1
|
Racicot J, Smine S, Afzali K, Orban P. Functional brain connectivity changes associated with day-to-day fluctuations in affective states. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1141-1154. [PMID: 39322824 DOI: 10.3758/s13415-024-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Affective neuroscience has traditionally relied on cross-sectional studies to uncover the brain correlates of affects, emotions, and moods. Such findings obfuscate intraindividual variability that may reveal meaningful changing affect states. The few functional magnetic resonance imaging longitudinal studies that have linked changes in brain function to the ebbs and flows of affective states over time have mostly investigated a single individual. In this study, we explored how the functional connectivity of brain areas associated with affective processes can explain within-person fluctuations in self-reported positive and negative affects across several subjects. To do so, we leveraged the Day2day dataset that includes 40 to 50 resting-state functional magnetic resonance imaging scans along self-reported positive and negative affectivity from a sample of six healthy participants. Sparse multivariate mixed-effect linear models could explain 15% and 11% of the within-person variation in positive and negative affective states, respectively. Evaluation of these models' generalizability to new data demonstrated the ability to predict approximately 5% and 2% of positive and negative affect variation. The functional connectivity of limbic areas, such as the amygdala, hippocampus, and insula, appeared most important to explain the temporal dynamics of affects over days, weeks, and months.
Collapse
Affiliation(s)
- Jeanne Racicot
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Département de Psychiatrie et d'addictologie, Université de Montréal, Montréal, Canada
| | - Salima Smine
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
| | - Kamran Afzali
- Consortium Santé Numérique, Université de Montréal, Montréal, Canada
| | - Pierre Orban
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada.
- Département de Psychiatrie et d'addictologie, Université de Montréal, Montréal, Canada.
| |
Collapse
|
2
|
Demeter DV, Greene DJ. The promise of precision functional mapping for neuroimaging in psychiatry. Neuropsychopharmacology 2024; 50:16-28. [PMID: 39085426 DOI: 10.1038/s41386-024-01941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Precision functional mapping (PFM) is a neuroimaging approach to reliably estimate metrics of brain function from individual people via the collection of large amounts of fMRI data (hours per person). This method has revealed much about the inter-individual variation of functional brain networks. While standard group-level studies, in which we average brain measures across groups of people, are important in understanding the generalizable neural underpinnings of neuropsychiatric disorders, many disorders are heterogeneous in nature. This heterogeneity often complicates clinical care, leading to patient uncertainty when considering prognosis or treatment options. We posit that PFM methods may help streamline clinical care in the future, fast-tracking the choice of personalized treatment that is most compatible with the individual. In this review, we provide a history of PFM studies, foundational results highlighting the benefits of PFM methods in the pursuit of an advanced understanding of individual differences in functional network organization, and possible avenues where PFM can contribute to clinical translation of neuroimaging research results in the way of personalized treatment in psychiatry.
Collapse
Affiliation(s)
- Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Makowski C, Nichols TE, Dale AM. Quality over quantity: powering neuroimaging samples in psychiatry. Neuropsychopharmacology 2024; 50:58-66. [PMID: 38902353 DOI: 10.1038/s41386-024-01893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
Neuroimaging has been widely adopted in psychiatric research, with hopes that these non-invasive methods will provide important clues to the underpinnings and prediction of various mental health symptoms and outcomes. However, the translational impact of neuroimaging has not yet reached its promise, despite the plethora of computational methods, tools, and datasets at our disposal. Some have lamented that too many psychiatric neuroimaging studies have been underpowered with respect to sample size. In this review, we encourage this discourse to shift from a focus on sheer increases in sample size to more thoughtful choices surrounding experimental study designs. We propose considerations at multiple decision points throughout the study design, data modeling and analysis process that may help researchers working in psychiatric neuroimaging boost power for their research questions of interest without necessarily increasing sample size. We also provide suggestions for leveraging multiple datasets to inform each other and strengthen our confidence in the generalization of findings to both population-level and clinical samples. Through a greater emphasis on improving the quality of brain-based and clinical measures rather than merely quantity, meaningful and potentially translational clinical associations with neuroimaging measures can be achieved with more modest sample sizes in psychiatry.
Collapse
Affiliation(s)
- Carolina Makowski
- Department of Radiology, University of California San Diego, San Diego, CA, USA.
| | - Thomas E Nichols
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anders M Dale
- Departments of Radiology and Neurosciences, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
5
|
Marek S, Laumann TO. Replicability and generalizability in population psychiatric neuroimaging. Neuropsychopharmacology 2024; 50:52-57. [PMID: 39215207 DOI: 10.1038/s41386-024-01960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Studies linking mental health with brain function in cross-sectional population-based association studies have historically relied on small, underpowered samples. Given the small effect sizes typical of such brain-wide associations, studies require samples into the thousands to achieve the statistical power necessary for replicability. Here, we detail how small sample sizes have hampered replicability and provide sample size targets given established association strength benchmarks. Critically, while replicability will improve with larger samples, it is not guaranteed that observed effects will meaningfully apply to target populations of interest (i.e., be generalizable). We discuss important considerations related to generalizability in psychiatric neuroimaging and provide an example of generalizability failure due to "shortcut learning" in brain-based predictions of mental health phenotypes. Shortcut learning is a phenomenon whereby machine learning models learn an association between the brain and an unmeasured construct (the shortcut), rather than the intended target of mental health. Given the complex nature of brain-behavior interactions, the future of epidemiological approaches to brain-based studies of mental health will require large, diverse samples with comprehensive assessment.
Collapse
Affiliation(s)
- Scott Marek
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Neuroimaging Labs Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- AI Institute for Health, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Neuroimaging Labs Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Jahanshad N, Lenzini P, Bijsterbosch J. Current best practices and future opportunities for reproducible findings using large-scale neuroimaging in psychiatry. Neuropsychopharmacology 2024; 50:37-51. [PMID: 39117903 DOI: 10.1038/s41386-024-01938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Research into the brain basis of psychopathology is challenging due to the heterogeneity of psychiatric disorders, extensive comorbidities, underdiagnosis or overdiagnosis, multifaceted interactions with genetics and life experiences, and the highly multivariate nature of neural correlates. Therefore, increasingly larger datasets that measure more variables in larger cohorts are needed to gain insights. In this review, we present current "best practice" approaches for using existing databases, collecting and sharing new repositories for big data analyses, and future directions for big data in neuroimaging and psychiatry with an emphasis on contributing to collaborative efforts and the challenges of multi-study data analysis.
Collapse
Affiliation(s)
- Neda Jahanshad
- Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90292, USA.
| | - Petra Lenzini
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Janine Bijsterbosch
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Herzberg MP, Nielsen AN, Luby J, Sylvester CM. Measuring neuroplasticity in human development: the potential to inform the type and timing of mental health interventions. Neuropsychopharmacology 2024; 50:124-136. [PMID: 39103496 DOI: 10.1038/s41386-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Neuroplasticity during sensitive periods, the molecular and cellular process of enduring neural change in response to external stimuli during windows of high environmental sensitivity, is crucial for adaptation to expected environments and has implications for psychiatry. Animal research has characterized the developmental sequence and neurobiological mechanisms that govern neuroplasticity, yet gaps in our ability to measure neuroplasticity in humans limit the clinical translation of these principles. Here, we present a roadmap for the development and validation of neuroimaging and electrophysiology measures that index neuroplasticity to begin to address these gaps. We argue that validation of measures to track neuroplasticity in humans will elucidate the etiology of mental illness and inform the type and timing of mental health interventions to optimize effectiveness. We outline criteria for evaluating putative neuroimaging measures of plasticity in humans including links to neurobiological mechanisms shown to govern plasticity in animal models, developmental change that reflects heightened early life plasticity, and prediction of neural and/or behavior change. These criteria are applied to three putative measures of neuroplasticity using electroencephalography (gamma oscillations, aperiodic exponent of power/frequency) or functional magnetic resonance imaging (amplitude of low frequency fluctuations). We discuss the use of these markers in psychiatry, envision future uses for clinical and developmental translation, and suggest steps to address the limitations of the current putative neuroimaging measures of plasticity. With additional work, we expect these markers will significantly impact mental health and be used to characterize mechanisms, devise new interventions, and optimize developmental trajectories to reduce psychopathology risk.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Joan Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
8
|
Gell M, Noble S, Laumann TO, Nelson SM, Tervo-Clemmens B. Psychiatric neuroimaging designs for individualised, cohort, and population studies. Neuropsychopharmacology 2024; 50:29-36. [PMID: 39143320 DOI: 10.1038/s41386-024-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 08/16/2024]
Abstract
Psychiatric neuroimaging faces challenges to rigour and reproducibility that prompt reconsideration of the relative strengths and limitations of study designs. Owing to high resource demands and varying inferential goals, current designs differentially emphasise sample size, measurement breadth, and longitudinal assessments. In this overview and perspective, we provide a guide to the current landscape of psychiatric neuroimaging study designs with respect to this balance of scientific goals and resource constraints. Through a heuristic data cube contrasting key design features, we discuss a resulting trade-off among small sample, precision longitudinal studies (e.g., individualised studies and cohorts) and large sample, minimally longitudinal, population studies. Precision studies support tests of within-person mechanisms, via intervention and tracking of longitudinal course. Population studies support tests of generalisation across multifaceted individual differences. A proposed reciprocal validation model (RVM) aims to recursively leverage these complementary designs in sequence to accumulate evidence, optimise relative strengths, and build towards improved long-term clinical utility.
Collapse
Affiliation(s)
- Martin Gell
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
| | - Stephanie Noble
- Psychology Department, Northeastern University, Boston, MA, USA
- Bioengineering Department, Northeastern University, Boston, MA, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Ramduny J, Kelly C. Connectome-based fingerprinting: reproducibility, precision, and behavioral prediction. Neuropsychopharmacology 2024; 50:114-123. [PMID: 39147868 DOI: 10.1038/s41386-024-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Functional magnetic resonance imaging-based functional connectivity enables the non-invasive mapping of individual differences in brain functional organization to individual differences in a vast array of behavioral phenotypes. This flexibility has renewed the search for neuroimaging-based biomarkers that exhibit reproducibility, prediction, and precision. Functional connectivity-based measures that share these three characteristics are key to achieving this goal. Here, we review the functional connectome fingerprinting approach and discuss its value, not only as a simple and intuitive conceptualization of the "functional connectome" that provides new insights into how the connectome is altered in association with psychiatric symptoms, but also as a straightforward and interpretable method for indexing the reproducibility of functional connectivity-based measures. We discuss how these advantages provide new avenues for strengthening reproducibility, precision, and behavioral prediction for functional connectomics and we consider new directions toward discovering better biomarkers for neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jivesh Ramduny
- Department of Psychology, Yale University, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| | - Clare Kelly
- School of Psychology, Trinity College Dublin, Dublin, Ireland.
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Labonte AK, Camacho MC, Moser J, Koirala S, Laumann TO, Marek S, Fair D, Sylvester CM. Precision Functional Mapping to Advance Developmental Psychiatry Research. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100370. [PMID: 39309212 PMCID: PMC11416589 DOI: 10.1016/j.bpsgos.2024.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Many psychiatric conditions have their roots in early development. Individual differences in prenatal brain function (which is influenced by a combination of genetic risk and the prenatal environment) likely interact with individual differences in postnatal experience, resulting in substantial variation in brain functional organization and development in infancy. Neuroimaging has been a powerful tool for understanding typical and atypical brain function and holds promise for uncovering the neurodevelopmental basis of psychiatric illness; however, its clinical utility has been relatively limited thus far. A substantial challenge in this endeavor is the traditional approach of averaging brain data across groups despite individuals varying in their brain organization, which likely obscures important clinically relevant individual variation. Precision functional mapping (PFM) is a neuroimaging technique that allows the capture of individual-specific and highly reliable functional brain properties. Here, we discuss how PFM, through its focus on individuals, has provided novel insights for understanding brain organization across the life span and its promise in elucidating the neural basis of psychiatric disorders. We first summarize the extant literature on PFM in normative populations, followed by its limited utilization in studying psychiatric conditions in adults. We conclude by discussing the potential for infant PFM in advancing developmental precision psychiatry applications, given that many psychiatric disorders start during early infancy and are associated with changes in individual-specific functional neuroanatomy. By exploring the intersection of PFM, development, and psychiatric research, this article underscores the importance of individualized approaches in unraveling the complexities of brain function and improving clinical outcomes across development.
Collapse
Affiliation(s)
- Alyssa K. Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, Missouri
| | - M. Catalina Camacho
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| | - Timothy O. Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Damien Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Chad M. Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
11
|
Siegel JS. Precision functional mapping for target engagement in drug development. Neuropsychopharmacology 2024; 50:339-340. [PMID: 39103494 DOI: 10.1038/s41386-024-01945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Affiliation(s)
- Joshua S Siegel
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
12
|
Kupers ER, Knapen T, Merriam EP, Kay KN. Principles of intensive human neuroimaging. Trends Neurosci 2024:S0166-2236(24)00183-8. [PMID: 39455343 DOI: 10.1016/j.tins.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.
Collapse
Affiliation(s)
- Eline R Kupers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Sciences, Amsterdam, the Netherlands; Cognitive Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Kendrick N Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Adkinson BD, Rosenblatt M, Dadashkarimi J, Tejavibulya L, Jiang R, Noble S, Scheinost D. Brain-phenotype predictions of language and executive function can survive across diverse real-world data: Dataset shifts in developmental populations. Dev Cogn Neurosci 2024; 70:101464. [PMID: 39447452 DOI: 10.1016/j.dcn.2024.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Predictive modeling potentially increases the reproducibility and generalizability of neuroimaging brain-phenotype associations. Yet, the evaluation of a model in another dataset is underutilized. Among studies that undertake external validation, there is a notable lack of attention to generalization across dataset-specific idiosyncrasies (i.e., dataset shifts). Research settings, by design, remove the between-site variations that real-world and, eventually, clinical applications demand. Here, we rigorously test the ability of a range of predictive models to generalize across three diverse, unharmonized developmental samples: the Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network (n=1110), and the Human Connectome Project in Development (n=428). These datasets have high inter-dataset heterogeneity, encompassing substantial variations in age distribution, sex, racial and ethnic minority representation, recruitment geography, clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. Through advanced methodological approaches, we demonstrate that reproducible and generalizable brain-behavior associations can be realized across diverse dataset features. Results indicate the potential of functional connectome-based predictive models to be robust despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets, the best predictions were not from training and testing in the same dataset (i.e., cross-validation) but across datasets. This result suggests that training on diverse data may improve prediction in specific cases. Overall, this work provides a critical foundation for future work evaluating the generalizability of brain-phenotype associations in real-world scenarios and clinical settings.
Collapse
Affiliation(s)
- Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Javid Dadashkarimi
- Department of Radiology, Athinoula. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Bioengineering, Northeastern University, Boston, MA 02120, USA; Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
14
|
Lee HJ, Dworetsky A, Labora N, Gratton C. Using precision approaches to improve brain-behavior prediction. Trends Cogn Sci 2024:S1364-6613(24)00229-8. [PMID: 39419740 DOI: 10.1016/j.tics.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Predicting individual behavioral traits from brain idiosyncrasies has broad practical implications, yet predictions vary widely. This constraint may be driven by a combination of signal and noise in both brain and behavioral variables. Here, we expand on this idea, highlighting the potential of extended sampling 'precision' studies. First, we discuss their relevance to improving the reliability of individualized estimates by minimizing measurement noise. Second, we review how targeted within-subject experiments, when combined with individualized analysis or modeling frameworks, can maximize signal. These improvements in signal-to-noise facilitated by precision designs can help boost prediction studies. We close by discussing the integration of precision approaches with large-sample consortia studies to leverage the advantages of both.
Collapse
Affiliation(s)
- Hyejin J Lee
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Department of Psychology, Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| | - Ally Dworetsky
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Nathan Labora
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Department of Psychology, Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
15
|
Moser J, Nelson SM, Koirala S, Madison TJ, Labonte AK, Carrasco CM, Feczko E, Moore LA, Lundquist JT, Weldon KB, Grimsrud G, Hufnagle K, Ahmed W, Myers MJ, Adeyemo B, Snyder AZ, Gordon EM, Dosenbach NUF, Tervo-Clemmens B, Larsen B, Moeller S, Yacoub E, Vizioli L, Uğurbil K, Laumann TO, Sylvester CM, Fair DA. Multi-echo Acquisition and Thermal Denoising Advances Precision Functional Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.27.564416. [PMID: 37961636 PMCID: PMC10634909 DOI: 10.1101/2023.10.27.564416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The characterization of individual functional brain organization with Precision Functional Mapping has provided important insights in recent years in adults. However, little is known about the ontogeny of inter-individual differences in brain functional organization during human development. Precise characterization of systems organization during periods of high plasticity is likely to be essential for discoveries promoting lifelong health. Obtaining precision fMRI data during development has unique challenges that highlight the importance of establishing new methods to improve data acquisition, processing, and analysis. Here, we investigate two methods that can facilitate attaining this goal: multi-echo (ME) data acquisition and thermal noise removal with Noise Reduction with Distribution Corrected (NORDIC) principal component analysis. We applied these methods to precision fMRI data from adults, children, and newborn infants. In adults, both ME acquisitions and NORDIC increased temporal signal to noise ratio (tSNR) as well as the split-half reliability of functional connectivity matrices, with the combination helping more than either technique alone. The benefits of NORDIC denoising replicated in both our developmental samples. ME acquisitions revealed longer and more variable T2* relaxation times across the brain in infants relative to older children and adults, leading to major differences in the echo weighting for optimally combining ME data. This result suggests ME acquisitions may be a promising tool for optimizing developmental fMRI, albeit application in infants needs further investigation. The present work showcases methodological advances that improve Precision Functional Mapping in adults and developmental populations and, at the same time, highlights the need for further improvements in infant specific fMRI.
Collapse
Affiliation(s)
- Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Thomas J Madison
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Alyssa K Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Jacob T Lundquist
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Kimberly B Weldon
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Kristina Hufnagle
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Weli Ahmed
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Myers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Luca Vizioli
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Timothy O Laumann
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Schifani C, Hawco C, Daskalakis ZJ, Rajji TK, Mulsant BH, Tan V, Dickie EW, Moxon-Emre I, Blumberger DM, Voineskos AN. Repetitive Transcranial Magnetic Stimulation (rTMS) Treatment Reduces Variability in Brain Function in Schizophrenia: Data From a Double-Blind, Randomized, Sham-Controlled Trial. Schizophr Bull 2024:sbae166. [PMID: 39373168 DOI: 10.1093/schbul/sbae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
BACKGROUND/HYPOTHESIS There is increasing awareness of interindividual variability in brain function, with potentially major implications for repetitive transcranial magnetic stimulation (rTMS) efficacy. We perform a secondary analysis using data from a double-blind randomized controlled 4-week trial of 20 Hz active versus sham rTMS to dorsolateral prefrontal cortex (DLPFC) during a working memory task in participants with schizophrenia. We hypothesized that rTMS would change local functional activity and variability in the active group compared with sham. STUDY DESIGN 83 participants were randomized in the original trial, and offered neuroimaging pre- and post-treatment. Of those who successfully completed both scans (n = 57), rigorous quality control left n = 42 (active/sham: n = 19/23), who were included in this analysis. Working memory-evoked activity during an N-Back (3-Back vs 1-Back) task was contrasted. Changes in local brain activity were examined from an 8 mm ROI around the rTMS coordinates. Individual variability was examined as the mean correlational distance (MCD) in brain activity pattern from each participant to others within the same group. RESULTS We observed an increase in task-evoked left DLPFC activity in the active group compared with sham (F1,36 = 5.83, False Discovery Rate (FDR))-corrected P = .04). Although whole-brain activation patterns were similar in both groups, active rTMS reduced the MCD in activation pattern compared with sham (F1,36 = 32.57, P < .0001). Reduction in MCD was associated with improvements in attention performance (F1,16 = 14.82, P = .0014, uncorrected). CONCLUSIONS Active rTMS to DLPFC reduces individual variability of brain function in people with schizophrenia. Given that individual variability is typically higher in schizophrenia patients compared with controls, such reduction may "normalize" brain function during higher-order cognitive processing.
Collapse
Affiliation(s)
- Christin Schifani
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
| | - Colin Hawco
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego School of Medicine, San Diego, 92093, United States
| | - Tarek K Rajji
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
| | - Benoit H Mulsant
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
| | - Vinh Tan
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
| | - Erin W Dickie
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
| | - Iska Moxon-Emre
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
| | - Daniel M Blumberger
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, M6J 1H1, Canada
| | - Aristotle N Voineskos
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
| |
Collapse
|
17
|
Peng S, Cui Z, Zhong S, Zhang Y, Cohen AL, Fox MD, Gong G. Heterogenous brain activations across individuals localize to a common network. Commun Biol 2024; 7:1270. [PMID: 39369118 PMCID: PMC11455857 DOI: 10.1038/s42003-024-06969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Task functional magnetic resonance imaging research has generally shielded away from studying individuals due to the low reproducibility. Here, we propose that heterogeneous brain activations across individuals localize to a common network. To test this hypothesis, we use working memory (WM) as our example. First, we showed that discrete-brain-based reproducibility of brain activation during WM across individuals was low. Then, we used activation network mapping (ANM) technique to identify each individual's brain network of WM and found that network-based reproducibility was rather high. Prediction analyses using machine learning algorithms indicated that individual WM networks identified via ANM can predict WM behavioral performance. This predictive ability even outperformed that of brain activations. Our study provides a new explanation on the low reproducibility of brain activations across individuals. The results suggest that ANM can be used to identify individual brain networks of cognitive processes, thus promising broad potential applications.
Collapse
Affiliation(s)
- Shaoling Peng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Suyu Zhong
- Center for Artificial Intelligence in Medical Imaging, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Alexander L Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| |
Collapse
|
18
|
Lacasse JM, Heller C, Kheloui S, Ismail N, Raval AP, Schuh KM, Tronson NC, Leuner B. Beyond Birth Control: The Neuroscience of Hormonal Contraceptives. J Neurosci 2024; 44:e1235242024. [PMID: 39358019 PMCID: PMC11450536 DOI: 10.1523/jneurosci.1235-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Hormonal contraceptives (HCs) are one of the most highly prescribed classes of drugs in the world used for both contraceptive and noncontraceptive purposes. Despite their prevalent use, the impact of HCs on the brain remains inadequately explored. This review synthesizes recent findings on the neuroscience of HCs, with a focus on human structural neuroimaging as well as translational, nonhuman animal studies investigating the cellular, molecular, and behavioral effects of HCs. Additionally, we consider data linking HCs to mood disorders and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and stress response as a potential mediator. The review also addresses the unique sensitivity of the adolescent brain to HCs, noting significant changes in brain structure and function when HCs are used during this developmental period. Finally, we discuss potential effects of HCs in combination with smoking-derived nicotine on outcomes of ischemic brain damage. Methodological challenges, such as the variability in HC formulations and user-specific factors, are acknowledged, emphasizing the need for precise and individualized research approaches. Overall, this review underscores the necessity for continued interdisciplinary research to elucidate the neurobiological mechanisms of HCs, aiming to optimize their use and improve women's health.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Department of Psychology, Brock University, St Catharines, Ontario L2S 3A1, Canada
- Centre for Neuroscience, Brock University, St Catharines, Ontario L2S 3A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada
| | - Carina Heller
- Department of Clinical Psychology, Friedrich Schiller University Jena, Jena 07743, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany
- German Center for Mental Health (DZPG), Partner Site Jena-Magdeburg-Halle, Jena 07743, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Partner Site Jena-Magdeburg-Halle, Jena 07743, Germany
| | - Sarah Kheloui
- NISE Lab, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Lab, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida 33136
| | - Kristen M Schuh
- Psychology Department, University of Michigan, Ann Arbor, Michigan 48109
| | - Natalie C Tronson
- Psychology Department, University of Michigan, Ann Arbor, Michigan 48109
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
19
|
Gutierrez-Barragan D, Ramirez JSB, Panzeri S, Xu T, Gozzi A. Evolutionarily conserved fMRI network dynamics in the mouse, macaque, and human brain. Nat Commun 2024; 15:8518. [PMID: 39353895 PMCID: PMC11445567 DOI: 10.1038/s41467-024-52721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
Evolutionarily relevant networks have been previously described in several mammalian species using time-averaged analyses of fMRI time-series. However, fMRI network activity is highly dynamic and continually evolves over timescales of seconds. Whether the dynamic organization of resting-state fMRI network activity is conserved across mammalian species remains unclear. Using frame-wise clustering of fMRI time-series, we find that intrinsic fMRI network dynamics in awake male macaques and humans is characterized by recurrent transitions between a set of 4 dominant, neuroanatomically homologous fMRI coactivation modes (C-modes), three of which are also plausibly represented in the male rodent brain. Importantly, in all species C-modes exhibit species-invariant dynamic features, including preferred occurrence at specific phases of fMRI global signal fluctuations, and a state transition structure compatible with infraslow coupled oscillator dynamics. Moreover, dominant C-mode occurrence reconstitutes the static organization of the fMRI connectome in all species, and is predictive of ranking of corresponding fMRI connectivity gradients. These results reveal a set of species-invariant principles underlying the dynamic organization of fMRI networks in mammalian species, and offer novel opportunities to relate fMRI network findings across the phylogenetic tree.
Collapse
Affiliation(s)
- Daniel Gutierrez-Barragan
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Julian S B Ramirez
- Center for the Developing Brain. Child Mind Institute, New York, NY, USA
| | - Stefano Panzeri
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ting Xu
- Center for the Developing Brain. Child Mind Institute, New York, NY, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.
| |
Collapse
|
20
|
Dong HM, Zhang XH, Labache L, Zhang S, Ooi LQR, Yeo BTT, Margulies DS, Holmes AJ, Zuo XN. Ventral attention network connectivity is linked to cortical maturation and cognitive ability in childhood. Nat Neurosci 2024; 27:2009-2020. [PMID: 39179884 DOI: 10.1038/s41593-024-01736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/18/2024] [Indexed: 08/26/2024]
Abstract
The human brain experiences functional changes through childhood and adolescence, shifting from an organizational framework anchored within sensorimotor and visual regions into one that is balanced through interactions with later-maturing aspects of association cortex. Here, we link this profile of functional reorganization to the development of ventral attention network connectivity across independent datasets. We demonstrate that maturational changes in cortical organization link preferentially to within-network connectivity and heightened degree centrality in the ventral attention network, whereas connectivity within network-linked vertices predicts cognitive ability. This connectivity is associated closely with maturational refinement of cortical organization. Children with low ventral attention network connectivity exhibit adolescent-like topographical profiles, suggesting that attentional systems may be relevant in understanding how brain functions are refined across development. These data suggest a role for attention networks in supporting age-dependent shifts in cortical organization and cognition across childhood and adolescence.
Collapse
Affiliation(s)
- Hao-Ming Dong
- Department of Psychology, Yale University, New Haven, CT, USA.
| | - Xi-Han Zhang
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Loïc Labache
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Shaoshi Zhang
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore, Singapore
| | - Leon Qi Rong Ooi
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique, Frontlab, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA.
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
- National Basic Science Data Center, Beijing, China.
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
21
|
Li J, Segel A, Feng X, Tu JC, Eck A, King KT, Adeyemo B, Karcher NR, Chen L, Eggebrecht AT, Wheelock MD. Network-level enrichment provides a framework for biological interpretation of machine learning results. Netw Neurosci 2024; 8:762-790. [PMID: 39355443 PMCID: PMC11349033 DOI: 10.1162/netn_a_00383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/15/2024] [Indexed: 10/03/2024] Open
Abstract
Machine learning algorithms are increasingly being utilized to identify brain connectivity biomarkers linked to behavioral and clinical outcomes. However, research often prioritizes prediction accuracy at the expense of biological interpretability, and inconsistent implementation of ML methods may hinder model accuracy. To address this, our paper introduces a network-level enrichment approach, which integrates brain system organization in the context of connectome-wide statistical analysis to reveal network-level links between brain connectivity and behavior. To demonstrate the efficacy of this approach, we used linear support vector regression (LSVR) models to examine the relationship between resting-state functional connectivity networks and chronological age. We compared network-level associations based on raw LSVR weights to those produced from the forward and inverse models. Results indicated that not accounting for shared family variance inflated prediction performance, the k-best feature selection via Pearson correlation reduced accuracy and reliability, and raw LSVR model weights produced network-level associations that deviated from the significant brain systems identified by forward and inverse models. Our findings offer crucial insights for applying machine learning to neuroimaging data, emphasizing the value of network enrichment for biological interpretation.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Statistics and Data Science, Washington University in St. Louis, MO, USA
| | - Ari Segel
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Xinyang Feng
- Department of Statistics and Data Science, Washington University in St. Louis, MO, USA
| | - Jiaxin Cindy Tu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Andy Eck
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Kelsey T King
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, MO, USA
| | - Nicole R Karcher
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Likai Chen
- Department of Statistics and Data Science, Washington University in St. Louis, MO, USA
| | - Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Muriah D Wheelock
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| |
Collapse
|
22
|
Li X, Bianchini Esper N, Ai L, Giavasis S, Jin H, Feczko E, Xu T, Clucas J, Franco A, Sólon Heinsfeld A, Adebimpe A, Vogelstein JT, Yan CG, Esteban O, Poldrack RA, Craddock C, Fair D, Satterthwaite T, Kiar G, Milham MP. Moving beyond processing- and analysis-related variation in resting-state functional brain imaging. Nat Hum Behav 2024; 8:2003-2017. [PMID: 39103610 DOI: 10.1038/s41562-024-01942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
When fields lack consensus standard methods and accessible ground truths, reproducibility can be more of an ideal than a reality. Such has been the case for functional neuroimaging, where there exists a sprawling space of tools and processing pipelines. We provide a critical evaluation of the impact of differences across five independently developed minimal preprocessing pipelines for functional magnetic resonance imaging. We show that, even when handling identical data, interpipeline agreement was only moderate, critically shedding light on a factor that limits cross-study reproducibility. We show that low interpipeline agreement can go unrecognized until the reliability of the underlying data is high, which is increasingly the case as the field progresses. Crucially we show that, when interpipeline agreement is compromised, so too is the consistency of insights from brain-wide association studies. We highlight the importance of comparing analytic configurations, because both widely discussed and commonly overlooked decisions can lead to marked variation.
Collapse
Affiliation(s)
- Xinhui Li
- Child Mind Institute, New York, NY, USA
| | | | - Lei Ai
- Child Mind Institute, New York, NY, USA
| | | | | | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Ting Xu
- Child Mind Institute, New York, NY, USA
| | | | - Alexandre Franco
- Child Mind Institute, New York, NY, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | | | - Azeez Adebimpe
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua T Vogelstein
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Oscar Esteban
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, Stanford University, San Francisco, CA, USA
| | | | - Cameron Craddock
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Damien Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Theodore Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael P Milham
- Child Mind Institute, New York, NY, USA.
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
| |
Collapse
|
23
|
Li C, Lu Y, Yu S, Cui Y. TS-AI: A deep learning pipeline for multimodal subject-specific parcellation with task contrasts synthesis. Med Image Anal 2024; 97:103297. [PMID: 39154619 DOI: 10.1016/j.media.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Accurate mapping of brain functional subregions at an individual level is crucial. Task-based functional MRI (tfMRI) captures subject-specific activation patterns during various functions and behaviors, facilitating the individual localization of functionally distinct subregions. However, acquiring high-quality tfMRI is time-consuming and resource-intensive in both scientific and clinical settings. The present study proposes a two-stage network model, TS-AI, to individualize an atlas on cortical surfaces through the prediction of tfMRI data. TS-AI first synthesizes a battery of task contrast maps for each individual by leveraging tract-wise anatomical connectivity and resting-state networks. These synthesized maps, along with feature maps of tract-wise anatomical connectivity and resting-state networks, are then fed into an end-to-end deep neural network to individualize an atlas. TS-AI enables the synthesized task contrast maps to be used in individual parcellation without the acquisition of actual task fMRI scans. In addition, a novel feature consistency loss is designed to assign vertices with similar features to the same parcel, which increases individual specificity and mitigates overfitting risks caused by the absence of individual parcellation ground truth. The individualized parcellations were validated by assessing test-retest reliability, homogeneity, and cognitive behavior prediction using diverse reference atlases and datasets, demonstrating the superior performance and generalizability of TS-AI. Sensitivity analysis yielded insights into region-specific features influencing individual variation in functional regionalization. Additionally, TS-AI identified accelerated shrinkage in the medial temporal and cingulate parcels during the progression of Alzheimer's disease, suggesting its potential in clinical research and applications.
Collapse
Affiliation(s)
- Chengyi Li
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Brian Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Yuheng Lu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Brian Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Shan Yu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Brian Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Yue Cui
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Brian Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Kucyi A, Anderson N, Bounyarith T, Braun D, Shareef-Trudeau L, Treves I, Braga RM, Hsieh PJ, Hung SM. Individual variability in neural representations of mind-wandering. Netw Neurosci 2024; 8:808-836. [PMID: 39355438 PMCID: PMC11349032 DOI: 10.1162/netn_a_00387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 10/03/2024] Open
Abstract
Mind-wandering is a frequent, daily mental activity, experienced in unique ways in each person. Yet neuroimaging evidence relating mind-wandering to brain activity, for example in the default mode network (DMN), has relied on population- rather than individual-based inferences owing to limited within-person sampling. Here, three densely sampled individuals each reported hundreds of mind-wandering episodes while undergoing multi-session functional magnetic resonance imaging. We found reliable associations between mind-wandering and DMN activation when estimating brain networks within individuals using precision functional mapping. However, the timing of spontaneous DMN activity relative to subjective reports, and the networks beyond DMN that were activated and deactivated during mind-wandering, were distinct across individuals. Connectome-based predictive modeling further revealed idiosyncratic, whole-brain functional connectivity patterns that consistently predicted mind-wandering within individuals but did not fully generalize across individuals. Predictive models of mind-wandering and attention that were derived from larger-scale neuroimaging datasets largely failed when applied to densely sampled individuals, further highlighting the need for personalized models. Our work offers novel evidence for both conserved and variable neural representations of self-reported mind-wandering in different individuals. The previously unrecognized interindividual variations reported here underscore the broader scientific value and potential clinical utility of idiographic approaches to brain-experience associations.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Tiara Bounyarith
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - David Braun
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Lotus Shareef-Trudeau
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Isaac Treves
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Po-Jang Hsieh
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shao-Min Hung
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| |
Collapse
|
25
|
Triana AM, Salmi J, Hayward NMEA, Saramäki J, Glerean E. Longitudinal single-subject neuroimaging study reveals effects of daily environmental, physiological, and lifestyle factors on functional brain connectivity. PLoS Biol 2024; 22:e3002797. [PMID: 39378200 PMCID: PMC11460715 DOI: 10.1371/journal.pbio.3002797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2024] [Indexed: 10/10/2024] Open
Abstract
Our behavior and mental states are constantly shaped by our environment and experiences. However, little is known about the response of brain functional connectivity to environmental, physiological, and behavioral changes on different timescales, from days to months. This gives rise to an urgent need for longitudinal studies that collect high-frequency data. To this end, for a single subject, we collected 133 days of behavioral data with smartphones and wearables and performed 30 functional magnetic resonance imaging (fMRI) scans measuring attention, memory, resting state, and the effects of naturalistic stimuli. We find traces of past behavior and physiology in brain connectivity that extend up as far as 15 days. While sleep and physical activity relate to brain connectivity during cognitively demanding tasks, heart rate variability and respiration rate are more relevant for resting-state connectivity and movie-watching. This unique data set is openly accessible, offering an exceptional opportunity for further discoveries. Our results demonstrate that we should not study brain connectivity in isolation, but rather acknowledge its interdependence with the dynamics of the environment, changes in lifestyle, and short-term fluctuations such as transient illnesses or restless sleep. These results reflect a prolonged and sustained relationship between external factors and neural processes. Overall, precision mapping designs such as the one employed here can help to better understand intraindividual variability, which may explain some of the observed heterogeneity in fMRI findings. The integration of brain connectivity, physiology data and environmental cues will propel future environmental neuroscience research and support precision healthcare.
Collapse
Affiliation(s)
- Ana María Triana
- Department of Computer Science, School of Science, Aalto University, Espoo, Finland
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| | - Juha Salmi
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
- Aalto Behavioral Laboratory, Aalto Neuroimaging, Aalto University, Espoo, Finland
- MAGICS, Aalto Studios, Aalto University, Espoo, Finland
- Unit of Psychology, Faculty of Education and Psychology, Oulu University, Oulu, Finland
| | | | - Jari Saramäki
- Department of Computer Science, School of Science, Aalto University, Espoo, Finland
| | - Enrico Glerean
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
- Advanced Magnetic Imaging Centre, Aalto University, Espoo, Finland
| |
Collapse
|
26
|
Keller AS, Sun KY, Francisco A, Robinson H, Beydler E, Bassett DS, Cieslak M, Cui Z, Davatzikos C, Fan Y, Gardner M, Kishton R, Kornfield SL, Larsen B, Li H, Linder I, Pines A, Pritschet L, Raznahan A, Roalf DR, Seidlitz J, Shafiei G, Shinohara RT, Wolf DH, Alexander-Bloch A, Satterthwaite TD, Shanmugan S. Reproducible Sex Differences in Personalized Functional Network Topography in Youth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615061. [PMID: 39386637 PMCID: PMC11463432 DOI: 10.1101/2024.09.26.615061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background A key step towards understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organization at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organization of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex. Aims We aimed to evaluate the impact of sex on the spatial organization of person-specific functional brain networks. Method We leveraged person-specific atlases of functional brain networks defined using nonnegative matrix factorization in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalized additive models to uncover associations between sex and the spatial layout ("topography") of personalized functional networks (PFNs). Next, we trained support vector machines to classify participants' sex from multivariate patterns of PFN topography. Finally, we leveraged transcriptomic data from the Allen Human Brain Atlas to evaluate spatial correlations between sex differences in PFN topography and gene expression. Results Sex differences in PFN topography were greatest in association networks including the fronto-parietal, ventral attention, and default mode networks. Machine learning models trained on participants' PFNs were able to classify participant sex with high accuracy. Brain regions with the greatest sex differences in PFN topography were enriched in expression of X-linked genes as well as genes expressed in astrocytes and excitatory neurons. Conclusions Sex differences in PFN topography are robust, replicate across large-scale samples of youth, and are associated with expression patterns of X-linked genes. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.
Collapse
Affiliation(s)
- Arielle S Keller
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, USA
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Kevin Y Sun
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Francisco
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heather Robinson
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Emily Beydler
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S Bassett
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering, Electrical & Systems Engineering, Physics & Astronomy, and Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Matthew Cieslak
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Gardner
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel Kishton
- Department of Family Medicine and Community Health, Penn Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sara L Kornfield
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Women's Behavioral Wellness, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, Institute of Child Development, University of Minnesota, Minneapolis, MN 55414, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isabella Linder
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Pines
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Laura Pritschet
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland
| | - David R Roalf
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jakob Seidlitz
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Golia Shafiei
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron Alexander-Bloch
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheila Shanmugan
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Center for Women's Behavioral Wellness, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Steel A, Angeli PA, Silson EH, Robertson CE. Retinotopic coding organizes the opponent dynamic between internally and externally oriented brain networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615084. [PMID: 39386717 PMCID: PMC11463438 DOI: 10.1101/2024.09.25.615084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
How the human brain integrates internally- (i.e., mnemonic) and externally-oriented (i.e., perceptual) information is a long-standing puzzle in neuroscience. In particular, the internally-oriented networks like the default network (DN) and externally-oriented dorsal attention networks (dATNs) are thought to be globally competitive, which implies DN disengagement during cognitive states that drive the dATNs and vice versa. If these networks are globally opposed, how is internal and external information integrated across these networks? Here, using precision neuroimaging methods, we show that these internal/external networks are not as dissociated as traditionally thought. Using densely sampled high-resolution fMRI data, we defined individualized whole-brain networks from participants at rest, and the retinotopic preferences of individual voxels within these networks during an independent visual mapping task. We show that while the overall network activity between the DN and dATN is opponent at rest, a latent retinotopic code structures this global opponency. Specifically, the anti-correlation (i.e., global opponency) between the DN and dATN at rest is structured at the voxel-level by each voxel's retinotopic preferences, such that the spontaneous activity of voxels preferring similar visual field locations are more anti-correlated than those that prefer different visual field locations. Further, this retinotopic scaffold integrates with the domain-specific preferences of subregions within these networks, enabling efficient, parallel processing of retinotopic and domain-specific information. Thus, DN and dATN dynamics are opponent, but not competitive: voxel-scale anti-correlation between these networks preserves and encodes information in the negative BOLD responses, even in the absence of visual input or task demands. These findings suggest that retinotopic coding may serve as a fundamental organizing principle for brain-wide communication, providing a new framework for understanding how the brain balances and integrates internal cognition with external perception.
Collapse
Affiliation(s)
- Adam Steel
- Beckman Institute, University of Illinois, Urbana, Illinois, USA
- Department of Psychology, University of Illinois, Urbana, Illinois, USA
- Department of Psychology, Dartmouth College, Hanover, NH, USA
- Lead contact
| | - Peter A. Angeli
- Department of Psychology, Dartmouth College, Hanover, NH, USA
| | - Edward H. Silson
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
28
|
Sun KY, Schmitt JE, Moore TM, Barzilay R, Almasy L, Schultz LM, Mackey AP, Kafadar E, Sha Z, Seidlitz J, Mallard TT, Cui Z, Li H, Fan Y, Fair DA, Satterthwaite TD, Keller AS, Alexander-Bloch A. Polygenic Risk Underlies Youth Psychopathology and Personalized Functional Brain Network Topography. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.20.24314007. [PMID: 39399003 PMCID: PMC11469391 DOI: 10.1101/2024.09.20.24314007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Importance Functional brain networks are associated with both behavior and genetic factors. To uncover clinically translatable mechanisms of psychopathology, it is critical to define how the spatial organization of these networks relates to genetic risk during development. Objective To determine the relationship between transdiagnostic polygenic risk scores (PRSs), personalized functional brain networks (PFNs), and overall psychopathology (p-factor) during early adolescence. Design The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing longitudinal cohort study of 21 collection sites across the United States. Here, we conduct a cross-sectional analysis of ABCD baseline data, collected 2017-2018. Setting The ABCD Study ® is a multi-site community-based study. Participants The sample is largely recruited through school systems. Exclusion criteria included severe sensory, intellectual, medical, or neurological issues that interfere with protocol and scanner contraindications. Split-half subsets were used for cross-validation, matched on age, ethnicity, family structure, handedness, parental education, site, sex, and anesthesia exposure. Exposures Polygenic risk scores of transdiagnostic genetic factors F1 (PRS-F1) and F2 (PRS-F2) derived from adults in Psychiatric Genomic Consortium and UK Biobanks datasets. PRS-F1 indexes liability for common psychiatric symptoms and disorders related to mood disturbance; PRS-F2 indexes liability for rarer forms of mental illness characterized by mania and psychosis. Main Outcomes and Measures (1) P-factor derived from bifactor models of youth- and parent-reported mental health assessments. (2) Person-specific functional brain network topography derived from functional magnetic resonance imaging (fMRI) scans. Results Total participants included 11,873 youths ages 9-10 years old; 5,678 (47.8%) were female, and the mean (SD) age was 9.92 (0.62) years. PFN topography was found to be heritable (N=7,459, 57.06% of vertices h 2 p FDR <0.05, mean h 2 =0.35). PRS-F1 was associated with p-factor (N=5,815, r=0.12, 95% CI [0.09-0.15], p<0.001). Interindividual differences in functional network topography were associated with p-factor (N=7,459, mean r=0.12), PRS-F1 (N=3,982, mean r=0.05), and PRS-F2 (N=3,982, mean r=0.08). Cortical maps of p-factor and PRS-F1 regression coefficients were highly correlated (r=0.7, p=0.003). Conclusions and Relevance Polygenic risk for transdiagnostic adulthood psychopathology is associated with both p-factor and heritable PFN topography during early adolescence. These results advance our understanding of the developmental drivers of psychopathology.
Collapse
Affiliation(s)
- Kevin Y. Sun
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J. Eric Schmitt
- Departments of Radiology and Psychiatry, Division of Neuroradiology, Brain Behavior Laboratory, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Tyler M. Moore
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ran Barzilay
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura Almasy
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura M. Schultz
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Eren Kafadar
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhiqiang Sha
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jakob Seidlitz
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Travis T. Mallard
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Damien A. Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Theodore D. Satterthwaite
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arielle S. Keller
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
- CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Aaron Alexander-Bloch
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Pizzagalli DA. Toward actionable neural markers of depression risk? Trends Neurosci 2024:S0166-2236(24)00179-6. [PMID: 39341730 DOI: 10.1016/j.tins.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The search for neural markers of depression remains challenging. Despite progress, neuroimaging results have generally not yielded actionable findings that could transform how we understand and treat this disorder. However, in a recent study, Lynch and colleagues identified enlargement of the frontrostriatal salience network as a reproducible, trait-like marker of depression.
Collapse
Affiliation(s)
- Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA; Harvard Medical School, Department of Psychiatry, Boston, MA, USA.
| |
Collapse
|
30
|
Oishi H, Berezovskii VK, Livingstone MS, Weiner KS, Arcaro MJ. Inferotemporal face patches are histo-architectonically distinct. Cell Rep 2024; 43:114732. [PMID: 39269905 DOI: 10.1016/j.celrep.2024.114732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
An interconnected group of cortical regions distributed across the primate inferotemporal cortex forms a network critical for face perception. Understanding the microarchitecture of this face network can refine mechanistic accounts of how individual areas function and interact to support visual perception. To address this, we acquire a unique dataset in macaque monkeys combining fMRI to localize face patches in vivo and then ex vivo histology to resolve their histo-architecture across cortical depths in the same individuals. Our findings reveal that face patches differ based on cytochrome oxidase (CO) and, to a lesser extent, myelin staining, with the middle lateral (ML) face patch exhibiting pronounced CO staining. Histo-architectonic differences are less pronounced when using probabilistic definitions of face patches, underscoring the importance of precision mapping integrating in vivo and ex vivo measurements in the same individuals. This study indicates that the macaque face patch network is composed of architectonically distinct components.
Collapse
Affiliation(s)
- Hiroki Oishi
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | | | | | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA; Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michael J Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Shao J, Gotts SJ, Li TL, Martin A, Persichetti AS. FunMaps: a method for parcellating functional brain networks using resting-state functional MRI data. Front Hum Neurosci 2024; 18:1461590. [PMID: 39381142 PMCID: PMC11458417 DOI: 10.3389/fnhum.2024.1461590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Parcellations of resting-state functional magnetic resonance imaging (rs-fMRI) data are widely used to create topographical maps of functional networks in the human brain. While such network maps are highly useful for studying brain organization and function, they usually require large sample sizes to make them, thus creating practical limitations for researchers that would like to carry out parcellations on data collected in their labs. Furthermore, it can be difficult to quantitatively evaluate the results of a parcellation since networks are usually identified using a clustering algorithm, like principal components analysis, on the results of a single group-averaged connectivity map. To address these challenges, we developed the FunMaps method: a parcellation routine that intrinsically incorporates stability and replicability of the parcellation by keeping only network distinctions that agree across halves of the data over multiple random iterations. Here, we demonstrate the efficacy and flexibility of FunMaps, while describing step-by-step instructions for running the program. The FunMaps method is publicly available on GitHub (https://github.com/persichetti-lab/FunMaps). It includes source code for running the parcellation and auxiliary code for preparing data, evaluating the parcellation, and displaying the results.
Collapse
Affiliation(s)
| | | | | | | | - Andrew S. Persichetti
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
32
|
Sun W, Billot A, Du J, Wei X, Lemley RA, Daneshzand M, Nummenmaa A, Buckner RL, Eldaief MC. Precision Network Modeling of Transcranial Magnetic Stimulation Across Individuals Suggests Therapeutic Targets and Potential for Improvement. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.15.24311994. [PMID: 39185539 PMCID: PMC11343249 DOI: 10.1101/2024.08.15.24311994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Higher-order cognitive and affective functions are supported by large-scale networks in the brain. Dysfunction in different networks is proposed to associate with distinct symptoms in neuropsychiatric disorders. However, the specific networks targeted by current clinical transcranial magnetic stimulation (TMS) approaches are unclear. While standard-of-care TMS relies on scalp-based landmarks, recent FDA-approved TMS protocols use individualized functional connectivity with the subgenual anterior cingulate cortex (sgACC) to optimize TMS targeting. Leveraging previous work on precision network estimation and recent advances in network-level TMS targeting, we demonstrate that clinical TMS approaches target different functional networks between individuals. Homotopic scalp positions (left F3 and right F4) target different networks within and across individuals, and right F4 generally favors a right-lateralized control network. We also modeled the impact of targeting the dorsolateral prefrontal cortex (dlPFC) zone anticorrelated with the sgACC and found that the individual-specific anticorrelated region variably targets a network coupled to reward circuitry. Combining individualized, precision network mapping and electric field (E-field) modeling, we further illustrate how modeling can be deployed to prospectively target distinct closely localized association networks in the dlPFC with meaningful spatial selectivity and E-field intensity and retrospectively assess network engagement. Critically, we demonstrate the feasibility and reliability of this approach in an independent cohort of participants (including those with Major Depressive Disorder) who underwent repeated sessions of TMS to distinct networks, with precise targeting derived from a low-burden single session of data. Lastly, our findings emphasize differences between selectivity and maximal intensity, highlighting the need to consider both metrics in precision TMS efforts.
Collapse
Affiliation(s)
- Wendy Sun
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
- Dept. of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Anne Billot
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
- Dept. of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
| | - Jingnan Du
- Dept. of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Xiangyu Wei
- Dept. of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Rachel A Lemley
- Dept. of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Mohammad Daneshzand
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Randy L Buckner
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
- Dept. of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138
- Dept. of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Mark C Eldaief
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
- Dept. of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
- Dept. of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| |
Collapse
|
33
|
Ooi LQR, Orban C, Zhang S, Nichols TE, Tan TWK, Kong R, Marek S, Dosenbach NU, Laumann T, Gordon EM, Yap KH, Ji F, Chong JSX, Chen C, An L, Franzmeier N, Roemer SN, Hu Q, Ren J, Liu H, Chopra S, Cocuzza CV, Baker JT, Zhou JH, Bzdok D, Eickhoff SB, Holmes AJ, Yeo BTT. MRI economics: Balancing sample size and scan duration in brain wide association studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580448. [PMID: 38405815 PMCID: PMC10889017 DOI: 10.1101/2024.02.16.580448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A pervasive dilemma in neuroimaging is whether to prioritize sample size or scan time given fixed resources. Here, we systematically investigate this trade-off in the context of brain-wide association studies (BWAS) using functional magnetic resonance imaging (fMRI). We find that total scan duration (sample size × scan time per participant) robustly explains individual-level phenotypic prediction accuracy via a logarithmic model, suggesting that sample size and scan time are broadly interchangeable up to 20-30 min of data. However, the returns of scan time diminish relative to sample size, which we explain with principled theoretical derivations. When accounting for fixed overhead costs associated with each participant (e.g., recruitment, non-imaging measures), prediction accuracy in many small-scale and some large-scale BWAS might benefit from longer scan time than typically assumed. These results generalize across phenotypic domains, scanners, acquisition protocols, racial groups, mental disorders, age groups, as well as resting-state and task-state functional connectivity. Overall, our study emphasizes the importance of scan time, which is ignored in standard power calculations. Standard power calculations maximize sample size, at the expense of scan time, which can result in sub-optimal prediction accuracies and inefficient use of resources. Our empirically informed reference is available for future study design: WEB_APPLICATION_LINK.
Collapse
Affiliation(s)
- Leon Qi Rong Ooi
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Csaba Orban
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Shaoshi Zhang
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Thomas E. Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Trevor Wei Kiat Tan
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Ru Kong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University, School of Medicine, USA
| | - Nico U.F. Dosenbach
- Mallinckrodt Institute of Radiology, Washington University, School of Medicine, USA
- Department of Neurology, Washington University, School of Medicine, USA
- Department of Psychiatry, Washington University, School of Medicine, USA
- Deparments of Paediatrics, Biomedical Engineering, and Psychological and Brain Sciences, Washington University, School of Medicine, USA
| | - Timothy Laumann
- Department of Psychiatry, Washington University, School of Medicine, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University, School of Medicine, USA
| | - Kwong Hsia Yap
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fang Ji
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joanna Su Xian Chong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Chen
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lijun An
- Department of Clinical Sciences, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
| | - Sebastian Niclas Roemer
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
- Department of Neurology, LMU Hospital, LMU Munich, Munich, Germany
| | - Qingyu Hu
- Division of Brain Sciences, Changping Laboratory, Beijing, China
| | - Jianxun Ren
- Division of Brain Sciences, Changping Laboratory, Beijing, China
| | - Hesheng Liu
- Division of Brain Sciences, Changping Laboratory, Beijing, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
- Orygen, Center for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Carrisa V. Cocuzza
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Justin T. Baker
- Department of Psychiatry, Harvard Medical School, Boston, USA
- Institute for Technology in Psychiatry, McLean Hospital, Boston, USA
| | - Juan Helen Zhou
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Canada
- Faculty of Medicine, School of Computer Science, McGill University, Montreal, QC, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - B. T. Thomas Yeo
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | |
Collapse
|
34
|
Murata EM, Pritschet L, Grotzinger H, Taylor CM, Jacobs EG. Circadian Rhythms Tied to Changes in Brain Morphology in a Densely Sampled Male. J Neurosci 2024; 44:e0573242024. [PMID: 39147588 PMCID: PMC11411591 DOI: 10.1523/jneurosci.0573-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024] Open
Abstract
Circadian, infradian, and seasonal changes in steroid hormone secretion have been tied to changes in brain volume in several mammalian species. However, the relationship between circadian changes in steroid hormone production and rhythmic changes in brain morphology in humans is largely unknown. Here, we examined the relationship between diurnal fluctuations in steroid hormones and multiscale brain morphology in a precision imaging study of a male who completed 40 MRI and serological assessments at 7 A.M. and 8 P.M. over the course of a month, targeting hormone concentrations at their peak and nadir. Diurnal fluctuations in steroid hormones were tied to pronounced changes in global and regional brain morphology. From morning to evening, total brain volume, gray matter volume, and cortical thickness decreased, coincident with decreases in steroid hormone concentrations (testosterone, estradiol, and cortisol). In parallel, cerebrospinal fluid and ventricle size increased from A.M. to P.M. Global changes were driven by decreases within the occipital and parietal cortices. These findings highlight natural rhythms in brain morphology that keep time with the diurnal ebb and flow of steroid hormones.
Collapse
Affiliation(s)
- Elle M Murata
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Laura Pritschet
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Caitlin M Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106
| |
Collapse
|
35
|
Lim JS, Lee JJ, Kim GH, Kim HR, Shin DW, Lee KJ, Baek MJ, Ko E, Kim BJ, Kim S, Ryu WS, Chung J, Kim DE, Gorelick PB, Woo CW, Bae HJ. Subthreshold amyloid deposition, cerebral small vessel disease, and functional brain network disruption in delayed cognitive decline after stroke. Front Aging Neurosci 2024; 16:1430408. [PMID: 39351012 PMCID: PMC11439663 DOI: 10.3389/fnagi.2024.1430408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Background Although its incidence is relatively low, delayed-onset post-stroke cognitive decline (PSCD) may offer valuable insights into the "vascular contributions to cognitive impairment and dementia," particularly concerning the roles of vascular and neurodegenerative mechanisms. We postulated that the functional segregation observed during post-stroke compensation could be disrupted by underlying amyloid pathology or cerebral small vessel disease (cSVD), leading to delayed-onset PSCD. Methods Using a prospective stroke registry, we identified patients who displayed normal cognitive function at baseline evaluation within a year post-stroke and received at least one subsequent assessment. Patients suspected of pre-stroke cognitive decline were excluded. Decliners [defined by a decrease of ≥3 Mini-Mental State Examination (MMSE) points annually or an absolute drop of ≥5 points between evaluations, confirmed with detailed neuropsychological tests] were compared with age- and stroke severity-matched non-decliners. Index-stroke MRI, resting-state functional MRI, and 18F-florbetaben PET were used to identify cSVD, functional network attributes, and amyloid deposits, respectively. PET data from age-, sex-, education-, and apolipoprotein E-matched stroke-free controls within a community-dwelling cohort were used to benchmark amyloid deposition. Results Among 208 eligible patients, 11 decliners and 10 matched non-decliners were identified over an average follow-up of 5.7 years. No significant differences in cSVD markers were noted between the groups, except for white matter hyperintensities (WMHs), which were strongly linked with MMSE scores among decliners (rho = -0.85, p < 0.01). Only one decliner was amyloid-positive, yet subthreshold PET standardized uptake value ratios (SUVR) in amyloid-negative decliners inversely correlated with final MMSE scores (rho = -0.67, p = 0.04). Decliners exhibited disrupted modular structures and more intermingled canonical networks compared to non-decliners. Notably, the somato-motor network's system segregation corresponded with the decliners' final MMSE (rho = 0.67, p = 0.03) and was associated with WMH volume and amyloid SUVR. Conclusion Disruptions in modular structures, system segregation, and inter-network communication in the brain may be the pathophysiological underpinnings of delayed-onset PSCD. WMHs and subthreshold amyloid deposition could contribute to these disruptions in functional brain networks. Given the limited number of patients and potential residual confounding, our results should be considered hypothesis-generating and need replication in larger cohorts in the future.
Collapse
Affiliation(s)
- Jae-Sung Lim
- Department of Neurology, Asan Medical Center, Seoul, Republic of Korea
| | - Jae-Joong Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Geon Ha Kim
- Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hang-Rai Kim
- Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Republic of Korea
| | - Dong Woo Shin
- Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Keon-Joo Lee
- Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min Jae Baek
- Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Eunvin Ko
- Department of Biostatistics, Korea University, Seoul, Republic of Korea
| | - Beom Joon Kim
- Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - SangYun Kim
- Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Wi-Sun Ryu
- Artificial Intelligence Research Center, JLK Inc., Seoul, Republic of Korea
| | - Jinyong Chung
- Medical Science Research Center, Dongguk University Medical Center, Goyang, Republic of Korea
| | - Dong-Eog Kim
- Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Republic of Korea
| | - Philip B. Gorelick
- Division of Stroke and Neurocritical Care, Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hee-Joon Bae
- Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
36
|
Gruskin DC, Vieira DJ, Lee JK, Patel GH. Heritability of movie-evoked brain activity and connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612469. [PMID: 39345386 PMCID: PMC11429865 DOI: 10.1101/2024.09.16.612469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The neural bases of sensory processing are conserved across people, but no two individuals experience the same stimulus in exactly the same way. Recent work has established that the idiosyncratic nature of subjective experience is underpinned by individual variability in brain responses to sensory information. However, the fundamental origins of this individual variability have yet to be systematically investigated. Here, we establish a genetic basis for individual differences in sensory processing by quantifying (1) the heritability of high-dimensional brain responses to movies and (2) the extent to which this heritability is grounded in lower-level aspects of brain function. Specifically, we leverage 7T fMRI data collected from a twin sample to first show that movie-evoked brain activity and connectivity patterns are heritable across the cortex. Next, we use hyperalignment to decompose this heritability into genetic similarity in where vs. how sensory information is processed. Finally, we show that the heritability of brain activity patterns can be partially explained by the heritability of the neural timescale, a one-dimensional measure of local circuit functioning. These results demonstrate that brain responses to complex stimuli are heritable, and that this heritability is due, in part, to genetic control over stable aspects of brain function.
Collapse
Affiliation(s)
- David C Gruskin
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Daniel J Vieira
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, New York 10032, USA
| | - Jessica K Lee
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, New York 10032, USA
| | - Gaurav H Patel
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, New York 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
37
|
Zhang A, Yao C, Zhang Q, Zhao Z, Qu J, Lui S, Zhao Y, Gong Q. Individualized multi-modal MRI biomarkers predict 1-year clinical outcome in first-episode drug-naïve schizophrenia patients. Front Psychiatry 2024; 15:1448145. [PMID: 39345917 PMCID: PMC11427343 DOI: 10.3389/fpsyt.2024.1448145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024] Open
Abstract
Background Antipsychotic medications offer limited long-term benefit to about 30% of patients with schizophrenia. We aimed to explore the individual-specific imaging markers to predict 1-year treatment response of schizophrenia. Methods Structural morphology and functional topological features related to treatment response were identified using an individualized parcellation analysis in conjunction with machine learning (ML). We performed dimensionality reductions using the Pearson correlation coefficient and three feature selection analyses and classifications using 10 ML classifiers. The results were assessed through a 5-fold cross-validation (training and validation cohorts, n = 51) and validated using the external test cohort (n = 17). Results ML algorithms based on individual-specific brain network proved more effective than those based on group-level brain network in predicting outcomes. The most predictive features based on individual-specific parcellation involved the GMV of the default network and the degree of the control, limbic, and default networks. The AUCs for the training, validation, and test cohorts were 0.947, 0.939, and 0.883, respectively. Additionally, the prediction performance of the models constructed by the different feature selection methods and classifiers showed no significant differences. Conclusion Our study highlighted the potential of individual-specific network parcellation in treatment resistant schizophrenia prediction and underscored the crucial role of feature attributes in predictive model accuracy.
Collapse
Affiliation(s)
- Aoxiang Zhang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chenyang Yao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Qian Zhang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ziyuan Zhao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jiao Qu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| |
Collapse
|
38
|
Tu JC, Myers M, Li W, Li J, Wang X, Dierker D, Day TKM, Snyder AZ, Latham A, Kenley JK, Sobolewski CM, Wang Y, Labonte AK, Feczko E, Kardan O, Moore LA, Sylvester CM, Fair DA, Elison JT, Warner BB, Barch DM, Rogers CE, Luby JL, Smyser CD, Gordon EM, Laumann TO, Eggebrecht AT, Wheelock MD. Early Life Neuroimaging: The Generalizability of Cortical Area Parcellations Across Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612056. [PMID: 39314355 PMCID: PMC11419084 DOI: 10.1101/2024.09.09.612056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The cerebral cortex comprises discrete cortical areas that form during development. Accurate area parcellation in neuroimaging studies enhances statistical power and comparability across studies. The formation of cortical areas is influenced by intrinsic embryonic patterning as well as extrinsic inputs, particularly through postnatal exposure. Given the substantial changes in brain volume, microstructure, and functional connectivity during the first years of life, we hypothesized that cortical areas in 1-to-3-year-olds would exhibit major differences from those in neonates and progressively resemble adults as development progresses. Here, we parcellated the cerebral cortex into putative areas using local functional connectivity gradients in 92 toddlers at 2 years old. We demonstrated high reproducibility of these cortical regions across 1-to-3-year-olds in two independent datasets. The area boundaries in 1-to-3-year-olds were more similar to adults than neonates. While the age-specific group parcellation fitted better to the underlying functional connectivity in individuals during the first 3 years, adult area parcellations might still have some utility in developmental studies, especially in children older than 6 years. Additionally, we provided connectivity-based community assignments of the parcels, showing fragmented anterior and posterior components based on the strongest connectivity, yet alignment with adult systems when weaker connectivity was included.
Collapse
Affiliation(s)
| | - Michael Myers
- Department of Psychiatry, Washington University in St. Louis
| | - Wei Li
- Department of Mathematics and Statistics, Washington University in St. Louis
| | - Jiaqi Li
- Department of Mathematics and Statistics, Washington University in St. Louis
- Department of Statistics, University of Chicago
| | - Xintian Wang
- Department of Radiology, Washington University in St. Louis
| | - Donna Dierker
- Department of Radiology, Washington University in St. Louis
| | - Trevor K M Day
- Masonic Institute for the Developing Brain, University of Minnesota
- Institute of Child Development, University of Minnesota
- Center for Brain Plasticity and Recovery, Georgetown University
| | | | - Aidan Latham
- Department of Neurology, Washington University in St. Louis
| | | | - Chloe M Sobolewski
- Department of Radiology, Washington University in St. Louis
- Department of Psychology, Virginia Commonwealth University
| | - Yu Wang
- Department of Mathematics and Statistics, Washington University in St. Louis
| | | | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Omid Kardan
- Department of Psychiatry, University of Michigan
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota
| | | | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota
- Institute of Child Development, University of Minnesota
| | - Jed T Elison
- Masonic Institute for the Developing Brain, University of Minnesota
- Institute of Child Development, University of Minnesota
| | | | - Deanna M Barch
- Department of Psychological and Brain Sciences, Washington University in St Louis
| | | | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis
| | - Christopher D Smyser
- Department of Radiology, Washington University in St. Louis
- Department of Psychiatry, Washington University in St. Louis
- Department of Neurology, Washington University in St. Louis
- Department of Pediatrics, Washington University in St. Louis
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis
| | | | | | | |
Collapse
|
39
|
Etkin A, Mathalon DH. Bringing Imaging Biomarkers Into Clinical Reality in Psychiatry. JAMA Psychiatry 2024:2822966. [PMID: 39230917 DOI: 10.1001/jamapsychiatry.2024.2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Importance Advancing precision psychiatry, where treatments are based on an individual's biology rather than solely their clinical presentation, requires attention to several key attributes for any candidate biomarker. These include test-retest reliability, sensitivity to relevant neurophysiology, cost-effectiveness, and scalability. Unfortunately, these issues have not been systematically addressed by biomarker development efforts that use common neuroimaging tools like magnetic resonance imaging (MRI) and electroencephalography (EEG). Here, the critical barriers that neuroimaging methods will need to overcome to achieve clinical relevance in the near to intermediate term are examined. Observations Reliability is often overlooked, which together with sensitivity to key aspects of neurophysiology and replicated predictive utility, favors EEG-based methods. The principal barrier for EEG has been the lack of large-scale data collection among multisite psychiatric consortia. By contrast, despite its high reliability, structural MRI has not demonstrated clinical utility in psychiatry, which may be due to its limited sensitivity to psychiatry-relevant neurophysiology. Given the prevalence of structural MRIs, establishment of a compelling clinical use case remains its principal barrier. By contrast, low reliability and difficulty in standardizing collection are the principal barriers for functional MRI, along with the need for demonstration that its superior spatial resolution over EEG and ability to directly image subcortical regions in fact provide unique clinical value. Often missing, moreover, is consideration of how these various scientific issues can be balanced against practical economic realities of psychiatric health care delivery today, for which embedding economic modeling into biomarker development efforts may help direct research efforts. Conclusions and Relevance EEG seems most ripe for near- to intermediate-term clinical impact, especially considering its scalability and cost-effectiveness. Recent efforts to broaden its collection, as well as development of low-cost turnkey systems, suggest a promising pathway by which neuroimaging can impact clinical care. Continued MRI research focused on its key barriers may hold promise for longer-horizon utility.
Collapse
Affiliation(s)
- Amit Etkin
- Alto Neuroscience Inc, Los Altos, California
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- Veterans Affairs San Francisco Health Care System, San Francisco, California
| |
Collapse
|
40
|
Petersen SE, Seitzman BA, Nelson SM, Wig GS, Gordon EM. Principles of cortical areas and their implications for neuroimaging. Neuron 2024; 112:2837-2853. [PMID: 38834069 DOI: 10.1016/j.neuron.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what "computations" or "functions" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.
Collapse
Affiliation(s)
- Steven E Petersen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin A Seitzman
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gagan S Wig
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
41
|
Ekhtiari H, Sangchooli A, Carmichael O, Moeller FG, O'Donnell P, Oquendo M, Paulus MP, Pizzagalli DA, Ramey T, Schacht J, Zare-Bidoky M, Childress AR, Brady K. Neuroimaging Biomarkers in Addiction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.02.24312084. [PMID: 39281741 PMCID: PMC11398440 DOI: 10.1101/2024.09.02.24312084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
As a neurobiological process, addiction involves pathological patterns of engagement with substances and a range of behaviors with a chronic and relapsing course. Neuroimaging technologies assess brain activity, structure, physiology, and metabolism at scales ranging from neurotransmitter receptors to large-scale brain networks, providing unique windows into the core neural processes implicated in substance use disorders. Identified aberrations in the neural substrates of reward and salience processing, response inhibition, interoception, and executive functions with neuroimaging can inform the development of pharmacological, neuromodulatory, and psychotherapeutic interventions to modulate the disordered neurobiology. Based on our systematic search, 409 protocols registered on ClinicalTrials.gov include the use of one or more neuroimaging paradigms as an outcome measure in addiction, with the majority (N=268) employing functional magnetic resonance imaging (fMRI), followed by positron emission tomography (PET) (N=71), electroencephalography (EEG) (N=50), structural magnetic resonance imaging (MRI) (N=35) and magnetic resonance spectroscopy (MRS) (N=35). Furthermore, in a PubMed systematic review, we identified 61 meta-analyses including 30 fMRI, 22 structural MRI, 8 EEG, 7 PET, and 3 MRS meta-analyses suggesting potential biomarkers in addictions. These studies can facilitate the development of a range of biomarkers that may prove useful in the arsenal of addiction treatments in the coming years. There is evidence that these markers of large-scale brain structure and activity may indicate vulnerability or separate disease subtypes, predict response to treatment, or provide objective measures of treatment response or recovery. Neuroimaging biomarkers can also suggest novel targets for interventions. Closed or open loop interventions can integrate these biomarkers with neuromodulation in real-time or offline to personalize stimulation parameters and deliver the precise intervention. This review provides an overview of neuroimaging modalities in addiction, potential neuroimaging biomarkers, and their physiologic and clinical relevance. Future directions and challenges in bringing these putative biomarkers from the bench to the bedside are also discussed.
Collapse
Affiliation(s)
- Hamed Ekhtiari
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Arshiya Sangchooli
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Owen Carmichael
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - F Gerard Moeller
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Patricio O'Donnell
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Maria Oquendo
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Martin P Paulus
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Diego A Pizzagalli
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Tatiana Ramey
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Joseph Schacht
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Mehran Zare-Bidoky
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Anna Rose Childress
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Kathleen Brady
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| |
Collapse
|
42
|
Rajesh A, Seider NA, Newbold DJ, Adeyemo B, Marek S, Greene DJ, Snyder AZ, Shimony JS, Laumann TO, Dosenbach NUF, Gordon EM. Structure-function coupling in highly sampled individual brains. Cereb Cortex 2024; 34:bhae361. [PMID: 39277800 DOI: 10.1093/cercor/bhae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/17/2024] Open
Abstract
Structural connectivity (SC) between distant regions of the brain support synchronized function known as functional connectivity (FC) and give rise to the large-scale brain networks that enable cognition and behavior. Understanding how SC enables FC is important to understand how injuries to SC may alter brain function and cognition. Previous work evaluating whole-brain SC-FC relationships showed that SC explained FC well in unimodal visual and motor areas, but only weakly in association areas, suggesting a unimodal-heteromodal gradient organization of SC-FC coupling. However, this work was conducted in group-averaged SC/FC data. Thus, it could not account for inter-individual variability in the locations of cortical areas and white matter tracts. We evaluated the correspondence of SC and FC within three highly sampled healthy participants. For each participant, we collected 78 min of diffusion-weighted MRI for SC and 360 min of resting state fMRI for FC. We found that FC was best explained by SC in visual and motor systems, as well as in anterior and posterior cingulate regions. A unimodal-to-heteromodal gradient could not fully explain SC-FC coupling. We conclude that the SC-FC coupling of the anterior-posterior cingulate circuit is more similar to unimodal areas than to heteromodal areas.
Collapse
Affiliation(s)
- Aishwarya Rajesh
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
| | - Nicole A Seider
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Dillan J Newbold
- Department of Neurology, New York Langone Medical Center, 550 First Avenue, New York, NY, 10016, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave.St. Louis, MO 63110, USA
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92037, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
- Department of Neurology, New York Langone Medical Center, 550 First Avenue, New York, NY, 10016, USA
| | - Joshua S Shimony
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University, 660 S. Euclid Ave.St. Louis, MO 63110, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave.St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave.St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
- Program in Occupational Therapy, Washington University, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
43
|
Leve LD, Kanamori M, Humphreys KL, Jaffee SR, Nusslock R, Oro V, Hyde LW. The Promise and Challenges of Integrating Biological and Prevention Sciences: A Community-Engaged Model for the Next Generation of Translational Research. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2024:10.1007/s11121-024-01720-8. [PMID: 39225944 DOI: 10.1007/s11121-024-01720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Beginning with the successful sequencing of the human genome two decades ago, the possibility of developing personalized health interventions based on one's biology has captured the imagination of researchers, medical providers, and individuals seeking health care services. However, the application of a personalized medicine approach to emotional and behavioral health has lagged behind the development of personalized approaches for physical health conditions. There is potential value in developing improved methods for integrating biological science with prevention science to identify risk and protective mechanisms that have biological underpinnings, and then applying that knowledge to inform prevention and intervention services for emotional and behavioral health. This report represents the work of a task force appointed by the Board of the Society for Prevention Research to explore challenges and recommendations for the integration of biological and prevention sciences. We present the state of the science and barriers to progress in integrating the two approaches, followed by recommended strategies that would promote the responsible integration of biological and prevention sciences. Recommendations are grounded in Community-Based Participatory Research approaches, with the goal of centering equity in future research aimed at integrating the two disciplines to ultimately improve the well-being of those who have disproportionately experienced or are at risk for experiencing emotional and behavioral problems.
Collapse
Affiliation(s)
- Leslie D Leve
- Prevention Science Institute, University of Oregon, Eugene, USA.
- Department of Counseling Psychology and Human Services, University of Oregon, Eugene, USA.
- Cambridge Public Health, University of Cambridge, Cambridge, UK.
| | - Mariano Kanamori
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, USA
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, USA
| | - Sara R Jaffee
- Department of Psychology, University of Pennsylvania, Philadelphia, USA
| | - Robin Nusslock
- Department of Psychology & Institute for Policy Research, Northwestern University, Evanston, USA
| | - Veronica Oro
- Prevention Science Institute, University of Oregon, Eugene, USA
| | - Luke W Hyde
- Department of Psychology & Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, USA
| |
Collapse
|
44
|
Blanchett R, Chen H, Vlasova RM, Cornea E, Maza M, Davenport M, Reinhartsen D, DeRamus M, Edmondson Pretzel R, Gilmore JH, Hooper SR, Styner MA, Gao W, Knickmeyer RC. White matter microstructure and functional connectivity in the brains of infants with Turner syndrome. Cereb Cortex 2024; 34:bhae351. [PMID: 39256896 PMCID: PMC11387115 DOI: 10.1093/cercor/bhae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Turner syndrome, caused by complete or partial loss of an X-chromosome, is often accompanied by specific cognitive challenges. Magnetic resonance imaging studies of adults and children with Turner syndrome suggest these deficits reflect differences in anatomical and functional connectivity. However, no imaging studies have explored connectivity in infants with Turner syndrome. Consequently, it is unclear when in development connectivity differences emerge. To address this gap, we compared functional connectivity and white matter microstructure of 1-year-old infants with Turner syndrome to typically developing 1-year-old boys and girls. We examined functional connectivity between the right precentral gyrus and five regions that show reduced volume in 1-year old infants with Turner syndrome compared to controls and found no differences. However, exploratory analyses suggested infants with Turner syndrome have altered connectivity between right supramarginal gyrus and left insula and right putamen. To assess anatomical connectivity, we examined diffusivity indices along the superior longitudinal fasciculus and found no differences. However, an exploratory analysis of 46 additional white matter tracts revealed significant group differences in nine tracts. Results suggest that the first year of life is a window in which interventions might prevent connectivity differences observed at later ages, and by extension, some of the cognitive challenges associated with Turner syndrome.
Collapse
Affiliation(s)
- Reid Blanchett
- Genetics and Genome Sciences, Michigan State University, Biomedical & Physical Sciences, Room 2165, East Lansing, MI 48824, United States
- Department of Epigenetics, Van Andel Research Institute, 33 Bostwick Ave NE, Grand Rapids, MI 49503, United States
| | - Haitao Chen
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, 8700 Beverly Blvd, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Roza M Vlasova
- Department of Psychiatry, 333 S. Columbia Street, Suite 304 MacNider Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States
| | - Emil Cornea
- Department of Psychiatry, 333 S. Columbia Street, Suite 304 MacNider Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States
| | - Maria Maza
- Department of Psychology and Neuroscience, Campus Box #3270, 235 E. Cameron Avenue, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marsha Davenport
- Department of Pediatrics, 333 South Columbia Street, Suite 260 MacNider Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Debra Reinhartsen
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, 101 Renee Lynn Ct, Carrboro, NC 27510, United States
| | - Margaret DeRamus
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, 101 Renee Lynn Ct, Carrboro, NC 27510, United States
| | - Rebecca Edmondson Pretzel
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, 101 Renee Lynn Ct, Carrboro, NC 27510, United States
| | - John H Gilmore
- Department of Psychiatry, 333 S. Columbia Street, Suite 304 MacNider Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States
| | - Stephen R Hooper
- Department of Psychiatry, 333 S. Columbia Street, Suite 304 MacNider Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States
- Department of Health Sciences, Bondurant Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Martin A Styner
- Department of Psychiatry, 333 S. Columbia Street, Suite 304 MacNider Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States
- Department of Computer Science, Campus Box 3175, Brooks Computer Science Building, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Wei Gao
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, 8700 Beverly Blvd, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Rebecca C Knickmeyer
- Department of Pediatrics and Human Development, Life Sciences Bldg. 1355 Bogue, #B240B, Michigan State University, East Lansing, MI 48824, United States
- Institute for Quantitative Health Sciences and Engineering, Room 2114, 775 Woodlot Dr., East Lansing, MI 48824, United States
| |
Collapse
|
45
|
Lynch CJ, Elbau IG, Ng T, Ayaz A, Zhu S, Wolk D, Manfredi N, Johnson M, Chang M, Chou J, Summerville I, Ho C, Lueckel M, Bukhari H, Buchanan D, Victoria LW, Solomonov N, Goldwaser E, Moia S, Caballero-Gaudes C, Downar J, Vila-Rodriguez F, Daskalakis ZJ, Blumberger DM, Kay K, Aloysi A, Gordon EM, Bhati MT, Williams N, Power JD, Zebley B, Grosenick L, Gunning FM, Liston C. Frontostriatal salience network expansion in individuals in depression. Nature 2024; 633:624-633. [PMID: 39232159 PMCID: PMC11410656 DOI: 10.1038/s41586-024-07805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/09/2024] [Indexed: 09/06/2024]
Abstract
Decades of neuroimaging studies have shown modest differences in brain structure and connectivity in depression, hindering mechanistic insights or the identification of risk factors for disease onset1. Furthermore, whereas depression is episodic, few longitudinal neuroimaging studies exist, limiting understanding of mechanisms that drive mood-state transitions. The emerging field of precision functional mapping has used densely sampled longitudinal neuroimaging data to show behaviourally meaningful differences in brain network topography and connectivity between and in healthy individuals2-4, but this approach has not been applied in depression. Here, using precision functional mapping and several samples of deeply sampled individuals, we found that the frontostriatal salience network is expanded nearly twofold in the cortex of most individuals with depression. This effect was replicable in several samples and caused primarily by network border shifts, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was stable over time, unaffected by mood state and detectable in children before the onset of depression later in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in frontostriatal circuits that tracked fluctuations in specific symptoms and predicted future anhedonia symptoms. Together, these findings identify a trait-like brain network topology that may confer risk for depression and mood-state-dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Immanuel G Elbau
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Tommy Ng
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Aliza Ayaz
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Shasha Zhu
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Danielle Wolk
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Nicola Manfredi
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Megan Johnson
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Megan Chang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Jolin Chou
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | - Claire Ho
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Maximilian Lueckel
- Leibniz Institute for Resilience Research, Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Hussain Bukhari
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Derrick Buchanan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Nili Solomonov
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Eric Goldwaser
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Stefano Moia
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | | | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Daniel M Blumberger
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Temerty Centre for Therapeutic Brain Intervention, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Amy Aloysi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mahendra T Bhati
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nolan Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jonathan D Power
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
46
|
Hoang N, Sardaripour N, Ramey GD, Schilling K, Liao E, Chen Y, Park JH, Bledsoe X, Landman BA, Gamazon ER, Benton ML, Capra JA, Rubinov M. Integration of estimated regional gene expression with neuroimaging and clinical phenotypes at biobank scale. PLoS Biol 2024; 22:e3002782. [PMID: 39269986 PMCID: PMC11424006 DOI: 10.1371/journal.pbio.3002782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/25/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
An understanding of human brain individuality requires the integration of data on brain organization across people and brain regions, molecular and systems scales, as well as healthy and clinical states. Here, we help advance this understanding by leveraging methods from computational genomics to integrate large-scale genomic, transcriptomic, neuroimaging, and electronic-health record data sets. We estimated genetically regulated gene expression (gr-expression) of 18,647 genes, across 10 cortical and subcortical regions of 45,549 people from the UK Biobank. First, we showed that patterns of estimated gr-expression reflect known genetic-ancestry relationships, regional identities, as well as inter-regional correlation structure of directly assayed gene expression. Second, we performed transcriptome-wide association studies (TWAS) to discover 1,065 associations between individual variation in gr-expression and gray-matter volumes across people and brain regions. We benchmarked these associations against results from genome-wide association studies (GWAS) of the same sample and found hundreds of novel associations relative to these GWAS. Third, we integrated our results with clinical associations of gr-expression from the Vanderbilt Biobank. This integration allowed us to link genes, via gr-expression, to neuroimaging and clinical phenotypes. Fourth, we identified associations of polygenic gr-expression with structural and functional MRI phenotypes in the Human Connectome Project (HCP), a small neuroimaging-genomic data set with high-quality functional imaging data. Finally, we showed that estimates of gr-expression and magnitudes of TWAS were generally replicable and that the p-values of TWAS were replicable in large samples. Collectively, our results provide a powerful new resource for integrating gr-expression with population genetics of brain organization and disease.
Collapse
Affiliation(s)
- Nhung Hoang
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Neda Sardaripour
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Grace D. Ramey
- Biological and Medical Informatics Division, University of California, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America
| | - Kurt Schilling
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Emily Liao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yiting Chen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jee Hyun Park
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xavier Bledsoe
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Bennett A. Landman
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric R. Gamazon
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mary Lauren Benton
- Department of Computer Science, Baylor University, Waco, Texas, United States of America
| | - John A. Capra
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California, United States of America
| | - Mikail Rubinov
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, Virginia, United States of America
| |
Collapse
|
47
|
Cui Y, Li C, Lu Y, Ma L, Cheng L, Cao L, Yu S, Jiang T. Multimodal Connectivity-Based Individual Parcellation and Analysis for Humans and Rhesus Monkeys. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3343-3353. [PMID: 38656866 DOI: 10.1109/tmi.2024.3392946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Individual brains vary greatly in morphology, connectivity and organization. Individualized brain parcellation is capable of precisely localizing subject-specific functional regions. However, most individualization approaches have examined single modalities of data and have not generalized to nonhuman primates. The present study proposed a novel multimodal connectivity-based individual parcellation (MCIP) method, which optimizes within-region homogeneity, spatial continuity and similarity to a reference atlas with the fusion of personal functional and anatomical connectivity. Comprehensive evaluation demonstrated that MCIP outperformed state-of-the-art multimodal individualization methods in terms of functional and anatomical homogeneity, predictability of cognitive measures, heritability, reproducibility and generalizability across species. Comparative investigation showed a higher topographic variability in humans than that in macaques. Therefore, MCIP provides improved accurate and reliable mapping of brain functional regions over existing methods at an individual level across species, and could facilitate comparative and translational neuroscience research.
Collapse
|
48
|
Khanra P, Nakuci J, Muldoon S, Watanabe T, Masuda N. Reliability of energy landscape analysis of resting-state functional MRI data. ARXIV 2024:arXiv:2305.19573v2. [PMID: 37396616 PMCID: PMC10312792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Energy landscape analysis is a data-driven method to analyze multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test-retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e., within-participant reliability) than across different sets of sessions from different participants (i.e., between-participant reliability). We show that the energy landscape analysis has significantly higher within-participant than between-participant test-retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test-retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual-level energy landscape analysis for given data sets with a statistically controlled reliability.
Collapse
Affiliation(s)
- Pitambar Khanra
- Department of Mathematics, State University of New York at Buffalo, Buffalo, USA
| | - Johan Nakuci
- School of Psychology, Georgia Institute of Technology, Atlanta, USA
| | - Sarah Muldoon
- Department of Mathematics, State University of New York at Buffalo, Buffalo, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, USA
| | - Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo, Japan
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, USA
| |
Collapse
|
49
|
Trevino G, Lee JJ, Shimony JS, Luckett PH, Leuthardt EC. Complexity organization of resting-state functional-MRI networks. Hum Brain Mapp 2024; 45:e26809. [PMID: 39185729 PMCID: PMC11345701 DOI: 10.1002/hbm.26809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/28/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Entropy measures are increasingly being used to analyze the structure of neural activity observed by functional magnetic resonance imaging (fMRI), with resting-state networks (RSNs) being of interest for their reproducible descriptions of the brain's functional architecture. Temporal correlations have shown a dichotomy among these networks: those that engage with the environment, known as extrinsic, which include the visual and sensorimotor networks; and those associated with executive control and self-referencing, known as intrinsic, which include the default mode network and the frontoparietal control network. While these inter-voxel temporal correlations enable the assessment of synchrony among the components of individual networks, entropic measures introduce an intra-voxel assessment that quantifies signal features encoded within each blood oxygen level-dependent (BOLD) time series. As a result, this framework offers insights into comprehending the representation and processing of information within fMRI signals. Multiscale entropy (MSE) has been proposed as a useful measure for characterizing the entropy of neural activity across different temporal scales. This measure of temporal entropy in BOLD data is dependent on the length of the time series; thus, high-quality data with fine-grained temporal resolution and a sufficient number of time frames is needed to improve entropy precision. We apply MSE to the Midnight Scan Club, a highly sampled and well-characterized publicly available dataset, to analyze the entropy distribution of RSNs and evaluate its ability to distinguish between different functional networks. Entropy profiles are compared across temporal scales and RSNs. Our results have shown that the spatial distribution of entropy at infra-slow frequencies (0.005-0.1 Hz) reproduces known parcellations of RSNs. We found a complexity hierarchy between intrinsic and extrinsic RSNs, with intrinsic networks robustly exhibiting higher entropy than extrinsic networks. Finally, we found new evidence that the topography of entropy in the posterior cerebellum exhibits high levels of entropy comparable to that of intrinsic RSNs.
Collapse
Affiliation(s)
- Gabriel Trevino
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMissouriUSA
| | - John J. Lee
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Joshua S. Shimony
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Patrick H. Luckett
- Center for Innovation in Neuroscience and TechnologyWashington University School of MedicineSt. LouisMissouriUSA
- Division of NeurotechnologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Eric C. Leuthardt
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMissouriUSA
- Center for Innovation in Neuroscience and TechnologyWashington University School of MedicineSt. LouisMissouriUSA
- Division of NeurotechnologyWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
50
|
Chandra NK, Sitek KR, Chandrasekaran B, Sarkar A. Functional connectivity across the human subcortical auditory system using an autoregressive matrix-Gaussian copula graphical model approach with partial correlations. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00258. [PMID: 39421593 PMCID: PMC11485223 DOI: 10.1162/imag_a_00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The auditory system comprises multiple subcortical brain structures that process and refine incoming acoustic signals along the primary auditory pathway. Due to technical limitations of imaging small structures deep inside the brain, most of our knowledge of the subcortical auditory system is based on research in animal models using invasive methodologies. Advances in ultrahigh-field functional magnetic resonance imaging (fMRI) acquisition have enabled novel noninvasive investigations of the human auditory subcortex, including fundamental features of auditory representation such as tonotopy and periodotopy. However, functional connectivity across subcortical networks is still underexplored in humans, with ongoing development of related methods. Traditionally, functional connectivity is estimated from fMRI data with full correlation matrices. However, partial correlations reveal the relationship between two regions after removing the effects of all other regions, reflecting more direct connectivity. Partial correlation analysis is particularly promising in the ascending auditory system, where sensory information is passed in an obligatory manner, from nucleus to nucleus up the primary auditory pathway, providing redundant but also increasingly abstract representations of auditory stimuli. While most existing methods for learning conditional dependency structures based on partial correlations assume independently and identically Gaussian distributed data, fMRI data exhibit significant deviations from Gaussianity as well as high-temporal autocorrelation. In this paper, we developed an autoregressive matrix-Gaussian copula graphical model (ARMGCGM) approach to estimate the partial correlations and thereby infer the functional connectivity patterns within the auditory system while appropriately accounting for autocorrelations between successive fMRI scans. Our results show strong positive partial correlations between successive structures in the primary auditory pathway on each side (left and right), including between auditory midbrain and thalamus, and between primary and associative auditory cortex. These results are highly stable when splitting the data in halves according to the acquisition schemes and computing partial correlations separately for each half of the data, as well as across cross-validation folds. In contrast, full correlation-based analysis identified a rich network of interconnectivity that was not specific to adjacent nodes along the pathway. Overall, our results demonstrate that unique functional connectivity patterns along the auditory pathway are recoverable using novel connectivity approaches and that our connectivity methods are reliable across multiple acquisitions.
Collapse
Affiliation(s)
- Noirrit Kiran Chandra
- The University of Texas at Dallas, Department of Mathematical Sciences, Richardson, TX 76010, USA
| | - Kevin R. Sitek
- Northwestern University, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Evanston, IL 60208, USA
| | - Bharath Chandrasekaran
- Northwestern University, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Evanston, IL 60208, USA
| | - Abhra Sarkar
- The University of Texas at Austin, Department of Statistics and Data Sciences, Austin, TX 78712, USA
| |
Collapse
|