1
|
Hong S, Lee J, Kim Y, Kim E, Shin K. AAVS1-targeted, stable expression of ChR2 in human brain organoids for consistent optogenetic control. Bioeng Transl Med 2024; 9:e10690. [PMID: 39545087 PMCID: PMC11558186 DOI: 10.1002/btm2.10690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 11/17/2024] Open
Abstract
Self-organizing brain organoids provide a promising tool for studying human development and disease. Here we created human forebrain organoids with stable and homogeneous expression of channelrhodopsin-2 (ChR2) by generating AAVS1 safe harbor locus-targeted, ChR2 knocked-in human pluripotent stem cells (hPSCs), followed by the differentiation of these genetically engineered hPSCs into forebrain organoids. The resulting ChR2-expressing human forebrain organoids showed homogeneous cellular expression of ChR2 throughout entire regions without any structural and functional perturbations and displayed consistent and robust neural activation upon light stimulation, allowing for the non-virus mediated, spatiotemporal optogenetic control of neural activities. Furthermore, in the hybrid platform in which brain organoids are connected with spinal cord organoids and skeletal muscle spheroids, ChR2 knocked-in forebrain organoids induced strong and consistent muscle contraction upon brain-specific optogenetic stimulation. Our study thus provides a novel, non-virus mediated, preclinical human organoid system for light-inducible, consistent control of neural activities to study neural circuits and dynamics in normal and disease-specific human brains as well as neural connections between brain and other peripheral tissues.
Collapse
Affiliation(s)
- Soojung Hong
- School of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Juhee Lee
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Yunhee Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Eunjee Kim
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Kunyoo Shin
- School of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
2
|
Nani JV, Muotri AR, Hayashi MAF. Peering into the mind: unraveling schizophrenia's secrets using models. Mol Psychiatry 2024:10.1038/s41380-024-02728-w. [PMID: 39245692 DOI: 10.1038/s41380-024-02728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Schizophrenia (SCZ) is a complex mental disorder characterized by a range of symptoms, including positive and negative symptoms, as well as cognitive impairments. Despite the extensive research, the underlying neurobiology of SCZ remain elusive. To overcome this challenge, the use of diverse laboratory modeling techniques, encompassing cellular and animal models, and innovative approaches like induced pluripotent stem cell (iPSC)-derived neuronal cultures or brain organoids and genetically engineered animal models, has been crucial. Immortalized cellular models provide controlled environments for investigating the molecular and neurochemical pathways involved in neuronal function, while iPSCs and brain organoids, derived from patient-specific sources, offer significant advantage in translational research by facilitating direct comparisons of cellular phenotypes between patient-derived neurons and healthy-control neurons. Animal models can recapitulate the different psychopathological aspects that should be modeled, offering valuable insights into the neurobiology of SCZ. In addition, invertebrates' models are genetically tractable and offer a powerful approach to dissect the core genetic underpinnings of SCZ, while vertebrate models, especially mammals, with their more complex nervous systems and behavioral repertoire, provide a closer approximation of the human condition to study SCZ-related traits. This narrative review provides a comprehensive overview of the diverse modeling approaches, critically evaluating their strengths and limitations. By synthesizing knowledge from these models, this review offers a valuable source for researchers, clinicians, and stakeholders alike. Integrating findings across these different models may allow us to build a more holistic picture of SCZ pathophysiology, facilitating the exploration of new research avenues and informed decision-making for interventions.
Collapse
Affiliation(s)
- João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| | - Alysson R Muotri
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
3
|
Xu C, Alameri A, Leong W, Johnson E, Chen Z, Xu B, Leong KW. Multiscale engineering of brain organoids for disease modeling. Adv Drug Deliv Rev 2024; 210:115344. [PMID: 38810702 PMCID: PMC11265575 DOI: 10.1016/j.addr.2024.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Brain organoids hold great potential for modeling human brain development and pathogenesis. They recapitulate certain aspects of the transcriptional trajectory, cellular diversity, tissue architecture and functions of the developing brain. In this review, we explore the engineering strategies to control the molecular-, cellular- and tissue-level inputs to achieve high-fidelity brain organoids. We review the application of brain organoids in neural disorder modeling and emerging bioengineering methods to improve data collection and feature extraction at multiscale. The integration of multiscale engineering strategies and analytical methods has significant potential to advance insight into neurological disorders and accelerate drug development.
Collapse
Affiliation(s)
- Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Alia Alameri
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Wei Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Emily Johnson
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Zaozao Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
4
|
Kim JT, Song K, Han SW, Youn DH, Jung H, Kim KS, Lee HJ, Hong JY, Cho YJ, Kang SM, Jeon JP. Modeling of the brain-lung axis using organoids in traumatic brain injury: an updated review. Cell Biosci 2024; 14:83. [PMID: 38909262 PMCID: PMC11193205 DOI: 10.1186/s13578-024-01252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Clinical outcome after traumatic brain injury (TBI) is closely associated conditions of other organs, especially lungs as well as degree of brain injury. Even if there is no direct lung damage, severe brain injury can enhance sympathetic tones on blood vessels and vascular resistance, resulting in neurogenic pulmonary edema. Conversely, lung damage can worsen brain damage by dysregulating immunity. These findings suggest the importance of brain-lung axis interactions in TBI. However, little research has been conducted on the topic. An advanced disease model using stem cell technology may be an alternative for investigating the brain and lungs simultaneously but separately, as they can be potential candidates for improving the clinical outcomes of TBI.In this review, we describe the importance of brain-lung axis interactions in TBI by focusing on the concepts and reproducibility of brain and lung organoids in vitro. We also summarize recent research using pluripotent stem cell-derived brain organoids and their preclinical applications in various brain disease conditions and explore how they mimic the brain-lung axis. Reviewing the current status and discussing the limitations and potential perspectives in organoid research may offer a better understanding of pathophysiological interactions between the brain and lung after TBI.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Kang Song
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji Young Hong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea.
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
5
|
Zang JL, Gibson D, Zheng AM, Shi W, Gillies JP, Stein C, Drerup CM, DeSantis ME. CCSer2 gates dynein activity at the cell periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598865. [PMID: 38915497 PMCID: PMC11195223 DOI: 10.1101/2024.06.13.598865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cytoplasmic dynein-1 (dynein) is a microtubule-associated, minus end-directed motor that traffics hundreds of different cargos. Dynein must discriminate between cargos and traffic them at the appropriate time from the correct cellular region. How dynein's trafficking activity is regulated in time or cellular space remains poorly understood. Here, we identify CCSer2 as the first known protein to gate dynein activity in the spatial dimension. CCSer2 promotes the migration of developing zebrafish primordium cells and of cultured human cells by facilitating the trafficking of cargos that are acted on by cortically localized dynein. CCSer2 inhibits the interaction between dynein and its regulator Ndel1 exclusively at the cell periphery, resulting in localized dynein activation. Our findings suggest that the spatial specificity of dynein is achieved by the localization of proteins that disinhibit Ndel1. We propose that CCSer2 defines a broader class of proteins that activate dynein in distinct microenvironments via Ndel1 inhibition.
Collapse
Affiliation(s)
- Juliana L Zang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Daytan Gibson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann-Marie Zheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Wanjing Shi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Stykel MG, Ryan SD. Network analysis of S-nitrosylated synaptic proteins demonstrates unique roles in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119720. [PMID: 38582237 DOI: 10.1016/j.bbamcr.2024.119720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Nitric oxide can covalently modify cysteine thiols on target proteins to alter that protein's function in a process called S-nitrosylation (SNO). S-nitrosylation of synaptic proteins plays an integral part in neurotransmission. Here we review the function of the SNO-proteome at the synapse and whether clusters of SNO-modification may predict synaptic dysfunction associated with disease. We used a systematic search strategy to concatenate SNO-proteomic datasets from normal human or murine brain samples. Identified SNO-modified proteins were then filtered against proteins reported in the Synaptome Database, which provides a detailed and experimentally verified annotation of all known synaptic proteins. Subsequently, we performed an unbiased network analysis of all known SNO-synaptic proteins to identify clusters of SNO proteins commonly involved in biological processes or with known disease associations. The resulting SNO networks were significantly enriched in biological processes related to metabolism, whereas significant gene-disease associations were related to Schizophrenia, Alzheimer's, Parkinson's and Huntington's disease. Guided by an unbiased network analysis, the current review presents a thorough discussion of how clustered changes to the SNO-proteome influence health and disease.
Collapse
Affiliation(s)
- Morgan G Stykel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada; Hotchkiss Brain Institute, Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Courchesne E, Taluja V, Nazari S, Aamodt CM, Pierce K, Duan K, Stophaeros S, Lopez L, Barnes CC, Troxel J, Campbell K, Wang T, Hoekzema K, Eichler EE, Nani JV, Pontes W, Sanchez SS, Lombardo MV, de Souza JS, Hayashi MAF, Muotri AR. Embryonic origin of two ASD subtypes of social symptom severity: the larger the brain cortical organoid size, the more severe the social symptoms. Mol Autism 2024; 15:22. [PMID: 38790065 PMCID: PMC11127428 DOI: 10.1186/s13229-024-00602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Social affective and communication symptoms are central to autism spectrum disorder (ASD), yet their severity differs across toddlers: Some toddlers with ASD display improving abilities across early ages and develop good social and language skills, while others with "profound" autism have persistently low social, language and cognitive skills and require lifelong care. The biological origins of these opposite ASD social severity subtypes and developmental trajectories are not known. METHODS Because ASD involves early brain overgrowth and excess neurons, we measured size and growth in 4910 embryonic-stage brain cortical organoids (BCOs) from a total of 10 toddlers with ASD and 6 controls (averaging 196 individual BCOs measured/subject). In a 2021 batch, we measured BCOs from 10 ASD and 5 controls. In a 2022 batch, we tested replicability of BCO size and growth effects by generating and measuring an independent batch of BCOs from 6 ASD and 4 control subjects. BCO size was analyzed within the context of our large, one-of-a-kind social symptom, social attention, social brain and social and language psychometric normative datasets ranging from N = 266 to N = 1902 toddlers. BCO growth rates were examined by measuring size changes between 1- and 2-months of organoid development. Neurogenesis markers at 2-months were examined at the cellular level. At the molecular level, we measured activity and expression of Ndel1; Ndel1 is a prime target for cell cycle-activated kinases; known to regulate cell cycle, proliferation, neurogenesis, and growth; and known to be involved in neuropsychiatric conditions. RESULTS At the BCO level, analyses showed BCO size was significantly enlarged by 39% and 41% in ASD in the 2021 and 2022 batches. The larger the embryonic BCO size, the more severe the ASD social symptoms. Correlations between BCO size and social symptoms were r = 0.719 in the 2021 batch and r = 0. 873 in the replication 2022 batch. ASD BCOs grew at an accelerated rate nearly 3 times faster than controls. At the cell level, the two largest ASD BCOs had accelerated neurogenesis. At the molecular level, Ndel1 activity was highly correlated with the growth rate and size of BCOs. Two BCO subtypes were found in ASD toddlers: Those in one subtype had very enlarged BCO size with accelerated rate of growth and neurogenesis; a profound autism clinical phenotype displaying severe social symptoms, reduced social attention, reduced cognitive, very low language and social IQ; and substantially altered growth in specific cortical social, language and sensory regions. Those in a second subtype had milder BCO enlargement and milder social, attention, cognitive, language and cortical differences. LIMITATIONS Larger samples of ASD toddler-derived BCO and clinical phenotypes may reveal additional ASD embryonic subtypes. CONCLUSIONS By embryogenesis, the biological bases of two subtypes of ASD social and brain development-profound autism and mild autism-are already present and measurable and involve dysregulated cell proliferation and accelerated neurogenesis and growth. The larger the embryonic BCO size in ASD, the more severe the toddler's social symptoms and the more reduced the social attention, language ability, and IQ, and the more atypical the growth of social and language brain regions.
Collapse
Affiliation(s)
- Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA.
| | - Vani Taluja
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Sanaz Nazari
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Caitlin M Aamodt
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Kuaikuai Duan
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Sunny Stophaeros
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Linda Lopez
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Jaden Troxel
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Kathleen Campbell
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
- Neuroscience Research Institute, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing, 100191, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Joao V Nani
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Wirla Pontes
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Sandra Sanchez Sanchez
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Janaina S de Souza
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alysson R Muotri
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA.
- Rady Children's Hospital, Center for Academic Research and Training in Anthropogeny (CARTA), Archealization Center (ArchC), Kavli Institute for Brain and Mind, La Jolla, CA, USA.
| |
Collapse
|
8
|
Zaharija B, Bradshaw NJ. Aggregation of Disrupted in Schizophrenia 1 arises from a central region of the protein. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110923. [PMID: 38135095 DOI: 10.1016/j.pnpbp.2023.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
An emerging approach to studying major mental illness is through proteostasis, with the identification of several proteins that form insoluble aggregates in the brains of patients. One of these is Disrupted in Schizophrenia 1 (DISC1), a neurodevelopmentally-important scaffold protein, and product of a classic schizophrenia risk gene. DISC1 aggregates have been detected in post mortem brain tissue from patients with schizophrenia, bipolar disorder and major depressive disorder, as well as various model systems, although the mechanism by which it aggregates is still unclear. Aggregation of two other proteins implicated in mental illness, TRIOBP-1 and NPAS3, was shown to be dependent on very specific structural regions of the protein. We therefore looked at the domain structure of DISC1, and investigated which structural elements are key for its aggregation. While none of the known structured DISC1 regions (named D, I, S and C respectively) formed aggregates individually when expressed in neuroblastoma cells, the combination of the D and I regions, plus the linker region between them, formed visible aggregates. Further refinement revealed that a region of approximately 30 amino acids between these two regions is critical for aggregation, and deletion of this region is sufficient to abolish the aggregation propensity of DISC1. This finding from mammalian cell culture contrasts with the recent determination that the C-region of DISC1 can aggregate in vitro, although some variations of the C-terminal of DISC1 could aggregate in our system. It therefore appears likely that DISC1 aggregation, implicated in mental illness, can occur through at least two distinct mechanisms.
Collapse
Affiliation(s)
- Beti Zaharija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Croatia
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, Croatia.
| |
Collapse
|
9
|
Abstract
Brain development in humans is achieved through precise spatiotemporal genetic control, the mechanisms of which remain largely elusive. Recently, integration of technological advances in human stem cell-based modelling with genome editing has emerged as a powerful platform to establish causative links between genotypes and phenotypes directly in the human system. Here, we review our current knowledge of complex genetic regulation of each key step of human brain development through the lens of evolutionary specialization and neurodevelopmental disorders and highlight the use of human stem cell-derived 2D cultures and 3D brain organoids to investigate human-enriched features and disease mechanisms. We also discuss opportunities and challenges of integrating new technologies to reveal the genetic architecture of human brain development and disorders.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Perrottelli A, Marzocchi FF, Caporusso E, Giordano GM, Giuliani L, Melillo A, Pezzella P, Bucci P, Mucci A, Galderisi S. Advances in the understanding of the pathophysiology of schizophrenia and bipolar disorder through induced pluripotent stem cell models. J Psychiatry Neurosci 2024; 49:E109-E125. [PMID: 38490647 PMCID: PMC10950363 DOI: 10.1503/jpn.230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/04/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024] Open
Abstract
The pathophysiology of schizophrenia and bipolar disorder involves a complex interaction between genetic and environmental factors that begins in the early stages of neurodevelopment. Recent advancements in the field of induced pluripotent stem cells (iPSCs) offer a promising tool for understanding the neurobiological alterations involved in these disorders and, potentially, for developing new treatment options. In this review, we summarize the results of iPSC-based research on schizophrenia and bipolar disorder, showing disturbances in neurodevelopmental processes, imbalance in glutamatergic-GABAergic transmission and neuromorphological alterations. The limitations of the reviewed literature are also highlighted, particularly the methodological heterogeneity of the studies, the limited number of studies developing iPSC models of both diseases simultaneously, and the lack of in-depth clinical characterization of the included samples. Further studies are needed to advance knowledge on the common and disease-specific pathophysiological features of schizophrenia and bipolar disorder and to promote the development of new treatment options.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Giuliani
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Melillo
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Paola Bucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|
11
|
Watanabe M, Khu TM, Warren G, Shin J, Stewart CE, Roche J. Evidence of DISC1 as an arsenic binding protein and implications regarding its role as a translational activator. Front Mol Biosci 2023; 10:1308693. [PMID: 38192336 PMCID: PMC10773898 DOI: 10.3389/fmolb.2023.1308693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Disrupted-in-schizophrenia-1 (DISC1) is a scaffolding protein that plays a pivotal role in orchestrating signaling pathways involved in neurodevelopment, neural migration, and synaptogenesis. Among those, it has recently been reported that the role of DISC1 in the Akt/mTOR pathway can shift from a global translational repressor to a translational activator in response to oxidative stress induced by arsenic. In this study we provide evidence that DISC1 can directly bind arsenic via a C-terminal cysteine motif (C-X-C-X-C). A series of fluorescence-based binding assays were conducted with a truncated C-terminal domain construct of DISC1 and a series of single, double, and triple cysteine mutants. We found that arsenous acid, a trivalent arsenic derivative, specifically binds to the C-terminal cysteine motif of DISC1 with low micromolar affinity. All three cysteines of the motif are required for high-affinity binding. Electron microscopy experiments combined with in silico structural predictions reveal that the C-terminal of DISC1 forms an elongated tetrameric complex. The cysteine motif is consistently predicted to be located within a loop, fully exposed to solvent, providing a simple molecular framework to explain the high-affinity of DISC1 toward arsenous acid. This study sheds light on a novel functional facet of DISC1 as an arsenic binding protein and highlights its potential role as both a sensor and translational modulator within Akt/mTOR pathway.
Collapse
Affiliation(s)
- Muneaki Watanabe
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, China
| | - Tung Mei Khu
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, China
| | - Grant Warren
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, China
| | - Juyoung Shin
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, China
| | - Charles E. Stewart
- Macromolecular X-ray Crystallography Facility, Office of Biotechnology, Iowa State University, Ames, IA, United States
| | - Julien Roche
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, China
| |
Collapse
|
12
|
Chen L, Xu J, Zhu L, Xu P, Chang L, Han Y, Wu Q. Disrupted in Schizophrenia 1 Reverse Ectopic Migration of Neural Precursors in Mouse Hilus After Pilocarpine-Induced Status Epilepticus. Mol Neurobiol 2023; 60:6689-6703. [PMID: 37479851 DOI: 10.1007/s12035-023-03507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Neural precursors in the subgranular zone (SGZ) can be stimulated by status epilepticus (SE) and ectopically migrate to the hilus. These mislocated cells serve as "potential pacemakers" of spontaneous recurrent seizures, and targeting them could potentially reverse the seizure process. Disrupted-in-Schizophrenia 1 (DISC1) regulates hippocampal neurogenesis after seizures both in vitro and in vivo. Our previous study found that DISC1 was colocalized with neural precursors in the hilus after SE. However, its molecular mechanism and pathways contribute to the ectopic migration of neural precursors to the hilus induced by SE awaits exploration. Here, we showed that both Reelin-ApoER2/EphB2 and Reelin-Integrin β1/Integrin α5 axes may participate in the modulation of neurogenesis after SE. Especially, DISC1, as a protective role, might partly reversed the ectopic progenitor migration via EphB2 pathway. Our findings demonstrated that DISC1 played a protective role in the ectopic migration of neural precursors induced by SE insults and DISC1 could be an attractive new target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Jing Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Puying Xu
- Department of Neurology, Northeast Yunnan Hospital, Mengquan Avenue, Zhaoyang District, Zhaotong, Yunnan, 657000, People's Republic of China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan, 650032, People's Republic of China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan, 650032, People's Republic of China.
| |
Collapse
|
13
|
Cao T, Zhang S, Chen Q, Zeng C, Wang L, Jiao S, Chen H, Zhang B, Cai H. Long non-coding RNAs in schizophrenia: Genetic variations, treatment markers and potential targeted signaling pathways. Schizophr Res 2023; 260:12-22. [PMID: 37543007 DOI: 10.1016/j.schres.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia (SZ), a complex and debilitating spectrum of psychiatric disorders, is now mainly attributed to multifactorial etiology that includes genetic and environmental factors. Long non-coding RNAs (lncRNAs) are gaining popularity as a way to better understand the comprehensive mechanisms beneath the clinical manifestation of SZ. Only in recent years has it been elucidated that mammalian genomes encode thousands of lncRNAs. Strikingly, roughly 30-40% of these lncRNAs are extensively expressed in different regions across the brain, which may be closely associated with SZ. The therapeutic and adverse effects of atypical antipsychotic drugs (AAPDs) are partially reflected by their role in the regulation of lncRNAs. This begs the question directly, do any lncRNAs exist as biomarkers for AAPDs treatment? Furthermore, we comprehend a range of mechanistic investigations that have revealed the regulatory roles for lncRNAs both involved in the brain and the periphery of SZ. More crucially, we also combine insights from a variety of signaling pathways to argue that lncRNAs probably play critical roles in SZ via their interactive downstream factors. This review provides a thorough understanding regarding dysregulation of lncRNAs, corresponding genetic alternations, as well as their potential regulatory roles in the pathology of SZ, which might help reveal useful therapeutic targets in SZ.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - LiWei Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - ShiMeng Jiao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Adlakha YK. Human 3D brain organoids: steering the demolecularization of brain and neurological diseases. Cell Death Discov 2023; 9:221. [PMID: 37400464 DOI: 10.1038/s41420-023-01523-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
Understanding of human brain development, dysfunction and neurological diseases has remained limited and challenging due to inability to recapitulate human brain-specific features in animal models. Though the anatomy and physiology of the human brain has been understood in a remarkable way using post-mortem, pathological samples of human and animal models, however, modeling of human brain development and neurological diseases remains a challenge owing to distinct complexity of human brain. In this perspective, three-dimensional (3D) brain organoids have shown a beam of light. Tremendous growth in stem cell technologies has permitted the differentiation of pluripotent stem cells under 3D culture conditions into brain organoids, which recapitulate the unique features of human brain in many ways and also offer the detailed investigation of brain development, dysfunction and neurological diseases. Their translational value has also emerged and will benefit the society once the protocols for the upscaling of brain organoids are in place. Here, we summarize new advancements in methods for generation of more complex brain organoids including vascularized and mixed lineage tissue from PSCs. How synthetic biomaterials and microfluidic technology is boosting brain organoid development, has also been highlighted. We discuss the applications of brain organoids in studying preterm birth associated brain dysfunction; viral infections mediated neuroinflammation, neurodevelopmental and neurodegenerative diseases. We also highlight the translational value of brain organoids and current challenges that the field is experiencing.
Collapse
Affiliation(s)
- Yogita K Adlakha
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
- Maternal and Child Health Domain, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| |
Collapse
|
15
|
Garrott SR, Gillies JP, Siva A, Little SR, El Jbeily R, DeSantis ME. Ndel1 disfavors dynein-dynactin-adaptor complex formation in two distinct ways. J Biol Chem 2023; 299:104735. [PMID: 37086789 PMCID: PMC10248797 DOI: 10.1016/j.jbc.2023.104735] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023] Open
Abstract
Dynein is the primary minus-end-directed microtubule motor protein. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex." The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and the adaptor. Ndel1 and its paralog Nde1 are dynein- and Lis1-binding proteins that help control dynein localization within the cell. Cell-based assays suggest that Ndel1-Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear. Using purified proteins and quantitative binding assays, here we found that the C-terminal region of Ndel1 contributes to dynein binding and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in the C-terminal domain of Ndel1 increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein-binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Together, our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.
Collapse
Affiliation(s)
- Sharon R Garrott
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Aravintha Siva
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Saffron R Little
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rita El Jbeily
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
16
|
Mulder LA, Depla JA, Sridhar A, Wolthers K, Pajkrt D, Vieira de Sá R. A beginner's guide on the use of brain organoids for neuroscientists: a systematic review. Stem Cell Res Ther 2023; 14:87. [PMID: 37061699 PMCID: PMC10105545 DOI: 10.1186/s13287-023-03302-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The first human brain organoid protocol was presented in the beginning of the previous decade, and since then, the field witnessed the development of many new brain region-specific models, and subsequent protocol adaptations and modifications. The vast amount of data available on brain organoid technology may be overwhelming for scientists new to the field and consequently decrease its accessibility. Here, we aimed at providing a practical guide for new researchers in the field by systematically reviewing human brain organoid publications. METHODS Articles published between 2010 and 2020 were selected and categorised for brain organoid applications. Those describing neurodevelopmental studies or protocols for novel organoid models were further analysed for culture duration of the brain organoids, protocol comparisons of key aspects of organoid generation, and performed functional characterisation assays. We then summarised the approaches taken for different models and analysed the application of small molecules and growth factors used to achieve organoid regionalisation. Finally, we analysed articles for organoid cell type compositions, the reported time points per cell type, and for immunofluorescence markers used to characterise different cell types. RESULTS Calcium imaging and patch clamp analysis were the most frequently used neuronal activity assays in brain organoids. Neural activity was shown in all analysed models, yet network activity was age, model, and assay dependent. Induction of dorsal forebrain organoids was primarily achieved through combined (dual) SMAD and Wnt signalling inhibition. Ventral forebrain organoid induction was performed with dual SMAD and Wnt signalling inhibition, together with additional activation of the Shh pathway. Cerebral organoids and dorsal forebrain model presented the most cell types between days 35 and 60. At 84 days, dorsal forebrain organoids contain astrocytes and potentially oligodendrocytes. Immunofluorescence analysis showed cell type-specific application of non-exclusive markers for multiple cell types. CONCLUSIONS We provide an easily accessible overview of human brain organoid cultures, which may help those working with brain organoids to define their choice of model, culture time, functional assay, differentiation, and characterisation strategies.
Collapse
Affiliation(s)
- Lance A Mulder
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Josse A Depla
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| | - Adithya Sridhar
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Katja Wolthers
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Dasja Pajkrt
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Renata Vieira de Sá
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| |
Collapse
|
17
|
Hong Y, Yang Q, Song H, Ming GL. Opportunities and limitations for studying neuropsychiatric disorders using patient-derived induced pluripotent stem cells. Mol Psychiatry 2023; 28:1430-1439. [PMID: 36782062 PMCID: PMC10213114 DOI: 10.1038/s41380-023-01990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Neuropsychiatric disorders affect a large proportion of the global population and there is an urgent need to understand the pathogenesis and to develop novel and improved treatments of these devastating disorders. However, the diverse symptomatology combined with complex polygenic etiology, and the limited access to disorder-relevant cell types in human brains represent a major obstacle for mechanistic disease research. Conventional animal models, such as rodents, are limited by inherent species differences in brain development, architecture, and function. Advances in human induced pluripotent stem cells (hiPSCs) technologies have provided platforms for new discoveries in neuropsychiatric disorders. First, hiPSC-based disease models enable unprecedented investigation of psychiatric disorders at the molecular, cellular, and structural levels. Second, hiPSCs derived from patients with known genetics, symptoms, and drug response profiles offer an opportunity to recapitulate pathogenesis in relevant cell types and provide novel approaches for understanding disease mechanisms and for developing effective treatments. Third, genome-editing technologies have extended the potential of hiPSCs for generating models to elucidate the genetic basis of rare monogenetic and complex polygenic psychiatric disorders and to establish the causality between genotype and phenotype. Here we review opportunities and limitations for studying psychiatric disorders using various hiPSC-derived model systems.
Collapse
Affiliation(s)
- Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Zhang Z, Wang X, Park S, Song H, Ming GL. Development and Application of Brain Region-Specific Organoids for Investigating Psychiatric Disorders. Biol Psychiatry 2023; 93:594-605. [PMID: 36759261 PMCID: PMC9998354 DOI: 10.1016/j.biopsych.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Human society has been burdened by psychiatric disorders throughout the course of its history. The emergence and rapid advances of human brain organoid technology provide unprecedented opportunities for investigation of potential disease mechanisms and development of targeted or even personalized treatments for various psychiatric disorders. In this review, we summarize recent advances for generating organoids from human pluripotent stem cells to model distinct brain regions and diverse cell types. We also highlight recent progress, discuss limitations, and propose potential improvements in using patient-derived or genetically engineered brain region-specific organoids for investigating various psychiatric disorders.
Collapse
Affiliation(s)
- Zhijian Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sean Park
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
19
|
Urenda JP, Del Dosso A, Birtele M, Quadrato G. Present and Future Modeling of Human Psychiatric Connectopathies With Brain Organoids. Biol Psychiatry 2023; 93:606-615. [PMID: 36759258 PMCID: PMC11229385 DOI: 10.1016/j.biopsych.2022.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Brain organoids derived from human pluripotent stem cells are emerging as a powerful tool to model cellular aspects of neuropsychiatric disorders, including alterations in cell proliferation, differentiation, migration, and lineage trajectory. To date, most contributions in the field have focused on modeling cellular impairment of the cerebral cortex, with few studies probing dysfunction in local network connectivity. However, it is increasingly more apparent that these psychiatric disorders are connectopathies involving multiple brain structures and the connections between them. Therefore, the lack of reproducible anatomical features in these 3-dimensional cultures represents a major bottleneck for effectively modeling brain connectivity at the micro(cellular) level and at the macroscale level between brain regions. In this perspective, we review the use of current organoid protocols to model neuropsychiatric disorders with a specific emphasis on the potential and limitations of the current strategies to model impairments in functional connectivity. Finally, we discuss the importance of adopting interdisciplinary strategies to establish next-generation, multiregional organoids that can model, with higher fidelity, the dysfunction in the development and functionality of long-range connections within the brain of patients affected by psychiatric disorders.
Collapse
Affiliation(s)
- Jean-Paul Urenda
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ashley Del Dosso
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
20
|
Habibi S, Yaghoubzad-Maleki M, Heshmati E, Khalifeh K. Effects of representative point mutations on dynamic behavior of the DISC1-Ndel1 complex: a molecular dynamics study. J Biomol Struct Dyn 2023; 41:13228-13234. [PMID: 36858606 DOI: 10.1080/07391102.2023.2183030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/18/2023] [Indexed: 03/03/2023]
Abstract
It has been found that the development of schizophrenia and some other psychiatric disorders is related to defects in the normal functioning of Disrupted-In-Schizophrenia 1 (DISC1). It is a large-sized protein containing 855 residues and acts as an active hub at the core of many interactions with various proteins. On the other hand, NudE Neurodevelopment Protein 1 Like 1 (Ndel1) plays a role in nervous system development via interaction with the DISC1. It was shown that some point mutations on DISC1 have clinical implications. In line with these reports, here we have used the NMR structure of the wild-type (WT) C-terminal tail of DISC1 in complex with the N-terminal fragment of Ndel1, and have constructed the three-dimensional structures of L62Q and L29Q mutants, as the pathologic variants of the complex. The time-dependent interaction of DISC1 with Ndel1 in the WT complex and mutants was simulated by performing molecular dynamics (MD) simulation using programs in the GROMACS package. It was found that the flexibility of residues in some regions of the protein chains increases, and secondary structural changes from ordered toward unordered one leads to destabilizing of the complex in mutants. Destabilization of the complex upon substitution of Leu by Gln was also confirmed by analysis of the contact map plot.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saba Habibi
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | | | - Emran Heshmati
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - Khosrow Khalifeh
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran
| |
Collapse
|
21
|
Abstract
The microtubule minus-end-directed motility of cytoplasmic dynein 1 (dynein), arguably the most complex and versatile cytoskeletal motor, is harnessed for diverse functions, such as long-range organelle transport in neuronal axons and spindle assembly in dividing cells. The versatility of dynein raises a number of intriguing questions, including how is dynein recruited to its diverse cargo, how is recruitment coupled to activation of the motor, how is motility regulated to meet different requirements for force production and how does dynein coordinate its activity with that of other microtubule-associated proteins (MAPs) present on the same cargo. Here, these questions will be discussed in the context of dynein at the kinetochore, the supramolecular protein structure that connects segregating chromosomes to spindle microtubules in dividing cells. As the first kinetochore-localized MAP described, dynein has intrigued cell biologists for more than three decades. The first part of this Review summarizes current knowledge about how kinetochore dynein contributes to efficient and accurate spindle assembly, and the second part describes the underlying molecular mechanisms and highlights emerging commonalities with dynein regulation at other subcellular sites.
Collapse
Affiliation(s)
- Reto Gassmann
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular - IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
22
|
Yaghoubzad-Maleki M, Habibi S, Heshmati E, Khalifeh K. Bioinformatics and Molecular Dynamics Studies on the Human DISC1 in Complex with the Ndel1. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2023; 22:147-156. [DOI: 10.1142/s2737416523500084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this study we analyzed the sequence and structure of the human DISC1-Ndel1 complex using bioinformatics tools and molecular dynamics simulation studies. Multiple sequence alignment between the homologue protein sequences in primates shows that corresponding positions of residues in Ndel1 are highly conserved, while the DISC1 has variable conservation lines demonstrating its tolerability against various mutations during evolutionary time scale. In comparison with the mouse variant, structural analysis has shown that the evolutionary inserted charged residues in the human DISC1 (E[Formula: see text]-R[Formula: see text]) can establish intra-chain electrostatic interactions with the K[Formula: see text]-E[Formula: see text] dipeptide that may result in more stability of the DISC1 chain. According to MD simulation studies, the compactness for the human variant of the DISC1-Ndel1 is considerably lower than that of the mouse variant. Analysis of structural fluctuation shows that a fragment at the N-terminus side of the human DISC1 has more residual fluctuation. However, the Ndel1 chain of the human variant has globally more flexibility compared with the mouse variant. Considering the identical amino acid sequence of the Ndel1 chains of human and mouse, it concluded that there is a competition between the inter-chain and intra-chain electrostatic interaction in the human DISC1 that directs the complex to weaker inter-chain interactions with the expense of strengthening the intra-chain stabilizing interaction in complex.
Collapse
Affiliation(s)
| | - Saba Habibi
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - Emran Heshmati
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - Khosrow Khalifeh
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran
| |
Collapse
|
23
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
24
|
Yuan F, Li Y, Hu R, Gong M, Chai M, Ma X, Cha J, Guo P, Yang K, Li M, Xu M, Ma Q, Su Q, Zhang C, Sheng Z, Wu H, Wang Y, Yuan W, Bian S, Shao L, Zhang R, Li K, Shao Z, Zhang ZN, Li W. Modeling disrupted synapse formation in wolfram syndrome using hESCs-derived neural cells and cerebral organoids identifies Riluzole as a therapeutic molecule. Mol Psychiatry 2023; 28:1557-1570. [PMID: 36750736 DOI: 10.1038/s41380-023-01987-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Dysregulated neurite outgrowth and synapse formation underlie many psychiatric disorders, which are also manifested by wolfram syndrome (WS). Whether and how the causative gene WFS1 deficiency affects synapse formation remain elusive. By mirroring human brain development with cerebral organoids, WFS1-deficient cerebral organoids not only recapitulate the neuronal loss in WS patients, but also exhibit significantly impaired synapse formation and function associated with reduced astrocytes. WFS1 deficiency in neurons autonomously delays neuronal differentiation with altered expressions of genes associated with psychiatric disorders, and impairs neurite outgrowth and synapse formation with elevated cytosolic calcium. Intriguingly, WFS1 deficiency in astrocytes decreases the expression of glutamate transporter EAAT2 by NF-κB activation and induces excessive glutamate. When co-cultured with wildtype neurons, WFS1-deficient astrocytes lead to impaired neurite outgrowth and increased cytosolic calcium in neurons. Importantly, disrupted synapse formation and function in WFS1-deficient cerebral organoids and impaired neurite outgrowth affected by WFS1-deficient astrocytes are efficiently reversed with Riluzole treatment, by restoring EAAT2 expression in astrocytes. Furthermore, Riluzole rescues the depressive-like behavior in the forced swimming test and the impaired recognition and spatial memory in the novel object test and water maze test in Wfs1 conditional knockout mice. Altogether, our study provides novel insights into how WFS1 deficiency affects synapse formation and function, and offers a strategy to treat this disease.
Collapse
Affiliation(s)
- Fei Yuan
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Yana Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Hu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Mengting Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Mengyao Chai
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Xuefei Ma
- QuietD Biotechnology, Ltd., Shanghai, 201210, China
| | - Jiaxue Cha
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Pan Guo
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kaijiang Yang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Mushan Li
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Minglu Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Qing Ma
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Qiang Su
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Chuan Zhang
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhejin Sheng
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Heng Wu
- Department of Psychosomatic Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yuan Wang
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Wen Yuan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Shan Bian
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Li Shao
- Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kaicheng Li
- QuietD Biotechnology, Ltd., Shanghai, 201210, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China. .,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China.
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China. .,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China. .,Reg-Verse Therapeutics (Shanghai) Co. Ltd., Shanghai, 200120, China.
| |
Collapse
|
25
|
Goldrick C, Guri I, Herrera-Oropeza G, O’Brien-Gore C, Roy E, Wojtynska M, Spagnoli FM. 3D multicellular systems in disease modelling: From organoids to organ-on-chip. Front Cell Dev Biol 2023; 11:1083175. [PMID: 36819106 PMCID: PMC9933985 DOI: 10.3389/fcell.2023.1083175] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Cell-cell interactions underlay organ formation and function during homeostasis. Changes in communication between cells and their surrounding microenvironment are a feature of numerous human diseases, including metabolic disease and neurological disorders. In the past decade, cross-disciplinary research has been conducted to engineer novel synthetic multicellular organ systems in 3D, including organoids, assembloids, and organ-on-chip models. These model systems, composed of distinct cell types, satisfy the need for a better understanding of complex biological interactions and mechanisms underpinning diseases. In this review, we discuss the emerging field of building 3D multicellular systems and their application for modelling the cellular interactions at play in diseases. We report recent experimental and computational approaches for capturing cell-cell interactions as well as progress in bioengineering approaches for recapitulating these complexities ex vivo. Finally, we explore the value of developing such multicellular systems for modelling metabolic, intestinal, and neurological disorders as major examples of multisystemic diseases, we discuss the advantages and disadvantages of the different approaches and provide some recommendations for further advancing the field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesca M. Spagnoli
- Faculty of Life Sciences, Centre for Gene Therapy and Regenerative Medicine, Guy’s Campus, King’s College London, London, United Kingdom
| |
Collapse
|
26
|
Garrott SR, Gillies JP, Siva A, Little SR, Jbeily REI, DeSantis ME. Ndel1 modulates dynein activation in two distinct ways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525437. [PMID: 36747695 PMCID: PMC9900795 DOI: 10.1101/2023.01.25.525437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dynein is the primary minus-end-directed microtubule motor [1]. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex" [2, 3]. The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and adaptor [4, 5]. Ndel1 and its orthologue Nde1 are dynein and Lis1 binding proteins that help control where dynein localizes within the cell [6]. Cell-based assays suggest that Ndel1/Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear [6]. Using purified proteins and quantitative binding assays, we found that Ndel1's C-terminal region contributes to binding to dynein and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in Ndel1's C-terminal domain increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.
Collapse
Affiliation(s)
- Sharon R Garrott
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aravintha Siva
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saffron R Little
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rita EI Jbeily
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Janczyk PŁ, Żyłkiewicz E, De Hoyos H, West T, Matson DR, Choi WC, Young HMR, Derewenda ZS, Stukenberg PT. Aurora A phosphorylates Ndel1 to reduce the levels of Mad1 and NuMA at spindle poles. Mol Biol Cell 2023; 34:br1. [PMID: 36350697 PMCID: PMC9816647 DOI: 10.1091/mbc.e21-09-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Dynein inactivates the spindle assembly checkpoint (SAC) by transporting checkpoint proteins away from kinetochores toward spindle poles in a process known as "stripping." We find that inhibition of Aurora A kinase, which is localized to spindle poles, enables the accumulation of the spindle checkpoint activator Mad1 at poles where it is normally absent. Aurora kinases phosphorylate the dynein activator NudE neurodevelopment protein 1 like 1 (Ndel1) on Ser285 and Mad1 accumulates at poles when Ndel1 is replaced by a nonphosphorylatable mutant in human cells. The pole focusing protein NuMA, transported to poles by dynein, also accumulates at poles in cells harboring a mutant Ndel1. Phosphorylation of Ndel1 on Ser285 is required for robust spindle checkpoint activity and regulates the poles of asters in Xenopus extracts. Our data suggest that dynein/SAC complexes that are generated at kinetochores and then transported directionally toward poles on microtubules are inhibited by Aurora A before they reach spindle poles. These data suggest that Aurora A generates a spatial signal at spindle poles that controls dynein transport and spindle function.
Collapse
Affiliation(s)
- Paweł Ł. Janczyk
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Eliza Żyłkiewicz
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Henry De Hoyos
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Thomas West
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Daniel R. Matson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Won-Chan Choi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Heather M. Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Zygmunt S. Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - P. Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903
| |
Collapse
|
28
|
A Comprehensive Update of Cerebral Organoids between Applications and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7264649. [DOI: 10.1155/2022/7264649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
The basic technology of stem cells has been developed and created organoids, which have established a strong interest in regenerative medicine. Different cell types have been used to generate cerebral organoids, which include interneurons and oligodendrocytes (OLs). OLs are fundamental for brain development. Abundant studies have displayed that brain organoids can recapitulate fundamental and vital features of the human brain, such as cellular regulation and distribution, neuronal networks, electrical activities, and physiological structure. The organoids contain essential ventral brain domains and functional cortical interneurons, which are similar to the developing cortex and medial ganglionic eminence (MGE). So, brain organoids have provided a singular model to study and investigate neurological disorder mechanisms and therapeutics. Furthermore, the blood brain barrier (BBB) organoids modeling contributes to accelerate therapeutic discovery for the treatment of several neuropathologies. In this review, we summarized the advances of the brain organoids applications to investigate neurological disorder mechanisms such as neurodevelopmental and neurodegenerative disorders, mental disorders, brain cancer, and cerebral viral infections. We discussed brain organoids’ therapeutic application as a potential therapeutic unique method and highlighted in detail the challenges and hurdles of organoid models.
Collapse
|
29
|
Chen H, Jin X, Li T, Ye Z. Brain organoids: Establishment and application. Front Cell Dev Biol 2022; 10:1029873. [PMID: 36506083 PMCID: PMC9726712 DOI: 10.3389/fcell.2022.1029873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Brain organoids are produced by the differentiation of pluripotent stem cells under three-dimensional culture conditions by adding neurodevelopment-related regulatory signals. They are similar to the cell composition and anatomical structure of the brain, and can reflect the developmental process of the brain, as well as their physiology, pathology, and pharmacology. Brain organoids are good models to study human brain development and brain-related diseases in vitro. Here, we mainly focus on the construction of brain organoids and review the application of brain organoids in disease modelingand drug screening.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurovascular Surgery, First Hospital, Jilin University, Changchun, China
| | - Xin Jin
- Department of Oncology and Hematology, Second Hospital, Jilin University, Changchun, China
| | - Tie Li
- Department of Rheumatology, First Hospital, Jilin University, Changchun, China
| | - Zhuang Ye
- Department of Rheumatology, First Hospital, Jilin University, Changchun, China,*Correspondence: Zhuang Ye,
| |
Collapse
|
30
|
Eichmüller OL, Knoblich JA. Human cerebral organoids - a new tool for clinical neurology research. Nat Rev Neurol 2022; 18:661-680. [PMID: 36253568 PMCID: PMC9576133 DOI: 10.1038/s41582-022-00723-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
The current understanding of neurological diseases is derived mostly from direct analysis of patients and from animal models of disease. However, most patient studies do not capture the earliest stages of disease development and offer limited opportunities for experimental intervention, so rarely yield complete mechanistic insights. The use of animal models relies on evolutionary conservation of pathways involved in disease and is limited by an inability to recreate human-specific processes. In vitro models that are derived from human pluripotent stem cells cultured in 3D have emerged as a new model system that could bridge the gap between patient studies and animal models. In this Review, we summarize how such organoid models can complement classical approaches to accelerate neurological research. We describe our current understanding of neurodevelopment and how this process differs between humans and other animals, making human-derived models of disease essential. We discuss different methodologies for producing organoids and how organoids can be and have been used to model neurological disorders, including microcephaly, Zika virus infection, Alzheimer disease and other neurodegenerative disorders, and neurodevelopmental diseases, such as Timothy syndrome, Angelman syndrome and tuberous sclerosis. We also discuss the current limitations of organoid models and outline how organoids can be used to revolutionize research into the human brain and neurological diseases.
Collapse
Affiliation(s)
- Oliver L Eichmüller
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- University of Heidelberg, Heidelberg, Germany
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Department of Neurology, Vienna, Austria.
| |
Collapse
|
31
|
Sheridan SD, Horng JE, Perlis RH. Patient-Derived In Vitro Models of Microglial Function and Synaptic Engulfment in Schizophrenia. Biol Psychiatry 2022; 92:470-479. [PMID: 35232567 PMCID: PMC10039432 DOI: 10.1016/j.biopsych.2022.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 01/11/2023]
Abstract
Multiple lines of evidence implicate dysregulated microglia-mediated synaptic pruning in the pathophysiology of schizophrenia. In vitro human cellular studies represent a promising means of pursuing this hypothesis, complementing efforts with animal models and postmortem human data while addressing their limitations. The challenges in culturing homogeneous populations of cells derived from postmortem or surgical biopsy brain material from patients, and their limited availability, has led to a focus on differentiation of induced pluripotent stem cells. These methods too have limitations, in that they disrupt the epigenome and can demonstrate line-to-line variability due in part to extended time in culture, partial reprogramming, and/or residual epigenetic memory from the cell source, yielding large technical artifacts. Yet another strategy uses direct transdifferentiation of peripheral mononuclear blood cells, or umbilical cord blood cells, to microglia-like cells. Any of these approaches can be paired with patient-derived synaptosomes from differentiated neurons as a simpler alternative to co-culture. Patient-derived microglia models may facilitate identification of novel modulators of synaptic pruning and identification of biomarkers that may allow more targeted early interventions.
Collapse
Affiliation(s)
- Steven D Sheridan
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Joy E Horng
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Roy H Perlis
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
32
|
Human Brain Organoid: A Versatile Tool for Modeling Neurodegeneration Diseases and for Drug Screening. Stem Cells Int 2022; 2022:2150680. [PMID: 36061149 PMCID: PMC9436613 DOI: 10.1155/2022/2150680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical trials serve as the fundamental prerequisite for clinical therapy of human disease, which is primarily based on biomedical studies in animal models. Undoubtedly, animal models have made a significant contribution to gaining insight into the developmental and pathophysiological understanding of human diseases. However, none of the existing animal models could efficiently simulate the development of human organs and systems due to a lack of spatial information; the discrepancy in genetic, anatomic, and physiological basis between animals and humans limits detailed investigation. Therefore, the translational efficiency of the research outcomes in clinical applications was significantly weakened, especially for some complex, chronic, and intractable diseases. For example, the clinical trials for human fragile X syndrome (FXS) solely based on animal models have failed such as mGluR5 antagonists. To mimic the development of human organs more faithfully and efficiently translate in vitro biomedical studies to clinical trials, extensive attention to organoids derived from stem cells contributes to a deeper understanding of this research. The organoids are a miniaturized version of an organ generated in vitro, partially recapitulating key features of human organ development. As such, the organoids open a novel avenue for in vitro models of human disease, advantageous over the existing animal models. The invention of organoids has brought an innovative breakthrough in regeneration medicine. The organoid-derived human tissues or organs could potentially function as invaluable platforms for biomedical studies, pathological investigation of human diseases, and drug screening. Importantly, the study of regeneration medicine and the development of therapeutic strategies for human diseases could be conducted in a dish, facilitating in vitro analysis and experimentation. Thus far, the pilot breakthrough has been made in the generation of numerous types of organoids representing different human organs. Most of these human organoids have been employed for in vitro biomedical study and drug screening. However, the efficiency and quality of the organoids in recapitulating the development of human organs have been hindered by engineering and conceptual challenges. The efficiency and quality of the organoids are essential for downstream applications. In this article, we highlight the application in the modeling of human neurodegenerative diseases (NDDs) such as FXS, Alzheimer's disease (AD), Parkinson's disease (PD), and autistic spectrum disorders (ASD), and organoid-based drug screening. Additionally, challenges and weaknesses especially for limits of the brain organoid models in modeling late onset NDDs such as AD and PD., and future perspectives regarding human brain organoids are addressed.
Collapse
|
33
|
Lee D, Woo Y, Lim JS, Park I, Park SK, Park JW. Quantification of a Neurological Protein in a Single Cell Without Amplification. ACS OMEGA 2022; 7:20165-20171. [PMID: 35722002 PMCID: PMC9201896 DOI: 10.1021/acsomega.2c02009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Proteins are key biomolecules that not only play various roles in the living body but also are used as biomarkers. If these proteins can be quantified at the level of a single cell, understanding the role of proteins will be deepened and diagnosing diseases and abnormality will be further upgraded. In this study, we quantified a neurological protein in a single cell using atomic force microscopy (AFM). After capturing specifically disrupted-in-schizophrenia 1 (DISC1) in a single cell onto a microspot immobilizing the corresponding antibody on the surface, force mapping with AFM was followed to visualize individual DISC1. Although a large variation of the number of DISC1 in a cell was observed, the average number is 4.38 × 103, and the number agrees with the ensemble-averaged value. The current AFM approach for the quantitative analysis of proteins in a single cell should be useful to study molecular behavior of proteins in depth and to follow physiological change of individual cells in response to external stimuli.
Collapse
Affiliation(s)
- Donggyu Lee
- Department
of Life Sciences, Pohang University of Science
and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Youngsik Woo
- Department
of Life Sciences, Pohang University of Science
and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Ji-seon Lim
- Department
of Chemistry, Pohang University of Science
and Technology, 77 Cheongam-Ro,
Nam-Gu, Pohang 37673, Republic of Korea
| | - Ikbum Park
- Analysis
and Assessment Research Center, Research
Institute of Industrial Science and Technology, 67 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic
of Korea
| | - Sang Ki Park
- Department
of Life Sciences, Pohang University of Science
and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Joon Won Park
- Department
of Chemistry, Pohang University of Science
and Technology, 77 Cheongam-Ro,
Nam-Gu, Pohang 37673, Republic of Korea
- Institute
of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic
of Korea
| |
Collapse
|
34
|
Muhtaseb AW, Duan J. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophr Res 2022:S0920-9964(22)00156-6. [PMID: 35459617 PMCID: PMC9735430 DOI: 10.1016/j.schres.2022.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Recent genome-wide association studies (GWAS) and whole-exome sequencing of neuropsychiatric disorders, especially schizophrenia, have identified a plethora of common and rare disease risk variants/genes. Translating the mounting human genetic discoveries into novel disease biology and more tailored clinical treatments is tied to our ability to causally connect genetic risk variants to molecular and cellular phenotypes. When combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) nuclease-mediated genome editing system, human induced pluripotent stem cell (hiPSC)-derived neural cultures (both 2D and 3D organoids) provide a promising tractable cellular model for bridging the gap between genetic findings and disease biology. In this review, we first conceptualize the advances in understanding the disease polygenicity and convergence from the past decade of iPSC modeling of different types of genetic risk factors of neuropsychiatric disorders. We then discuss the major cell types and cellular phenotypes that are most relevant to neuropsychiatric disorders in iPSC modeling. Finally, we critically review the limitations of iPSC modeling of neuropsychiatric disorders and outline the need for implementing and developing novel methods to scale up the number of iPSC lines and disease risk variants in a systematic manner. Sufficiently scaled-up iPSC modeling and a better functional interpretation of genetic risk variants, in combination with cutting-edge CRISPR/Cas9 gene editing and single-cell multi-omics methods, will enable the field to identify the specific and convergent molecular and cellular phenotypes in precision for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abdurrahman W Muhtaseb
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
35
|
Yang Q, Hong Y, Zhao T, Song H, Ming GL. What Makes Organoids Good Models of Human Neurogenesis? Front Neurosci 2022; 16:872794. [PMID: 35495031 PMCID: PMC9048596 DOI: 10.3389/fnins.2022.872794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Human neurogenesis occurs mainly in embryonic, fetal, and neonatal stages and generates tremendously diverse neural cell types that constitute the human nervous system. Studies on human neurogenesis have been limited due to a lack of access to human embryonic and fetal tissues. Brain organoids derived from human pluripotent stem cells not only recapitulate major developmental processes during neurogenesis, but also exhibit human-specific features, thus providing an unprecedented opportunity to study human neurodevelopment. First, three-dimensional brain organoids resemble early human neurogenesis with diverse stem cell pools, including the presence of primate-enriched outer radial glia cells. Second, brain organoids recapitulate human neurogenesis at the cellular level, generating diverse neuronal cell types and forming stratified cortical layers. Third, brain organoids also capture gliogenesis with the presence of human-specific astrocytes. Fourth, combined with genome-editing technologies, brain organoids are promising models for investigating functions of human-specific genes at different stages of human neurogenesis. Finally, human organoids derived from patient iPSCs can recapitulate specific disease phenotypes, providing unique models for studying developmental brain disorders of genetic and environmental causes, and for mechanistic studies and drug screening. The aim of this review is to illustrate why brain organoids are good models to study various steps of human neurogenesis, with a focus on corticogenesis. We also discuss limitations of current brain organoid models and future improvements.
Collapse
Affiliation(s)
- Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ting Zhao
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States,The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Guo-li Ming,
| |
Collapse
|
36
|
Martinelli I, Tayebati SK, Tomassoni D, Nittari G, Roy P, Amenta F. Brain and Retinal Organoids for Disease Modeling: The Importance of In Vitro Blood–Brain and Retinal Barriers Studies. Cells 2022; 11:cells11071120. [PMID: 35406683 PMCID: PMC8997725 DOI: 10.3390/cells11071120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Brain and retinal organoids are functional and dynamic in vitro three-dimensional (3D) structures derived from pluripotent stem cells that spontaneously organize themselves to their in vivo counterparts. Here, we review the main literature data of how these organoids have been developed through different protocols and how they have been technically analyzed. Moreover, this paper reviews recent advances in using organoids to model neurological and retinal diseases, considering their potential for translational applications but also pointing out their limitations. Since the blood–brain barrier (BBB) and blood–retinal barrier (BRB) are understood to play a fundamental role respectively in brain and eye functions, both in health and in disease, we provide an overview of the progress in the development techniques of in vitro models as reliable and predictive screening tools for BBB and BRB-penetrating compounds. Furthermore, we propose potential future directions for brain and retinal organoids, in which dedicated biobanks will represent a novel tool for neuroscience and ophthalmology research.
Collapse
Affiliation(s)
- Ilenia Martinelli
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
- Correspondence:
| | - Seyed Khosrow Tayebati
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Giulio Nittari
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| |
Collapse
|
37
|
Saberi A, Aldenkamp AP, Kurniawan NA, Bouten CVC. In-vitro engineered human cerebral tissues mimic pathological circuit disturbances in 3D. Commun Biol 2022; 5:254. [PMID: 35322168 PMCID: PMC8943047 DOI: 10.1038/s42003-022-03203-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/01/2022] [Indexed: 12/30/2022] Open
Abstract
In-vitro modeling of brain network disorders such as epilepsy remains a major challenge. A critical step is to develop an experimental approach that enables recapitulation of in-vivo-like three-dimensional functional complexity while allowing local modulation of the neuronal networks. Here, by promoting matrix-supported active cell reaggregation, we engineered multiregional cerebral tissues with intact 3D neuronal networks and functional interconnectivity characteristic of brain networks. Furthermore, using a multi-chambered tissue-culture chip, we show that our separated but interconnected cerebral tissues can mimic neuropathological signatures such as the propagation of epileptiform discharges. A method is developed to engineer cerebral tissues with intact 3D neuronal networks, mimicking neuropathological signatures such as the propagation of epileptiform discharges, using a multi-chambered tissue culture chip.
Collapse
Affiliation(s)
- Aref Saberi
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands. .,Institute for Complex Molecular Systems, Eindhoven, the Netherlands.
| | - Albert P Aldenkamp
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, the Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands. .,Institute for Complex Molecular Systems, Eindhoven, the Netherlands.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven, the Netherlands
| |
Collapse
|
38
|
Abnormal mitochondria in Down syndrome iPSC-derived GABAergic interneurons and organoids. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166388. [DOI: 10.1016/j.bbadis.2022.166388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022]
|
39
|
Notaras M, Lodhi A, Dündar F, Collier P, Sayles NM, Tilgner H, Greening D, Colak D. Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Mol Psychiatry 2022; 27:1416-1434. [PMID: 34789849 PMCID: PMC9095467 DOI: 10.1038/s41380-021-01316-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023]
Abstract
Due to an inability to ethically access developing human brain tissue as well as identify prospective cases, early-arising neurodevelopmental and cell-specific signatures of Schizophrenia (Scz) have remained unknown and thus undefined. To overcome these challenges, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids to model neuropathology of Scz during this critical period. We discovered that Scz organoids exhibited ventricular neuropathology resulting in altered progenitor survival and disrupted neurogenesis. This ultimately yielded fewer neurons within developing cortical fields of Scz organoids. Single-cell sequencing revealed that Scz progenitors were specifically depleted of neuronal programming factors leading to a remodeling of cell-lineages, altered differentiation trajectories, and distorted cortical cell-type diversity. While Scz organoids were similar in their macromolecular diversity to organoids generated from healthy controls (Ctrls), four GWAS factors (PTN, COMT, PLCL1, and PODXL) and peptide fragments belonging to the POU-domain transcription factor family (e.g., POU3F2/BRN2) were altered. This revealed that Scz organoids principally differed not in their proteomic diversity, but specifically in their total quantity of disease and neurodevelopmental factors at the molecular level. Single-cell sequencing subsequently identified cell-type specific alterations in neuronal programming factors as well as a developmental switch in neurotrophic growth factor expression, indicating that Scz neuropathology can be encoded on a cell-type-by-cell-type basis. Furthermore, single-cell sequencing also specifically replicated the depletion of BRN2 (POU3F2) and PTN in both Scz progenitors and neurons. Subsequently, in two mechanistic rescue experiments we identified that the transcription factor BRN2 and growth factor PTN operate as mechanistic substrates of neurogenesis and cellular survival, respectively, in Scz organoids. Collectively, our work suggests that multiple mechanisms of Scz exist in patient-derived organoids, and that these disparate mechanisms converge upon primordial brain developmental pathways such as neuronal differentiation, survival, and growth factor support, which may amalgamate to elevate intrinsic risk of Scz.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Aiman Lodhi
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Paul Collier
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Nicole M Sayles
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Hagen Tilgner
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David Greening
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Institute & Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
40
|
Abstract
Three-dimensional cultures of human neural tissue/organlike structures in vitro can be achieved by mimicking the developmental processes occurring in vivo. Rapid progress in the field of neural organoids has fueled the hope (and hype) for improved understanding of brain development and functions, modeling of neural diseases, discovery of new drugs, and supply of surrogate sources of transplantation. In this short review, we summarize the state-of-the-art applications of this fascinating tool in various research fields and discuss the reality of the technique hoping that the current limitations will soon be overcome by the efforts of ingenious researchers.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
41
|
Susaimanickam PJ, Kiral FR, Park IH. Region Specific Brain Organoids to Study Neurodevelopmental Disorders. Int J Stem Cells 2022; 15:26-40. [PMID: 35220290 PMCID: PMC8889336 DOI: 10.15283/ijsc22006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Region specific brain organoids are brain organoids derived by patterning protocols using extrinsic signals as opposed to cerebral organoids obtained by self-patterning. The main focus of this review is to discuss various region-specific brain organoids developed so far and their application in modeling neurodevelopmental disease. We first discuss the principles of neural axis formation by series of growth factors, such as SHH, WNT, BMP signalings, that are critical to generate various region-specific brain organoids. Then we discuss various neurodevelopmental disorders modeled so far with these region-specific brain organoids, and findings made on mechanism and treatment options for neurodevelopmental disorders (NDD).
Collapse
Affiliation(s)
- Praveen Joseph Susaimanickam
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Ferdi Ridvan Kiral
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
42
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
43
|
Li W, Wang SS, Shan BQ, Qin JB, Zhao HY, Tian ML, He H, Cheng X, Zhang XH, Jin GH. miR-103-3p targets Ndel1 to regulate neural stem cell proliferation and differentiation. Neural Regen Res 2022; 17:401-408. [PMID: 34269216 PMCID: PMC8463973 DOI: 10.4103/1673-5374.317987] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The regulation of adult neural stem cells (NSCs) is critical for lifelong neurogenesis. MicroRNAs (miRNAs) are a type of small, endogenous RNAs that regulate gene expression post-transcriptionally and influence signaling networks responsible for several cellular processes. In this study, miR-103-3p was transfected into neural stem cells derived from embryonic hippocampal neural stem cells. The results showed that miR-103-3p suppressed neural stem cell proliferation and differentiation, and promoted apoptosis. In addition, miR-103-3p negatively regulated NudE neurodevelopment protein 1-like 1 (Ndel1) expression by binding to the 3' untranslated region of Ndel1. Transduction of neural stem cells with a lentiviral vector overexpressing Ndel1 significantly increased cell proliferation and differentiation, decreased neural stem cell apoptosis, and decreased protein expression levels of Wnt3a, β-catenin, phosphor-GSK-3β, LEF1, c-myc, c-Jun, and cyclin D1, all members of the Wnt/β-catenin signaling pathway. These findings suggest that Ndel1 is a novel miR-103-3p target and that miR-103-3p acts by suppressing neural stem cell proliferation and promoting apoptosis and differentiation. This study was approved by the Animal Ethics Committee of Nantong University, China (approval No. 20200826-003) on August 26, 2020.
Collapse
Affiliation(s)
- Wen Li
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shan-Shan Wang
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Bo-Quan Shan
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jian-Bing Qin
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - He-Yan Zhao
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mei-Ling Tian
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hui He
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiang Cheng
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xin-Hua Zhang
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Guo-Hua Jin
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
44
|
Brandão-Teles C, Zuccoli GS, Smith BJ, Vieira GM, Crunfli F. Modeling Schizophrenia In Vitro: Challenges and Insights on Studying Brain Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:35-51. [DOI: 10.1007/978-3-030-97182-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
45
|
Zhang Y, Chen Z, Wang F, Sun H, Zhu X, Ding J, Zhang T. Nde1 is a Rab9 effector for loading late endosomes to cytoplasmic dynein motor complex. Structure 2021; 30:386-395.e5. [PMID: 34793709 DOI: 10.1016/j.str.2021.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022]
Abstract
Rab9 is mainly located on late endosomes and required for their intracellular transport to trans-Golgi network (TGN). The cytoplasmic dynein motor, together with its regulatory proteins Nde1/Ndel1 and Lis1, controls intracellular retrograde transport of membranous organelles along the microtubule network. How late endosomes are tethered to the microtubule-based motor dynein for their retrograde transport remains unclear. Here, we demonstrate that the guanosine triphosphate (GTP)-bound Rab9A/B specifically uses Nde1/Ndel1 as an effector to interact with the dynein motor complex. We determined the crystal structure of Rab9A-GTP in complex with the Rab9-binding region of Nde1. The functional roles of key residues involved in the Rab9A-Nde1 interaction are verified using biochemical and cell biology assays. Rab9A mutants unable to bind to Nde1 also failed to associate with dynein, Lis1, and dynactin. Therefore, Nde1 is a Rab9 effector that tethers Rab9-associated late endosomes to the dynein motor for their retrograde transport to the TGN.
Collapse
Affiliation(s)
- Yifan Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Ziyue Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Fang Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Honghua Sun
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xueliang Zhu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshan Road, Hangzhou 310024, China; School of Life Science and Technology, ShanghaiTech University, 393 Hua-Xia Zhong Road, Shanghai 201210, China.
| | - Jianping Ding
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshan Road, Hangzhou 310024, China; School of Life Science and Technology, ShanghaiTech University, 393 Hua-Xia Zhong Road, Shanghai 201210, China.
| | - Tianlong Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 500 Yonghe Road, Nantong 226011, China.
| |
Collapse
|
46
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|
47
|
Notaras M, Lodhi A, Fang H, Greening D, Colak D. The proteomic architecture of schizophrenia iPSC-derived cerebral organoids reveals alterations in GWAS and neuronal development factors. Transl Psychiatry 2021; 11:541. [PMID: 34667143 PMCID: PMC8526592 DOI: 10.1038/s41398-021-01664-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia (Scz) is a brain disorder that has a typical onset in early adulthood but otherwise maintains unknown disease origins. Unfortunately, little progress has been made in understanding the molecular mechanisms underlying neurodevelopment of Scz due to ethical and technical limitations in accessing developing human brain tissue. To overcome this challenge, we have previously utilized patient-derived Induced Pluripotent Stem Cells (iPSCs) to generate self-developing, self-maturating, and self-organizing 3D brain-like tissue known as cerebral organoids. As a continuation of this prior work, here we provide an architectural map of the developing Scz organoid proteome. Utilizing iPSCs from n = 25 human donors (n = 8 healthy Ctrl donors, and n = 17 Scz patients), we generated 3D cerebral organoids, employed 16-plex isobaric sample-barcoding chemistry, and simultaneously subjected samples to comprehensive high-throughput liquid-chromatography/mass-spectrometry (LC/MS) quantitative proteomics. Of 3,705 proteins identified by high-throughput proteomic profiling, we identified that just ~2.62% of the organoid global proteomic landscape was differentially regulated in Scz organoids. In sum, just 43 proteins were up-regulated and 54 were down-regulated in Scz patient-derived organoids. Notably, a range of neuronal factors were depleted in Scz organoids (e.g., MAP2, TUBB3, SV2A, GAP43, CRABP1, NCAM1 etc.). Based on global enrichment analysis, alterations in key pathways that regulate nervous system development (e.g., axonogenesis, axon development, axon guidance, morphogenesis pathways regulating neuronal differentiation, as well as substantia nigra development) were perturbed in Scz patient-derived organoids. We also identified prominent alterations in two novel GWAS factors, Pleiotrophin (PTN) and Podocalyxin (PODXL), in Scz organoids. In sum, this work serves as both a report and a resource that researchers can leverage to compare, contrast, or orthogonally validate Scz factors and pathways identified in observational clinical studies and other model systems.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Aiman Lodhi
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Haoyun Fang
- Baker Institute for Heart and Diabetes, Melbourne, VIC, Australia
| | - David Greening
- Baker Institute for Heart and Diabetes, Melbourne, VIC, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
48
|
Sanchez-Pulido L, Ponting CP. Extending the Horizon of Homology Detection with Coevolution-based Structure Prediction. J Mol Biol 2021; 433:167106. [PMID: 34139218 PMCID: PMC8527833 DOI: 10.1016/j.jmb.2021.167106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Traditional sequence analysis algorithms fail to identify distant homologies when they lie beyond a detection horizon. In this review, we discuss how co-evolution-based contact and distance prediction methods are pushing back this homology detection horizon, thereby yielding new functional insights and experimentally testable hypotheses. Based on correlated substitutions, these methods divine three-dimensional constraints among amino acids in protein sequences that were previously devoid of all annotated domains and repeats. The new algorithms discern hidden structure in an otherwise featureless sequence landscape. Their revelatory impact promises to be as profound as the use, by archaeologists, of ground-penetrating radar to discern long-hidden, subterranean structures. As examples of this, we describe how triplicated structures reflecting longin domains in MON1A-like proteins, or UVR-like repeats in DISC1, emerge from their predicted contact and distance maps. These methods also help to resolve structures that do not conform to a "beads-on-a-string" model of protein domains. In one such example, we describe CFAP298 whose ubiquitin-like domain was previously challenging to perceive owing to a large sequence insertion within it. More generally, the new algorithms permit an easier appreciation of domain families and folds whose evolution involved structural insertion or rearrangement. As we exemplify with α1-antitrypsin, coevolution-based predicted contacts may also yield insights into protein dynamics and conformational change. This new combination of structure prediction (using innovative co-evolution based methods) and homology inference (using more traditional sequence analysis approaches) shows great promise for bringing into view a sea of evolutionary relationships that had hitherto lain far beyond the horizon of homology detection.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
49
|
Heydari Z, Moeinvaziri F, Agarwal T, Pooyan P, Shpichka A, Maiti TK, Timashev P, Baharvand H, Vosough M. Organoids: a novel modality in disease modeling. Biodes Manuf 2021; 4:689-716. [PMID: 34395032 PMCID: PMC8349706 DOI: 10.1007/s42242-021-00150-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/12/2021] [Indexed: 12/17/2022]
Abstract
Limitations of monolayer culture conditions have motivated scientists to explore new models that can recapitulate the architecture and function of human organs more accurately. Recent advances in the improvement of protocols have resulted in establishing three-dimensional (3D) organ-like architectures called ‘organoids’ that can display the characteristics of their corresponding real organs, including morphological features, functional activities, and personalized responses to specific pathogens. We discuss different organoid-based 3D models herein, which are classified based on their original germinal layer. Studies of organoids simulating the complexity of real tissues could provide novel platforms and opportunities for generating practical knowledge along with preclinical studies, including drug screening, toxicology, and molecular pathophysiology of diseases. This paper also outlines the key challenges, advantages, and prospects of current organoid systems.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364 Iran
| | - Farideh Moeinvaziri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364 Iran
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Paria Pooyan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
| | - Anastasia Shpichka
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 19991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tapas K. Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 19991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364 Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
| |
Collapse
|
50
|
Abashkin DA, Kurishev AO, Karpov DS, Golimbet VE. Cellular Models in Schizophrenia Research. Int J Mol Sci 2021; 22:ijms22168518. [PMID: 34445221 PMCID: PMC8395162 DOI: 10.3390/ijms22168518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is a prevalent functional psychosis characterized by clinical behavioural symptoms and underlying abnormalities in brain function. Genome-wide association studies (GWAS) of schizophrenia have revealed many loci that do not directly identify processes disturbed in the disease. For this reason, the development of cellular models containing SZ-associated variations has become a focus in the post-GWAS research era. The application of revolutionary clustered regularly interspaced palindromic repeats CRISPR/Cas9 gene-editing tools, along with recently developed technologies for cultivating brain organoids in vitro, have opened new perspectives for the construction of these models. In general, cellular models are intended to unravel particular biological phenomena. They can provide the missing link between schizophrenia-related phenotypic features (such as transcriptional dysregulation, oxidative stress and synaptic dysregulation) and data from pathomorphological, electrophysiological and behavioural studies. The objectives of this review are the systematization and classification of cellular models of schizophrenia, based on their complexity and validity for understanding schizophrenia-related phenotypes.
Collapse
Affiliation(s)
- Dmitrii A. Abashkin
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
| | - Artemii O. Kurishev
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
| | - Dmitry S. Karpov
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
- Correspondence:
| |
Collapse
|