1
|
Gou T, Matulis CA, Clark DA. Adaptation to visual sparsity enhances responses to isolated stimuli. Curr Biol 2024; 34:5697-5713.e8. [PMID: 39577424 DOI: 10.1016/j.cub.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
Sensory systems adapt their response properties to the statistics of their inputs. For instance, visual systems adapt to low-order statistics like mean and variance to encode stimuli efficiently or to facilitate specific downstream computations. However, it remains unclear how other statistical features affect sensory adaptation. Here, we explore how Drosophila's visual motion circuits adapt to stimulus sparsity, a measure of the signal's intermittency not captured by low-order statistics alone. Early visual neurons in both ON and OFF pathways alter their responses dramatically with stimulus sparsity, responding positively to both light and dark sparse stimuli but linearly to dense stimuli. These changes extend to downstream ON and OFF direction-selective neurons, which are activated by sparse stimuli of both polarities but respond with opposite signs to light and dark regions of dense stimuli. Thus, sparse stimuli activate both ON and OFF pathways, recruiting a larger fraction of the circuit and potentially enhancing the salience of isolated stimuli. Overall, our results reveal visual response properties that increase the fraction of the circuit responding to sparse, isolated stimuli.
Collapse
Affiliation(s)
- Tong Gou
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Damon A Clark
- Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
2
|
Vaziri PA, McDougle SD, Clark DA. Humans can use positive and negative spectrotemporal correlations to detect rising and falling pitch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606481. [PMID: 39131316 PMCID: PMC11312537 DOI: 10.1101/2024.08.03.606481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
To discern speech or appreciate music, the human auditory system detects how pitch increases or decreases over time. However, the algorithms used to detect changes in pitch, or pitch motion, are incompletely understood. Here, using psychophysics, computational modeling, functional neuroimaging, and analysis of recorded speech, we ask if humans can detect pitch motion using computations analogous to those used by the visual system. We adapted stimuli from studies of vision to create novel auditory correlated noise stimuli that elicited robust pitch motion percepts. Crucially, these stimuli are inharmonic and possess no persistent features across frequency or time, but do possess positive or negative local spectrotemporal correlations in intensity. In psychophysical experiments, we found clear evidence that humans can judge pitch direction based only on positive or negative spectrotemporal intensity correlations. The key behavioral result-robust sensitivity to the negative spectrotemporal correlations-is a direct analogue of illusory "reverse-phi" motion in vision, and thus constitutes a new auditory illusion. Our behavioral results and computational modeling led us to hypothesize that human auditory processing may employ pitch direction opponency. fMRI measurements in auditory cortex supported this hypothesis. To link our psychophysical findings to real-world pitch perception, we analyzed recordings of English and Mandarin speech and found that pitch direction was robustly signaled by both positive and negative spectrotemporal correlations, suggesting that sensitivity to both types of correlations confers ecological benefits. Overall, this work reveals how motion detection algorithms sensitive to local correlations are deployed by the central nervous system across disparate modalities (vision and audition) and dimensions (space and frequency).
Collapse
|
3
|
Chen J, Gish CM, Fransen JW, Salazar-Gatzimas E, Clark DA, Borghuis BG. Direct comparison reveals algorithmic similarities in fly and mouse visual motion detection. iScience 2023; 26:107928. [PMID: 37810236 PMCID: PMC10550730 DOI: 10.1016/j.isci.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Evolution has equipped vertebrates and invertebrates with neural circuits that selectively encode visual motion. While similarities in the computations performed by these circuits in mouse and fruit fly have been noted, direct experimental comparisons have been lacking. Because molecular mechanisms and neuronal morphology in the two species are distinct, we directly compared motion encoding in these two species at the algorithmic level, using matched stimuli and focusing on a pair of analogous neurons, the mouse ON starburst amacrine cell (ON SAC) and Drosophila T4 neurons. We find that the cells share similar spatiotemporal receptive field structures, sensitivity to spatiotemporal correlations, and tuning to sinusoidal drifting gratings, but differ in their responses to apparent motion stimuli. Both neuron types showed a response to summed sinusoids that deviates from models for motion processing in these cells, underscoring the similarities in their processing and identifying response features that remain to be explained.
Collapse
Affiliation(s)
- Juyue Chen
- Interdepartmental Neurosciences Program, Yale University, New Haven, CT 06511, USA
| | - Caitlin M Gish
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - James W Fransen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | | | - Damon A Clark
- Interdepartmental Neurosciences Program, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
4
|
Mano O, Choi M, Tanaka R, Creamer MS, Matos NCB, Shomar JW, Badwan BA, Clandinin TR, Clark DA. Long-timescale anti-directional rotation in Drosophila optomotor behavior. eLife 2023; 12:e86076. [PMID: 37751469 PMCID: PMC10522332 DOI: 10.7554/elife.86076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Locomotor movements cause visual images to be displaced across the eye, a retinal slip that is counteracted by stabilizing reflexes in many animals. In insects, optomotor turning causes the animal to turn in the direction of rotating visual stimuli, thereby reducing retinal slip and stabilizing trajectories through the world. This behavior has formed the basis for extensive dissections of motion vision. Here, we report that under certain stimulus conditions, two Drosophila species, including the widely studied Drosophila melanogaster, can suppress and even reverse the optomotor turning response over several seconds. Such 'anti-directional turning' is most strongly evoked by long-lasting, high-contrast, slow-moving visual stimuli that are distinct from those that promote syn-directional optomotor turning. Anti-directional turning, like the syn-directional optomotor response, requires the local motion detecting neurons T4 and T5. A subset of lobula plate tangential cells, CH cells, show involvement in these responses. Imaging from a variety of direction-selective cells in the lobula plate shows no evidence of dynamics that match the behavior, suggesting that the observed inversion in turning direction emerges downstream of the lobula plate. Further, anti-directional turning declines with age and exposure to light. These results show that Drosophila optomotor turning behaviors contain rich, stimulus-dependent dynamics that are inconsistent with simple reflexive stabilization responses.
Collapse
Affiliation(s)
- Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Minseung Choi
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | - Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - Natalia CB Matos
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - Joseph W Shomar
- Department of Physics, Yale UniversityNew HavenUnited States
| | - Bara A Badwan
- Department of Chemical Engineering, Yale UniversityNew HavenUnited States
| | | | - Damon A Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale UniversityNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Physics, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| |
Collapse
|
5
|
Nicholas S, Ogawa Y, Nordström K. Dual Receptive Fields Underlying Target and Wide-Field Motion Sensitivity in Looming-Sensitive Descending Neurons. eNeuro 2023; 10:ENEURO.0188-23.2023. [PMID: 37429705 PMCID: PMC10368147 DOI: 10.1523/eneuro.0188-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023] Open
Abstract
Responding rapidly to visual stimuli is fundamental for many animals. For example, predatory birds and insects alike have amazing target detection abilities, with incredibly short neural and behavioral delays, enabling efficient prey capture. Similarly, looming objects need to be rapidly avoided to ensure immediate survival, as these could represent approaching predators. Male Eristalis tenax hoverflies are nonpredatory, highly territorial insects that perform high-speed pursuits of conspecifics and other territorial intruders. During the initial stages of the pursuit, the retinal projection of the target is very small, but this grows to a larger object before physical interaction. Supporting such behaviors, E. tenax and other insects have both target-tuned and loom-sensitive neurons in the optic lobes and the descending pathways. We here show that these visual stimuli are not necessarily encoded in parallel. Indeed, we describe a class of descending neurons that respond to small targets, to looming and to wide-field stimuli. We show that these descending neurons have two distinct receptive fields where the dorsal receptive field is sensitive to the motion of small targets and the ventral receptive field responds to larger objects or wide-field stimuli. Our data suggest that the two receptive fields have different presynaptic input, where the inputs are not linearly summed. This novel and unique arrangement could support different behaviors, including obstacle avoidance, flower landing, and target pursuit or capture.
Collapse
Affiliation(s)
- Sarah Nicholas
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5001, Australia
| | - Yuri Ogawa
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5001, Australia
| | - Karin Nordström
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5001, Australia
- Department of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
6
|
Currier TA, Pang MM, Clandinin TR. Visual processing in the fly, from photoreceptors to behavior. Genetics 2023; 224:iyad064. [PMID: 37128740 PMCID: PMC10213501 DOI: 10.1093/genetics/iyad064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Originally a genetic model organism, the experimental use of Drosophila melanogaster has grown to include quantitative behavioral analyses, sophisticated perturbations of neuronal function, and detailed sensory physiology. A highlight of these developments can be seen in the context of vision, where pioneering studies have uncovered fundamental and generalizable principles of sensory processing. Here we begin with an overview of vision-guided behaviors and common methods for probing visual circuits. We then outline the anatomy and physiology of brain regions involved in visual processing, beginning at the sensory periphery and ending with descending motor control. Areas of focus include contrast and motion detection in the optic lobe, circuits for visual feature selectivity, computations in support of spatial navigation, and contextual associative learning. Finally, we look to the future of fly visual neuroscience and discuss promising topics for further study.
Collapse
Affiliation(s)
- Timothy A Currier
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle M Pang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Mano O, Choi M, Tanaka R, Creamer MS, Matos NC, Shomar J, Badwan BA, Clandinin TR, Clark DA. Long timescale anti-directional rotation in Drosophila optomotor behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523055. [PMID: 36711627 PMCID: PMC9882005 DOI: 10.1101/2023.01.06.523055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Locomotor movements cause visual images to be displaced across the eye, a retinal slip that is counteracted by stabilizing reflexes in many animals. In insects, optomotor turning causes the animal to turn in the direction of rotating visual stimuli, thereby reducing retinal slip and stabilizing trajectories through the world. This behavior has formed the basis for extensive dissections of motion vision. Here, we report that under certain stimulus conditions, two Drosophila species, including the widely studied D. melanogaster, can suppress and even reverse the optomotor turning response over several seconds. Such "anti-directional turning" is most strongly evoked by long-lasting, high-contrast, slow-moving visual stimuli that are distinct from those that promote syn-directional optomotor turning. Anti-directional turning, like the syn-directional optomotor response, requires the local motion detecting neurons T4 and T5. A subset of lobula plate tangential cells, CH cells, show involvement in these responses. Imaging from a variety of direction-selective cells in the lobula plate shows no evidence of dynamics that match the behavior, suggesting that the observed inversion in turning direction emerges downstream of the lobula plate. Further, anti-directional turning declines with age and exposure to light. These results show that Drosophila optomotor turning behaviors contain rich, stimulus-dependent dynamics that are inconsistent with simple reflexive stabilization responses.
Collapse
Affiliation(s)
- Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Minseung Choi
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Matthew S. Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Natalia C.B. Matos
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Joseph Shomar
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Bara A. Badwan
- Department of Chemical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Damon A. Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
8
|
Mishra A, Serbe-Kamp E, Borst A, Haag J. Voltage to Calcium Transformation Enhances Direction Selectivity in Drosophila T4 Neurons. J Neurosci 2023; 43:2497-2514. [PMID: 36849417 PMCID: PMC10082464 DOI: 10.1523/jneurosci.2297-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
An important step in neural information processing is the transformation of membrane voltage into calcium signals leading to transmitter release. However, the effect of voltage to calcium transformation on neural responses to different sensory stimuli is not well understood. Here, we use in vivo two-photon imaging of genetically encoded voltage and calcium indicators, ArcLight and GCaMP6f, respectively, to measure responses in direction-selective T4 neurons of female Drosophila Comparison between ArcLight and GCaMP6f signals reveals calcium signals to have a significantly higher direction selectivity compared with voltage signals. Using these recordings, we build a model which transforms T4 voltage responses into calcium responses. Using a cascade of thresholding, temporal filtering and a stationary nonlinearity, the model reproduces experimentally measured calcium responses across different visual stimuli. These findings provide a mechanistic underpinning of the voltage to calcium transformation and show how this processing step, in addition to synaptic mechanisms on the dendrites of T4 cells, enhances direction selectivity in the output signal of T4 neurons. Measuring the directional tuning of postsynaptic vertical system (VS)-cells with inputs from other cells blocked, we found that, indeed, it matches the one of the calcium signal in presynaptic T4 cells.SIGNIFICANCE STATEMENT The transformation of voltage to calcium influx is an important step in the signaling cascade within a nerve cell. While this process has been intensely studied in the context of transmitter release mechanism, its consequences for information transmission and neural computation are unclear. Here, we measured both membrane voltage and cytosolic calcium levels in direction-selective cells of Drosophila in response to a large set of visual stimuli. We found direction selectivity in the calcium signal to be significantly enhanced compared with membrane voltage through a nonlinear transformation of voltage to calcium. Our findings highlight the importance of an additional step in the signaling cascade for information processing within single nerve cells.
Collapse
Affiliation(s)
- Abhishek Mishra
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Etienne Serbe-Kamp
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Alexander Borst
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Juergen Haag
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| |
Collapse
|
9
|
Fu Q, Li Z, Peng J. Harmonizing motion and contrast vision for robust looming detection. ARRAY 2023. [DOI: 10.1016/j.array.2022.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
10
|
Kadakia N, Demir M, Michaelis BT, DeAngelis BD, Reidenbach MA, Clark DA, Emonet T. Odour motion sensing enhances navigation of complex plumes. Nature 2022; 611:754-761. [PMID: 36352224 PMCID: PMC10039482 DOI: 10.1038/s41586-022-05423-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
Odour plumes in the wild are spatially complex and rapidly fluctuating structures carried by turbulent airflows1-4. To successfully navigate plumes in search of food and mates, insects must extract and integrate multiple features of the odour signal, including odour identity5, intensity6 and timing6-12. Effective navigation requires balancing these multiple streams of olfactory information and integrating them with other sensory inputs, including mechanosensory and visual cues9,12,13. Studies dating back a century have indicated that, of these many sensory inputs, the wind provides the main directional cue in turbulent plumes, leading to the longstanding model of insect odour navigation as odour-elicited upwind motion6,8-12,14,15. Here we show that Drosophila melanogaster shape their navigational decisions using an additional directional cue-the direction of motion of odours-which they detect using temporal correlations in the odour signal between their two antennae. Using a high-resolution virtual-reality paradigm to deliver spatiotemporally complex fictive odours to freely walking flies, we demonstrate that such odour-direction sensing involves algorithms analogous to those in visual-direction sensing16. Combining simulations, theory and experiments, we show that odour motion contains valuable directional information that is absent from the airflow alone, and that both Drosophila and virtual agents are aided by that information in navigating naturalistic plumes. The generality of our findings suggests that odour-direction sensing may exist throughout the animal kingdom and could improve olfactory robot navigation in uncertain environments.
Collapse
Affiliation(s)
- Nirag Kadakia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, CT, USA
| | - Mahmut Demir
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Brenden T Michaelis
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Brian D DeAngelis
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Gonzalez-Suarez AD, Zavatone-Veth JA, Chen J, Matulis CA, Badwan BA, Clark DA. Excitatory and inhibitory neural dynamics jointly tune motion detection. Curr Biol 2022; 32:3659-3675.e8. [PMID: 35868321 PMCID: PMC9474608 DOI: 10.1016/j.cub.2022.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/03/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Neurons integrate excitatory and inhibitory signals to produce their outputs, but the role of input timing in this integration remains poorly understood. Motion detection is a paradigmatic example of this integration, since theories of motion detection rely on different delays in visual signals. These delays allow circuits to compare scenes at different times to calculate the direction and speed of motion. Different motion detection circuits have different velocity sensitivity, but it remains untested how the response dynamics of individual cell types drive this tuning. Here, we sped up or slowed down specific neuron types in Drosophila's motion detection circuit by manipulating ion channel expression. Altering the dynamics of individual neuron types upstream of motion detectors increased their sensitivity to fast or slow visual motion, exposing distinct roles for excitatory and inhibitory dynamics in tuning directional signals, including a role for the amacrine cell CT1. A circuit model constrained by functional data and anatomy qualitatively reproduced the observed tuning changes. Overall, these results reveal how excitatory and inhibitory dynamics together tune a canonical circuit computation.
Collapse
Affiliation(s)
| | - Jacob A Zavatone-Veth
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Juyue Chen
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | | | - Bara A Badwan
- School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
12
|
Tanaka R, Clark DA. Neural mechanisms to exploit positional geometry for collision avoidance. Curr Biol 2022; 32:2357-2374.e6. [PMID: 35508172 PMCID: PMC9177691 DOI: 10.1016/j.cub.2022.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022]
Abstract
Visual motion provides rich geometrical cues about the three-dimensional configuration of the world. However, how brains decode the spatial information carried by motion signals remains poorly understood. Here, we study a collision-avoidance behavior in Drosophila as a simple model of motion-based spatial vision. With simulations and psychophysics, we demonstrate that walking Drosophila exhibit a pattern of slowing to avoid collisions by exploiting the geometry of positional changes of objects on near-collision courses. This behavior requires the visual neuron LPLC1, whose tuning mirrors the behavior and whose activity drives slowing. LPLC1 pools inputs from object and motion detectors, and spatially biased inhibition tunes it to the geometry of collisions. Connectomic analyses identified circuitry downstream of LPLC1 that faithfully inherits its response properties. Overall, our results reveal how a small neural circuit solves a specific spatial vision task by combining distinct visual features to exploit universal geometrical constraints of the visual world.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
13
|
Zhou B, Li Z, Kim S, Lafferty J, Clark DA. Shallow neural networks trained to detect collisions recover features of visual loom-selective neurons. eLife 2022; 11:72067. [PMID: 35023828 PMCID: PMC8849349 DOI: 10.7554/elife.72067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Animals have evolved sophisticated visual circuits to solve a vital inference problem: detecting whether or not a visual signal corresponds to an object on a collision course. Such events are detected by specific circuits sensitive to visual looming, or objects increasing in size. Various computational models have been developed for these circuits, but how the collision-detection inference problem itself shapes the computational structures of these circuits remains unknown. Here, inspired by the distinctive structures of LPLC2 neurons in the visual system of Drosophila, we build anatomically-constrained shallow neural network models and train them to identify visual signals that correspond to impending collisions. Surprisingly, the optimization arrives at two distinct, opposing solutions, only one of which matches the actual dendritic weighting of LPLC2 neurons. Both solutions can solve the inference problem with high accuracy when the population size is large enough. The LPLC2-like solutions reproduces experimentally observed LPLC2 neuron responses for many stimuli, and reproduces canonical tuning of loom sensitive neurons, even though the models are never trained on neural data. Thus, LPLC2 neuron properties and tuning are predicted by optimizing an anatomically-constrained neural network to detect impending collisions. More generally, these results illustrate how optimizing inference tasks that are important for an animal's perceptual goals can reveal and explain computational properties of specific sensory neurons.
Collapse
Affiliation(s)
- Baohua Zhou
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Zifan Li
- Department of Statistics and Data Science, Yale University, New Haven, United States
| | - Sunnie Kim
- Department of Statistics and Data Science, Yale University, New Haven, United States
| | - John Lafferty
- Department of Statistics and Data Science, Yale University, New Haven, United States
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
14
|
Mano O, Creamer MS, Badwan BA, Clark DA. Predicting individual neuron responses with anatomically constrained task optimization. Curr Biol 2021; 31:4062-4075.e4. [PMID: 34324832 DOI: 10.1016/j.cub.2021.06.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 01/28/2023]
Abstract
Artificial neural networks trained to solve sensory tasks can develop statistical representations that match those in biological circuits. However, it remains unclear whether they can reproduce properties of individual neurons. Here, we investigated how artificial networks predict individual neuron properties in the visual motion circuits of the fruit fly Drosophila. We trained anatomically constrained networks to predict movement in natural scenes, solving the same inference problem as fly motion detectors. Units in the artificial networks adopted many properties of analogous individual neurons, even though they were not explicitly trained to match these properties. Among these properties was the split into ON and OFF motion detectors, which is not predicted by classical motion detection models. The match between model and neurons was closest when models were trained to be robust to noise. These results demonstrate how anatomical, task, and noise constraints can explain properties of individual neurons in a small neural network.
Collapse
Affiliation(s)
- Omer Mano
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Bara A Badwan
- School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
15
|
Ramos-Traslosheros G, Silies M. The physiological basis for contrast opponency in motion computation in Drosophila. Nat Commun 2021; 12:4987. [PMID: 34404776 PMCID: PMC8371135 DOI: 10.1038/s41467-021-24986-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
In Drosophila, direction-selective neurons implement a mechanism of motion computation similar to cortical neurons, using contrast-opponent receptive fields with ON and OFF subfields. It is not clear how the presynaptic circuitry of direction-selective neurons in the OFF pathway supports this computation if all major inputs are OFF-rectified neurons. Here, we reveal the biological substrate for motion computation in the OFF pathway. Three interneurons, Tm2, Tm9 and CT1, provide information about ON stimuli to the OFF direction-selective neuron T5 across its receptive field, supporting a contrast-opponent receptive field organization. Consistent with its prominent role in motion detection, variability in Tm9 receptive field properties transfers to T5, and calcium decrements in Tm9 in response to ON stimuli persist across behavioral states, while spatial tuning is sharpened by active behavior. Together, our work shows how a key neuronal computation is implemented by its constituent neuronal circuit elements to ensure direction selectivity.
Collapse
Affiliation(s)
- Giordano Ramos-Traslosheros
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
- International Max Planck Research School Neuroscienes and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of Göttingen, Göttingen, Germany
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
16
|
Agrochao M, Tanaka R, Salazar-Gatzimas E, Clark DA. Mechanism for analogous illusory motion perception in flies and humans. Proc Natl Acad Sci U S A 2020; 117:23044-23053. [PMID: 32839324 PMCID: PMC7502748 DOI: 10.1073/pnas.2002937117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Visual motion detection is one of the most important computations performed by visual circuits. Yet, we perceive vivid illusory motion in stationary, periodic luminance gradients that contain no true motion. This illusion is shared by diverse vertebrate species, but theories proposed to explain this illusion have remained difficult to test. Here, we demonstrate that in the fruit fly Drosophila, the illusory motion percept is generated by unbalanced contributions of direction-selective neurons' responses to stationary edges. First, we found that flies, like humans, perceive sustained motion in the stationary gradients. The percept was abolished when the elementary motion detector neurons T4 and T5 were silenced. In vivo calcium imaging revealed that T4 and T5 neurons encode the location and polarity of stationary edges. Furthermore, our proposed mechanistic model allowed us to predictably manipulate both the magnitude and direction of the fly's illusory percept by selectively silencing either T4 or T5 neurons. Interestingly, human brains possess the same mechanistic ingredients that drive our model in flies. When we adapted human observers to moving light edges or dark edges, we could manipulate the magnitude and direction of their percepts as well, suggesting that mechanisms similar to the fly's may also underlie this illusion in humans. By taking a comparative approach that exploits Drosophila neurogenetics, our results provide a causal, mechanistic account for a long-known visual illusion. These results argue that this illusion arises from architectures for motion detection that are shared across phyla.
Collapse
Affiliation(s)
- Margarida Agrochao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
| | | | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511;
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
- Department of Neuroscience, Yale University, New Haven, CT 06511
| |
Collapse
|
17
|
Zavatone-Veth JA, Badwan BA, Clark DA. A minimal synaptic model for direction selective neurons in Drosophila. J Vis 2020; 20:2. [PMID: 32040161 PMCID: PMC7343402 DOI: 10.1167/jov.20.2.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Visual motion estimation is a canonical neural computation. In Drosophila, recent advances have identified anatomic and functional circuitry underlying direction-selective computations. Models with varying levels of abstraction have been proposed to explain specific experimental results but have rarely been compared across experiments. Here we use the wealth of available anatomical and physiological data to construct a minimal, biophysically inspired synaptic model for Drosophila’s first-order direction-selective T4 cells. We show how this model relates mathematically to classical models of motion detection, including the Hassenstein-Reichardt correlator model. We used numerical simulation to test how well this synaptic model could reproduce measurements of T4 cells across many datasets and stimulus modalities. These comparisons include responses to sinusoid gratings, to apparent motion stimuli, to stochastic stimuli, and to natural scenes. Without fine-tuning this model, it sufficed to reproduce many, but not all, response properties of T4 cells. Since this model is flexible and based on straightforward biophysical properties, it provides an extensible framework for developing a mechanistic understanding of T4 neural response properties. Moreover, it can be used to assess the sufficiency of simple biophysical mechanisms to describe features of the direction-selective computation and identify where our understanding must be improved.
Collapse
|
18
|
Tanaka R, Clark DA. Object-Displacement-Sensitive Visual Neurons Drive Freezing in Drosophila. Curr Biol 2020; 30:2532-2550.e8. [PMID: 32442466 PMCID: PMC8716191 DOI: 10.1016/j.cub.2020.04.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/26/2022]
Abstract
Visual systems are often equipped with neurons that detect small moving objects, which may represent prey, predators, or conspecifics. Although the processing properties of those neurons have been studied in diverse organisms, links between the proposed algorithms and animal behaviors or circuit mechanisms remain elusive. Here, we have investigated behavioral function, computational algorithm, and neurochemical mechanisms of an object-selective neuron, LC11, in Drosophila. With genetic silencing and optogenetic activation, we show that LC11 is necessary for a visual object-induced stopping behavior in walking flies, a form of short-term freezing, and its activity can promote stopping. We propose a new quantitative model for small object selectivity based on the physiology and anatomy of LC11 and its inputs. The model accurately reproduces LC11 responses by pooling fast-adapting, tightly size-tuned inputs. Direct visualization of neurotransmitter inputs to LC11 confirmed the model conjectures about upstream processing. Our results demonstrate how adaptation can enhance selectivity for behaviorally relevant, dynamic visual features.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
19
|
Yildizoglu T, Riegler C, Fitzgerald JE, Portugues R. A Neural Representation of Naturalistic Motion-Guided Behavior in the Zebrafish Brain. Curr Biol 2020; 30:2321-2333.e6. [PMID: 32386533 DOI: 10.1016/j.cub.2020.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/13/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022]
Abstract
All animals must transform ambiguous sensory data into successful behavior. This requires sensory representations that accurately reflect the statistics of natural stimuli and behavior. Multiple studies show that visual motion processing is tuned for accuracy under naturalistic conditions, but the sensorimotor circuits extracting these cues and implementing motion-guided behavior remain unclear. Here we show that the larval zebrafish retina extracts a diversity of naturalistic motion cues, and the retinorecipient pretectum organizes these cues around the elements of behavior. We find that higher-order motion stimuli, gliders, induce optomotor behavior matching expectations from natural scene analyses. We then image activity of retinal ganglion cell terminals and pretectal neurons. The retina exhibits direction-selective responses across glider stimuli, and anatomically clustered pretectal neurons respond with magnitudes matching behavior. Peripheral computations thus reflect natural input statistics, whereas central brain activity precisely codes information needed for behavior. This general principle could organize sensorimotor transformations across animal species.
Collapse
Affiliation(s)
- Tugce Yildizoglu
- Max Planck Institute of Neurobiology, Research Group of Sensorimotor Control, Martinsried 82152, Germany
| | - Clemens Riegler
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Ruben Portugues
- Max Planck Institute of Neurobiology, Research Group of Sensorimotor Control, Martinsried 82152, Germany; Institute of Neuroscience, Technical University of Munich, Munich 80802, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich 80802, Germany.
| |
Collapse
|
20
|
Kirkels LAMH, Zhang W, Duijnhouwer J, van Wezel RJA. Opto-locomotor reflexes of mice to reverse-phi stimuli. J Vis 2020; 20:7. [PMID: 32097483 PMCID: PMC7343431 DOI: 10.1167/jov.20.2.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In a reverse-phi stimulus, the contrast luminance of moving dots is reversed each displacement step. Under those conditions, the direction of the moving dots is perceived in the direction opposite of the displacement direction of the dots. In this study, we investigate if mice respond oppositely to phi and reverse-phi stimuli. Mice ran head-fixed on a Styrofoam ball floating on pressurized air at the center of a large dome. We projected random dot patterns that were displaced rightward or leftward, using either a phi or a reverse-phi stimulus. For phi stimuli, changes in direction caused the mice to reflexively compensate and adjust their running direction in the direction of the displaced pattern. We show that for reverse-phi stimuli mice compensate in the direction opposite to the displacement direction of the dots, in accordance with the perceived direction of displacement in humans for reverse-phi stimuli.
Collapse
|
21
|
Matulis CA, Chen J, Gonzalez-Suarez AD, Behnia R, Clark DA. Heterogeneous Temporal Contrast Adaptation in Drosophila Direction-Selective Circuits. Curr Biol 2020; 30:222-236.e6. [PMID: 31928874 PMCID: PMC7003801 DOI: 10.1016/j.cub.2019.11.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 11/23/2022]
Abstract
In visual systems, neurons adapt both to the mean light level and to the range of light levels, or the contrast. Contrast adaptation has been studied extensively, but it remains unclear how it is distributed among neurons in connected circuits, and how early adaptation affects subsequent computations. Here, we investigated temporal contrast adaptation in neurons across Drosophila's visual motion circuitry. Several ON-pathway neurons showed strong adaptation to changes in contrast over time. One of these neurons, Mi1, showed almost complete adaptation on fast timescales, and experiments ruled out several potential mechanisms for its adaptive properties. When contrast adaptation reduced the gain in ON-pathway cells, it was accompanied by decreased motion responses in downstream direction-selective cells. Simulations show that contrast adaptation can substantially improve motion estimates in natural scenes. The benefits are larger for ON-pathway adaptation, which helps explain the heterogeneous distribution of contrast adaptation in these circuits.
Collapse
Affiliation(s)
- Catherine A Matulis
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
| | - Juyue Chen
- Interdepartmental Neuroscience Program, Yale University, 333 Cedar Street, New Haven, CT 06510, USA
| | | | - Rudy Behnia
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Damon A Clark
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, 333 Cedar Street, New Haven, CT 06510, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
22
|
Dynamic Signal Compression for Robust Motion Vision in Flies. Curr Biol 2020; 30:209-221.e8. [PMID: 31928873 DOI: 10.1016/j.cub.2019.10.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Sensory systems need to reliably extract information from highly variable natural signals. Flies, for instance, use optic flow to guide their course and are remarkably adept at estimating image velocity regardless of image statistics. Current circuit models, however, cannot account for this robustness. Here, we demonstrate that the Drosophila visual system reduces input variability by rapidly adjusting its sensitivity to local contrast conditions. We exhaustively map functional properties of neurons in the motion detection circuit and find that local responses are compressed by surround contrast. The compressive signal is fast, integrates spatially, and derives from neural feedback. Training convolutional neural networks on estimating the velocity of natural stimuli shows that this dynamic signal compression can close the performance gap between model and organism. Overall, our work represents a comprehensive mechanistic account of how neural systems attain the robustness to carry out survival-critical tasks in challenging real-world environments.
Collapse
|
23
|
Gruntman E, Romani S, Reiser MB. The computation of directional selectivity in the Drosophila OFF motion pathway. eLife 2019; 8:e50706. [PMID: 31825313 PMCID: PMC6917495 DOI: 10.7554/elife.50706] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/30/2019] [Indexed: 01/23/2023] Open
Abstract
In flies, the direction of moving ON and OFF features is computed separately. T4 (ON) and T5 (OFF) are the first neurons in their respective pathways to extract a directionally selective response from their non-selective inputs. Our recent study of T4 found that the integration of offset depolarizing and hyperpolarizing inputs is critical for the generation of directional selectivity. However, T5s lack small-field inhibitory inputs, suggesting they may use a different mechanism. Here we used whole-cell recordings of T5 neurons and found a similar receptive field structure: fast depolarization and persistent, spatially offset hyperpolarization. By assaying pairwise interactions of local stimulation across the receptive field, we found no amplifying responses, only suppressive responses to the non-preferred motion direction. We then evaluated passive, biophysical models and found that a model using direct inhibition, but not the removal of excitation, can accurately predict T5 responses to a range of moving stimuli.
Collapse
Affiliation(s)
- Eyal Gruntman
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Sandro Romani
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Michael B Reiser
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
24
|
How fly neurons compute the direction of visual motion. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:109-124. [PMID: 31691093 PMCID: PMC7069908 DOI: 10.1007/s00359-019-01375-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
Abstract
Detecting the direction of image motion is a fundamental component of visual computation, essential for survival of the animal. However, at the level of individual photoreceptors, the direction in which the image is shifting is not explicitly represented. Rather, directional motion information needs to be extracted from the photoreceptor array by comparing the signals of neighboring units over time. The exact nature of this process as implemented in the visual system of the fruit fly Drosophila melanogaster has been studied in great detail, and much progress has recently been made in determining the neural circuits giving rise to directional motion information. The results reveal the following: (1) motion information is computed in parallel ON and OFF pathways. (2) Within each pathway, T4 (ON) and T5 (OFF) cells are the first neurons to represent the direction of motion. Four subtypes of T4 and T5 cells exist, each sensitive to one of the four cardinal directions. (3) The core process of direction selectivity as implemented on the dendrites of T4 and T5 cells comprises both an enhancement of signals for motion along their preferred direction as well as a suppression of signals for motion along the opposite direction. This combined strategy ensures a high degree of direction selectivity right at the first stage where the direction of motion is computed. (4) At the subsequent processing stage, tangential cells spatially integrate direct excitation from ON and OFF-selective T4 and T5 cells and indirect inhibition from bi-stratified LPi cells activated by neighboring T4/T5 terminals, thus generating flow-field-selective responses.
Collapse
|
25
|
Mano O, Creamer MS, Matulis CA, Salazar-Gatzimas E, Chen J, Zavatone-Veth JA, Clark DA. Using slow frame rate imaging to extract fast receptive fields. Nat Commun 2019; 10:4979. [PMID: 31672963 PMCID: PMC6823504 DOI: 10.1038/s41467-019-12974-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/11/2019] [Indexed: 11/09/2022] Open
Abstract
In functional imaging, large numbers of neurons are measured during sensory stimulation or behavior. This data can be used to map receptive fields that describe neural associations with stimuli or with behavior. The temporal resolution of these receptive fields has traditionally been limited by image acquisition rates. However, even when acquisitions scan slowly across a population of neurons, individual neurons may be measured at precisely known times. Here, we apply a method that leverages the timing of neural measurements to find receptive fields with temporal resolutions higher than the image acquisition rate. We use this temporal super-resolution method to resolve fast voltage and glutamate responses in visual neurons in Drosophila and to extract calcium receptive fields from cortical neurons in mammals. We provide code to easily apply this method to existing datasets. This method requires no specialized hardware and can be used with any optical indicator of neural activity.
Collapse
Affiliation(s)
- Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA
| | | | | | - Juyue Chen
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA
| | | | - Damon A Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
- Department of Neuroscience, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
26
|
Chen J, Mandel HB, Fitzgerald JE, Clark DA. Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes. eLife 2019; 8:e47579. [PMID: 31613221 PMCID: PMC6884396 DOI: 10.7554/elife.47579] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/12/2019] [Indexed: 02/05/2023] Open
Abstract
Animals detect motion using a variety of visual cues that reflect regularities in the natural world. Experiments in animals across phyla have shown that motion percepts incorporate both pairwise and triplet spatiotemporal correlations that could theoretically benefit motion computation. However, it remains unclear how visual systems assemble these cues to build accurate motion estimates. Here, we used systematic behavioral measurements of fruit fly motion perception to show how flies combine local pairwise and triplet correlations to reduce variability in motion estimates across natural scenes. By generating synthetic images with statistics controlled by maximum entropy distributions, we show that the triplet correlations are useful only when images have light-dark asymmetries that mimic natural ones. This suggests that asymmetric ON-OFF processing is tuned to the particular statistics of natural scenes. Since all animals encounter the world's light-dark asymmetries, many visual systems are likely to use asymmetric ON-OFF processing to improve motion estimation.
Collapse
Affiliation(s)
- Juyue Chen
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
| | - Holly B Mandel
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
| | - James E Fitzgerald
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Damon A Clark
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
- Department of PhysicsYale UniversityNew HavenUnited States
- Department of NeuroscienceYale UniversityNew HavenUnited States
| |
Collapse
|
27
|
Optomotor Swimming in Larval Zebrafish Is Driven by Global Whole-Field Visual Motion and Local Light-Dark Transitions. Cell Rep 2019; 29:659-670.e3. [DOI: 10.1016/j.celrep.2019.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 01/28/2023] Open
|
28
|
Molina-Obando S, Vargas-Fique JF, Henning M, Gür B, Schladt TM, Akhtar J, Berger TK, Silies M. ON selectivity in the Drosophila visual system is a multisynaptic process involving both glutamatergic and GABAergic inhibition. eLife 2019; 8:e49373. [PMID: 31535971 PMCID: PMC6845231 DOI: 10.7554/elife.49373] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/18/2019] [Indexed: 01/06/2023] Open
Abstract
Sensory systems sequentially extract increasingly complex features. ON and OFF pathways, for example, encode increases or decreases of a stimulus from a common input. This ON/OFF pathway split is thought to occur at individual synaptic connections through a sign-inverting synapse in one of the pathways. Here, we show that ON selectivity is a multisynaptic process in the Drosophila visual system. A pharmacogenetics approach demonstrates that both glutamatergic inhibition through GluClα and GABAergic inhibition through Rdl mediate ON responses. Although neurons postsynaptic to the glutamatergic ON pathway input L1 lose all responses in GluClα mutants, they are resistant to a cell-type-specific loss of GluClα. This shows that ON selectivity is distributed across multiple synapses, and raises the possibility that cell-type-specific manipulations might reveal similar strategies in other sensory systems. Thus, sensory coding is more distributed than predicted by simple circuit motifs, allowing for robust neural processing.
Collapse
Affiliation(s)
- Sebastian Molina-Obando
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of GöttingenGöttingenGermany
| | - Juan Felipe Vargas-Fique
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of GöttingenGöttingenGermany
| | - Miriam Henning
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
| | - Burak Gür
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of GöttingenGöttingenGermany
| | - T Moritz Schladt
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (caesar)BonnGermany
| | - Junaid Akhtar
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
| | - Thomas K Berger
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (caesar)BonnGermany
- Institute of Physiology and PathophysiologyPhilipps-Universität MarburgMarburgGermany
| | - Marion Silies
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
| |
Collapse
|
29
|
Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors. Nat Neurosci 2019; 22:1318-1326. [PMID: 31346296 PMCID: PMC6748873 DOI: 10.1038/s41593-019-0443-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Direction-selective neurons respond to visual motion in a preferred direction. They are direction-opponent if they are also inhibited by motion in the opposite direction. In flies and vertebrates, direction opponency has been observed in second-order direction-selective neurons, which achieve this opponency by subtracting signals from first-order direction-selective cells with opposite directional tunings. Here, we report direction opponency in Drosophila that emerges in first-order direction-selective neurons, the elementary motion detectors T4 and T5. This opponency persists when synaptic output from these cells is blocked, suggesting that it arises from feedforward, not feedback, computations. These observations exclude a broad class of linear-nonlinear models that have been proposed to describe direction-selective computations. However, they are consistent with models that include dynamic nonlinearities. Simulations of opponent models suggest that direction opponency in first-order motion detectors improves motion discriminability by suppressing noise generated by the local structure of natural scenes.
Collapse
|
30
|
Creamer MS, Mano O, Tanaka R, Clark DA. A flexible geometry for panoramic visual and optogenetic stimulation during behavior and physiology. J Neurosci Methods 2019; 323:48-55. [PMID: 31103713 DOI: 10.1016/j.jneumeth.2019.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/11/2019] [Accepted: 05/12/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND To study visual processing, it is necessary to precisely control visual stimuli while recording neural and behavioral responses. It can be important to present stimuli over a broad area of the visual field, which can be technically difficult. NEW METHOD We present a simple geometry that can be used to display panoramic stimuli. A single digital light projector generates images that are reflected by mirrors onto flat screens that surround an animal. It can be used for behavioral and neurophysiological measurements, so virtually identical stimuli can be presented. Moreover, this geometry permits light from the projector to be used to activate optogenetic tools. RESULTS Using this geometry, we presented panoramic visual stimulation to Drosophila in three paradigms. We presented drifting contrast gratings while recording walking and turning speed. We used the same projector to activate optogenetic channels during visual stimulation. Finally, we used two-photon microscopy to record responses in direction-selective cells to drifting gratings. COMPARISON WITH EXISTING METHOD(S) Existing methods have typically required custom hardware or curved screens, while this method requires only flat back projection screens and a digital light projector. The projector generates images in real time and does not require pre-generated images. Finally, while many setups are large, this geometry occupies a 30 × 20 cm footprint with a 25 cm height. CONCLUSIONS This flexible geometry enables measurements of behavioral and neural responses to panoramic stimuli. This allows moderate throughput behavioral experiments with simultaneous optogenetic manipulation, with easy comparisons between behavior and neural activity using virtually identical stimuli.
Collapse
Affiliation(s)
- Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States; Department of Physics, Yale University, New Haven, CT, United States; Department of Neuroscience, Yale University, New Haven, CT, United States.
| |
Collapse
|
31
|
Shinomiya K, Huang G, Lu Z, Parag T, Xu CS, Aniceto R, Ansari N, Cheatham N, Lauchie S, Neace E, Ogundeyi O, Ordish C, Peel D, Shinomiya A, Smith C, Takemura S, Talebi I, Rivlin PK, Nern A, Scheffer LK, Plaza SM, Meinertzhagen IA. Comparisons between the ON- and OFF-edge motion pathways in the Drosophila brain. eLife 2019; 8:40025. [PMID: 30624205 PMCID: PMC6338461 DOI: 10.7554/elife.40025] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/02/2019] [Indexed: 02/03/2023] Open
Abstract
Understanding the circuit mechanisms behind motion detection is a long-standing question in visual neuroscience. In Drosophila melanogaster, recently discovered synapse-level connectomes in the optic lobe, particularly in ON-pathway (T4) receptive-field circuits, in concert with physiological studies, suggest a motion model that is increasingly intricate when compared with the ubiquitous Hassenstein-Reichardt model. By contrast, our knowledge of OFF-pathway (T5) has been incomplete. Here, we present a conclusive and comprehensive connectome that, for the first time, integrates detailed connectivity information for inputs to both the T4 and T5 pathways in a single EM dataset covering the entire optic lobe. With novel reconstruction methods using automated synapse prediction suited to such a large connectome, we successfully corroborate previous findings in the T4 pathway and comprehensively identify inputs and receptive fields for T5. Although the two pathways are probably evolutionarily linked and exhibit many similarities, we uncover interesting differences and interactions that may underlie their distinct functional properties.
Collapse
Affiliation(s)
- Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gary Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
| | - Toufiq Parag
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Roxanne Aniceto
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Namra Ansari
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Natasha Cheatham
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Shirley Lauchie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Erika Neace
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - David Peel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Claire Smith
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Iris Talebi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
| |
Collapse
|
32
|
Creamer MS, Mano O, Clark DA. Visual Control of Walking Speed in Drosophila. Neuron 2018; 100:1460-1473.e6. [PMID: 30415994 PMCID: PMC6405217 DOI: 10.1016/j.neuron.2018.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 10/27/2022]
Abstract
An animal's self-motion generates optic flow across its retina, and it can use this visual signal to regulate its orientation and speed through the world. While orientation control has been studied extensively in Drosophila and other insects, much less is known about the visual cues and circuits that regulate translational speed. Here, we show that flies regulate walking speed with an algorithm that is tuned to the speed of visual motion, causing them to slow when visual objects are nearby. This regulation does not depend strongly on the spatial structure or the direction of visual stimuli, making it algorithmically distinct from the classic computation that controls orientation. Despite the different algorithms, the visual circuits that regulate walking speed overlap with those that regulate orientation. Taken together, our findings suggest that walking speed is controlled by a hierarchical computation that combines multiple motion detectors with distinct tunings. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
33
|
Salazar-Gatzimas E, Agrochao M, Fitzgerald JE, Clark DA. The Neuronal Basis of an Illusory Motion Percept Is Explained by Decorrelation of Parallel Motion Pathways. Curr Biol 2018; 28:3748-3762.e8. [PMID: 30471993 DOI: 10.1016/j.cub.2018.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 10/27/2022]
Abstract
Both vertebrates and invertebrates perceive illusory motion, known as "reverse-phi," in visual stimuli that contain sequential luminance increments and decrements. However, increment (ON) and decrement (OFF) signals are initially processed by separate visual neurons, and parallel elementary motion detectors downstream respond selectively to the motion of light or dark edges, often termed ON- and OFF-edges. It remains unknown how and where ON and OFF signals combine to generate reverse-phi motion signals. Here, we show that each of Drosophila's elementary motion detectors encodes motion by combining both ON and OFF signals. Their pattern of responses reflects combinations of increments and decrements that co-occur in natural motion, serving to decorrelate their outputs. These results suggest that the general principle of signal decorrelation drives the functional specialization of parallel motion detection channels, including their selectivity for moving light or dark edges.
Collapse
Affiliation(s)
- Emilio Salazar-Gatzimas
- Interdepartmental Neuroscience Program, Yale University, 333 Cedar Street, New Haven, CT 06511, USA
| | - Margarida Agrochao
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, 333 Cedar Street, New Haven, CT 06511, USA; Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
34
|
Barnhart EL, Wang IE, Wei H, Desplan C, Clandinin TR. Sequential Nonlinear Filtering of Local Motion Cues by Global Motion Circuits. Neuron 2018; 100:229-243.e3. [PMID: 30220510 DOI: 10.1016/j.neuron.2018.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/20/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
Many animals guide their movements using optic flow, the displacement of stationary objects across the retina caused by self-motion. How do animals selectively synthesize a global motion pattern from its local motion components? To what extent does this feature selectivity rely on circuit mechanisms versus dendritic processing? Here we used in vivo calcium imaging to identify pre- and postsynaptic mechanisms for processing local motion signals in global motion detection circuits in Drosophila. Lobula plate tangential cells (LPTCs) detect global motion by pooling input from local motion detectors, T4/T5 neurons. We show that T4/T5 neurons suppress responses to adjacent local motion signals whereas LPTC dendrites selectively amplify spatiotemporal sequences of local motion signals consistent with preferred global patterns. We propose that sequential nonlinear suppression and amplification operations allow optic flow circuitry to simultaneously prevent saturating responses to local signals while creating selectivity for global motion patterns critical to behavior.
Collapse
Affiliation(s)
- Erin L Barnhart
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Irving E Wang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Huayi Wei
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Wienecke CFR, Leong JCS, Clandinin TR. Linear Summation Underlies Direction Selectivity in Drosophila. Neuron 2018; 99:680-688.e4. [PMID: 30057202 DOI: 10.1016/j.neuron.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/24/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Abstract
While linear mechanisms lay the foundations of feature selectivity in many brain areas, direction selectivity in the elementary motion detector (EMD) of the fly has become a paradigm of nonlinear neuronal computation. We have bridged this divide by demonstrating that linear spatial summation can generate direction selectivity in the fruit fly Drosophila. Using linear systems analysis and two-photon imaging of a genetically encoded voltage indicator, we measure the emergence of direction-selective (DS) voltage signals in the Drosophila OFF pathway. Our study is a direct, quantitative investigation of the algorithm underlying directional signals, with the striking finding that linear spatial summation is sufficient for the emergence of direction selectivity. A linear stage of the fly EMD strongly resembles similar computations in vertebrate visual cortex, demands a reappraisal of the role of upstream nonlinearities, and implicates the voltage-to-calcium transformation in the refinement of feature selectivity in this system. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Carl F R Wienecke
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Jonathan C S Leong
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Abstract
Motion in the visual world provides critical information to guide the behavior of sighted animals. Furthermore, as visual motion estimation requires comparisons of signals across inputs and over time, it represents a paradigmatic and generalizable neural computation. Focusing on the Drosophila visual system, where an explosion of technological advances has recently accelerated experimental progress, we review our understanding of how, algorithmically and mechanistically, motion signals are first computed.
Collapse
Affiliation(s)
- Helen H Yang
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA; .,Current affiliation: Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
37
|
Borst A. A biophysical mechanism for preferred direction enhancement in fly motion vision. PLoS Comput Biol 2018; 14:e1006240. [PMID: 29897917 PMCID: PMC6016951 DOI: 10.1371/journal.pcbi.1006240] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/25/2018] [Accepted: 05/29/2018] [Indexed: 11/18/2022] Open
Abstract
Seeing the direction of motion is essential for survival of all sighted animals. Consequently, nerve cells that respond to visual stimuli moving in one but not in the opposite direction, so-called 'direction-selective' neurons, are found abundantly. In general, direction selectivity can arise by either signal amplification for stimuli moving in the cell's preferred direction ('preferred direction enhancement'), signal suppression for stimuli moving along the opposite direction ('null direction suppression'), or a combination of both. While signal suppression can be readily implemented in biophysical terms by a hyperpolarization followed by a rectification corresponding to the nonlinear voltage-dependence of the Calcium channel, the biophysical mechanism for signal amplification has remained unclear so far. Taking inspiration from the fly, I analyze a neural circuit where a direction-selective ON-cell receives inhibitory input from an OFF cell on the preferred side of the dendrite, while excitatory ON-cells contact the dendrite centrally. This way, an ON edge moving along the cell's preferred direction suppresses the inhibitory input, leading to a release from inhibition in the postsynaptic cell. The benefit of such a two-fold signal inversion lies in the resulting increase of the postsynaptic cell's input resistance, amplifying its response to a subsequent excitatory input signal even with a passive dendrite, i.e. without voltage-gated ion channels. A motion detector implementing this mechanism together with null direction suppression shows a high degree of direction selectivity over a large range of temporal frequency, narrow directional tuning, and a large signal-to-noise ratio.
Collapse
|
38
|
Astigarraga S, Douthit J, Tarnogorska D, Creamer MS, Mano O, Clark DA, Meinertzhagen IA, Treisman JE. Drosophila Sidekick is required in developing photoreceptors to enable visual motion detection. Development 2018; 145:dev.158246. [PMID: 29361567 DOI: 10.1242/dev.158246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
The assembly of functional neuronal circuits requires growth cones to extend in defined directions and recognize the correct synaptic partners. Homophilic adhesion between vertebrate Sidekick proteins promotes synapse formation between retinal neurons involved in visual motion detection. We show here that Drosophila Sidekick accumulates in specific synaptic layers of the developing motion detection circuit and is necessary for normal optomotor behavior. Sidekick is required in photoreceptors, but not in their target lamina neurons, to promote the alignment of lamina neurons into columns and subsequent sorting of photoreceptor axons into synaptic modules based on their precise spatial orientation. Sidekick is also localized to the dendrites of the direction-selective T4 and T5 cells, and is expressed in some of their presynaptic partners. In contrast to its vertebrate homologs, Sidekick is not essential for T4 and T5 to direct their dendrites to the appropriate layers or to receive synaptic contacts. These results illustrate a conserved requirement for Sidekick proteins in establishing visual motion detection circuits that is achieved through distinct cellular mechanisms in Drosophila and vertebrates.
Collapse
Affiliation(s)
- Sergio Astigarraga
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jessica Douthit
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Dorota Tarnogorska
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, Kline Biology Tower Room 224, 219 Whitney Avenue, New Haven, CT 06511, USA
| | - Omer Mano
- Department of Molecular, Cellular and Developmental Biology, Yale University, Kline Biology Tower Room 224, 219 Whitney Avenue, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, Kline Biology Tower Room 224, 219 Whitney Avenue, New Haven, CT 06511, USA
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Jessica E Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
39
|
Gruntman E, Romani S, Reiser MB. Simple integration of fast excitation and offset, delayed inhibition computes directional selectivity in Drosophila. Nat Neurosci 2018; 21:250-257. [PMID: 29311742 PMCID: PMC5967973 DOI: 10.1038/s41593-017-0046-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
A neuron that extracts directionally selective motion information from upstream signals lacking this selectivity must compare visual responses from spatially offset inputs. Distinguishing among prevailing algorithmic models for this computation requires measuring fast neuronal activity and inhibition. In the Drosophila melanogaster visual system, a fourth-order neuron-T4-is the first cell type in the ON pathway to exhibit directionally selective signals. Here we use in vivo whole-cell recordings of T4 to show that directional selectivity originates from simple integration of spatially offset fast excitatory and slow inhibitory inputs, resulting in a suppression of responses to the nonpreferred motion direction. We constructed a passive, conductance-based model of a T4 cell that accurately predicts the neuron's response to moving stimuli. These results connect the known circuit anatomy of the motion pathway to the algorithmic mechanism by which the direction of motion is computed.
Collapse
Affiliation(s)
- Eyal Gruntman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
40
|
Neural mechanisms underlying sensitivity to reverse-phi motion in the fly. PLoS One 2017; 12:e0189019. [PMID: 29261684 PMCID: PMC5737883 DOI: 10.1371/journal.pone.0189019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/18/2017] [Indexed: 01/18/2023] Open
Abstract
Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning humans and invertebrates. Here, we map an algorithmic account of the phenomenon onto neural circuitry in the fruit fly Drosophila melanogaster. Through targeted silencing experiments in tethered walking flies as well as electrophysiology and calcium imaging, we demonstrate that ON- or OFF-selective local motion detector cells T4 and T5 are sensitive to certain interactions between ON and OFF. A biologically plausible detector model accounts for subtle features of this particular form of illusory motion reversal, like the re-inversion of turning responses occurring at extreme stimulus velocities. In light of comparable circuit architecture in the mammalian retina, we suggest that similar mechanisms may apply even to human psychophysics.
Collapse
|
41
|
Abstract
The behavioral state of an animal can dynamically modulate visual processing. In flies, the behavioral state is known to alter the temporal tuning of neurons that carry visual motion information into the central brain. However, where this modulation occurs and how it tunes the properties of this neural circuit are not well understood. Here, we show that the behavioral state alters the baseline activity levels and the temporal tuning of the first directionally selective neuron in the ON motion pathway (T4) as well as its primary input neurons (Mi1, Tm3, Mi4, Mi9). These effects are especially prominent in the inhibitory neuron Mi4, and we show that central octopaminergic neurons provide input to Mi4 and increase its excitability. We further show that octopamine neurons are required for sustained behavioral responses to fast-moving, but not slow-moving, visual stimuli in walking flies. These results indicate that behavioral-state modulation acts directly on the inputs to the directionally selective neurons and supports efficient neural coding of motion stimuli.
Collapse
|
42
|
The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements. Curr Biol 2017; 27:929-944. [PMID: 28343964 DOI: 10.1016/j.cub.2017.01.051] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/19/2016] [Accepted: 01/25/2017] [Indexed: 11/22/2022]
Abstract
Detecting the direction of motion contained in the visual scene is crucial for many behaviors. However, because single photoreceptors only signal local luminance changes, motion detection requires a comparison of signals from neighboring photoreceptors across time in downstream neuronal circuits. For signals to coincide on readout neurons that thus become motion and direction selective, different input lines need to be delayed with respect to each other. Classical models of motion detection rely on non-linear interactions between two inputs after different temporal filtering. However, recent studies have suggested the requirement for at least three, not only two, input signals. Here, we comprehensively characterize the spatiotemporal response properties of all columnar input elements to the elementary motion detectors in the fruit fly, T4 and T5 cells, via two-photon calcium imaging. Between these input neurons, we find large differences in temporal dynamics. Based on this, computer simulations show that only a small subset of possible arrangements of these input elements maps onto a recently proposed algorithmic three-input model in a way that generates a highly direction-selective motion detector, suggesting plausible network architectures. Moreover, modulating the motion detection system by octopamine-receptor activation, we find the temporal tuning of T4 and T5 cells to be shifted toward higher frequencies, and this shift can be fully explained by the concomitant speeding of the input elements.
Collapse
|
43
|
Mano O, Clark DA. Graphics Processing Unit-Accelerated Code for Computing Second-Order Wiener Kernels and Spike-Triggered Covariance. PLoS One 2017; 12:e0169842. [PMID: 28068420 PMCID: PMC5222505 DOI: 10.1371/journal.pone.0169842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/22/2016] [Indexed: 11/18/2022] Open
Abstract
Sensory neuroscience seeks to understand and predict how sensory neurons respond to stimuli. Nonlinear components of neural responses are frequently characterized by the second-order Wiener kernel and the closely-related spike-triggered covariance (STC). Recent advances in data acquisition have made it increasingly common and computationally intensive to compute second-order Wiener kernels/STC matrices. In order to speed up this sort of analysis, we developed a graphics processing unit (GPU)-accelerated module that computes the second-order Wiener kernel of a system's response to a stimulus. The generated kernel can be easily transformed for use in standard STC analyses. Our code speeds up such analyses by factors of over 100 relative to current methods that utilize central processing units (CPUs). It works on any modern GPU and may be integrated into many data analysis workflows. This module accelerates data analysis so that more time can be spent exploring parameter space and interpreting data.
Collapse
Affiliation(s)
- Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Damon A. Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|