents. These findings show that the striatum tracks reward rate fluctuations, which shape decisions and motivation. Moreover, lower SES appears to attenuate reward-driven behavioral and brain responses.
Collapse
Affiliation(s)
- Alexandra L Decker
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Steven L Meisler
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts 02138
| | - Nicholas A Hubbard
- Department of Psychology, University of Nebraska, Lincoln, Nebraska 68588
| | - Clemens C C Bauer
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Julia Leonard
- Department of Psychology, Yale University, New Haven, Connecticut 06511
| | - Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | | | - Yesi Camacho Torres
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Andrea Imhof
- Department of Psychology, University of Oregon, Eugene, Oregon 97403
| | - Rachel Romeo
- Departments of Human Development & Quantitative Methodology and Hearing & Speech Sciences, and Program in Neuroscience & Cognitive Science, University of Maryland College Park, Baltimore, Maryland 20742
| | - John D E Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
20
|
Rodriguez Buritica JM, Eppinger B, Heekeren HR, Crone EA, van Duijvenvoorde ACK. Observational reinforcement learning in children and young adults. NPJ SCIENCE OF LEARNING 2024; 9:18. [PMID: 38480747 PMCID: PMC10937639 DOI: 10.1038/s41539-024-00227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
Observational learning is essential for the acquisition of new behavior in educational practices and daily life and serves as an important mechanism for human cognitive and social-emotional development. However, we know little about its underlying neurocomputational mechanisms from a developmental perspective. In this study we used model-based fMRI to investigate differences in observational learning and individual learning between children and younger adults. Prediction errors (PE), the difference between experienced and predicted outcomes, related positively to striatal and ventral medial prefrontal cortex activation during individual learning and showed no age-related differences. PE-related activation during observational learning was more pronounced when outcomes were worse than predicted. Particularly, negative PE-coding in the dorsal medial prefrontal cortex was stronger in adults compared to children and was associated with improved observational learning in children and adults. The current findings pave the way to better understand observational learning challenges across development and educational settings.
Collapse
Affiliation(s)
- Julia M Rodriguez Buritica
- Department of Psychology, University of Greifswald, Greifswald, Germany.
- Berlin School of Mind and Brain & Department of Psychology, Humboldt University of Berlin, Berlin, Germany.
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.
| | - Ben Eppinger
- Department of Psychology, University of Greifswald, Greifswald, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Department of Psychology, Concordia University, Montreal, Canada
- Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Hauke R Heekeren
- Department of Psychology, University of Greifswald, Greifswald, Germany
- Executive University Board, Universität Hamburg, Hamburg, Germany
| | - Eveline A Crone
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Anna C K van Duijvenvoorde
- Institute of Psychology, Leiden University, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| |
Collapse
|
21
|
Wilbrecht L, Davidow JY. Goal-directed learning in adolescence: neurocognitive development and contextual influences. Nat Rev Neurosci 2024; 25:176-194. [PMID: 38263216 DOI: 10.1038/s41583-023-00783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Adolescence is a time during which we transition to independence, explore new activities and begin pursuit of major life goals. Goal-directed learning, in which we learn to perform actions that enable us to obtain desired outcomes, is central to many of these processes. Currently, our understanding of goal-directed learning in adolescence is itself in a state of transition, with the scientific community grappling with inconsistent results. When we examine metrics of goal-directed learning through the second decade of life, we find that many studies agree there are steady gains in performance in the teenage years, but others report that adolescent goal-directed learning is already adult-like, and some find adolescents can outperform adults. To explain the current variability in results, sophisticated experimental designs are being applied to test learning in different contexts. There is also increasing recognition that individuals of different ages and in different states will draw on different neurocognitive systems to support goal-directed learning. Through adoption of more nuanced approaches, we can be better prepared to recognize and harness adolescent strengths and to decipher the purpose (or goals) of adolescence itself.
Collapse
Affiliation(s)
- Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Juliet Y Davidow
- Department of Psychology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
22
|
Liu L, Liu D, Guo T, Schwieter JW, Liu H. The right superior temporal gyrus plays a role in semantic-rule learning: Evidence supporting a reinforcement learning model. Neuroimage 2023; 282:120393. [PMID: 37820861 DOI: 10.1016/j.neuroimage.2023.120393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/29/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
In real-life communication, individuals use language that carries evident rewarding and punishing elements, such as praise and criticism. A common trend is to seek more praise while avoiding criticism. Furthermore, semantics is crucial for conveying information, but such semantic access to native and foreign languages is subtly distinct. To investigate how rule learning occurs in different languages and to highlight the importance of semantics in this process, we investigated both verbal and non-verbal rule learning in first (L1) and second (L2) languages using a reinforcement learning framework, including a semantic rule and a color rule. Our computational modeling on behavioral and brain imaging data revealed that individuals may be more motivated to learn and adhere to rules in an L1 compared to L2, with greater striatum activation during the outcome phase in the L1. Additionally, results on the learning rates and inverse temperature in the two rule learning tasks showed that individuals tend to be conservative and are reluctant to change their judgments regarding rule learning of semantic information. Moreover, the greater the prediction errors, the greater activation of the right superior temporal gyrus in the semantic-rule learning condition, demonstrating that such learning has differential neural correlates than symbolic rule learning. Overall, the findings provide insight into the neural mechanisms underlying rule learning in different languages, and indicate that rule learning involving verbal semantics is not a general symbolic learning that resembles a conditioned stimulus-response, but rather has its own specific characteristics.
Collapse
Affiliation(s)
- Linyan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - Dongxue Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - Tingting Guo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - John W Schwieter
- Language Acquisition, Multilingualism, and Cognition Laboratory / Bilingualism Matters @ Wilfrid Laurier University, Canada; Department of Linguistics and Languages, McMaster University, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China.
| |
Collapse
|
23
|
Lloyd A, Viding E, McKay R, Furl N. Understanding patch foraging strategies across development. Trends Cogn Sci 2023; 27:1085-1098. [PMID: 37500422 DOI: 10.1016/j.tics.2023.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Patch foraging is a near-ubiquitous behaviour across the animal kingdom and characterises many decision-making domains encountered by humans. We review how a disposition to explore in adolescence may reflect the evolutionary conditions under which hunter-gatherers foraged for resources. We propose that neurocomputational mechanisms responsible for reward processing, learning, and cognitive control facilitate the transition from exploratory strategies in adolescence to exploitative strategies in adulthood - where individuals capitalise on known resources. This developmental transition may be disrupted by psychopathology, as there is emerging evidence of biases in explore/exploit choices in mental health problems. Explore/exploit choices may be an informative marker for mental health across development and future research should consider this feature of decision-making as a target for clinical intervention.
Collapse
Affiliation(s)
- Alex Lloyd
- Clinical, Educational, and Health Psychology, Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP, UK.
| | - Essi Viding
- Clinical, Educational, and Health Psychology, Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP, UK
| | - Ryan McKay
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX, UK
| | - Nicholas Furl
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX, UK
| |
Collapse
|
24
|
Pupillo F, Bruckner R. Signed and unsigned effects of prediction error on memory: Is it a matter of choice? Neurosci Biobehav Rev 2023; 153:105371. [PMID: 37633626 DOI: 10.1016/j.neubiorev.2023.105371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Adaptive decision-making is governed by at least two types of memory processes. On the one hand, learned predictions through integrating multiple experiences, and on the other hand, one-shot episodic memories. These two processes interact, and predictions - particularly prediction errors - influence how episodic memories are encoded. However, studies using computational models disagree on the exact shape of this relationship, with some findings showing an effect of signed prediction errors and others showing an effect of unsigned prediction errors on episodic memory. We argue that the choice-confirmation bias, which reflects stronger learning from choice-confirming compared to disconfirming outcomes, could explain these seemingly diverging results. Our perspective implies that the influence of prediction errors on episodic encoding critically depends on whether people can freely choose between options (i.e., instrumental learning tasks) or not (Pavlovian learning tasks). The choice-confirmation bias on memory encoding might have evolved to prioritize memory representations that optimize reward-guided decision-making. We conclude by discussing open issues and implications for future studies.
Collapse
Affiliation(s)
- Francesco Pupillo
- Department of Psychology, Goethe-Universität Frankfurt, Germany; Tilburg School of Social and Behavioral Sciences, Tilburg University, Netherlands.
| | - Rasmus Bruckner
- Department of Education and Psychology, Freie Universität Berlin, Germany; Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
25
|
Belden A, Quinci MA, Geddes M, Donovan NJ, Hanser SB, Loui P. Functional Organization of Auditory and Reward Systems in Aging. J Cogn Neurosci 2023; 35:1570-1592. [PMID: 37432735 PMCID: PMC10513766 DOI: 10.1162/jocn_a_02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The intrinsic organization of functional brain networks is known to change with age, and is affected by perceptual input and task conditions. Here, we compare functional activity and connectivity during music listening and rest between younger (n = 24) and older (n = 24) adults, using whole-brain regression, seed-based connectivity, and ROI-ROI connectivity analyses. As expected, activity and connectivity of auditory and reward networks scaled with liking during music listening in both groups. Younger adults show higher within-network connectivity of auditory and reward regions as compared with older adults, both at rest and during music listening, but this age-related difference at rest was reduced during music listening, especially in individuals who self-report high musical reward. Furthermore, younger adults showed higher functional connectivity between auditory network and medial prefrontal cortex that was specific to music listening, whereas older adults showed a more globally diffuse pattern of connectivity, including higher connectivity between auditory regions and bilateral lingual and inferior frontal gyri. Finally, connectivity between auditory and reward regions was higher when listening to music selected by the participant. These results highlight the roles of aging and reward sensitivity on auditory and reward networks. Results may inform the design of music-based interventions for older adults and improve our understanding of functional network dynamics of the brain at rest and during a cognitively engaging task.
Collapse
Affiliation(s)
| | | | | | - Nancy J Donovan
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
26
|
Albrecht C, van de Vijver R, Bellebaum C. Learning new words via feedback-Association between feedback-locked ERPs and recall performance-An exploratory study. Psychophysiology 2023; 60:e14324. [PMID: 37144796 DOI: 10.1111/psyp.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Feedback learning is thought to involve the dopamine system and its projection sites in the basal ganglia and anterior cingulate cortex (ACC), regions associated with procedural learning. Under certain conditions, such as when feedback is delayed, feedback-locked activation is pronounced in the medial temporal lobe (MTL), which is associated with declarative learning. In event-related potential research, the feedback-related negativity (FRN) has been linked to immediate feedback processing, while the N170, possibly reflecting MTL activity, has been related to delayed feedback processing. In the current study, we performed an exploratory investigation on the relation between N170 and FRN amplitude and memory performance in a test for declarative memory (free recall), also exploring the role of feedback delay. To this end, we adapted a paradigm in which participants learned associations between non-objects and non-words with either immediate or delayed feedback, and added a subsequent free recall test. We indeed found that N170, but not FRN amplitudes, depended on later free recall performance, with smaller amplitudes for later remembered non-words. In an additional analysis with memory performance as dependent variable, the N170, but not the FRN amplitude predicted free recall, modulated by feedback timing and valence. This finding shows that the N170 reflects an important process during feedback processing, possibly related to expectations and their violation, but is distinct from the process reflected by the FRN.
Collapse
Affiliation(s)
- Christine Albrecht
- Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Ruben van de Vijver
- Institute of Linguistics and Information Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Bellebaum
- Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
27
|
Shi R, Xiang S, Jia T, Robbins TW, Kang J, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Lin X, Sahakian BJ, Feng J. Structural neurodevelopment at the individual level - a life-course investigation using ABCD, IMAGEN and UK Biobank data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.20.23295841. [PMID: 37790416 PMCID: PMC10543061 DOI: 10.1101/2023.09.20.23295841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Adolescents exhibit remarkable heterogeneity in the structural architecture of brain development. However, due to the lack of large-scale longitudinal neuroimaging studies, existing research has largely focused on population averages and the neurobiological basis underlying individual heterogeneity remains poorly understood. Using structural magnetic resonance imaging from the IMAGEN cohort (n=1,543), we show that adolescents can be clustered into three groups defined by distinct developmental patterns of whole-brain gray matter volume (GMV). Genetic and epigenetic determinants of group clustering and long-term impacts of neurodevelopment in mid-to-late adulthood were investigated using data from the ABCD, IMAGEN and UK Biobank cohorts. Group 1, characterized by continuously decreasing GMV, showed generally the best neurocognitive performances during adolescence. Compared to Group 1, Group 2 exhibited a slower rate of GMV decrease and worsened neurocognitive development, which was associated with epigenetic changes and greater environmental burden. Further, Group 3 showed increasing GMV and delayed neurocognitive development during adolescence due to a genetic variation, while these disadvantages were attenuated in mid-to-late adulthood. In summary, our study revealed novel clusters of adolescent structural neurodevelopment and suggested that genetically-predicted delayed neurodevelopment has limited long-term effects on mental well-being and socio-economic outcomes later in life. Our results could inform future research on policy interventions aimed at reducing the financial and emotional burden of mental illness.
Collapse
|
28
|
Omanga E, Inwani I, Agot K, Buttolph J, Nduati R, Macharia P, Onyango J, Kurth A. Understanding sexual behaviors of youth from the lens of caregivers, teachers, local leaders and youth in Homabay County, Kenya. Reprod Health 2023; 20:141. [PMID: 37723500 PMCID: PMC10507942 DOI: 10.1186/s12978-023-01680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
In Kenya similar to other countries in Eastern and Southern Africa There is a disproportionately high burden of the global HIV incidence among youth ages 15-24 years, and where adolescent girls and young women account for up to a third of all incident HIV infections and more than double the burden of HIV compared to their male peers. Previous work has shown early sexual debut as entry point into risks to sexual and reproductive health among young people including STI/HIV acquisition. This was a formative assessment of the local context of three sexual risk behaviors among youth ages of 15-24 years: early sexual debut, multiple sexual partnerships, and age-mixing /intergenerational sex for purposes of informing comprehensive combination HIV intervention program design. We conducted a cross-sectional formative qualitative study in four sub-counties within Homabay county a high HIV prevalence region of Kenya. Participants were recruited through youth groups, schools, government offices and, community gatekeepers using approved fliers, referred to a designated venue for focus group discussion (FGD). After oral informed consent, twelve FGDs of 8-10 participants were carried out. Transcripts and field notes were uploaded to Atlas.ti qualitative data analysis and research software (version 8.0, 2017, ATLAS.ti GmbH). Open coding followed by grouping, categorization of code groups, and thematic abstraction was used to draw meaning for the data. A total of 111 youth participated in the FGD, 65 males and 46 females. The main findings were that youth engaged in early sex for fear of being labeled 'odd' by their peers, belief (among both male and female) that 'practice makes perfect', curiosity about sex, media influence, need to prove if one can father a child (among male), the notion that sex equals love with some of the youth using this excuse to coerce their partners into premature sex, and the belief that sex is a human right and parents/guardians should not intervene. Male youth experienced more peer-pressure to have sex earlier. Female youths cited many reasons to delay coitarche that included fear of pregnancy, burden of taking care of a baby, and religious doctrines. Having multiple sexual partners and intergenerational sexual relationships were common among the youth driven by perceived financial gain and increased sexual prowess. HIV prevention strategies need to address gender vulnerabilities, as well as promoting a protective environment, hence application of combination prevention methods is a viable solution to the HIV pandemic.Trial registration number: The study was approved by the KNH/UoN Ethics review committee (KNH/UoN ERC-P73/03/2011) and New York University (NYU Reg no.-00000310).
Collapse
Affiliation(s)
| | - Irene Inwani
- University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
| | - Kawango Agot
- Impact Research and Development Organization, Kisumu, Kenya
| | - Jasmine Buttolph
- Yale University, New Haven, CT, USA
- United States Agency for International Development (USAID), Washington, DC, USA
| | - Ruth Nduati
- University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
| | - Paul Macharia
- University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
| | - Jacob Onyango
- Impact Research and Development Organization, Kisumu, Kenya
| | - Ann Kurth
- The New York Academy of Medicin (NYAM), New York, USA
| |
Collapse
|
29
|
Pauli R, Brazil IA, Kohls G, Klein-Flügge MC, Rogers JC, Dikeos D, Dochnal R, Fairchild G, Fernández-Rivas A, Herpertz-Dahlmann B, Hervas A, Konrad K, Popma A, Stadler C, Freitag CM, De Brito SA, Lockwood PL. Action initiation and punishment learning differ from childhood to adolescence while reward learning remains stable. Nat Commun 2023; 14:5689. [PMID: 37709750 PMCID: PMC10502052 DOI: 10.1038/s41467-023-41124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
Theoretical and empirical accounts suggest that adolescence is associated with heightened reward learning and impulsivity. Experimental tasks and computational models that can dissociate reward learning from the tendency to initiate actions impulsively (action initiation bias) are thus critical to characterise the mechanisms that drive developmental differences. However, existing work has rarely quantified both learning ability and action initiation, or it has relied on small samples. Here, using computational modelling of a learning task collected from a large sample (N = 742, 9-18 years, 11 countries), we test differences in reward and punishment learning and action initiation from childhood to adolescence. Computational modelling reveals that whilst punishment learning rates increase with age, reward learning remains stable. In parallel, action initiation biases decrease with age. Results are similar when considering pubertal stage instead of chronological age. We conclude that heightened reward responsivity in adolescence can reflect differences in action initiation rather than enhanced reward learning.
Collapse
Affiliation(s)
- Ruth Pauli
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Inti A Brazil
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Gregor Kohls
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Miriam C Klein-Flügge
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jack C Rogers
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Dimitris Dikeos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roberta Dochnal
- Faculty of Medicine, Child and Adolescent Psychiatry, Department of the Child Health Center, Szeged University, Szeged, Hungary
| | | | | | - Beate Herpertz-Dahlmann
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany
| | - Amaia Hervas
- University Hospital Mutua Terrassa, Barcelona, Spain
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen and Research Centre Jülich, Jülich, Germany
| | - Arne Popma
- Department of Child and Adolescent Psychiatry, VU University Medical Center, Amsterdam, Netherlands
| | - Christina Stadler
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Stephane A De Brito
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Patricia L Lockwood
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
30
|
Sutton CA, Grandfield E, Yi R, Fazzino TL. Engagement in types of activities and frequency of alcohol use in a national sample of United States adolescents. PLoS One 2023; 18:e0291257. [PMID: 37682954 PMCID: PMC10490845 DOI: 10.1371/journal.pone.0291257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVE Adolescents with fewer sources of environmental reinforcement may be at risk for alcohol use. Behavioral economic theories posit that engagement in some activities may facilitate alcohol use, whereas other activities may be incompatible with use and reduce likelihood of alcohol use. It is unclear which types of activities may facilitate or may be incompatible with alcohol use in adolescence. Using a national sample of adolescents, the current study examined differences in engagement with types of activities that may be incompatible with alcohol use, compared among adolescents who endorsed alcohol use, and adolescents who did not. METHOD Data from the 2019 Monitoring the Future (MTF) study (N = 4626) were analyzed. Potentially incompatible and facilitating activities, and alcohol-involved activities were identified from pre-existing survey measures. Confirmatory factor analysis, measurement invariance, and structural equation modeling were used to examine patterns in activity engagement among those who endorsed alcohol use and those who did not. RESULTS Participants who did not endorse alcohol use reported higher engagement in activities that may be incompatible with alcohol use, including enjoyment from school and going to the mall (p < .001). Participants who endorsed alcohol use reported higher engagement in activities that may facilitate alcohol use (p < .001), such as spending time with friends and attending parties. Facilitating activities (β = 0.15, p < .001) and alcohol-involved activities (β = 0.70, p < .001) were positively associated with alcohol use frequency. Observed effect sizes were small in magnitude for all findings. CONCLUSIONS The findings support the premise of behavioral economic theory, suggesting some activities may serve as protective factors against alcohol use frequency while other activities may facilitate alcohol use among adolescents. National surveys may consider adding specific measure of activity engagement to identify activities that may be incompatible with alcohol use among adolescents.
Collapse
Affiliation(s)
- Cassandra A. Sutton
- Department of Psychology, University of Kansas, Lawrence, Kansas, United States of America
- Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, Kansas, United States of America
| | - Elizabeth Grandfield
- Department of Methodology and Statistics, Utrecht University, Utrecht, Netherlands
| | - Richard Yi
- Department of Psychology, University of Kansas, Lawrence, Kansas, United States of America
- Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, Kansas, United States of America
| | - Tera L. Fazzino
- Department of Psychology, University of Kansas, Lawrence, Kansas, United States of America
- Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
31
|
Rouhani N, Niv Y, Frank MJ, Schwabe L. Multiple routes to enhanced memory for emotionally relevant events. Trends Cogn Sci 2023; 27:867-882. [PMID: 37479601 DOI: 10.1016/j.tics.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/23/2023]
Abstract
Events associated with aversive or rewarding outcomes are prioritized in memory. This memory boost is commonly attributed to the elicited affective response, closely linked to noradrenergic and dopaminergic modulation of hippocampal plasticity. Herein we review and compare this 'affect' mechanism to an additional, recently discovered, 'prediction' mechanism whereby memories are strengthened by the extent to which outcomes deviate from expectations, that is, by prediction errors (PEs). The mnemonic impact of PEs is separate from the affective outcome itself and has a distinct neural signature. While both routes enhance memory, these mechanisms are linked to different - and sometimes opposing - predictions for memory integration. We discuss new findings that highlight mechanisms by which emotional events strengthen, integrate, and segment memory.
Collapse
Affiliation(s)
- Nina Rouhani
- Division of Biology and Biological Engineering and Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Yael Niv
- Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Michael J Frank
- Department of Cognitive, Linguistic & Psychological Sciences and Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
32
|
Sahi RS, Eisenberger NI, Silvers JA. Peer facilitation of emotion regulation in adolescence. Dev Cogn Neurosci 2023; 62:101262. [PMID: 37302349 PMCID: PMC10276262 DOI: 10.1016/j.dcn.2023.101262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023] Open
Abstract
Emotion regulation is particularly important for adolescents as they undergo normative developmental changes in affective systems and experience heightened risk for psychopathology. Despite a high need for emotion regulation during adolescence, commonly studied emotion regulation strategies like cognitive reappraisal are less beneficial for adolescents than adults because they rely on neural regions that are still developing during this period (i.e., lateral prefrontal cortex). However, adolescence is also marked by increased valuation of peer relationships and sensitivity to social information and cues. In the present review, we synthesize research examining emotion regulation and peer influence across development to suggest that sensitivity to peers during adolescence could be leveraged to improve emotion regulation for this population. We first discuss developmental trends related to emotion regulation at the level of behavior and brain in adolescents, using cognitive reappraisal as an exemplar emotion regulation strategy. Next, we discuss social influences on adolescent brain development, describing caregiver influence and increasing susceptibility to peer influence, to describe how adolescent sensitivity to social inputs represents both a window of vulnerability and opportunity. Finally, we conclude by describing the promise of social (i.e., peer-based) interventions for enhancing emotion regulation in adolescence.
Collapse
Affiliation(s)
- Razia S Sahi
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Naomi I Eisenberger
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer A Silvers
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Plachti A, Latzman RD, Balajoo SM, Hoffstaedter F, Madsen KS, Baare W, Siebner HR, Eickhoff SB, Genon S. Hippocampal anterior- posterior shift in childhood and adolescence. Prog Neurobiol 2023; 225:102447. [PMID: 36967075 PMCID: PMC10185869 DOI: 10.1016/j.pneurobio.2023.102447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023]
Abstract
Hippocampal-cortical networks play an important role in neurocognitive development. Applying the method of Connectivity-Based Parcellation (CBP) on hippocampal-cortical structural covariance (SC) networks computed from T1-weighted magnetic resonance images, we examined how the hippocampus differentiates into subregions during childhood and adolescence (N = 1105, 6-18 years). In late childhood, the hippocampus mainly differentiated along the anterior-posterior axis similar to previous reported functional differentiation patterns of the hippocampus. In contrast, in adolescence a differentiation along the medial-lateral axis was evident, reminiscent of the cytoarchitectonic division into cornu ammonis and subiculum. Further meta-analytical characterization of hippocampal subregions in terms of related structural co-maturation networks, behavioural and gene profiling suggested that the hippocampal head is related to higher order functions (e.g. language, theory of mind, autobiographical memory) in late childhood morphologically co-varying with almost the whole brain. In early adolescence but not in childhood, posterior subicular SC networks were associated with action-oriented and reward systems. The findings point to late childhood as an important developmental period for hippocampal head morphology and to early adolescence as a crucial period for hippocampal integration into action- and reward-oriented cognition. The latter may constitute a developmental feature that conveys increased propensity for addictive disorders.
Collapse
Affiliation(s)
- Anna Plachti
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark
| | - Robert D Latzman
- Data Sciences Institute, Takeda Pharmaceutical, Cambridge, MA, USA
| | | | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark; Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - William Baare
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; GIGA-CRC In vivo Imaging, University of Liege, Liege, Belgium.
| |
Collapse
|
34
|
Pupillo F, Ortiz-Tudela J, Bruckner R, Shing YL. The effect of prediction error on episodic memory encoding is modulated by the outcome of the predictions. NPJ SCIENCE OF LEARNING 2023; 8:18. [PMID: 37248232 DOI: 10.1038/s41539-023-00166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 05/05/2023] [Indexed: 05/31/2023]
Abstract
Expectations can lead to prediction errors of varying degrees depending on the extent to which the information encountered in the environment conforms with prior knowledge. While there is strong evidence on the computationally specific effects of such prediction errors on learning, relatively less evidence is available regarding their effects on episodic memory. Here, we had participants work on a task in which they learned context/object-category associations of different strengths based on the outcomes of their predictions. We then used a reinforcement learning model to derive subject-specific trial-to-trial estimates of prediction error at encoding and link it to subsequent recognition memory. Results showed that model-derived prediction errors at encoding influenced subsequent memory as a function of the outcome of participants' predictions (correct vs. incorrect). When participants correctly predicted the object category, stronger prediction errors (as a consequence of weak expectations) led to enhanced memory. In contrast, when participants incorrectly predicted the object category, stronger prediction errors (as a consequence of strong expectations) led to impaired memory. These results highlight the important moderating role of choice outcome that may be related to interactions between the hippocampal and striatal dopaminergic systems.
Collapse
Affiliation(s)
- Francesco Pupillo
- Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany.
- TS Social and Behavioral Sciences, Tilburg University, Tilburg, Netherlands.
| | | | - Rasmus Bruckner
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
| | - Yee Lee Shing
- Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
35
|
Topel S, Ma I, Sleutels J, van Steenbergen H, de Bruijn ERA, van Duijvenvoorde ACK. Expecting the unexpected: a review of learning under uncertainty across development. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01098-0. [PMID: 37237092 PMCID: PMC10390612 DOI: 10.3758/s13415-023-01098-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/28/2023]
Abstract
Many of our decisions take place under uncertainty. To successfully navigate the environment, individuals need to estimate the degree of uncertainty and adapt their behaviors accordingly by learning from experiences. However, uncertainty is a broad construct and distinct types of uncertainty may differentially influence our learning. We provide a semi-systematic review to illustrate cognitive and neurobiological processes involved in learning under two types of uncertainty: learning in environments with stochastic outcomes, and with volatile outcomes. We specifically reviewed studies (N = 26 studies) that included an adolescent population, because adolescence is a period in life characterized by heightened exploration and learning, as well as heightened uncertainty due to experiencing many new, often social, environments. Until now, reviews have not comprehensively compared learning under distinct types of uncertainties in this age range. Our main findings show that although the overall developmental patterns were mixed, most studies indicate that learning from stochastic outcomes, as indicated by increased accuracy in performance, improved with age. We also found that adolescents tended to have an advantage compared with adults and children when learning from volatile outcomes. We discuss potential mechanisms explaining these age-related differences and conclude by outlining future research directions.
Collapse
Affiliation(s)
- Selin Topel
- Leiden University, Institute of Psychology, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Ili Ma
- Leiden University, Institute of Psychology, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Jan Sleutels
- Leiden University, Institute of Psychology, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
- Leiden University, Institute for Philosophy, Leiden, The Netherlands
| | - Henk van Steenbergen
- Leiden University, Institute of Psychology, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Ellen R A de Bruijn
- Leiden University, Institute of Psychology, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Anna C K van Duijvenvoorde
- Leiden University, Institute of Psychology, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
36
|
Towner E, Chierchia G, Blakemore SJ. Sensitivity and specificity in affective and social learning in adolescence. Trends Cogn Sci 2023:S1364-6613(23)00092-X. [PMID: 37198089 DOI: 10.1016/j.tics.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 05/19/2023]
Abstract
Adolescence is a period of heightened affective and social sensitivity. In this review we address how this increased sensitivity influences associative learning. Based on recent evidence from human and rodent studies, as well as advances in computational biology, we suggest that, compared to other age groups, adolescents show features of heightened Pavlovian learning but tend to perform worse than adults at instrumental learning. Because Pavlovian learning does not involve decision-making, whereas instrumental learning does, we propose that these developmental differences might be due to heightened sensitivity to rewards and threats in adolescence, coupled with a lower specificity of responding. We discuss the implications of these findings for adolescent mental health and education.
Collapse
Affiliation(s)
- Emily Towner
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, UK.
| | - Gabriele Chierchia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Psychology, University of Cambridge, Downing Street, Cambridge, UK
| | | |
Collapse
|
37
|
Waltmann M, Herzog N, Reiter AMF, Villringer A, Horstmann A, Deserno L. Diminished reinforcement sensitivity in adolescence is associated with enhanced response switching and reduced coding of choice probability in the medial frontal pole. Dev Cogn Neurosci 2023; 60:101226. [PMID: 36905874 PMCID: PMC10005907 DOI: 10.1016/j.dcn.2023.101226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Precisely charting the maturation of core neurocognitive functions such as reinforcement learning (RL) and flexible adaptation to changing action-outcome contingencies is key for developmental neuroscience and adjacent fields like developmental psychiatry. However, research in this area is both sparse and conflicted, especially regarding potentially asymmetric development of learning for different motives (obtain wins vs avoid losses) and learning from valenced feedback (positive vs negative). In the current study, we investigated the development of RL from adolescence to adulthood, using a probabilistic reversal learning task modified to experimentally separate motivational context and feedback valence, in a sample of 95 healthy participants between 12 and 45. We show that adolescence is characterized by enhanced novelty seeking and response shifting especially after negative feedback, which leads to poorer returns when reward contingencies are stable. Computationally, this is accounted for by reduced impact of positive feedback on behavior. We also show, using fMRI, that activity of the medial frontopolar cortex reflecting choice probability is attenuated in adolescence. We argue that this can be interpreted as reflecting diminished confidence in upcoming choices. Interestingly, we find no age-related differences between learning in win and loss contexts.
Collapse
Affiliation(s)
- Maria Waltmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Würzburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Nadine Herzog
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andrea M F Reiter
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Würzburg, Germany; CRC-940 Volition and Cognitive Control, Faculty of Psychology, Technical University of Dresden, Dresden, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute, Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annette Horstmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Würzburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Neuroimaging Center, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
38
|
Silvers JA, Peris TS. Research Review: The neuroscience of emerging adulthood - reward, ambiguity, and social support as building blocks of mental health. J Child Psychol Psychiatry 2023. [PMID: 36878602 DOI: 10.1111/jcpp.13776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND The interval between adolescence and adulthood, 'emerging adulthood' (EA), lays the foundation for lifelong health and well-being. To date, there exist little empirical data - particularly in the neurobiological domain - to establish markers of risk and resilience during the transition to adulthood. This gap in the literature is concerning given the numerous forms of psychiatric illness that emerge or worsen during this period. METHODS In this review, we focus on two strands of research with distinct importance for EA: reward sensitivity, and tolerance of ambiguity. We begin by placing these domains in a framework that considers the unique developmental goals of EA and then synthesize emerging neurobiological research on how these domains develop during EA. We then consider their role in common mental health problems that occur during this interval as well as how social support may moderate outcomes. Finally, we offer recommendations for advancing research to understand developmental process and outcomes in EA. FINDINGS AND CONCLUSIONS Few longitudinal studies specifically address emerging adult development and the milestones that characterize this interval. Data on neurobiological development are similarly sparse. Understanding neurobiological development during this window and its links to key adjustment outcomes is crucial for optimizing outcomes.
Collapse
Affiliation(s)
- Jennifer A Silvers
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tara S Peris
- Division of Child & Adolescent Psychiatry, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
39
|
Kaiser RH, Moser AD, Neilson C, Peterson EC, Jones J, Hough CM, Rosenberg BM, Sandman CF, Schneck CD, Miklowitz DJ, Friedman NP. Mood Symptom Dimensions and Developmental Differences in Neurocognition in Adolescence. Clin Psychol Sci 2023; 11:308-325. [PMID: 37309523 PMCID: PMC10259862 DOI: 10.1177/21677026221111389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Adolescence is critical period of neurocognitive development as well as increased prevalence of mood pathology. This cross-sectional study replicated developmental patterns of neurocognition and tested whether mood symptoms moderated developmental effects. Participants were 419 adolescents (n=246 with current mood disorders) who completed reward learning and executive functioning tasks, and reported on age, puberty, and mood symptoms. Structural equation modeling revealed a quadratic relationship between puberty and reward learning performance that was moderated by symptom severity: in early puberty, adolescents reporting higher manic symptoms exhibited heightened reward learning performance (better maximizing of rewards on learning tasks), whereas adolescents reporting elevated anhedonia showed blunted reward learning performance. Models also showed a linear relationship between age and executive functioning that was moderated by manic symptoms: adolescents reporting higher mania showed poorer executive functioning at older ages. Findings suggest neurocognitive development is altered in adolescents with mood pathology and suggest directions for longitudinal studies.
Collapse
Affiliation(s)
- Roselinde H Kaiser
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute of Cognitive Science, University of Colorado Boulder
- Renée Crown Wellness Institute, University of Colorado Boulder
| | - Amelia D Moser
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute of Cognitive Science, University of Colorado Boulder
| | - Chiara Neilson
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute of Cognitive Science, University of Colorado Boulder
| | - Elena C Peterson
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Jenna Jones
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute of Cognitive Science, University of Colorado Boulder
| | | | | | | | | | | | - Naomi P Friedman
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute of Cognitive Science, University of Colorado Boulder
- Institute of Behavioral Genetics, University of Colorado Boulder
| |
Collapse
|
40
|
Wittmann MK, Scheuplein M, Gibbons SG, Noonan MP. Local and global reward learning in the lateral frontal cortex show differential development during human adolescence. PLoS Biol 2023; 21:e3002010. [PMID: 36862726 PMCID: PMC10013901 DOI: 10.1371/journal.pbio.3002010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 03/14/2023] [Accepted: 01/20/2023] [Indexed: 03/03/2023] Open
Abstract
Reward-guided choice is fundamental for adaptive behaviour and depends on several component processes supported by prefrontal cortex. Here, across three studies, we show that two such component processes, linking reward to specific choices and estimating the global reward state, develop during human adolescence and are linked to the lateral portions of the prefrontal cortex. These processes reflect the assignment of rewards contingently to local choices, or noncontingently, to choices that make up the global reward history. Using matched experimental tasks and analysis platforms, we show the influence of both mechanisms increase during adolescence (study 1) and that lesions to lateral frontal cortex (that included and/or disconnected both orbitofrontal and insula cortex) in human adult patients (study 2) and macaque monkeys (study 3) impair both local and global reward learning. Developmental effects were distinguishable from the influence of a decision bias on choice behaviour, known to depend on medial prefrontal cortex. Differences in local and global assignments of reward to choices across adolescence, in the context of delayed grey matter maturation of the lateral orbitofrontal and anterior insula cortex, may underlie changes in adaptive behaviour.
Collapse
Affiliation(s)
- Marco K. Wittmann
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Department of Experimental Psychology, University College London, London, United Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, United Kingdom
| | - Maximilian Scheuplein
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands
| | - Sophie G. Gibbons
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - MaryAnn P. Noonan
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Department of Psychology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Vlahu-Gjorgievska E, Burazor A, Win KT, Trajkovik V. mHealth Apps Targeting Obesity and Overweight in Young People: App Review and Analysis. JMIR Mhealth Uhealth 2023; 11:e37716. [PMID: 36656624 PMCID: PMC9896356 DOI: 10.2196/37716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/15/2022] [Accepted: 11/22/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Overweight and obesity have been linked to several serious health problems and medical conditions. With more than a quarter of the young population having weight problems, the impacts of overweight and obesity on this age group are particularly critical. Mobile health (mHealth) apps that support and encourage positive health behaviors have the potential to achieve better health outcomes. These apps represent a unique opportunity for young people (age range 10-24 years), for whom mobile phones are an indispensable part of their everyday living. However, despite the potential of mHealth apps for improved engagement in health interventions, user adherence to these health interventions in the long term is low. OBJECTIVE The aims of this research were to (1) review and analyze mHealth apps targeting obesity and overweight and (2) propose guidelines for the inclusion of user interface design patterns (UIDPs) in the development of mHealth apps for obese young people that maximizes the impact and retention of behavior change techniques (BCTs). METHODS A search for apps was conducted in Google Play Store using the following search string: ["best weight loss app for obese teens 2020"] OR ["obesity applications for teens"] OR ["popular weight loss applications"]. The most popular apps available in both Google Play and Apple App Store that fulfilled the requirements within the inclusion criteria were selected for further analysis. The designs of 17 mHealth apps were analyzed for the inclusion of BCTs supported by various UIDPs. Based on the results of the analysis, BCT-UI design guidelines were developed. The usability of the guidelines was presented using a prototype app. RESULTS The results of our analysis showed that only half of the BCTs are implemented in the reviewed apps, with a subset of those BCTs being supported by UIDPs. Based on these findings, we propose design guidelines that associate the BCTs with UIDPs. The focus of our guidelines is the implementation of BCTs using design patterns that are impactful for the young people demographics. The UIDPs are classified into 6 categories, with each BCT having one or more design patterns appropriate for its implementation. The applicability of the proposed guidelines is presented by mock-ups of the mHealth app "Morphe," intended for young people (age range 10-24 years). The presented use cases showcase the 5 main functionalities of Morphe: learn, challenge, statistics, social interaction, and settings. CONCLUSIONS The app analysis results showed that the implementation of BCTs using UIDPs is underutilized. The purposed guidelines will help developers in designing mHealth apps for young people that are easy to use and support behavior change. Future steps involve the development and deployment of the Morphe app and the validation of its usability and effectiveness.
Collapse
Affiliation(s)
- Elena Vlahu-Gjorgievska
- School of Computing and Information Technology, University of Wollongong, Wollongong, Australia
| | - Andrea Burazor
- School of Computing and Information Technology, University of Wollongong, Wollongong, Australia
| | - Khin Than Win
- School of Computing and Information Technology, University of Wollongong, Wollongong, Australia
| | - Vladimir Trajkovik
- Faculty of Computer Science and Engineering, Ss Cyril and Methodius University, Skopje, Republic of North Macedonia
| |
Collapse
|
42
|
Lattke LS, De Lorenzo A, Settanni M, Rabaglietti E. PE-Iv (Panorama Education-Italian version): the adaptation/validation of 5 scales, a step towards a SEL approach in Italian schools. Front Psychol 2022; 13:1026264. [PMID: 36533065 PMCID: PMC9751788 DOI: 10.3389/fpsyg.2022.1026264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 01/24/2025] Open
Abstract
Implementing a Social and Emotional Learning (SEL) approach in school requires monitoring certain skills. As awareness of SEL increases in Italy, it is necessary to provide instruments to monitor these skills within a systemic approach. This study presents the cultural adaptation/validation of 5 scales from Panorama Education, which are widely used in school districts in the United States, to the Italian middle/high school context: Grit, Sense of Belonging, Self-Management, Social Awareness, and Self-Efficacy. After cultural adaptation, 709 middle/high school students answered an online questionnaire (2021). Psychometric properties showed good internal consistency and confirmatory factor analysis showed a good fit index. The differences in gender and grade level support the validity of the instrument.
Collapse
|
43
|
Eckstein MK, Master SL, Xia L, Dahl RE, Wilbrecht L, Collins AGE. The interpretation of computational model parameters depends on the context. eLife 2022; 11:e75474. [PMID: 36331872 PMCID: PMC9635876 DOI: 10.7554/elife.75474] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
Abstract
Reinforcement Learning (RL) models have revolutionized the cognitive and brain sciences, promising to explain behavior from simple conditioning to complex problem solving, to shed light on developmental and individual differences, and to anchor cognitive processes in specific brain mechanisms. However, the RL literature increasingly reveals contradictory results, which might cast doubt on these claims. We hypothesized that many contradictions arise from two commonly-held assumptions about computational model parameters that are actually often invalid: That parameters generalize between contexts (e.g. tasks, models) and that they capture interpretable (i.e. unique, distinctive) neurocognitive processes. To test this, we asked 291 participants aged 8-30 years to complete three learning tasks in one experimental session, and fitted RL models to each. We found that some parameters (exploration / decision noise) showed significant generalization: they followed similar developmental trajectories, and were reciprocally predictive between tasks. Still, generalization was significantly below the methodological ceiling. Furthermore, other parameters (learning rates, forgetting) did not show evidence of generalization, and sometimes even opposite developmental trajectories. Interpretability was low for all parameters. We conclude that the systematic study of context factors (e.g. reward stochasticity; task volatility) will be necessary to enhance the generalizability and interpretability of computational cognitive models.
Collapse
Affiliation(s)
| | - Sarah L Master
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Department of Psychology, New York UniversityNew YorkUnited States
| | - Liyu Xia
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Department of Mathematics, University of California, BerkeleyBerkeleyUnited States
| | - Ronald E Dahl
- Institute of Human Development, University of California, BerkeleyBerkeleyUnited States
| | - Linda Wilbrecht
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Anne GE Collins
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
44
|
Cohen AO, Glover MM, Shen X, Phaneuf CV, Avallone KN, Davachi L, Hartley CA. Reward Enhances Memory via Age-Varying Online and Offline Neural Mechanisms across Development. J Neurosci 2022; 42:6424-6434. [PMID: 35790398 PMCID: PMC9398543 DOI: 10.1523/jneurosci.1820-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/04/2022] [Accepted: 05/21/2022] [Indexed: 11/21/2022] Open
Abstract
Reward motivation enhances memory through interactions between mesolimbic, hippocampal, and cortical systems, both during and after encoding. Developmental changes in these distributed neural circuits may lead to age-related differences in reward-motivated memory and the underlying neural mechanisms. Converging evidence from cross-species studies suggests that subcortical dopamine signaling is increased during adolescence, which may lead to stronger memory representations of rewarding, relative to mundane, events and changes in the contributions of underlying subcortical and cortical brain mechanisms across age. Here, we used fMRI to examine how reward motivation influences the "online" encoding and "offline" postencoding brain mechanisms that support long-term associative memory from childhood to adulthood in human participants of both sexes. We found that reward motivation led to both age-invariant enhancements and nonlinear age-related differences in associative memory after 24 h. Furthermore, reward-related memory benefits were linked to age-varying neural mechanisms. During encoding, interactions between the prefrontal cortex (PFC) and ventral tegmental area (VTA) were associated with better high-reward memory to a greater degree with increasing age. Preencoding to postencoding changes in functional connectivity between the anterior hippocampus and VTA were also associated with better high-reward memory, but more so at younger ages. Our findings suggest that there may be developmental differences in the contributions of offline subcortical and online cortical brain mechanisms supporting reward-motivated memory.SIGNIFICANCE STATEMENT A substantial body of research has examined the neural mechanisms through which reward influences memory formation in adults. However, despite extensive evidence that both reward processing and associative memory undergo dynamic change across development, few studies have examined age-related changes in these processes. We found both age-invariant and nonlinear age-related differences in reward-motivated memory. Moreover, our findings point to developmental differences in the processes through which reward modulates the prioritization of information in long-term memory, with greater early reliance on offline subcortical consolidation mechanisms and increased contribution of systems-level online encoding circuitry with increasing age. These results highlight dynamic developmental changes in the cognitive and neural mechanisms through which motivationally salient information is prioritized in memory from childhood to adulthood.
Collapse
Affiliation(s)
- Alexandra O Cohen
- Department of Psychology, New York University, New York, New York 10003
| | - Morgan M Glover
- Department of Psychology, New York University, New York, New York 10003
| | - Xinxu Shen
- Department of Psychology, New York University, New York, New York 10003
| | - Camille V Phaneuf
- Department of Psychology, New York University, New York, New York 10003
| | | | - Lila Davachi
- Department of Psychology, Columbia University, New York, New York 10027
- Nathan Kline Institute of Psychiatric Research, Orangeburg, New York 20962
| | - Catherine A Hartley
- Department of Psychology, New York University, New York, New York 10003
- New York University Center for Neural Science and Langone Health Neuroscience Institute, New York, New York 10003
| |
Collapse
|
45
|
Skalaban LJ, Cohen AO, Conley MI, Lin Q, Schwartz GN, Ruiz-Huidobro NAM, Cannonier T, Martinez SA, Casey BJ. Adolescent-specific memory effects: evidence from working memory, immediate and long-term recognition memory performance in 8-30 yr olds. Learn Mem 2022; 29:223-233. [PMID: 35953104 PMCID: PMC9374272 DOI: 10.1101/lm.053539.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
Working memory and recognition memory develop across adolescence, but the relationship between them is not fully understood. We investigated associations between n-back task performance and subsequent recognition memory in a community sample (8-30 yr, n = 150) using tasks from the Adolescent Brain Cognitive Development Study (ABCD Study) to cross-sectionally assess memory in an age range that will be sampled longitudinally. We added a 24-h delay condition to assess long-term recognition. Overall working memory, immediate and long-term recognition performance peaked in adolescence. Age effects in recognition memory varied by items (old targets, old distractors, and new items) and delay (0 and 24 h). For immediate recognition, accuracy was higher for targets and new items than for distractors, with accuracy for targets peaking in adulthood and accuracy for new items peaking during adolescence. For long-term recognition, adolescents' accuracy was higher for targets than distractors, while adults showed similarly high accuracy for targets and distractors and children showed low accuracy for both. This pattern appeared to be specific to recognition of items from the high working memory load condition. The results suggest that working memory may facilitate long-term recognition of task-relevant over irrelevant items and may benefit the detection of new information during adolescence.
Collapse
Affiliation(s)
- Lena J Skalaban
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | - Alexandra O Cohen
- Department of Psychology, New York University, New York, New York 10003, USA
| | - May I Conley
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | - Qi Lin
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | - Garrett N Schwartz
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | | - Tariq Cannonier
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | - Steven A Martinez
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | - B J Casey
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
46
|
Rapuano KM, Berrian N, Baskin-Sommers A, Décarie-Spain L, Sharma S, Fulton S, Casey BJ, Watts R. Longitudinal Evidence of a Vicious Cycle Between Nucleus Accumbens Microstructure and Childhood Weight Gain. J Adolesc Health 2022; 70:961-969. [PMID: 35248457 PMCID: PMC9133207 DOI: 10.1016/j.jadohealth.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Pediatric obesity is a growing public health concern. Previous work has observed diet to impact nucleus accumbens (NAcc) inflammation in rodents, measured by the reactive proliferation of glial cells. Recent work in humans has demonstrated a relationship between NAcc cell density-a proxy for neuroinflammation-and weight gain in youth; however, the directionality of this relationship in the developing brain and association with diet remains unknown. METHODS Waist circumference (WC) and NAcc cell density were collected in a large cohort of children (n > 2,000) participating in the Adolescent Brain Cognitive Development (ABCD) Study (release 3.0) at baseline (9-10 y) and at a Year 2 follow-up (11-12 y). Latent change score modeling (LCSM) was used to disentangle contributions of baseline measures to two-year changes in WC percentile and NAcc cellularity. In addition, the role of NAcc cellularity in mediating the relationship between diet and WC percentile was assessed using dietary intake data collected at Year 2. RESULTS LCSM indicates that baseline WC percentile influences change in NAcc cellularity and that baseline NAcc cell density influences change in WC percentile. NAcc cellularity was significantly associated with WC percentile at Year 2 and mediated the relationship between dietary fat consumption and WC percentile. CONCLUSIONS These results implicate a vicious cycle whereby NAcc cell density biases longitudinal changes in WC percentile and vice versa. Moreover, NAcc cell density may mediate the relationship between diet and weight gain in youth. These findings suggest that diet-induced inflammation of reward circuitry may lead to behavioral changes that further contribute to weight gain.
Collapse
Affiliation(s)
| | | | | | - Léa Décarie-Spain
- Department of Biological Sciences, University of Southern California
| | - Sandeep Sharma
- Department of Comparative Biology and Experimental Medicine, University of Calgary
| | - Stephanie Fulton
- Department of Nutrition, University of Montreal & Centre de Recherche du CHUM
| | - BJ Casey
- Department of Psychology, Yale University
| | | |
Collapse
|
47
|
Eckstein MK, Master SL, Dahl RE, Wilbrecht L, Collins AGE. Reinforcement learning and Bayesian inference provide complementary models for the unique advantage of adolescents in stochastic reversal. Dev Cogn Neurosci 2022; 55:101106. [PMID: 35537273 PMCID: PMC9108470 DOI: 10.1016/j.dcn.2022.101106] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
During adolescence, youth venture out, explore the wider world, and are challenged to learn how to navigate novel and uncertain environments. We investigated how performance changes across adolescent development in a stochastic, volatile reversal-learning task that uniquely taxes the balance of persistence and flexibility. In a sample of 291 participants aged 8-30, we found that in the mid-teen years, adolescents outperformed both younger and older participants. We developed two independent cognitive models, based on Reinforcement learning (RL) and Bayesian inference (BI). The RL parameter for learning from negative outcomes and the BI parameters specifying participants' mental models were closest to optimal in mid-teen adolescents, suggesting a central role in adolescent cognitive processing. By contrast, persistence and noise parameters improved monotonically with age. We distilled the insights of RL and BI using principal component analysis and found that three shared components interacted to form the adolescent performance peak: adult-like behavioral quality, child-like time scales, and developmentally-unique processing of positive feedback. This research highlights adolescence as a neurodevelopmental window that can create performance advantages in volatile and uncertain environments. It also shows how detailed insights can be gleaned by using cognitive models in new ways.
Collapse
Affiliation(s)
| | | | - Ronald E Dahl
- Institute of Human Development, 2121 Berkeley Way West, USA
| | - Linda Wilbrecht
- Department of Psychology, 2121 Berkeley Way West, USA; Helen Wills Neuroscience Institute, 175 Li Ka Shing Center, Berkeley, CA 94720, USA
| | | |
Collapse
|
48
|
Patt VM, Palombo DJ, Esterman M, Verfaellie M. Hippocampal Contribution to Probabilistic Feedback Learning: Modeling Observation- and Reinforcement-based Processes. J Cogn Neurosci 2022; 34:1429-1446. [PMID: 35604353 DOI: 10.1162/jocn_a_01873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Simple probabilistic reinforcement learning is recognized as a striatum-based learning system, but in recent years, has also been associated with hippocampal involvement. This study examined whether such involvement may be attributed to observation-based learning (OL) processes, running in parallel to striatum-based reinforcement learning. A computational model of OL, mirroring classic models of reinforcement-based learning (RL), was constructed and applied to the neuroimaging data set of Palombo, Hayes, Reid, and Verfaellie (2019). Hippocampal contributions to value-based learning: Converging evidence from fMRI and amnesia. Cognitive, Affective & Behavioral Neuroscience, 19(3), 523-536. Results suggested that OL processes may indeed take place concomitantly to reinforcement learning and involve activation of the hippocampus and central orbitofrontal cortex. However, rather than independent mechanisms running in parallel, the brain correlates of the OL and RL prediction errors indicated collaboration between systems, with direct implication of the hippocampus in computations of the discrepancy between the expected and actual reinforcing values of actions. These findings are consistent with previous accounts of a role for the hippocampus in encoding the strength of observed stimulus-outcome associations, with updating of such associations through striatal reinforcement-based computations. In addition, enhanced negative RL prediction error signaling was found in the anterior insula with greater use of OL over RL processes. This result may suggest an additional mode of collaboration between the OL and RL systems, implicating the error monitoring network.
Collapse
Affiliation(s)
- Virginie M Patt
- VA Boston Healthcare System, MA.,Boston University School of Medicine, MA
| | | | - Michael Esterman
- VA Boston Healthcare System, MA.,Boston University School of Medicine, MA
| | - Mieke Verfaellie
- VA Boston Healthcare System, MA.,Boston University School of Medicine, MA
| |
Collapse
|
49
|
Lu Q, Hasson U, Norman KA. A neural network model of when to retrieve and encode episodic memories. eLife 2022; 11:e74445. [PMID: 35142289 PMCID: PMC9000961 DOI: 10.7554/elife.74445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Recent human behavioral and neuroimaging results suggest that people are selective in when they encode and retrieve episodic memories. To explain these findings, we trained a memory-augmented neural network to use its episodic memory to support prediction of upcoming states in an environment where past situations sometimes reoccur. We found that the network learned to retrieve selectively as a function of several factors, including its uncertainty about the upcoming state. Additionally, we found that selectively encoding episodic memories at the end of an event (but not mid-event) led to better subsequent prediction performance. In all of these cases, the benefits of selective retrieval and encoding can be explained in terms of reducing the risk of retrieving irrelevant memories. Overall, these modeling results provide a resource-rational account of why episodic retrieval and encoding should be selective and lead to several testable predictions.
Collapse
Affiliation(s)
- Qihong Lu
- Department of Psychology, Princeton UniversityPrincetonUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Uri Hasson
- Department of Psychology, Princeton UniversityPrincetonUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Kenneth A Norman
- Department of Psychology, Princeton UniversityPrincetonUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
50
|
Kohne S, Diekhof EK. Testosterone and estradiol affect adolescent reinforcement learning. PeerJ 2022; 10:e12653. [PMID: 35186450 PMCID: PMC8818269 DOI: 10.7717/peerj.12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023] Open
Abstract
During adolescence, gonadal hormones influence brain maturation and behavior. The impact of 17β-estradiol and testosterone on reinforcement learning was previously investigated in adults, but studies with adolescents are rare. We tested 89 German male and female adolescents (mean age ± sd = 14.7 ± 1.9 years) to determine the extent 17β-estradiol and testosterone influenced reinforcement learning capacity in a response time adjustment task. Our data showed, that 17β-estradiol correlated with an enhanced ability to speed up responses for reward in both sexes, while the ability to wait for higher reward correlated with testosterone primary in males. This suggests that individual differences in reinforcement learning may be associated with variations in these hormones during adolescence, which may shift the balance between a more reward- and an avoidance-oriented learning style.
Collapse
Affiliation(s)
- Sina Kohne
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Animal Cell and Systems Biology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| | - Esther K. Diekhof
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Animal Cell and Systems Biology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| |
Collapse
|