1
|
Rudroff T. Decoding thoughts, encoding ethics: A narrative review of the BCI-AI revolution. Brain Res 2024; 1850:149423. [PMID: 39719191 DOI: 10.1016/j.brainres.2024.149423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
OBJECTIVES This narrative review aims to analyze mechanisms underlying Brain-Computer Interface (BCI) and Artificial Intelligence (AI) integration, evaluate recent advances in signal acquisition and processing techniques, and assess AI-enhanced neural decoding strategies. The review identifies critical research gaps and examines emerging solutions across multiple domains of BCI-AI integration. METHODS A narrative review was conducted using major biomedical and scientific databases including PubMed, Web of Science, IEEE Xplore, and Scopus (2014-2024). Literature was analyzed to identify key developments in BCI-AI integration, with particular emphasis on recent advances (2019-2024). The review process involved thematic analysis of selected publications focusing on practical applications, technical innovations, and emerging challenges. RESULTS Recent advances demonstrate significant improvements in BCI-AI systems: 1) High-density electrode arrays achieve spatial resolution up to 5 mm, with stable recordings over 15 months; 2) Deep learning decoders show 40 % improvement in information transfer rates compared to traditional methods; 3) Adaptive algorithms maintain >90 % success rates in motor control tasks over 200-day periods without recalibration; 4) Novel closed-loop optimization frameworks reduce user training time by 55 % while improving accuracy. Latest developments in flexible neural interfaces and self-supervised learning approaches show promise in addressing long-term stability and cross-user generalization challenges. CONCLUSIONS BCI-AI integration shows remarkable progress in improving signal quality, decoding accuracy, and user adaptation. While challenges remain in long-term stability and user training, advances in adaptive algorithms and feedback mechanisms demonstrate the technology's growing viability for clinical applications. Recent innovations in electrode technology, AI architectures, and closed-loop systems, combined with emerging standardization frameworks, suggest accelerating progress toward widespread therapeutic use and human augmentation applications.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
2
|
Bardella G, Franchini S, Pani P, Ferraina S. Lattice physics approaches for neural networks. iScience 2024; 27:111390. [PMID: 39679297 PMCID: PMC11638618 DOI: 10.1016/j.isci.2024.111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Modern neuroscience has evolved into a frontier field that draws on numerous disciplines, resulting in the flourishing of novel conceptual frames primarily inspired by physics and complex systems science. Contributing in this direction, we recently introduced a mathematical framework to describe the spatiotemporal interactions of systems of neurons using lattice field theory, the reference paradigm for theoretical particle physics. In this note, we provide a concise summary of the basics of the theory, aiming to be intuitive to the interdisciplinary neuroscience community. We contextualize our methods, illustrating how to readily connect the parameters of our formulation to experimental variables using well-known renormalization procedures. This synopsis yields the key concepts needed to describe neural networks using lattice physics. Such classes of methods are attention-worthy in an era of blistering improvements in numerical computations, as they can facilitate relating the observation of neural activity to generative models underpinned by physical principles.
Collapse
Affiliation(s)
- Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Simone Franchini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Agudelo-Toro A, Michaels JA, Sheng WA, Scherberger H. Accurate neural control of a hand prosthesis by posture-related activity in the primate grasping circuit. Neuron 2024; 112:4115-4129.e8. [PMID: 39419024 DOI: 10.1016/j.neuron.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Brain-computer interfaces (BCIs) have the potential to restore hand movement for people with paralysis, but current devices still lack the fine control required to interact with objects of daily living. Following our understanding of cortical activity during arm reaches, hand BCI studies have focused primarily on velocity control. However, mounting evidence suggests that posture, and not velocity, dominates in hand-related areas. To explore whether this signal can causally control a prosthesis, we developed a BCI training paradigm centered on the reproduction of posture transitions. Monkeys trained with this protocol were able to control a multidimensional hand prosthesis with high accuracy, including execution of the very intricate precision grip. Analysis revealed that the posture signal in the target grasping areas was the main contributor to control. We present, for the first time, neural posture control of a multidimensional hand prosthesis, opening the door for future interfaces to leverage this additional information channel.
Collapse
Affiliation(s)
- Andres Agudelo-Toro
- Neurobiology Laboratory, Deutsches Primatenzentrum GmbH, Göttingen 37077, Germany.
| | - Jonathan A Michaels
- Neurobiology Laboratory, Deutsches Primatenzentrum GmbH, Göttingen 37077, Germany; School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON M3J 1P3, Canada
| | - Wei-An Sheng
- Neurobiology Laboratory, Deutsches Primatenzentrum GmbH, Göttingen 37077, Germany; Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hansjörg Scherberger
- Neurobiology Laboratory, Deutsches Primatenzentrum GmbH, Göttingen 37077, Germany; Faculty of Biology and Psychology, University of Göttingen, Göttingen 37073, Germany.
| |
Collapse
|
4
|
Grosse-Wentrup M, Kumar A, Meunier A, Zimmer M. Neuro-cognitive multilevel causal modeling: A framework that bridges the explanatory gap between neuronal activity and cognition. PLoS Comput Biol 2024; 20:e1012674. [PMID: 39680605 DOI: 10.1371/journal.pcbi.1012674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Explaining how neuronal activity gives rise to cognition arguably remains the most significant challenge in cognitive neuroscience. We introduce neuro-cognitive multilevel causal modeling (NC-MCM), a framework that bridges the explanatory gap between neuronal activity and cognition by construing cognitive states as (behaviorally and dynamically) causally consistent abstractions of neuronal states. Multilevel causal modeling allows us to interchangeably reason about the neuronal- and cognitive causes of behavior while maintaining a physicalist (in contrast to a strong dualist) position. We introduce an algorithm for learning cognitive-level causal models from neuronal activation patterns and demonstrate its ability to learn cognitive states of the nematode C. elegans from calcium imaging data. We show that the cognitive-level model of the NC-MCM framework provides a concise representation of the neuronal manifold of C. elegans and its relation to behavior as a graph, which, in contrast to other neuronal manifold learning algorithms, supports causal reasoning. We conclude the article by arguing that the ability of the NC-MCM framework to learn causally interpretable abstractions of neuronal dynamics and their relation to behavior in a purely data-driven fashion is essential for understanding biological systems whose complexity prohibits the development of hand-crafted computational models.
Collapse
Affiliation(s)
- Moritz Grosse-Wentrup
- Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Data Science @ UniVie, University of Vienna, Vienna, Austria
| | - Akshey Kumar
- Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Vienna, Austria
- UniVie Doctoral School Computer Science (DoCS), University of Vienna, Vienna, Austria
| | - Anja Meunier
- Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Vienna, Austria
- UniVie Doctoral School Computer Science (DoCS), University of Vienna, Vienna, Austria
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Zheng J, Meister M. The unbearable slowness of being: Why do we live at 10 bits/s? Neuron 2024:S0896-6273(24)00808-0. [PMID: 39694032 DOI: 10.1016/j.neuron.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
This article is about the neural conundrum behind the slowness of human behavior. The information throughput of a human being is about 10 bits/s. In comparison, our sensory systems gather data at ∼109 bits/s. The stark contrast between these numbers remains unexplained and touches on fundamental aspects of brain function: what neural substrate sets this speed limit on the pace of our existence? Why does the brain need billions of neurons to process 10 bits/s? Why can we only think about one thing at a time? The brain seems to operate in two distinct modes: the "outer" brain handles fast high-dimensional sensory and motor signals, whereas the "inner" brain processes the reduced few bits needed to control behavior. Plausible explanations exist for the large neuron numbers in the outer brain, but not for the inner brain, and we propose new research directions to remedy this.
Collapse
Affiliation(s)
- Jieyu Zheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Markus Meister
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
6
|
Roads BD, Love BC. The Dimensions of dimensionality. Trends Cogn Sci 2024; 28:1118-1131. [PMID: 39153897 DOI: 10.1016/j.tics.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/19/2024]
Abstract
Cognitive scientists often infer multidimensional representations from data. Whether the data involve text, neuroimaging, neural networks, or human judgments, researchers frequently infer and analyze latent representational spaces (i.e., embeddings). However, the properties of a latent representation (e.g., prediction performance, interpretability, compactness) depend on the inference procedure, which can vary widely across endeavors. For example, dimensions are not always globally interpretable and the dimensionality of different embeddings may not be readily comparable. Moreover, the dichotomy between multidimensional spaces and purportedly richer representational formats, such as graph representations, is misleading. We review what the different notions of dimension in cognitive science imply for how these latent representations should be used and interpreted.
Collapse
Affiliation(s)
- Brett D Roads
- Department of Experimental Psychology, University College London, London, WC1E, UK.
| | - Bradley C Love
- Department of Experimental Psychology, University College London, London, WC1E, UK
| |
Collapse
|
7
|
Schuessler F, Mastrogiuseppe F, Ostojic S, Barak O. Aligned and oblique dynamics in recurrent neural networks. eLife 2024; 13:RP93060. [PMID: 39601404 DOI: 10.7554/elife.93060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
The relation between neural activity and behaviorally relevant variables is at the heart of neuroscience research. When strong, this relation is termed a neural representation. There is increasing evidence, however, for partial dissociations between activity in an area and relevant external variables. While many explanations have been proposed, a theoretical framework for the relationship between external and internal variables is lacking. Here, we utilize recurrent neural networks (RNNs) to explore the question of when and how neural dynamics and the network's output are related from a geometrical point of view. We find that training RNNs can lead to two dynamical regimes: dynamics can either be aligned with the directions that generate output variables, or oblique to them. We show that the choice of readout weight magnitude before training can serve as a control knob between the regimes, similar to recent findings in feedforward networks. These regimes are functionally distinct. Oblique networks are more heterogeneous and suppress noise in their output directions. They are furthermore more robust to perturbations along the output directions. Crucially, the oblique regime is specific to recurrent (but not feedforward) networks, arising from dynamical stability considerations. Finally, we show that tendencies toward the aligned or the oblique regime can be dissociated in neural recordings. Altogether, our results open a new perspective for interpreting neural activity by relating network dynamics and their output.
Collapse
Affiliation(s)
- Friedrich Schuessler
- Faculty of Electrical Engineering and Computer Science, Technical University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | | | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure-PSL Research University, Paris, France
| | - Omri Barak
- Rappaport Faculty of Medicine and Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Liang KF, Kao JC. A reinforcement learning based software simulator for motor brain-computer interfaces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625180. [PMID: 39651250 PMCID: PMC11623538 DOI: 10.1101/2024.11.25.625180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Intracortical motor brain-computer interfaces (BCIs) are expensive and time-consuming to design because accurate evaluation traditionally requires real-time experiments. In a BCI system, a user interacts with an imperfect decoder and continuously changes motor commands in response to unexpected decoded movements. This "closed-loop" nature of BCI leads to emergent interactions between the user and decoder that are challenging to model. The gold standard for BCI evaluation is therefore real-time experiments, which significantly limits the speed and community of BCI research. We present a new BCI simulator that enables researchers to accurately and quickly design BCIs for cursor control entirely in software. Our simulator replaces the BCI user with a deep reinforcement learning (RL) agent that interacts with a simulated BCI system and learns to optimally control it. We demonstrate that our simulator is accurate and versatile, reproducing the published results of three distinct types of BCI decoders: (1) a state-of-the-art linear decoder (FIT-KF), (2) a "two-stage" BCI decoder requiring closed-loop decoder adaptation (ReFIT-KF), and (3) a nonlinear recurrent neural network decoder (FORCE).
Collapse
|
9
|
Hu B, Temiz NZ, Chou CN, Rupprecht P, Meissner-Bernard C, Titze B, Chung S, Friedrich RW. Representational learning by optimization of neural manifolds in an olfactory memory network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.623906. [PMID: 39605658 PMCID: PMC11601331 DOI: 10.1101/2024.11.17.623906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Higher brain functions depend on experience-dependent representations of relevant information that may be organized by attractor dynamics or by geometrical modifications of continuous "neural manifolds". To explore these scenarios we analyzed odor-evoked activity in telencephalic area pDp of juvenile and adult zebrafish, the homolog of piriform cortex. No obvious signatures of attractor dynamics were detected. Rather, olfactory discrimination training selectively enhanced the separation of neural manifolds representing task-relevant odors from other representations, consistent with predictions of autoassociative network models endowed with precise synaptic balance. Analytical approaches using the framework of manifold capacity revealed multiple geometrical modifications of representational manifolds that supported the classification of task-relevant sensory information. Manifold capacity predicted odor discrimination across individuals, indicating a close link between manifold geometry and behavior. Hence, pDp and possibly related recurrent networks store information in the geometry of representational manifolds, resulting in joint sensory and semantic maps that may support distributed learning processes.
Collapse
Affiliation(s)
- Bo Hu
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Nesibe Z. Temiz
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Chi-Ning Chou
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - Peter Rupprecht
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Claire Meissner-Bernard
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
| | - Benjamin Titze
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
| | - SueYeon Chung
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Rainer W. Friedrich
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| |
Collapse
|
10
|
Kim JH, Daie K, Li N. A combinatorial neural code for long-term motor memory. Nature 2024:10.1038/s41586-024-08193-3. [PMID: 39537930 DOI: 10.1038/s41586-024-08193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Motor skill repertoire can be stably retained over long periods, but the neural mechanism that underlies stable memory storage remains poorly understood1-8. Moreover, it is unknown how existing motor memories are maintained as new motor skills are continuously acquired. Here we tracked neural representation of learned actions throughout a significant portion of the lifespan of a mouse and show that learned actions are stably retained in combination with context, which protects existing memories from erasure during new motor learning. We established a continual learning paradigm in which mice learned to perform directional licking in different task contexts while we tracked motor cortex activity for up to six months using two-photon imaging. Within the same task context, activity driving directional licking was stable over time with little representational drift. When learning new task contexts, new preparatory activity emerged to drive the same licking actions. Learning created parallel new motor memories instead of modifying existing representations. Re-learning to make the same actions in the previous task context re-activated the previous preparatory activity, even months later. Continual learning of new task contexts kept creating new preparatory activity patterns. Context-specific memories, as we observed in the motor system, may provide a solution for stable memory storage throughout continual learning.
Collapse
Affiliation(s)
- Jae-Hyun Kim
- Department of Neurobiology, Duke University, Durham, NC, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kayvon Daie
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Nuo Li
- Department of Neurobiology, Duke University, Durham, NC, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Blini E, Arrighi R, Anobile G. Pupillary manifolds: uncovering the latent geometrical structures behind phasic changes in pupil size. Sci Rep 2024; 14:27306. [PMID: 39516679 PMCID: PMC11549318 DOI: 10.1038/s41598-024-78772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The size of the pupils reflects directly the balance of different branches of the autonomic nervous system. This measure is inexpensive, non-invasive, and has provided invaluable insights on a wide range of mental processes, from attention to emotion and executive functions. Two outstanding limitations of current pupillometry research are the lack of consensus in the analytical approaches, which vary wildly across research groups and disciplines, and the fact that, unlike other neuroimaging techniques, pupillometry lacks the dimensionality to shed light on the different sources of the observed effects. In other words, pupillometry provides an integrated readout of several distinct networks, but it is unclear whether each has a specific fingerprint, stemming from its function or physiological substrate. Here we show that phasic changes in pupil size are inherently low-dimensional, with modes that are highly consistent across behavioral tasks of very different nature, suggesting that these changes occur along pupillary manifolds that are highly constrained by the underlying physiological structures rather than functions. These results provide not only a unified approach to analyze pupillary data, but also the opportunity for physiology and psychology to refer to the same processes by tracing the sources of the reported changes in pupil size in the underlying biology.
Collapse
Affiliation(s)
- Elvio Blini
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, Italy.
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, Italy
| |
Collapse
|
12
|
Reimann MW, Egas Santander D, Ecker A, Muller EB. Specific inhibition and disinhibition in the higher-order structure of a cortical connectome. Cereb Cortex 2024; 34:bhae433. [PMID: 39526523 PMCID: PMC11551764 DOI: 10.1093/cercor/bhae433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Neurons are thought to act as parts of assemblies with strong internal excitatory connectivity. Conversely, inhibition is often reduced to blanket inhibition with no targeting specificity. We analyzed the structure of excitation and inhibition in the MICrONS $mm^{3}$ dataset, an electron microscopic reconstruction of a piece of cortical tissue. We found that excitation was structured around a feed-forward flow in large non-random neuron motifs with a structure of information flow from a small number of sources to a larger number of potential targets. Inhibitory neurons connected with neurons in specific sequential positions of these motifs, implementing targeted and symmetrical competition between them. None of these trends are detectable in only pairwise connectivity, demonstrating that inhibition is structured by these large motifs. While descriptions of inhibition in cortical circuits range from non-specific blanket-inhibition to targeted, our results describe a form of targeting specificity existing in the higher-order structure of the connectome. These findings have important implications for the role of inhibition in learning and synaptic plasticity.
Collapse
Affiliation(s)
- Michael W Reimann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202 Geneva, Switzerland
| | - Daniela Egas Santander
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202 Geneva, Switzerland
| | - András Ecker
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202 Geneva, Switzerland
| | - Eilif B Muller
- Department of Neuroscience, Université de Montréal, Faculty of Medicine, Montréal, Quebéc, H3C 3J7, Canada
- CHU Ste-Justine Azrieli Research Center, Montréal, Québec, H3T 1C5, Canada
- Mila - Quebec Artificial Intelligence Institute, Montréal, Québec, H2S 3H1, Canada
| |
Collapse
|
13
|
Johnston WJ, Fine JM, Yoo SBM, Ebitz RB, Hayden BY. Semi-orthogonal subspaces for value mediate a binding and generalization trade-off. Nat Neurosci 2024; 27:2218-2230. [PMID: 39289564 DOI: 10.1038/s41593-024-01758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
When choosing between options, we must associate their values with the actions needed to select them. We hypothesize that the brain solves this binding problem through neural population subspaces. Here, in macaques performing a choice task, we show that neural populations in five reward-sensitive regions encode the values of offers presented on the left and right in distinct subspaces. This encoding is sufficient to bind offer values to their locations while preserving abstract value information. After offer presentation, all areas encode the value of the first and second offers in orthogonal subspaces; this orthogonalization also affords binding. Our binding-by-subspace hypothesis makes two new predictions confirmed by the data. First, behavioral errors should correlate with spatial, but not temporal, neural misbinding. Second, behavioral errors should increase when offers have low or high values, compared to medium values, even when controlling for value difference. Together, these results support the idea that the brain uses semi-orthogonal subspaces to bind features.
Collapse
Affiliation(s)
- W Jeffrey Johnston
- Center for Theoretical Neuroscience and Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA.
| | - Justin M Fine
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Seng Bum Michael Yoo
- Department of Biomedical Engineering, Sunkyunkwan University, and Center for Neuroscience Imaging Research, Institute of Basic Sciences, Suwon, Republic of Korea
| | - R Becket Ebitz
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Yang HH, Brezovec BE, Serratosa Capdevila L, Vanderbeck QX, Adachi A, Mann RS, Wilson RI. Fine-grained descending control of steering in walking Drosophila. Cell 2024; 187:6290-6308.e27. [PMID: 39293446 DOI: 10.1016/j.cell.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/18/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
Locomotion involves rhythmic limb movement patterns that originate in circuits outside the brain. Purposeful locomotion requires descending commands from the brain, but we do not understand how these commands are structured. Here, we investigate this issue, focusing on the control of steering in walking Drosophila. First, we describe different limb "gestures" associated with different steering maneuvers. Next, we identify a set of descending neurons whose activity predicts steering. Focusing on two descending cell types downstream of distinct brain networks, we show that they evoke specific limb gestures: one lengthens strides on the outside of a turn, while the other attenuates strides on the inside of a turn. Our results suggest that a single descending neuron can have opposite effects during different locomotor rhythm phases, and we identify networks positioned to implement this phase-specific gating. Together, our results show how purposeful locomotion emerges from specific, coordinated modulations of low-level patterns.
Collapse
Affiliation(s)
- Helen H Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bella E Brezovec
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | | | - Quinn X Vanderbeck
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Atsuko Adachi
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Li Y, An X, Mulcahey PJ, Qian Y, Xu XH, Zhao S, Mohan H, Suryanarayana SM, Bachschmid-Romano L, Brunel N, Whishaw IQ, Huang ZJ. Cortico-thalamic communication for action coordination in a skilled motor sequence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.25.563871. [PMID: 37961483 PMCID: PMC10634836 DOI: 10.1101/2023.10.25.563871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The coordination of forelimb and orofacial movements to compose an ethological reach-to-consume behavior likely involves neural communication across brain regions. Leveraging wide-field imaging and photo-inhibition to survey across the cortex, we identified a cortical network and a high-order motor area (MOs-c), which coordinate action progression in a mouse reach-and-withdraw-to-drink (RWD) behavior. Electrophysiology and photo-inhibition across multiple projection neuron types within the MOs-c revealed differential contributions of pyramidal tract and corticothalamic (CTMOs) output channels to action progression and hand-mouth coordination. Notably, CTMOs display sustained firing throughout RWD sequence and selectively enhance RWD-relevant activity in postsynaptic thalamus neurons, which also contribute to action coordination. CTMOs receive converging monosynaptic inputs from forelimb and orofacial sensorimotor areas and are reciprocally connected to thalamic neurons, which project back to the cortical network. Therefore, motor cortex corticothalamic channel may selectively amplify the thalamic integration of cortical and subcortical sensorimotor streams to coordinate a skilled motor sequence.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xu An
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Yongjun Qian
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Current affiliation: College of Future technology, Peking-Tsinghua Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Center of RNA Biology, Peking University, China
| | - X. Hermione Xu
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Hemanth Mohan
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | | | | | - Nicolas Brunel
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Ian Q. Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Research, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Z. Josh Huang
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| |
Collapse
|
16
|
Nicholas MA, Yttri EA. Motor cortex is responsible for motoric dynamics in striatum and the execution of both skilled and unskilled actions. Neuron 2024; 112:3486-3501.e5. [PMID: 39168128 DOI: 10.1016/j.neuron.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/28/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Striatum and its predominant input, motor cortex, are responsible for the selection and performance of purposive movement, but how their interaction guides these processes is not understood. To establish its neural and behavioral contributions, we bilaterally lesioned motor cortex and recorded striatal activity and reaching performance daily, capturing the lesion's direct ramifications within hours of the intervention. We observed reaching impairment and an absence of striatal motoric activity following lesion of motor cortex, but not parietal cortex control lesions. Although some aspects of performance began to recover after 8-10 days, striatal projection and interneuronal dynamics did not-eventually entering a non-motor encoding state that aligned with persisting kinematic control deficits. Lesioned mice also exhibited a profound inability to switch motor plans while locomoting, reminiscent of clinical freezing of gait (FOG). Our results demonstrate the necessity of motor cortex in generating trained and untrained actions as well as striatal motoric dynamics.
Collapse
Affiliation(s)
- Mark A Nicholas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Eric A Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
17
|
Ottenhoff MC, Verwoert M, Goulis S, Wagner L, van Dijk JP, Kubben PL, Herff C. Global motor dynamics - Invariant neural representations of motor behavior in distributed brain-wide recordings. J Neural Eng 2024; 21:056034. [PMID: 39383883 DOI: 10.1088/1741-2552/ad851c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Objective.Motor-related neural activity is more widespread than previously thought, as pervasive brain-wide neural correlates of motor behavior have been reported in various animal species. Brain-wide movement-related neural activity have been observed in individual brain areas in humans as well, but it is unknown to what extent global patterns exist.Approach.Here, we use a decoding approach to capture and characterize brain-wide neural correlates of movement. We recorded invasive electrophysiological data from stereotactic electroencephalographic electrodes implanted in eight epilepsy patients who performed both an executed and imagined grasping task. Combined, these electrodes cover the whole brain, including deeper structures such as the hippocampus, insula and basal ganglia. We extract a low-dimensional representation and classify movement from rest trials using a Riemannian decoder.Main results.We reveal global neural dynamics that are predictive across tasks and participants. Using an ablation analysis, we demonstrate that these dynamics remain remarkably stable under loss of information. Similarly, the dynamics remain stable across participants, as we were able to predict movement across participants using transfer learning.Significance.Our results show that decodable global motor-related neural dynamics exist within a low-dimensional space. The dynamics are predictive of movement, nearly brain-wide and present in all our participants. The results broaden the scope to brain-wide investigations, and may allow combining datasets of multiple participants with varying electrode locations or calibrationless neural decoder.
Collapse
Affiliation(s)
- Maarten C Ottenhoff
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Maxime Verwoert
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Sophocles Goulis
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Louis Wagner
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Maastricht, The Netherlands
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze, The Netherlands
| | - Johannes P van Dijk
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze, The Netherlands
- Department of Orthodontics, Ulm University, Ulm, Germany
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Pieter L Kubben
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christian Herff
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
18
|
Dura-Bernal S, Herrera B, Lupascu C, Marsh BM, Gandolfi D, Marasco A, Neymotin S, Romani A, Solinas S, Bazhenov M, Hay E, Migliore M, Reinmann M, Arkhipov A. Large-Scale Mechanistic Models of Brain Circuits with Biophysically and Morphologically Detailed Neurons. J Neurosci 2024; 44:e1236242024. [PMID: 39358017 PMCID: PMC11450527 DOI: 10.1523/jneurosci.1236-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024] Open
Abstract
Understanding the brain requires studying its multiscale interactions from molecules to networks. The increasing availability of large-scale datasets detailing brain circuit composition, connectivity, and activity is transforming neuroscience. However, integrating and interpreting this data remains challenging. Concurrently, advances in supercomputing and sophisticated modeling tools now enable the development of highly detailed, large-scale biophysical circuit models. These mechanistic multiscale models offer a method to systematically integrate experimental data, facilitating investigations into brain structure, function, and disease. This review, based on a Society for Neuroscience 2024 MiniSymposium, aims to disseminate recent advances in large-scale mechanistic modeling to the broader community. It highlights (1) examples of current models for various brain regions developed through experimental data integration; (2) their predictive capabilities regarding cellular and circuit mechanisms underlying experimental recordings (e.g., membrane voltage, spikes, local-field potential, electroencephalography/magnetoencephalography) and brain function; and (3) their use in simulating biomarkers for brain diseases like epilepsy, depression, schizophrenia, and Parkinson's, aiding in understanding their biophysical underpinnings and developing novel treatments. The review showcases state-of-the-art models covering hippocampus, somatosensory, visual, motor, auditory cortical, and thalamic circuits across species. These models predict neural activity at multiple scales and provide insights into the biophysical mechanisms underlying sensation, motor behavior, brain signals, neural coding, disease, pharmacological interventions, and neural stimulation. Collaboration with experimental neuroscientists and clinicians is essential for the development and validation of these models, particularly as datasets grow. Hence, this review aims to foster interest in detailed brain circuit models, leading to cross-disciplinary collaborations that accelerate brain research.
Collapse
Affiliation(s)
- Salvador Dura-Bernal
- State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, New York 11203
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | | | - Carmen Lupascu
- Institute of Biophysics, National Research Council/Human Brain Project, Palermo 90146, Italy
| | - Brianna M Marsh
- University of California San Diego, La Jolla, California 92093
| | - Daniela Gandolfi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Samuel Neymotin
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- School of Medicine, New York University, New York 10012
| | - Armando Romani
- Swiss Federal Institute of Technology Lausanne (EPFL)/Blue Brain Project, Lausanne 1015, Switzerland
| | | | - Maxim Bazhenov
- University of California San Diego, La Jolla, California 92093
| | - Etay Hay
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Michele Migliore
- Institute of Biophysics, National Research Council/Human Brain Project, Palermo 90146, Italy
| | - Michael Reinmann
- Swiss Federal Institute of Technology Lausanne (EPFL)/Blue Brain Project, Lausanne 1015, Switzerland
| | | |
Collapse
|
19
|
Gabriel G, Mushtaq F, Morehead JR. De novo sensorimotor learning through reuse of movement components. PLoS Comput Biol 2024; 20:e1012492. [PMID: 39388463 PMCID: PMC11495618 DOI: 10.1371/journal.pcbi.1012492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/22/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
From tying one's shoelaces to driving a car, complex skills involving the coordination of multiple muscles are common in everyday life; yet relatively little is known about how these skills are learned. Recent studies have shown that new sensorimotor skills involving re-mapping familiar body movements to unfamiliar outputs cannot be learned by adjusting pre-existing controllers, and that new task-specific controllers must instead be learned "de novo". To date, however, few studies have investigated de novo learning in scenarios requiring continuous and coordinated control of relatively unpractised body movements. In this study, we used a myoelectric interface to investigate how a novel controller is learned when the task involves an unpractised combination of relatively untrained continuous muscle contractions. Over five sessions on five consecutive days, participants learned to trace a series of trajectories using a computer cursor controlled by the activation of two muscles. The timing of the generated cursor trajectory and its shape relative to the target improved for conditions trained with post-trial visual feedback. Improvements in timing transferred to all untrained conditions, but improvements in shape transferred less robustly to untrained conditions requiring the trained order of muscle activation. All muscle outputs in the final session could already be generated during the first session, suggesting that participants learned the new task by improving the selection of existing motor commands. These results suggest that the novel controllers acquired during de novo learning can, in some circumstances, be constructed from components of existing controllers.
Collapse
Affiliation(s)
- George Gabriel
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Faisal Mushtaq
- School of Psychology, University of Leeds, Leeds, United Kingdom
- NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom
- Centre for Immersive Technologies, University of Leeds, Leeds, United Kingdom
| | - J. Ryan Morehead
- School of Psychology, University of Leeds, Leeds, United Kingdom
- Boston Fusion Corporation, Lexington, Massachusetts, United States of America
| |
Collapse
|
20
|
Ma X, Rizzoglio F, Bodkin KL, Miller LE. Unsupervised, piecewise linear decoding enables an accurate prediction of muscle activity in a multi-task brain computer interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612102. [PMID: 39314275 PMCID: PMC11419126 DOI: 10.1101/2024.09.09.612102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objective Creating an intracortical brain-computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue. Approach We devised an unsupervised approach that relies on the structure of a low-dimensional neural manifold to implement a piecewise linear decoder. We created a distinctive dataset in which monkeys performed a diverse set of tasks, some trained, others innate, while we recorded neural signals from the motor cortex (M1) and electromyographs (EMGs) from upper limb muscles. We used both linear and nonlinear dimensionality reduction techniques to discover neural manifolds and applied unsupervised algorithms to identify clusters within those spaces. Finally, we fit a linear decoder of EMG for each cluster. A specific decoder was activated corresponding to the cluster each new neural data point belonged to. Main results We found clusters in the neural manifolds corresponding with the different tasks or task sub-phases. The performance of piecewise decoding improved as the number of clusters increased and plateaued gradually. With only two clusters it already outperformed a global linear decoder, and unexpectedly, it outperformed even a global recurrent neural network (RNN) decoder with 10-12 clusters. Significance This study introduced a computationally lightweight solution for creating iBCI decoders that can function effectively across a broad range of tasks. EMG decoding is particularly challenging, as muscle activity is used, under varying contexts, to control interaction forces and limb stiffness, as well as motion. The results suggest that a piecewise linear decoder can provide a good approximation to the nonlinearity between neural activity and motor outputs, a result of our increased understanding of the structure of neural manifolds in motor cortex.
Collapse
Affiliation(s)
- Xuan Ma
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
| | - Fabio Rizzoglio
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
| | - Kevin L. Bodkin
- Department of Neurobiology, Northwestern University, Evanston, IL, United States of America
| | - Lee E. Miller
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
21
|
Colins Rodriguez A, Perich MG, Miller LE, Humphries MD. Motor Cortex Latent Dynamics Encode Spatial and Temporal Arm Movement Parameters Independently. J Neurosci 2024; 44:e1777232024. [PMID: 39060178 PMCID: PMC11358606 DOI: 10.1523/jneurosci.1777-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The fluid movement of an arm requires multiple spatiotemporal parameters to be set independently. Recent studies have argued that arm movements are generated by the collective dynamics of neurons in motor cortex. An untested prediction of this hypothesis is that independent parameters of movement must map to independent components of the neural dynamics. Using a task where three male monkeys made a sequence of reaching movements to randomly placed targets, we show that the spatial and temporal parameters of arm movements are independently encoded in the low-dimensional trajectories of population activity in motor cortex: each movement's direction corresponds to a fixed neural trajectory through neural state space and its speed to how quickly that trajectory is traversed. Recurrent neural network models show that this coding allows independent control over the spatial and temporal parameters of movement by separate network parameters. Our results support a key prediction of the dynamical systems view of motor cortex, and also argue that not all parameters of movement are defined by different trajectories of population activity.
Collapse
Affiliation(s)
| | - Matt G Perich
- Département de neurosciences, Faculté de médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- Québec Artificial Intelligence Institute (Mila), Montreal, Quebec H2S 3H1, Canada
| | - Lee E Miller
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois 60208
| | - Mark D Humphries
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
22
|
Rossato J, Avrillon S, Tucker K, Farina D, Hug F. The Volitional Control of Individual Motor Units Is Constrained within Low-Dimensional Neural Manifolds by Common Inputs. J Neurosci 2024; 44:e0702242024. [PMID: 38951036 PMCID: PMC11340279 DOI: 10.1523/jneurosci.0702-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The implementation of low-dimensional movement control by the central nervous system has been debated for decades. In this study, we investigated the dimensionality of the control signals received by spinal motor neurons when controlling either the ankle or knee joint torque. We first identified the low-dimensional latent factors underlying motor unit activity during torque-matched isometric contractions in male participants. Subsequently, we evaluated the extent to which motor units could be independently controlled. To this aim, we used an online control paradigm in which participants received the corresponding motor unit firing rates as visual feedback. We identified two main latent factors, regardless of the muscle group (vastus lateralis-medialis and gastrocnemius lateralis-medialis). The motor units of the gastrocnemius lateralis could be controlled largely independently from those of the gastrocnemius medialis during ankle plantarflexion. This dissociation of motor unit activity imposed similar behavior to the motor units that were not displayed in the feedback. Conversely, it was not possible to dissociate the activity of the motor units between the vastus lateralis and medialis muscles during the knee extension tasks. These results demonstrate that the number of latent factors estimated from linear dimensionality reduction algorithms does not necessarily reflect the dimensionality of volitional control of motor units. Overall, individual motor units were never controlled independently of all others but rather belonged to synergistic groups. Together, these findings provide evidence for a low-dimensional control of motor units constrained by common inputs, with notable differences between muscle groups.
Collapse
Affiliation(s)
- Julien Rossato
- Laboratory "Movement, Interactions, Performance" (UR 4334), Nantes Université, Nantes, France
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Simon Avrillon
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Kylie Tucker
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Dario Farina
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - François Hug
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- LAMHESS, Université Côte d'Azur, Nice, France
| |
Collapse
|
23
|
Koh N, Ma Z, Sarup A, Kristl AC, Agrios M, Young M, Miri A. Selective direct motor cortical influence during naturalistic climbing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.18.545509. [PMID: 39229015 PMCID: PMC11370436 DOI: 10.1101/2023.06.18.545509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
It remains poorly resolved when and how motor cortical output directly influences limb muscle activity through descending projections, which impedes mechanistic understanding of cortical movement control. Here we addressed this in mice performing an ethologically inspired all-limb climbing behavior. We quantified the direct influence of forelimb primary motor cortex (caudal forelimb area, CFA) on muscle activity comprehensively across the muscle activity states that occur during climbing. We found that CFA informs muscle activity pattern, mainly by selectively activating certain muscles while exerting much smaller, bidirectional effects on their antagonists. From Neuropixel recordings, we identified linear combinations (components) of motor cortical activity that covary with these effects, finding that these components differ from those that covary with muscle activity or kinematics. Collectively, our results reveal an instructive direct motor cortical influence on limb muscles that is selective within a motor behavior and reliant on a new type of neural activity subspace.
Collapse
|
24
|
Sabatini DA, Kaufman MT. Reach-dependent reorientation of rotational dynamics in motor cortex. Nat Commun 2024; 15:7007. [PMID: 39143078 PMCID: PMC11325044 DOI: 10.1038/s41467-024-51308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
During reaching, neurons in motor cortex exhibit complex, time-varying activity patterns. Though single-neuron activity correlates with movement parameters, movement correlations explain neural activity only partially. Neural responses also reflect population-level dynamics thought to generate outputs. These dynamics have previously been described as "rotational," such that activity orbits in neural state space. Here, we reanalyze reaching datasets from male Rhesus macaques and find two essential features that cannot be accounted for with standard dynamics models. First, the planes in which rotations occur differ for different reaches. Second, this variation in planes reflects the overall location of activity in neural state space. Our "location-dependent rotations" model fits nearly all motor cortex activity during reaching, and high-quality decoding of reach kinematics reveals a quasilinear relationship with spiking. Varying rotational planes allows motor cortex to produce richer outputs than possible under previous models. Finally, our model links representational and dynamical ideas: representation is present in the state space location, which dynamics then convert into time-varying command signals.
Collapse
Affiliation(s)
- David A Sabatini
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Matthew T Kaufman
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
25
|
Li Y, Zhu X, Qi Y, Wang Y. Revealing unexpected complex encoding but simple decoding mechanisms in motor cortex via separating behaviorally relevant neural signals. eLife 2024; 12:RP87881. [PMID: 39120996 PMCID: PMC11315449 DOI: 10.7554/elife.87881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
In motor cortex, behaviorally relevant neural responses are entangled with irrelevant signals, which complicates the study of encoding and decoding mechanisms. It remains unclear whether behaviorally irrelevant signals could conceal some critical truth. One solution is to accurately separate behaviorally relevant and irrelevant signals at both single-neuron and single-trial levels, but this approach remains elusive due to the unknown ground truth of behaviorally relevant signals. Therefore, we propose a framework to define, extract, and validate behaviorally relevant signals. Analyzing separated signals in three monkeys performing different reaching tasks, we found neural responses previously considered to contain little information actually encode rich behavioral information in complex nonlinear ways. These responses are critical for neuronal redundancy and reveal movement behaviors occupy a higher-dimensional neural space than previously expected. Surprisingly, when incorporating often-ignored neural dimensions, behaviorally relevant signals can be decoded linearly with comparable performance to nonlinear decoding, suggesting linear readout may be performed in motor cortex. Our findings prompt that separating behaviorally relevant signals may help uncover more hidden cortical mechanisms.
Collapse
Affiliation(s)
- Yangang Li
- Qiushi Academy for Advanced Studies, Zhejiang UniversityHangzhouChina
- Nanhu Brain-Computer Interface InstituteHangzhouChina
- College of Computer Science and Technology, Zhejiang UniversityHangzhouChina
- The State Key Lab of Brain-Machine Intelligence, Zhejiang UniversityHangzhouChina
| | - Xinyun Zhu
- Qiushi Academy for Advanced Studies, Zhejiang UniversityHangzhouChina
- Nanhu Brain-Computer Interface InstituteHangzhouChina
- College of Computer Science and Technology, Zhejiang UniversityHangzhouChina
- The State Key Lab of Brain-Machine Intelligence, Zhejiang UniversityHangzhouChina
| | - Yu Qi
- Nanhu Brain-Computer Interface InstituteHangzhouChina
- College of Computer Science and Technology, Zhejiang UniversityHangzhouChina
- The State Key Lab of Brain-Machine Intelligence, Zhejiang UniversityHangzhouChina
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and the MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of MedicineHangzhouChina
| | - Yueming Wang
- Qiushi Academy for Advanced Studies, Zhejiang UniversityHangzhouChina
- Nanhu Brain-Computer Interface InstituteHangzhouChina
- College of Computer Science and Technology, Zhejiang UniversityHangzhouChina
- The State Key Lab of Brain-Machine Intelligence, Zhejiang UniversityHangzhouChina
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and the MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
26
|
Wu S, Zhang X, Wang Y. Neural Manifold Constraint for Spike Prediction Models Under Behavioral Reinforcement. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2772-2781. [PMID: 39074025 DOI: 10.1109/tnsre.2024.3435568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Spike prediction models effectively predict downstream spike trains from upstream neural activity for neural prostheses. Such prostheses could potentially restore damaged neural communication pathways using predicted patterns to guide electrical stimulations on downstream. Since the ground truth of downstream neural activity is unavailable for subjects with the damage, reinforcement learning (RL) with behavior-level rewards becomes necessary for model training. However, existing models do not involve any constraint on the generated firing patterns and neglect the correlations among neural activities. Thus, the model outputs can greatly deviate from the natural range of neural activities, causing concerns for clinical usage. This study proposes the neural manifold constraint to solve this problem, shaping RL-generated spike trains in the feature space. The constraint terms describe the first and second order statistics of the neural manifold estimated from neural recordings during subjects' freely moving period. Then, the models can be optimized within the neural manifold by behavioral reinforcement. We test the method to predict primary motor cortex (M1) spikes from medial prefrontal (mPFC) spikes when rats perform the two-lever discrimination task. Results show that the neural activity generated by constrained models resembles the real M1 recordings. Compared with models without constraints, our approach achieves similar behavioral success rates, but reduces the mean squared error of neural firing by 61%. The constraints also increase the model's robustness across data segments and induce realistic neural correlations. Our method provides a promising tool to restore transregional communication with high behavioral performance and more realistic microscopic patterns.
Collapse
|
27
|
Young RA, Shin JD, Guo Z, Jadhav SP. Hippocampal-prefrontal communication subspaces align with behavioral and network patterns in a spatial memory task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.601617. [PMID: 39026752 PMCID: PMC11257456 DOI: 10.1101/2024.07.08.601617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Rhythmic network states have been theorized to facilitate communication between brain regions, but how these oscillations influence communication subspaces, i.e, the low-dimensional neural activity patterns that mediate inter-regional communication, and in turn how subspaces impact behavior remains unclear. Using a spatial memory task in rats, we simultaneously recorded ensembles from hippocampal CA1 and the prefrontal cortex (PFC) to address this question. We found that task behaviors best aligned with low-dimensional, shared subspaces between these regions, rather than local activity in either region. Critically, both network oscillations and speed modulated the structure and performance of this communication subspace. Contrary to expectations, theta coherence did not better predict CA1-PFC shared activity, while theta power played a more significant role. To understand the communication space, we visualized shared CA1-PFC communication geometry using manifold techniques and found ring-like structures. We hypothesize that these shared activity manifolds are utilized to mediate the task behavior. These findings suggest that memory-guided behaviors are driven by shared CA1-PFC interactions that are dynamically modulated by oscillatory states, offering a novel perspective on the interplay between rhythms and behaviorally relevant neural communication.
Collapse
|
28
|
Scott DN, Mukherjee A, Nassar MR, Halassa MM. Thalamocortical architectures for flexible cognition and efficient learning. Trends Cogn Sci 2024; 28:739-756. [PMID: 38886139 PMCID: PMC11305962 DOI: 10.1016/j.tics.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
The brain exhibits a remarkable ability to learn and execute context-appropriate behaviors. How it achieves such flexibility, without sacrificing learning efficiency, is an important open question. Neuroscience, psychology, and engineering suggest that reusing and repurposing computations are part of the answer. Here, we review evidence that thalamocortical architectures may have evolved to facilitate these objectives of flexibility and efficiency by coordinating distributed computations. Recent work suggests that distributed prefrontal cortical networks compute with flexible codes, and that the mediodorsal thalamus provides regularization to promote efficient reuse. Thalamocortical interactions resemble hierarchical Bayesian computations, and their network implementation can be related to existing gating, synchronization, and hub theories of thalamic function. By reviewing recent findings and providing a novel synthesis, we highlight key research horizons integrating computation, cognition, and systems neuroscience.
Collapse
Affiliation(s)
- Daniel N Scott
- Department of Neuroscience, Brown University, Providence, RI, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Arghya Mukherjee
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Matthew R Nassar
- Department of Neuroscience, Brown University, Providence, RI, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
29
|
Morales-Gregorio A, Kurth AC, Ito J, Kleinjohann A, Barthélemy FV, Brochier T, Grün S, van Albada SJ. Neural manifolds in V1 change with top-down signals from V4 targeting the foveal region. Cell Rep 2024; 43:114371. [PMID: 38923458 DOI: 10.1016/j.celrep.2024.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
High-dimensional brain activity is often organized into lower-dimensional neural manifolds. However, the neural manifolds of the visual cortex remain understudied. Here, we study large-scale multi-electrode electrophysiological recordings of macaque (Macaca mulatta) areas V1, V4, and DP with a high spatiotemporal resolution. We find that the population activity of V1 contains two separate neural manifolds, which correlate strongly with eye closure (eyes open/closed) and have distinct dimensionalities. Moreover, we find strong top-down signals from V4 to V1, particularly to the foveal region of V1, which are significantly stronger during the eyes-open periods. Finally, in silico simulations of a balanced spiking neuron network qualitatively reproduce the experimental findings. Taken together, our analyses and simulations suggest that top-down signals modulate the population activity of V1. We postulate that the top-down modulation during the eyes-open periods prepares V1 for fast and efficient visual responses, resulting in a type of visual stand-by state.
Collapse
Affiliation(s)
- Aitor Morales-Gregorio
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Institute of Zoology, University of Cologne, Cologne, Germany.
| | - Anno C Kurth
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; RWTH Aachen University, Aachen, Germany
| | - Junji Ito
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany
| | - Alexander Kleinjohann
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Frédéric V Barthélemy
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Institut de Neurosciences de la Timone (INT), CNRS and Aix-Marseille Université, Marseille, France
| | - Thomas Brochier
- Institut de Neurosciences de la Timone (INT), CNRS and Aix-Marseille Université, Marseille, France
| | - Sonja Grün
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany; JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Tostado-Marcos P, Arneodo EM, Ostrowski L, Brown DE, Perez XA, Kadwory A, Stanwicks LL, Alothman A, Gentner TQ, Gilja V. Neural population dynamics in songbird RA and HVC during learned motor-vocal behavior. ARXIV 2024:arXiv:2407.06244v1. [PMID: 39040642 PMCID: PMC11261980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Complex, learned motor behaviors involve the coordination of large-scale neural activity across multiple brain regions, but our understanding of the population-level dynamics within different regions tied to the same behavior remains limited. Here, we investigate the neural population dynamics underlying learned vocal production in awake-singing songbirds. We use Neuropixels probes to record the simultaneous extracellular activity of populations of neurons in two regions of the vocal motor pathway. In line with observations made in non-human primates during limb-based motor tasks, we show that the population-level activity in both the premotor nucleus HVC and the motor nucleus RA is organized on low-dimensional neural manifolds upon which coordinated neural activity is well described by temporally structured trajectories during singing behavior. Both the HVC and RA latent trajectories provide relevant information to predict vocal sequence transitions between song syllables. However, the dynamics of these latent trajectories differ between regions. Our state-space models suggest a unique and continuous-over-time correspondence between the latent space of RA and vocal output, whereas the corresponding relationship for HVC exhibits a higher degree of neural variability. We then demonstrate that comparable high-fidelity reconstruction of continuous vocal outputs can be achieved from HVC and RA neural latents and spiking activity. Unlike those that use spiking activity, however, decoding models using neural latents generalize to novel sub-populations in each region, consistent with the existence of preserved manifolds that confine vocal-motor activity in HVC and RA.
Collapse
Affiliation(s)
- Pablo Tostado-Marcos
- Department of Bioengineering
- Department of Electrical and Computer Engineering
- Department of Psychology
| | | | - Lauren Ostrowski
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Daril E Brown
- Department of Electrical and Computer Engineering
- Department of Psychology
| | | | - Adam Kadwory
- Department of Electrical and Computer Engineering
| | - Lauren L Stanwicks
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Timothy Q Gentner
- Department of Psychology
- Department of Neurobiology
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vikash Gilja
- Department of Electrical and Computer Engineering
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Ostojic S, Fusi S. Computational role of structure in neural activity and connectivity. Trends Cogn Sci 2024; 28:677-690. [PMID: 38553340 DOI: 10.1016/j.tics.2024.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 07/05/2024]
Abstract
One major challenge of neuroscience is identifying structure in seemingly disorganized neural activity. Different types of structure have different computational implications that can help neuroscientists understand the functional role of a particular brain area. Here, we outline a unified approach to characterize structure by inspecting the representational geometry and the modularity properties of the recorded activity and show that a similar approach can also reveal structure in connectivity. We start by setting up a general framework for determining geometry and modularity in activity and connectivity and relating these properties with computations performed by the network. We then use this framework to review the types of structure found in recent studies of model networks performing three classes of computations.
Collapse
Affiliation(s)
- Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005 Paris, France.
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| |
Collapse
|
32
|
Vaccari FE, Diomedi S, De Vitis M, Filippini M, Fattori P. Similar neural states, but dissimilar decoding patterns for motor control in parietal cortex. Netw Neurosci 2024; 8:486-516. [PMID: 38952818 PMCID: PMC11146678 DOI: 10.1162/netn_a_00364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 07/03/2024] Open
Abstract
Discrete neural states are associated with reaching movements across the fronto-parietal network. Here, the Hidden Markov Model (HMM) applied to spiking activity of the somato-motor parietal area PE revealed a sequence of states similar to those of the contiguous visuomotor areas PEc and V6A. Using a coupled clustering and decoding approach, we proved that these neural states carried spatiotemporal information regarding behaviour in all three posterior parietal areas. However, comparing decoding accuracy, PE was less informative than V6A and PEc. In addition, V6A outperformed PEc in target inference, indicating functional differences among the parietal areas. To check the consistency of these differences, we used both a supervised and an unsupervised variant of the HMM, and compared its performance with two more common classifiers, Support Vector Machine and Long-Short Term Memory. The differences in decoding between areas were invariant to the algorithm used, still showing the dissimilarities found with HMM, thus indicating that these dissimilarities are intrinsic in the information encoded by parietal neurons. These results highlight that, when decoding from the parietal cortex, for example, in brain machine interface implementations, attention should be paid in selecting the most suitable source of neural signals, given the great heterogeneity of this cortical sector.
Collapse
Affiliation(s)
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy
| |
Collapse
|
33
|
Nick Q, Gale DJ, Areshenkoff C, De Brouwer A, Nashed J, Wammes J, Zhu T, Flanagan R, Smallwood J, Gallivan J. Reconfigurations of cortical manifold structure during reward-based motor learning. eLife 2024; 12:RP91928. [PMID: 38916598 PMCID: PMC11198988 DOI: 10.7554/elife.91928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Adaptive motor behavior depends on the coordinated activity of multiple neural systems distributed across the brain. While the role of sensorimotor cortex in motor learning has been well established, how higher-order brain systems interact with sensorimotor cortex to guide learning is less well understood. Using functional MRI, we examined human brain activity during a reward-based motor task where subjects learned to shape their hand trajectories through reinforcement feedback. We projected patterns of cortical and striatal functional connectivity onto a low-dimensional manifold space and examined how regions expanded and contracted along the manifold during learning. During early learning, we found that several sensorimotor areas in the dorsal attention network exhibited increased covariance with areas of the salience/ventral attention network and reduced covariance with areas of the default mode network (DMN). During late learning, these effects reversed, with sensorimotor areas now exhibiting increased covariance with DMN areas. However, areas in posteromedial cortex showed the opposite pattern across learning phases, with its connectivity suggesting a role in coordinating activity across different networks over time. Our results establish the neural changes that support reward-based motor learning and identify distinct transitions in the functional coupling of sensorimotor to transmodal cortex when adapting behavior.
Collapse
Affiliation(s)
- Qasem Nick
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Corson Areshenkoff
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Anouk De Brouwer
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Joseph Nashed
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Medicine, Queen's UniversityKingstonCanada
| | - Jeffrey Wammes
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Tianyao Zhu
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Randy Flanagan
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Jonny Smallwood
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Jason Gallivan
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| |
Collapse
|
34
|
Bardella G, Franchini S, Pan L, Balzan R, Ramawat S, Brunamonti E, Pani P, Ferraina S. Neural Activity in Quarks Language: Lattice Field Theory for a Network of Real Neurons. ENTROPY (BASEL, SWITZERLAND) 2024; 26:495. [PMID: 38920504 PMCID: PMC11203154 DOI: 10.3390/e26060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Brain-computer interfaces have seen extraordinary surges in developments in recent years, and a significant discrepancy now exists between the abundance of available data and the limited headway made in achieving a unified theoretical framework. This discrepancy becomes particularly pronounced when examining the collective neural activity at the micro and meso scale, where a coherent formalization that adequately describes neural interactions is still lacking. Here, we introduce a mathematical framework to analyze systems of natural neurons and interpret the related empirical observations in terms of lattice field theory, an established paradigm from theoretical particle physics and statistical mechanics. Our methods are tailored to interpret data from chronic neural interfaces, especially spike rasters from measurements of single neuron activity, and generalize the maximum entropy model for neural networks so that the time evolution of the system is also taken into account. This is obtained by bridging particle physics and neuroscience, paving the way for particle physics-inspired models of the neocortex.
Collapse
Affiliation(s)
- Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Simone Franchini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Liming Pan
- School of Cyber Science and Technology, University of Science and Technology of China, Hefei 230026, China;
| | - Riccardo Balzan
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, UFR Biomédicale et des Sciences de Base, Université Paris Descartes-CNRS, PRES Paris Sorbonne Cité, 75006 Paris, France;
| | - Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| |
Collapse
|
35
|
Kim JH, Daie K, Li N. A combinatorial neural code for long-term motor memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597627. [PMID: 38895416 PMCID: PMC11185691 DOI: 10.1101/2024.06.05.597627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Motor skill repertoire can be stably retained over long periods, but the neural mechanism underlying stable memory storage remains poorly understood. Moreover, it is unknown how existing motor memories are maintained as new motor skills are continuously acquired. Here we tracked neural representation of learned actions throughout a significant portion of a mouse's lifespan, and we show that learned actions are stably retained in motor memory in combination with context, which protects existing memories from erasure during new motor learning. We used automated home-cage training to establish a continual learning paradigm in which mice learned to perform directional licking in different task contexts. We combined this paradigm with chronic two-photon imaging of motor cortex activity for up to 6 months. Within the same task context, activity driving directional licking was stable over time with little representational drift. When learning new task contexts, new preparatory activity emerged to drive the same licking actions. Learning created parallel new motor memories while retaining the previous memories. Re-learning to make the same actions in the previous task context re-activated the previous preparatory activity, even months later. At the same time, continual learning of new task contexts kept creating new preparatory activity patterns. Context-specific memories, as we observed in the motor system, may provide a solution for stable memory storage throughout continual learning. Learning in new contexts produces parallel new representations instead of modifying existing representations, thus protecting existing motor repertoire from erasure.
Collapse
|
36
|
Duggins P, Eliasmith C. A scalable spiking amygdala model that explains fear conditioning, extinction, renewal and generalization. Eur J Neurosci 2024; 59:3093-3116. [PMID: 38616566 DOI: 10.1111/ejn.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/03/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
The amygdala (AMY) is widely implicated in fear learning and fear behaviour, but it remains unclear how the many biological components present within AMY interact to achieve these abilities. Building on previous work, we hypothesize that individual AMY nuclei represent different quantities and that fear conditioning arises from error-driven learning on the synapses between AMY nuclei. We present a computational model of AMY that (a) recreates the divisions and connections between AMY nuclei and their constituent pyramidal and inhibitory neurons; (b) accommodates scalable high-dimensional representations of external stimuli; (c) learns to associate complex stimuli with the presence (or absence) of an aversive stimulus; (d) preserves feature information when mapping inputs to salience estimates, such that these estimates generalize to similar stimuli; and (e) induces a diverse profile of neural responses within each nucleus. Our model predicts (1) defensive responses and neural activities in several experimental conditions, (2) the consequence of artificially ablating particular nuclei and (3) the tendency to generalize defensive responses to novel stimuli. We test these predictions by comparing model outputs to neural and behavioural data from animals and humans. Despite the relative simplicity of our model, we find significant overlap between simulated and empirical data, which supports our claim that the model captures many of the neural mechanisms that support fear conditioning. We conclude by comparing our model to other computational models and by characterizing the theoretical relationship between pattern separation and fear generalization in healthy versus anxious individuals.
Collapse
Affiliation(s)
- Peter Duggins
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Chris Eliasmith
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
- Department of Philosophy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
37
|
Yang SH, Huang CJ, Huang JS. Increasing Robustness of Intracortical Brain-Computer Interfaces for Recording Condition Changes via Data Augmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 251:108208. [PMID: 38754326 DOI: 10.1016/j.cmpb.2024.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Intracortical brain-computer interfaces (iBCIs) aim to help paralyzed individuals restore their motor functions by decoding neural activity into intended movement. However, changes in neural recording conditions hinder the decoding performance of iBCIs, mainly because the neural-to-kinematic mappings shift. Conventional approaches involve either training the neural decoders using large datasets before deploying the iBCI or conducting frequent calibrations during its operation. However, collecting data for extended periods can cause user fatigue, negatively impacting the quality and consistency of neural signals. Furthermore, frequent calibration imposes a substantial computational load. METHODS This study proposes a novel approach to increase iBCIs' robustness against changing recording conditions. The approach uses three neural augmentation operators to generate augmented neural activity that mimics common recording conditions. Then, contrastive learning is used to learn latent factors by maximizing the similarity between the augmented neural activities. The learned factors are expected to remain stable despite varying recording conditions and maintain a consistent correlation with the intended movement. RESULTS Experimental results demonstrate that the proposed iBCI outperformed the state-of-the-art iBCIs and was robust to changing recording conditions across days for long-term use on one publicly available nonhuman primate dataset. It achieved satisfactory offline decoding performance, even when a large training dataset was unavailable. CONCLUSIONS This study paves the way for reducing the need for frequent calibration of iBCIs and collecting a large amount of annotated training data. Potential future works aim to improve offline decoding performance with an ultra-small training dataset and improve the iBCIs' robustness to severely disabled electrodes.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chun-Jui Huang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jhih-Siang Huang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
38
|
Rodriguez AC, Perich MG, Miller L, Humphries MD. Motor cortex latent dynamics encode spatial and temporal arm movement parameters independently. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542452. [PMID: 37292834 PMCID: PMC10246015 DOI: 10.1101/2023.05.26.542452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fluid movement of an arm requires multiple spatiotemporal parameters to be set independently. Recent studies have argued that arm movements are generated by the collective dynamics of neurons in motor cortex. An untested prediction of this hypothesis is that independent parameters of movement must map to independent components of the neural dynamics. Using a task where monkeys made a sequence of reaching movements to randomly placed targets, we show that the spatial and temporal parameters of arm movements are independently encoded in the low-dimensional trajectories of population activity in motor cortex: Each movement's direction corresponds to a fixed neural trajectory through neural state space and its speed to how quickly that trajectory is traversed. Recurrent neural network models show this coding allows independent control over the spatial and temporal parameters of movement by separate network parameters. Our results support a key prediction of the dynamical systems view of motor cortex, but also argue that not all parameters of movement are defined by different trajectories of population activity.
Collapse
Affiliation(s)
| | - Matthew G. Perich
- Département de neurosciences, Faculté de médecine, Université de Montréal, Montréal, Canada
- Québec Artificial Intelligence Institute (Mila), Québec, Canada
| | - Lee Miller
- Northwestern University, Department of Biomedical Engineering, Chicago, USA
| | - Mark D. Humphries
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
39
|
Manley J, Lu S, Barber K, Demas J, Kim H, Meyer D, Traub FM, Vaziri A. Simultaneous, cortex-wide dynamics of up to 1 million neurons reveal unbounded scaling of dimensionality with neuron number. Neuron 2024; 112:1694-1709.e5. [PMID: 38452763 PMCID: PMC11098699 DOI: 10.1016/j.neuron.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/18/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The brain's remarkable properties arise from the collective activity of millions of neurons. Widespread application of dimensionality reduction to multi-neuron recordings implies that neural dynamics can be approximated by low-dimensional "latent" signals reflecting neural computations. However, can such low-dimensional representations truly explain the vast range of brain activity, and if not, what is the appropriate resolution and scale of recording to capture them? Imaging neural activity at cellular resolution and near-simultaneously across the mouse cortex, we demonstrate an unbounded scaling of dimensionality with neuron number in populations up to 1 million neurons. Although half of the neural variance is contained within sixteen dimensions correlated with behavior, our discovered scaling of dimensionality corresponds to an ever-increasing number of neuronal ensembles without immediate behavioral or sensory correlates. The activity patterns underlying these higher dimensions are fine grained and cortex wide, highlighting that large-scale, cellular-resolution recording is required to uncover the full substrates of neuronal computations.
Collapse
Affiliation(s)
- Jason Manley
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Sihao Lu
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Kevin Barber
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey Demas
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hyewon Kim
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - David Meyer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Francisca Martínez Traub
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
40
|
Chang JC, Perich MG, Miller LE, Gallego JA, Clopath C. De novo motor learning creates structure in neural activity that shapes adaptation. Nat Commun 2024; 15:4084. [PMID: 38744847 PMCID: PMC11094149 DOI: 10.1038/s41467-024-48008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Animals can quickly adapt learned movements to external perturbations, and their existing motor repertoire likely influences their ease of adaptation. Long-term learning causes lasting changes in neural connectivity, which shapes the activity patterns that can be produced during adaptation. Here, we examined how a neural population's existing activity patterns, acquired through de novo learning, affect subsequent adaptation by modeling motor cortical neural population dynamics with recurrent neural networks. We trained networks on different motor repertoires comprising varying numbers of movements, which they acquired following various learning experiences. Networks with multiple movements had more constrained and robust dynamics, which were associated with more defined neural 'structure'-organization in the available population activity patterns. This structure facilitated adaptation, but only when the changes imposed by the perturbation were congruent with the organization of the inputs and the structure in neural activity acquired during de novo learning. These results highlight trade-offs in skill acquisition and demonstrate how different learning experiences can shape the geometrical properties of neural population activity and subsequent adaptation.
Collapse
Affiliation(s)
- Joanna C Chang
- Department of Bioengineering, Imperial College London, London, UK
| | - Matthew G Perich
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Mila, Québec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Lee E Miller
- Departments of Physiology, Biomedical Engineering and Physical Medicine and Rehabilitation, Northwestern University and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK.
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
41
|
Braun JM, Fauth M, Berger M, Huang NS, Simeoni E, Gaeta E, Rodrigues do Carmo R, García-Betances RI, Arredondo Waldmeyer MT, Gail A, Larsen JC, Manoonpong P, Tetzlaff C, Wörgötter F. A brain machine interface framework for exploring proactive control of smart environments. Sci Rep 2024; 14:11054. [PMID: 38744976 PMCID: PMC11584623 DOI: 10.1038/s41598-024-60280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Brain machine interfaces (BMIs) can substantially improve the quality of life of elderly or disabled people. However, performing complex action sequences with a BMI system is onerous because it requires issuing commands sequentially. Fundamentally different from this, we have designed a BMI system that reads out mental planning activity and issues commands in a proactive manner. To demonstrate this, we recorded brain activity from freely-moving monkeys performing an instructed task and decoded it with an energy-efficient, small and mobile field-programmable gate array hardware decoder triggering real-time action execution on smart devices. Core of this is an adaptive decoding algorithm that can compensate for the day-by-day neuronal signal fluctuations with minimal re-calibration effort. We show that open-loop planning-ahead control is possible using signals from primary and pre-motor areas leading to significant time-gain in the execution of action sequences. This novel approach provides, thus, a stepping stone towards improved and more humane control of different smart environments with mobile brain machine interfaces.
Collapse
Affiliation(s)
- Jan-Matthias Braun
- SDU Applied AI and Data Science, University of Southern Denmark, 5230, Odense, Denmark.
| | - Michael Fauth
- Department for Computational Neuroscience, University of Göttingen, 37077, Göttingen, Germany
| | - Michael Berger
- Sensorimotor Group, German Primate Center - Leibniz-Institute for Primate Research, 37077, Göttingen, Germany
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, 37077, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, 37077, Göttingen, Germany
| | - Nan-Sheng Huang
- Embodied AI and Neurorobotics Lab, University of Southern Denmark, 5230, Odense, Denmark
| | - Ezequiel Simeoni
- Life Supporting Technologies Research Group, ETSIT, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Eugenio Gaeta
- Life Supporting Technologies Research Group, ETSIT, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | | | - Rebeca I García-Betances
- Life Supporting Technologies Research Group, ETSIT, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | | | - Alexander Gail
- Sensorimotor Group, German Primate Center - Leibniz-Institute for Primate Research, 37077, Göttingen, Germany
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, 37077, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, 37077, Göttingen, Germany
| | - Jørgen C Larsen
- Embodied AI and Neurorobotics Lab, University of Southern Denmark, 5230, Odense, Denmark
| | - Poramate Manoonpong
- Embodied AI and Neurorobotics Lab, University of Southern Denmark, 5230, Odense, Denmark
- Bio-inspired Robotics and Neural Engineering Lab, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Christian Tetzlaff
- Department for Computational Neuroscience, University of Göttingen, 37077, Göttingen, Germany
- Group of Computational Synaptic Physiology, Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Florentin Wörgötter
- Department for Computational Neuroscience, University of Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
42
|
Fortunato C, Bennasar-Vázquez J, Park J, Chang JC, Miller LE, Dudman JT, Perich MG, Gallego JA. Nonlinear manifolds underlie neural population activity during behaviour. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549575. [PMID: 37503015 PMCID: PMC10370078 DOI: 10.1101/2023.07.18.549575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
There is rich variety in the activity of single neurons recorded during behaviour. Yet, these diverse single neuron responses can be well described by relatively few patterns of neural co-modulation. The study of such low-dimensional structure of neural population activity has provided important insights into how the brain generates behaviour. Virtually all of these studies have used linear dimensionality reduction techniques to estimate these population-wide co-modulation patterns, constraining them to a flat "neural manifold". Here, we hypothesised that since neurons have nonlinear responses and make thousands of distributed and recurrent connections that likely amplify such nonlinearities, neural manifolds should be intrinsically nonlinear. Combining neural population recordings from monkey, mouse, and human motor cortex, and mouse striatum, we show that: 1) neural manifolds are intrinsically nonlinear; 2) their nonlinearity becomes more evident during complex tasks that require more varied activity patterns; and 3) manifold nonlinearity varies across architecturally distinct brain regions. Simulations using recurrent neural network models confirmed the proposed relationship between circuit connectivity and manifold nonlinearity, including the differences across architecturally distinct regions. Thus, neural manifolds underlying the generation of behaviour are inherently nonlinear, and properly accounting for such nonlinearities will be critical as neuroscientists move towards studying numerous brain regions involved in increasingly complex and naturalistic behaviours.
Collapse
Affiliation(s)
- Cátia Fortunato
- Department of Bioengineering, Imperial College London, London UK
| | | | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA
| | - Joanna C. Chang
- Department of Bioengineering, Imperial College London, London UK
| | - Lee E. Miller
- Department of Neurosciences, Northwestern University, Chicago IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago IL, USA, and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Joshua T. Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA
| | - Matthew G. Perich
- Department of Neurosciences, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Québec Artificial Intelligence Institute (MILA), Montréal, Québec, Canada
| | - Juan A. Gallego
- Department of Bioengineering, Imperial College London, London UK
| |
Collapse
|
43
|
Podlaski WF, Machens CK. Approximating Nonlinear Functions With Latent Boundaries in Low-Rank Excitatory-Inhibitory Spiking Networks. Neural Comput 2024; 36:803-857. [PMID: 38658028 DOI: 10.1162/neco_a_01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/02/2024] [Indexed: 04/26/2024]
Abstract
Deep feedforward and recurrent neural networks have become successful functional models of the brain, but they neglect obvious biological details such as spikes and Dale's law. Here we argue that these details are crucial in order to understand how real neural circuits operate. Towards this aim, we put forth a new framework for spike-based computation in low-rank excitatory-inhibitory spiking networks. By considering populations with rank-1 connectivity, we cast each neuron's spiking threshold as a boundary in a low-dimensional input-output space. We then show how the combined thresholds of a population of inhibitory neurons form a stable boundary in this space, and those of a population of excitatory neurons form an unstable boundary. Combining the two boundaries results in a rank-2 excitatory-inhibitory (EI) network with inhibition-stabilized dynamics at the intersection of the two boundaries. The computation of the resulting networks can be understood as the difference of two convex functions and is thereby capable of approximating arbitrary non-linear input-output mappings. We demonstrate several properties of these networks, including noise suppression and amplification, irregular activity and synaptic balance, as well as how they relate to rate network dynamics in the limit that the boundary becomes soft. Finally, while our work focuses on small networks (5-50 neurons), we discuss potential avenues for scaling up to much larger networks. Overall, our work proposes a new perspective on spiking networks that may serve as a starting point for a mechanistic understanding of biological spike-based computation.
Collapse
Affiliation(s)
- William F Podlaski
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Christian K Machens
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
44
|
Menéndez JA, Hennig JA, Golub MD, Oby ER, Sadtler PT, Batista AP, Chase SM, Yu BM, Latham PE. A theory of brain-computer interface learning via low-dimensional control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.589952. [PMID: 38712193 PMCID: PMC11071278 DOI: 10.1101/2024.04.18.589952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A remarkable demonstration of the flexibility of mammalian motor systems is primates' ability to learn to control brain-computer interfaces (BCIs). This constitutes a completely novel motor behavior, yet primates are capable of learning to control BCIs under a wide range of conditions. BCIs with carefully calibrated decoders, for example, can be learned with only minutes to hours of practice. With a few weeks of practice, even BCIs with randomly constructed decoders can be learned. What are the biological substrates of this learning process? Here, we develop a theory based on a re-aiming strategy, whereby learning operates within a low-dimensional subspace of task-relevant inputs driving the local population of recorded neurons. Through comprehensive numerical and formal analysis, we demonstrate that this theory can provide a unifying explanation for disparate phenomena previously reported in three different BCI learning tasks, and we derive a novel experimental prediction that we verify with previously published data. By explicitly modeling the underlying neural circuitry, the theory reveals an interpretation of these phenomena in terms of biological constraints on neural activity.
Collapse
|
45
|
Beshkov K, Fyhn M, Hafting T, Einevoll GT. Topological structure of population activity in mouse visual cortex encodes densely sampled stimulus rotations. iScience 2024; 27:109370. [PMID: 38523791 PMCID: PMC10959658 DOI: 10.1016/j.isci.2024.109370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
The primary visual cortex is one of the most well understood regions supporting the processing involved in sensory computation. Following the popularization of high-density neural recordings, it has been observed that the activity of large neural populations is often constrained to low dimensional manifolds. In this work, we quantify the structure of such neural manifolds in the visual cortex. We do this by analyzing publicly available two-photon optical recordings of mouse primary visual cortex in response to visual stimuli with a densely sampled rotation angle. Using a geodesic metric along with persistent homology, we discover that population activity in response to such stimuli generates a circular manifold, encoding the angle of rotation. Furthermore, we observe that this circular manifold is expressed differently in subpopulations of neurons with differing orientation and direction selectivity. Finally, we discuss some of the obstacles to reliably retrieving the truthful topology generated by a neural population.
Collapse
Affiliation(s)
- Kosio Beshkov
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Marianne Fyhn
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Torkel Hafting
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gaute T. Einevoll
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
- Department of Physics, Norwegian University of Life Sciences, As, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
46
|
Wang Y, Cao R, Wang S. Encoding of Visual Objects in the Human Medial Temporal Lobe. J Neurosci 2024; 44:e2135232024. [PMID: 38429107 PMCID: PMC11026346 DOI: 10.1523/jneurosci.2135-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024] Open
Abstract
The human medial temporal lobe (MTL) plays a crucial role in recognizing visual objects, a key cognitive function that relies on the formation of semantic representations. Nonetheless, it remains unknown how visual information of general objects is translated into semantic representations in the MTL. Furthermore, the debate about whether the human MTL is involved in perception has endured for a long time. To address these questions, we investigated three distinct models of neural object coding-semantic coding, axis-based feature coding, and region-based feature coding-in each subregion of the human MTL, using high-resolution fMRI in two male and six female participants. Our findings revealed the presence of semantic coding throughout the MTL, with a higher prevalence observed in the parahippocampal cortex (PHC) and perirhinal cortex (PRC), while axis coding and region coding were primarily observed in the earlier regions of the MTL. Moreover, we demonstrated that voxels exhibiting axis coding supported the transition to region coding and contained information relevant to semantic coding. Together, by providing a detailed characterization of neural object coding schemes and offering a comprehensive summary of visual coding information for each MTL subregion, our results not only emphasize a clear role of the MTL in perceptual processing but also shed light on the translation of perception-driven representations of visual features into memory-driven representations of semantics along the MTL processing pathway.
Collapse
Affiliation(s)
- Yue Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Runnan Cao
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
47
|
Tlaie A, Shapcott K, van der Plas TL, Rowland J, Lees R, Keeling J, Packer A, Tiesinga P, Schölvinck ML, Havenith MN. What does the mean mean? A simple test for neuroscience. PLoS Comput Biol 2024; 20:e1012000. [PMID: 38640119 PMCID: PMC11062559 DOI: 10.1371/journal.pcbi.1012000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/01/2024] [Accepted: 03/12/2024] [Indexed: 04/21/2024] Open
Abstract
Trial-averaged metrics, e.g. tuning curves or population response vectors, are a ubiquitous way of characterizing neuronal activity. But how relevant are such trial-averaged responses to neuronal computation itself? Here we present a simple test to estimate whether average responses reflect aspects of neuronal activity that contribute to neuronal processing. The test probes two assumptions implicitly made whenever average metrics are treated as meaningful representations of neuronal activity: Reliability: Neuronal responses repeat consistently enough across trials that they convey a recognizable reflection of the average response to downstream regions.Behavioural relevance: If a single-trial response is more similar to the average template, it is more likely to evoke correct behavioural responses. We apply this test to two data sets: (1) Two-photon recordings in primary somatosensory cortices (S1 and S2) of mice trained to detect optogenetic stimulation in S1; and (2) Electrophysiological recordings from 71 brain areas in mice performing a contrast discrimination task. Under the highly controlled settings of Data set 1, both assumptions were largely fulfilled. In contrast, the less restrictive paradigm of Data set 2 met neither assumption. Simulations predict that the larger diversity of neuronal response preferences, rather than higher cross-trial reliability, drives the better performance of Data set 1. We conclude that when behaviour is less tightly restricted, average responses do not seem particularly relevant to neuronal computation, potentially because information is encoded more dynamically. Most importantly, we encourage researchers to apply this simple test of computational relevance whenever using trial-averaged neuronal metrics, in order to gauge how representative cross-trial averages are in a given context.
Collapse
Affiliation(s)
- Alejandro Tlaie
- Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Technical University of Madrid, Madrid, Spain
| | | | - Thijs L. van der Plas
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - James Rowland
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert Lees
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Joshua Keeling
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Adam Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Institute, Radboud University, Nijmegen, The Netherlands
| | | | - Martha N. Havenith
- Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Ramezani M, Kim JH, Liu X, Ren C, Alothman A, De-Eknamkul C, Wilson MN, Cubukcu E, Gilja V, Komiyama T, Kuzum D. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. NATURE NANOTECHNOLOGY 2024; 19:504-513. [PMID: 38212523 DOI: 10.1038/s41565-023-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Optically transparent neural microelectrodes have facilitated simultaneous electrophysiological recordings from the brain surface with the optical imaging and stimulation of neural activity. A remaining challenge is to scale down the electrode dimensions to the single-cell size and increase the density to record neural activity with high spatial resolution across large areas to capture nonlinear neural dynamics. Here we developed transparent graphene microelectrodes with ultrasmall openings and a large, transparent recording area without any gold extensions in the field of view with high-density microelectrode arrays up to 256 channels. We used platinum nanoparticles to overcome the quantum capacitance limit of graphene and to scale down the microelectrode diameter to 20 µm. An interlayer-doped double-layer graphene was introduced to prevent open-circuit failures. We conducted multimodal experiments, combining the recordings of cortical potentials of microelectrode arrays with two-photon calcium imaging of the mouse visual cortex. Our results revealed that visually evoked responses are spatially localized for high-frequency bands, particularly for the multiunit activity band. The multiunit activity power was found to be correlated with cellular calcium activity. Leveraging this, we employed dimensionality reduction techniques and neural networks to demonstrate that single-cell and average calcium activities can be decoded from surface potentials recorded by high-density transparent graphene arrays.
Collapse
Affiliation(s)
- Mehrdad Ramezani
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jeong-Hoon Kim
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Xin Liu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Chi Ren
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Abdullah Alothman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Chawina De-Eknamkul
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Madison N Wilson
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ertugrul Cubukcu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Takaki Komiyama
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Duygu Kuzum
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
49
|
Dekleva BM, Chowdhury RH, Batista AP, Chase SM, Yu BM, Boninger ML, Collinger JL. Motor cortex retains and reorients neural dynamics during motor imagery. Nat Hum Behav 2024; 8:729-742. [PMID: 38287177 PMCID: PMC11089477 DOI: 10.1038/s41562-023-01804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/13/2023] [Indexed: 01/31/2024]
Abstract
The most prominent characteristic of motor cortex is its activation during movement execution, but it is also active when we simply imagine movements in the absence of actual motor output. Despite decades of behavioural and imaging studies, it is unknown how the specific activity patterns and temporal dynamics in motor cortex during covert motor imagery relate to those during motor execution. Here we recorded intracortical activity from the motor cortex of two people who retain some residual wrist function following incomplete spinal cord injury as they performed both actual and imagined isometric wrist extensions. We found that we could decompose the population activity into three orthogonal subspaces, where one was similarly active during both action and imagery, and the others were active only during a single task type-action or imagery. Although they inhabited orthogonal neural dimensions, the action-unique and imagery-unique subspaces contained a strikingly similar set of dynamic features. Our results suggest that during motor imagery, motor cortex maintains the same overall population dynamics as during execution by reorienting the components related to motor output and/or feedback into a unique, output-null imagery subspace.
Collapse
Affiliation(s)
- Brian M Dekleva
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Raeed H Chowdhury
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron P Batista
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Chase
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Byron M Yu
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
50
|
Churchland MM, Shenoy KV. Preparatory activity and the expansive null-space. Nat Rev Neurosci 2024; 25:213-236. [PMID: 38443626 DOI: 10.1038/s41583-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
The study of the cortical control of movement experienced a conceptual shift over recent decades, as the basic currency of understanding shifted from single-neuron tuning towards population-level factors and their dynamics. This transition was informed by a maturing understanding of recurrent networks, where mechanism is often characterized in terms of population-level factors. By estimating factors from data, experimenters could test network-inspired hypotheses. Central to such hypotheses are 'output-null' factors that do not directly drive motor outputs yet are essential to the overall computation. In this Review, we highlight how the hypothesis of output-null factors was motivated by the venerable observation that motor-cortex neurons are active during movement preparation, well before movement begins. We discuss how output-null factors then became similarly central to understanding neural activity during movement. We discuss how this conceptual framework provided key analysis tools, making it possible for experimenters to address long-standing questions regarding motor control. We highlight an intriguing trend: as experimental and theoretical discoveries accumulate, the range of computational roles hypothesized to be subserved by output-null factors continues to expand.
Collapse
Affiliation(s)
- Mark M Churchland
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| |
Collapse
|