1
|
Zwart MF. Rethinking sensorimotor circuits. eLife 2024; 13:e104111. [PMID: 39535081 PMCID: PMC11560128 DOI: 10.7554/elife.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
New research shows that the neural circuit responsible for stabilising gaze can develop in the absence of motor neurons, contrary to a long-standing model in the field.
Collapse
Affiliation(s)
- Maarten F Zwart
- School of Psychology and Neuroscience and Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
2
|
Sun P, Yuan Y, Lv Z, Yu X, Ma H, Liang S, Zhang J, Zhu J, Lu J, Wang C, Huan L, Jin C, Wang C, Li W. Generation of self-renewing neuromesodermal progenitors with neuronal and skeletal muscle bipotential from human embryonic stem cells. CELL REPORTS METHODS 2024:100897. [PMID: 39515335 DOI: 10.1016/j.crmeth.2024.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/19/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Progress has been made in generating spinal cord and trunk derivatives from neuromesodermal progenitors (NMPs). However, maintaining the self-renewal of NMPs in vitro remains a challenge. In this study, we developed a cocktail of small molecules and growth factors that induces human embryonic stem cells to produce self-renewing NMPs (srNMPs) under chemically defined conditions. These srNMPs maintain the state of neuromesodermal progenitors in prolonged culture and have the potential to generate mesodermal cells and neurons, even at the single-cell level. Additionally, suspended srNMP aggregates can spontaneously differentiate into all tissue types of early embryonic trunks. Furthermore, transplanted srNMP-derived muscle satellite cells or progenitors of motor neurons were integrated into skeletal muscle or the spinal cord, respectively, and contributed to regeneration in mouse models. In summary, srNMPs hold great promise for applications in developmental biology and as renewable cell sources for cell therapy for trunk and spinal cord injuries.
Collapse
Affiliation(s)
- Pingxin Sun
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Yuan Yuan
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Zhuman Lv
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Xinlu Yu
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Haoxin Ma
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Shulong Liang
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Jiqianzhu Zhang
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China; Department of Health Toxicology, Naval Medical University, 200433 Shanghai, China
| | - Jiangbo Zhu
- Department of Health Toxicology, Naval Medical University, 200433 Shanghai, China
| | - Junyu Lu
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Chunyan Wang
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Le Huan
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China.
| | - Caixia Jin
- Department of Regenerative Medicine, College of Medicine, Tongji University, 200433 Shanghai, China.
| | - Chao Wang
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China.
| | - Wenlin Li
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China; Shanghai Key Laboratory of Cell Engineering, Naval Medical University, 200433 Shanghai, China.
| |
Collapse
|
3
|
Trevisan AJ, Han K, Chapman P, Kulkarni AS, Hinton JM, Ramirez C, Klein I, Gatto G, Gabitto MI, Menon V, Bikoff JB. The transcriptomic landscape of spinal V1 interneurons reveals a role for En1 in specific elements of motor output. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613279. [PMID: 39345580 PMCID: PMC11429899 DOI: 10.1101/2024.09.18.613279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Neural circuits in the spinal cord are composed of diverse sets of interneurons that play crucial roles in shaping motor output. Despite progress in revealing the cellular architecture of the spinal cord, the extent of cell type heterogeneity within interneuron populations remains unclear. Here, we present a single-nucleus transcriptomic atlas of spinal V1 interneurons across postnatal development. We find that the core molecular taxonomy distinguishing neonatal V1 interneurons perdures into adulthood, suggesting conservation of function across development. Moreover, we identify a key role for En1, a transcription factor that marks the V1 population, in specifying one unique subset of V1Pou6f2 interneurons. Loss of En1 selectively disrupts the frequency of rhythmic locomotor output but does not disrupt flexion/extension limb movement. Beyond serving as a molecular resource for this neuronal population, our study highlights how deep neuronal profiling provides an entry point for functional studies of specialized cell types in motor output.
Collapse
Affiliation(s)
- Alexandra J. Trevisan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Katie Han
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Anand S. Kulkarni
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jennifer M. Hinton
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Cody Ramirez
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Ines Klein
- Department of Neurology, University Hospital of Cologne, Cologne, 50937, Germany
| | - Graziana Gatto
- Department of Neurology, University Hospital of Cologne, Cologne, 50937, Germany
| | - Mariano I. Gabitto
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Department of Statistics, University of Washington, Seattle, WA, 98109, USA
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, 10033, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
- Lead Contact
| |
Collapse
|
4
|
Renaux E, Baudouin C, Schakman O, Gay O, Martin M, Marchese D, Achouri Y, Rezsohazy R, Gofflot F, Clotman F. Arid3c identifies an uncharacterized subpopulation of V2 interneurons during embryonic spinal cord development. Front Cell Neurosci 2024; 18:1466056. [PMID: 39479525 PMCID: PMC11521906 DOI: 10.3389/fncel.2024.1466056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Motor activity is organized by neuronal networks composed of motor neurons and a wide variety of pre-motor interneuron populations located in the brainstem and spinal cord. Differential expression and single-cell RNA sequencing studies recently unveiled that these populations subdivide into multiple subsets. However, some interneuron subsets have not been described yet, and the mechanisms contributing to this neuronal diversification have only been partly deciphered. In this study, we aimed to identify additional markers to further describe the diversity of spinal V2 interneuron populations. Here, we compared the transcriptome of V2 interneurons with that of the other cells of the embryonic spinal cord and extracted a list of genes enriched in V2 interneurons, including Arid3c. Arid3c identifies an uncharacterized subset of V2 that partially overlaps with V2c interneurons. These two populations are characterized by the production of Onecut factors and Sox2, suggesting that they could represent a single functional V2 unit. Furthermore, we show that the overexpression or inactivation of Arid3c does not alter V2 production, but its absence results in minor defects in locomotor execution, suggesting a possible function in subtle aspects of spinal locomotor circuit formation.
Collapse
Affiliation(s)
- Estelle Renaux
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Charlotte Baudouin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Olivier Schakman
- Université catholique de Louvain, Institute of Neuroscience, Behavioral Analysis Platform (BEAP), Brussels, Belgium
| | - Ondine Gay
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon Cedex, France
| | - Manon Martin
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Louvain-la-Neuve, Belgium
| | - Damien Marchese
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Younès Achouri
- Université catholique de Louvain, de Duve Institute, Transgenic Core Facility, Brussels, Belgium
| | - René Rezsohazy
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| |
Collapse
|
5
|
Vijatovic D, Toma FA, Harrington ZPM, Sommer C, Hauschild R, Trevisan AJ, Chapman P, Julseth MJ, Brenner-Morton S, Gabitto MI, Dasen JS, Bikoff JB, Sweeney LB. Spinal neuron diversity scales exponentially with swim-to-limb transformation during frog metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614050. [PMID: 39345366 PMCID: PMC11430061 DOI: 10.1101/2024.09.20.614050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Vertebrates exhibit a wide range of motor behaviors, ranging from swimming to complex limb-based movements. Here we take advantage of frog metamorphosis, which captures a swim-to-limb-based movement transformation during the development of a single organism, to explore changes in the underlying spinal circuits. We find that the tadpole spinal cord contains small and largely homogeneous populations of motor neurons (MNs) and V1 interneurons (V1s) at early escape swimming stages. These neuronal populations only modestly increase in number and subtype heterogeneity with the emergence of free swimming. In contrast, during frog metamorphosis and the emergence of limb movement, there is a dramatic expansion of MN and V1 interneuron number and transcriptional heterogeneity, culminating in cohorts of neurons that exhibit striking molecular similarity to mammalian motor circuits. CRISPR/Cas9-mediated gene disruption of the limb MN and V1 determinants FoxP1 and Engrailed-1, respectively, results in severe but selective deficits in tail and limb function. Our work thus demonstrates that neural diversity scales exponentially with increasing behavioral complexity and illustrates striking evolutionary conservation in the molecular organization and function of motor circuits across species.
Collapse
Affiliation(s)
- David Vijatovic
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | | | | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexandra J. Trevisan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mara J. Julseth
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Mariano I. Gabitto
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, 98109, USA
| | - Jeremy S. Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lora B. Sweeney
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
6
|
Ortabozkoyun H, Huang PY, Gonzalez-Buendia E, Cho H, Kim SY, Tsirigos A, Mazzoni EO, Reinberg D. Members of an array of zinc-finger proteins specify distinct Hox chromatin boundaries. Mol Cell 2024; 84:3406-3422.e6. [PMID: 39173638 DOI: 10.1016/j.molcel.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Partitioning of repressive from actively transcribed chromatin in mammalian cells fosters cell-type-specific gene expression patterns. While this partitioning is reconstructed during differentiation, the chromatin occupancy of the key insulator, CCCTC-binding factor (CTCF), is unchanged at the developmentally important Hox clusters. Thus, dynamic changes in chromatin boundaries must entail other activities. Given its requirement for chromatin loop formation, we examined cohesin-based chromatin occupancy without known insulators, CTCF and Myc-associated zinc-finger protein (MAZ), and identified a family of zinc-finger proteins (ZNFs), some of which exhibit tissue-specific expression. Two such ZNFs foster chromatin boundaries at the Hox clusters that are distinct from each other and from MAZ. PATZ1 was critical to the thoracolumbar boundary in differentiating motor neurons and mouse skeleton, while ZNF263 contributed to cervicothoracic boundaries. We propose that these insulating activities act with cohesin, alone or combinatorially, with or without CTCF, to implement precise positional identity and cell fate during development.
Collapse
Affiliation(s)
- Havva Ortabozkoyun
- Howard Hughes Medical Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA.
| | - Pin-Yao Huang
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA
| | - Edgar Gonzalez-Buendia
- Howard Hughes Medical Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA
| | - Hyein Cho
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA; Department of Medicine, Division of Precision Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Sang Y Kim
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA; Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Esteban O Mazzoni
- Department of Cell Biology, NYU Langone Health, New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
7
|
Worthy AE, Anderson JT, Lane AR, Gomez-Perez L, Wang AA, Griffith RW, Rivard AF, Bikoff JB, Alvarez FJ. Spinal V1 inhibitory interneuron clades differ in birthdate, projections to motoneurons, and heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569270. [PMID: 38076820 PMCID: PMC10705425 DOI: 10.1101/2023.11.29.569270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Spinal cord interneurons play critical roles shaping motor output, but their precise identity and connectivity remain unclear. Focusing on the V1 interneuron cardinal class we defined four major V1 subsets according to neurogenesis timing, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Birthdate delineates two early born (Renshaw and Pou6f2) and two late born (Foxp2 and Sp8) V1 clades, showing that sequential neurogenesis produces different V1 subsets. Early born Renshaw cells and late born Foxp2-V1 interneurons are tightly coupled to motoneurons, while early born Pou6f2-V1 and late born Sp8-V1 interneurons are not, indicating that timing of neurogenesis does not correlate with motoneuron targeting. V1 clades also differ in cell numbers and diversity. Lineage labeling shows that the Foxp2-V1 clade contains over half of all V1 interneurons, provides the largest inhibitory input to motoneuron cell bodies and includes subgroups that differ in birthdate, location, and proprioceptive input. Notably, one Foxp2-V1 subgroup, defined by postnatal Otp expression is positioned near the lateral motor column and receives substantial input from proprioceptors, consistent with an involvement in reciprocal inhibitory pathways. Combined tracing of ankle flexor sensory afferents and interneurons monosynaptically connected to ankle extensors confirmed placement of Foxp2-V1 interneurons in reciprocal inhibitory pathways. Our results validate previously proposed V1 clades as unique functional subtypes that differ in circuit placement, with Foxp2-V1 cells forming the most heterogeneous subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for their diverse ontogenetic and phylogenetic origins. SIGNIFICANCE STATEMENT The complexity of spinal interneuron diversity and circuit organization represents a challenge to understand neural control of movement in normal adults as well as during motor development and in disease. Inhibitory interneurons are a core element of these spinal circuits. V1 interneurons comprise the largest group of inhibitory interneurons in the ventral horn, and their organization remains unclear. Here we present a comprehensive examination of V1 subtypes according to neurogenesis, placement in spinal motor circuits, and motoneuron synaptic targeting. V1 diversity increases during evolution from axial-swimming fishes to limb-based mammalian terrestrial locomotion. This increased diversity is reflected in the size and heterogeneity of the Foxp2-V1 clade, a group closely associated with limb motor pools. We show that Foxp2-V1 interneurons establish the densest direct inhibitory input to motoneurons, especially on cell bodies. These findings are particularly significant because recent studies have shown that motor neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) affect inhibitory V1 synapses on motoneuron cell bodies and Foxp2-V1 interneurons themselves in the earliest stages of pathology.
Collapse
|
8
|
Fletcher EV, Chalif JI, Rotterman TM, Pagiazitis JG, Alstyne MV, Sivakumar N, Rabinowitz JE, Pellizzoni L, Alvarez FJ, Mentis GZ. Synaptic imbalance and increased inhibition impair motor function in SMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610545. [PMID: 39257773 PMCID: PMC11383993 DOI: 10.1101/2024.08.30.610545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Movement is executed through the balanced action of excitatory and inhibitory neurotransmission in motor circuits of the spinal cord. Short-term perturbations in one of the two types of transmission are counteracted by homeostatic changes of the opposing type. Prolonged failure to balance excitatory and inhibitory drive results in dysfunction at the single neuron, as well as neuronal network levels. However, whether dysfunction in one or both types of neurotransmission leads to pathogenicity in neurodegenerative diseases characterized by select synaptic deficits is not known. Here, we used mouse genetics, functional assays, morphological methods, and viral-mediated approaches to uncover the pathogenic contribution of unbalanced excitation-inhibition neurotransmission in a mouse model of spinal muscular atrophy (SMA). We show that vulnerable motor circuits in the SMA spinal cord fail to respond homeostatically to the reduction of excitatory drive and instead increase inhibition. This imposes an excessive burden on motor neurons and further restricts their recruitment to activate muscle contraction. Importantly, genetic or pharmacological reduction of inhibitory synaptic drive improves neuronal function and provides behavioural benefit in SMA mice. Our findings identify the lack of excitation-inhibition homeostasis as a major maladaptive mechanism in SMA, by which the combined effects of reduced excitation and increased inhibition diminish the capacity of premotor commands to recruit motor neurons and elicit muscle contractions.
Collapse
Affiliation(s)
- Emily V. Fletcher
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Joshua I. Chalif
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | | | - John G. Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Nandhini Sivakumar
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Joseph E. Rabinowitz
- Department of Pharmacology, Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | | | - George Z. Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
9
|
Ortabozkoyun H, Huang PY, Gonzalez-Buendia E, Cho H, Kim SY, Tsirigos A, Mazzoni EO, Reinberg D. Members of an array of zinc finger proteins specify distinct Hox chromatin boundaries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.25.538167. [PMID: 37162865 PMCID: PMC10168243 DOI: 10.1101/2023.04.25.538167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Partitioning of repressive from actively transcribed chromatin in mammalian cells fosters cell-type specific gene expression patterns. While this partitioning is reconstructed during differentiation, the chromatin occupancy of the key insulator, CTCF, is unchanged at the developmentally important Hox clusters. Thus, dynamic changes in chromatin boundaries must entail other activities. Given its requirement for chromatin loop formation, we examined cohesin-based chromatin occupancy without known insulators, CTCF and MAZ, and identified a family of zinc finger proteins (ZNFs), some of which exhibit tissue-specific expression. Two such ZNFs foster chromatin boundaries at the Hox clusters that are distinct from each other and from MAZ. PATZ1 was critical to the thoracolumbar boundary in differentiating motor neurons and mouse skeleton, while ZNF263 contributed to cervicothoracic boundaries. We propose that these insulating activities act with cohesin, alone or combinatorially, with or without CTCF, to implement precise positional identity and cell fate during development.
Collapse
|
10
|
Goffin L, Lemoine D, Clotman F. Potential contribution of spinal interneurons to the etiopathogenesis of amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1434404. [PMID: 39091344 PMCID: PMC11293063 DOI: 10.3389/fnins.2024.1434404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) consists of a group of adult-onset fatal and incurable neurodegenerative disorders characterized by the progressive death of motor neurons (MNs) throughout the central nervous system (CNS). At first, ALS was considered to be an MN disease, caused by cell-autonomous mechanisms acting specifically in MNs. Accordingly, data from ALS patients and ALS animal models revealed alterations in excitability in multiple neuronal populations, including MNs, which were associated with a variety of cellular perturbations such as protein aggregation, ribonucleic acid (RNA) metabolism defects, calcium dyshomeostasis, modified electrophysiological properties, and autophagy malfunctions. However, experimental evidence rapidly demonstrated the involvement of other types of cells, including glial cells, in the etiopathogenesis of ALS through non-cell autonomous mechanisms. Surprisingly, the contribution of pre-motor interneurons (INs), which regulate MN activity and could therefore critically modulate their excitability at the onset or during the progression of the disease, has to date been severely underestimated. In this article, we review in detail how spinal pre-motor INs are affected in ALS and their possible involvement in the etiopathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Mora S, Stuckert A, von Huth Friis R, Pietersz K, Noes-Holt G, Montañana-Rosell R, Wang H, Sørensen AT, Selvan R, Verhaagen J, Allodi I. Stabilization of V1 interneuron-motor neuron connectivity ameliorates motor phenotype in a mouse model of ALS. Nat Commun 2024; 15:4867. [PMID: 38849367 PMCID: PMC11161600 DOI: 10.1038/s41467-024-48925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Loss of connectivity between spinal V1 inhibitory interneurons and motor neurons is found early in disease in the SOD1G93A mice. Such changes in premotor inputs can contribute to homeostatic imbalance of motor neurons. Here, we show that the Extended Synaptotagmin 1 (Esyt1) presynaptic organizer is downregulated in V1 interneurons. V1 restricted overexpression of Esyt1 rescues inhibitory synapses, increases motor neuron survival, and ameliorates motor phenotypes. Two gene therapy approaches overexpressing ESYT1 were investigated; one for local intraspinal delivery, and the other for systemic administration using an AAV-PHP.eB vector delivered intravenously. Improvement of motor functions is observed in both approaches, however systemic administration appears to significantly reduce onset of motor impairment in the SOD1G93A mice in absence of side effects. Altogether, we show that stabilization of V1 synapses by ESYT1 overexpression has the potential to improve motor functions in ALS, demonstrating that interneurons can be a target to attenuate ALS symptoms.
Collapse
Affiliation(s)
- Santiago Mora
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Anna Stuckert
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | - Kimberly Pietersz
- The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Gith Noes-Holt
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Haoyu Wang
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | - Raghavendra Selvan
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Joost Verhaagen
- The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ilary Allodi
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.
| |
Collapse
|
12
|
Sagner A. Temporal patterning of the vertebrate developing neural tube. Curr Opin Genet Dev 2024; 86:102179. [PMID: 38490162 DOI: 10.1016/j.gde.2024.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/29/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
The chronologically ordered generation of distinct cell types is essential for the establishment of neuronal diversity and the formation of neuronal circuits. Recently, single-cell transcriptomic analyses of various areas of the developing vertebrate nervous system have provided evidence for the existence of a shared temporal patterning program that partitions neurons based on the timing of neurogenesis. In this review, I summarize the findings that lead to the proposal of this shared temporal program before focusing on the developing spinal cord to discuss how temporal patterning in general and this program specifically contributes to the ordered formation of neuronal circuits.
Collapse
Affiliation(s)
- Andreas Sagner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054 Erlangen, Germany.
| |
Collapse
|
13
|
Godavarthi SK, Hiramoto M, Ignatyev Y, Levin JB, Li HQ, Pratelli M, Borchardt J, Czajkowski C, Borodinsky LN, Sweeney L, Cline HT, Spitzer NC. Postsynaptic receptors regulate presynaptic transmitter stability through transsynaptic bridges. Proc Natl Acad Sci U S A 2024; 121:e2318041121. [PMID: 38568976 PMCID: PMC11009644 DOI: 10.1073/pnas.2318041121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.
Collapse
Affiliation(s)
- Swetha K. Godavarthi
- Neurobiology Department, University of California San Diego, La Jolla, CA92093
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA92093
| | - Masaki Hiramoto
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA92037
| | - Yuri Ignatyev
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Jacqueline B. Levin
- Department of Physiology & Membrane Biology Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, CA95817
| | - Hui-quan Li
- Neurobiology Department, University of California San Diego, La Jolla, CA92093
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA92093
| | - Marta Pratelli
- Neurobiology Department, University of California San Diego, La Jolla, CA92093
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA92093
| | - Jennifer Borchardt
- Neuroscience Department, University of Wisconsin Madison, Madison, WI53705
| | - Cynthia Czajkowski
- Neuroscience Department, University of Wisconsin Madison, Madison, WI53705
| | - Laura N. Borodinsky
- Department of Physiology & Membrane Biology Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, CA95817
| | - Lora Sweeney
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Hollis T. Cline
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA92037
| | - Nicholas C. Spitzer
- Neurobiology Department, University of California San Diego, La Jolla, CA92093
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
14
|
Goldblatt D, Rosti B, Hamling KR, Leary P, Panchal H, Li M, Gelnaw H, Huang S, Quainoo C, Schoppik D. Motor neurons are dispensable for the assembly of a sensorimotor circuit for gaze stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577261. [PMID: 38328255 PMCID: PMC10849732 DOI: 10.1101/2024.01.25.577261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of general principles of neural development.
Collapse
Affiliation(s)
- Dena Goldblatt
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
- Center for Neural Science, New York University
| | - Başak Rosti
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Kyla R. Hamling
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Paige Leary
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Harsh Panchal
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Marlyn Li
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
- Center for Neural Science, New York University
| | - Hannah Gelnaw
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Stephanie Huang
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
- Center for Neural Science, New York University
| | - Cheryl Quainoo
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
- Lead Contact
| |
Collapse
|
15
|
Liu C, Xie Y, Chen X, Liu L, Liu C, Yin Z. BAF45D-binding to HOX genes was differentially targeted in H9-derived spinal cord neural stem cells. Sci Rep 2024; 14:29. [PMID: 38168763 PMCID: PMC10761701 DOI: 10.1038/s41598-023-50939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Chromatin accessibility has been used to define how cells adopt region-specific neural fates. BAF45D is one of the subunits of a specialised chromatin remodelling BAF complex. It has been reported that BAF45D is expressed in spinal cord neural stem cells (NSCs) and regulates their fate specification. Within the developing vertebrate spinal cord, HOX genes exhibit spatially restricted expression patterns. However, the chromatin accessibility of BAF45D binding HOX genes in spinal cord NSCs is unclear. In the present study, we found that in H9-derived spinal cord NSCs, BAF45D targets TBX6, a gene that regulates spinal cord neural mesodermal progenitors. Furthermore, BAF45D binding to the NES gene is much more enriched in H9-derived spinal cord NSCs chromatin compared to ESCs chromatin. In addition, BAF45D binding to anterior and trunk/central HOX genes, but not to lumbosacral HOX genes, was much more enriched in NSCs chromatin compared to ESCs chromatin. These results may shed new light on the role of BAF45D in regulating region-specific spinal cord NSCs by targeting HOX genes.
Collapse
Affiliation(s)
- Chang Liu
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yuxin Xie
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xueying Chen
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chao Liu
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
16
|
Roman A, Huntemer-Silveira A, Waldron MA, Khalid Z, Blake J, Parr AM, Low WC. Cell Transplantation for Repair of the Spinal Cord and Prospects for Generating Region-Specific Exogenic Neuronal Cells. Cell Transplant 2024; 33:9636897241241998. [PMID: 38590295 PMCID: PMC11005494 DOI: 10.1177/09636897241241998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Spinal cord injury (SCI) is associated with currently irreversible consequences in several functional components of the central nervous system. Despite the severity of injury, there remains no approved treatment to restore function. However, with a growing number of preclinical studies and clinical trials, cell transplantation has gained significant potential as a treatment for SCI. Researchers have identified several cell types as potential candidates for transplantation. To optimize successful functional outcomes after transplantation, one key factor concerns generating neuronal cells with regional and subtype specificity, thus calling on the developmental transcriptome patterning of spinal cord cells. A potential source of spinal cord cells for transplantation is the generation of exogenic neuronal progenitor cells via the emerging technologies of gene editing and blastocyst complementation. This review highlights the use of cell transplantation to treat SCI in the context of relevant developmental gene expression patterns useful for producing regionally specific exogenic spinal cells via in vitro differentiation and blastocyst complementation.
Collapse
Affiliation(s)
- Alex Roman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Anne Huntemer-Silveira
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Madison A. Waldron
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Zainab Khalid
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey Blake
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Ann M. Parr
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
17
|
Miller A, Dasen JS. Establishing and maintaining Hox profiles during spinal cord development. Semin Cell Dev Biol 2024; 152-153:44-57. [PMID: 37029058 PMCID: PMC10524138 DOI: 10.1016/j.semcdb.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
Collapse
Affiliation(s)
- Alexander Miller
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Jeremy S Dasen
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
18
|
Park SJ, Lei W, Pisano J, Orpia A, Minehart J, Pottackal J, Hanke-Gogokhia C, Zapadka TE, Clarkson-Paredes C, Popratiloff A, Ross SE, Singer JH, Demb JB. Molecular identification of wide-field amacrine cells in mouse retina that encode stimulus orientation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573580. [PMID: 38234775 PMCID: PMC10793454 DOI: 10.1101/2023.12.28.573580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Visual information processing is sculpted by a diverse group of inhibitory interneurons in the retina called amacrine cells. Yet, for most of the >60 amacrine cell types, molecular identities and specialized functional attributes remain elusive. Here, we developed an intersectional genetic strategy to target a group of wide-field amacrine cells (WACs) in mouse retina that co-express the transcription factor Bhlhe22 and the Kappa Opioid Receptor (KOR; B/K WACs). B/K WACs feature straight, unbranched dendrites spanning over 0.5 mm (∼15° visual angle) and produce non-spiking responses to either light increments or decrements. Two-photon dendritic population imaging reveals Ca 2+ signals tuned to the physical orientations of B/K WAC dendrites, signifying a robust structure-function alignment. B/K WACs establish divergent connections with multiple retinal neurons, including unexpected connections with non-orientation-tuned ganglion cells and bipolar cells. Our work sets the stage for future comprehensive investigations of the most enigmatic group of retinal neurons: WACs.
Collapse
|
19
|
Roome RB, Levine AJ. The organization of spinal neurons: Insights from single cell sequencing. Curr Opin Neurobiol 2023; 82:102762. [PMID: 37657185 PMCID: PMC10727478 DOI: 10.1016/j.conb.2023.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/16/2023] [Accepted: 07/22/2023] [Indexed: 09/03/2023]
Abstract
To understand how the spinal cord enacts complex sensorimotor functions, researchers have studied, classified, and functionally probed it's many neuronal populations for over a century. Recent developments in single-cell RNA-sequencing can characterize the gene expression signatures of the entire set of spinal neuron types and can simultaneously provide an unbiased view of their relationships to each other. This approach has revealed that the location of neurons predicts transcriptomic variability, as dorsal spinal neurons become highly distinct over development as ventral spinal neurons become less so. Temporal specification is also a major source of gene expression variation, subdividing many of the canonical embryonic lineage domains. Together, birthdate and cell body location are fundamental organizing features of spinal neuron diversity.
Collapse
Affiliation(s)
- R Brian Roome
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA. https://twitter.com/BrianRoome
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA.
| |
Collapse
|
20
|
Dougherty KJ. Distinguishing subtypes of spinal locomotor neurons to inform circuit function and dysfunction. Curr Opin Neurobiol 2023; 82:102763. [PMID: 37611531 PMCID: PMC10578609 DOI: 10.1016/j.conb.2023.102763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Locomotion is a complex motor task executed by spinal neurons. Given the diversity of spinal cord neurons, linking neuronal cell type to function is a challenge. Molecular identification of broad spinal interneuronal classes provided a great advance. Recent studies have used other classifiers, including location, electrophysiological properties, and connectivity, in addition to gene profiling, to narrow the acuity with which groups of neurons can be related to specific functions. However, there are also functional populations without a clear identifier, as exemplified by rhythm generating neurons. Other considerations, including experience or plasticity, add a layer of complexity to the definition of functional subpopulations of spinal neurons, but spinal cord injury may provide insight.
Collapse
Affiliation(s)
- Kimberly J Dougherty
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
21
|
Huntemer-Silveira A, Malone D, Frie A, Walsh P, Parr AM. Accelerated differentiation of human induced pluripotent stem cells into regionally specific dorsal and ventral spinal neural progenitor cells for application in spinal cord therapeutics. Front Neurosci 2023; 17:1251906. [PMID: 37781243 PMCID: PMC10540309 DOI: 10.3389/fnins.2023.1251906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Spinal cord injury can attenuate both motor and sensory function with minimal potential for full recovery. Research utilizing human induced pluripotent stem cell (hiPSC) -derived spinal cell types for in vivo remodeling and neuromodulation after spinal cord injury has grown substantially in recent years. However, the majority of protocols for the differentiation of spinal neurons are lengthy, lack the appropriate dorsoventral or rostrocaudal specification, and are not typically replicated in more than one cell line. Furthermore, most researchers currently utilize hiPSC-derived motor neurons for cell transplantation after injury, with very little exploration of spinal sensory neuron transplantation. The lack of studies that utilize sensory populations may be due in part to the relative scarcity of dorsal horn differentiation protocols. Building upon our previously published work that demonstrated the rapid establishment of a primitive ectoderm population from hiPSCs, we describe here the production of a diverse population of both ventral spinal and dorsal horn progenitor cells. Our work creates a novel system allowing dorsal and ventral spinal neurons to be differentiated from the same intermediate ectoderm population, making it possible to construct the dorsal and ventral domains of the spinal cord while decreasing variability. This technology can be used in tandem with biomaterials and pharmacology to improve cell transplantation for spinal cord injury, increasing the potential for neuroregeneration.
Collapse
Affiliation(s)
| | - Dane Malone
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Anna Frie
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Patrick Walsh
- Anatomic Incorporated, Minneapolis, MN, United States
| | - Ann M. Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Abstract
The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.
Collapse
Affiliation(s)
- Mohini Sengupta
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA;
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
23
|
Sen SQ. Generating neural diversity through spatial and temporal patterning. Semin Cell Dev Biol 2023; 142:54-66. [PMID: 35738966 DOI: 10.1016/j.semcdb.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
The nervous system consists of a vast diversity of neurons and glia that are accurately assembled into functional circuits. What are the mechanisms that generate these diverse cell types? During development, an epithelial sheet with neurogenic potential is initially regionalised into spatially restricted domains of gene expression. From this, pools of neural stem cells (NSCs) with distinct molecular profiles and the potential to generate different neuron types, are specified. These NSCs then divide asymmetrically to self-renew and generate post-mitotic neurons or glia. As NSCs age, they experience transitions in gene expression, which further allows them to generate different neurons or glia over time. Versions of this general template of spatial and temporal patterning operate during the development of different parts of different nervous systems. Here, I cover our current knowledge of Drosophila brain and optic lobe development as well as the development of the vertebrate cortex and spinal cord within the framework of this above template. I highlight where our knowledge is lacking, where mechanisms beyond these might operate, and how the emergence of new technologies might help address unanswered questions.
Collapse
Affiliation(s)
- Sonia Q Sen
- Tata Institute for Genetics and Society, UAS-GKVK Campus, Bellary Road, Bangalore, India.
| |
Collapse
|
24
|
Aceves M, Tucker A, Chen J, Vo K, Moses J, Amar Kumar P, Thomas H, Miranda D, Dampf G, Dietz V, Chang M, Lukose A, Jang J, Nadella S, Gillespie T, Trevino C, Buxton A, Pritchard AL, Green P, McCreedy DA, Dulin JN. Developmental stage of transplanted neural progenitor cells influences anatomical and functional outcomes after spinal cord injury in mice. Commun Biol 2023; 6:544. [PMID: 37208439 PMCID: PMC10199026 DOI: 10.1038/s42003-023-04893-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Neural progenitor cell (NPC) transplantation is a promising therapeutic strategy for replacing lost neurons following spinal cord injury (SCI). However, how graft cellular composition influences regeneration and synaptogenesis of host axon populations, or recovery of motor and sensory functions after SCI, is poorly understood. We transplanted developmentally-restricted spinal cord NPCs, isolated from E11.5-E13.5 mouse embryos, into sites of adult mouse SCI and analyzed graft axon outgrowth, cellular composition, host axon regeneration, and behavior. Earlier-stage grafts exhibited greater axon outgrowth, enrichment for ventral spinal cord interneurons and Group-Z spinal interneurons, and enhanced host 5-HT+ axon regeneration. Later-stage grafts were enriched for late-born dorsal horn interneuronal subtypes and Group-N spinal interneurons, supported more extensive host CGRP+ axon ingrowth, and exacerbated thermal hypersensitivity. Locomotor function was not affected by any type of NPC graft. These findings showcase the role of spinal cord graft cellular composition in determining anatomical and functional outcomes following SCI.
Collapse
Affiliation(s)
- Miriam Aceves
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ashley Tucker
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph Chen
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Katie Vo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Joshua Moses
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Hannah Thomas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Diego Miranda
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Gabrielle Dampf
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Valerie Dietz
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew Chang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Aleena Lukose
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Julius Jang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Sneha Nadella
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Tucker Gillespie
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Christian Trevino
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew Buxton
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Anna L Pritchard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Dylan A McCreedy
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
25
|
Wilson AC, Sweeney LB. Spinal cords: Symphonies of interneurons across species. Front Neural Circuits 2023; 17:1146449. [PMID: 37180760 PMCID: PMC10169611 DOI: 10.3389/fncir.2023.1146449] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Vertebrate movement is orchestrated by spinal inter- and motor neurons that, together with sensory and cognitive input, produce dynamic motor behaviors. These behaviors vary from the simple undulatory swimming of fish and larval aquatic species to the highly coordinated running, reaching and grasping of mice, humans and other mammals. This variation raises the fundamental question of how spinal circuits have changed in register with motor behavior. In simple, undulatory fish, exemplified by the lamprey, two broad classes of interneurons shape motor neuron output: ipsilateral-projecting excitatory neurons, and commissural-projecting inhibitory neurons. An additional class of ipsilateral inhibitory neurons is required to generate escape swim behavior in larval zebrafish and tadpoles. In limbed vertebrates, a more complex spinal neuron composition is observed. In this review, we provide evidence that movement elaboration correlates with an increase and specialization of these three basic interneuron types into molecularly, anatomically, and functionally distinct subpopulations. We summarize recent work linking neuron types to movement-pattern generation across fish, amphibians, reptiles, birds and mammals.
Collapse
Affiliation(s)
| | - Lora B. Sweeney
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Lower Austria, Austria
| |
Collapse
|
26
|
Mendizábal-Castillero M, Merlo MA, Cross I, Rodríguez ME, Rebordinos L. Genomic Characterization of hox Genes in Senegalese Sole ( Solea senegalensis, Kaup 1858): Clues to Evolutionary Path in Pleuronectiformes. Animals (Basel) 2022; 12:ani12243586. [PMID: 36552509 PMCID: PMC9774920 DOI: 10.3390/ani12243586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The Senegalese sole (Solea senegalensis, Kaup 1858), a marine flatfish, belongs to the Pleuronectiformes order. It is a commercially important species for fisheries and aquaculture. However, in aquaculture, several production bottlenecks have still to be resolved, including skeletal deformities and high mortality during the larval and juvenile phase. The study aims to characterize the hox gene clusters in S. senegalensis to understand better the developmental and metamorphosis process in this species. Using a BAC library, the clones that contain hox genes were isolated, sequenced by NGS and used as BAC-FISH probes. Subsequently the hox clusters were studied by sequence analysis, comparative genomics, and cytogenetic and phylogenetic analysis. Cytogenetic analysis demonstrated the localization of four BAC clones on chromosome pairs 4, 12, 13, and 16 of the Senegalese sole cytogenomic map. Comparative and phylogenetic analysis showed a highly conserved organization in each cluster and different phylogenetic clustering in each hox cluster. Analysis of structural and repetitive sequences revealed accumulations of polymorphisms mediated by repetitive elements in the hoxba cluster, mainly retroelements. Therefore, a possible loss of the hoxb7a gene can be established in the Pleuronectiformes lineage. This work allows the organization and regulation of hox clusters to be understood, and is a good base for further studies of expression patterns.
Collapse
|
27
|
Yoo D, Park J, Lee C, Song I, Lee YH, Yun T, Lee H, Heguy A, Han JY, Dasen JS, Kim H, Baek M. Little skate genome provides insights into genetic programs essential for limb-based locomotion. eLife 2022; 11:e78345. [PMID: 36288084 PMCID: PMC9605692 DOI: 10.7554/elife.78345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The little skate Leucoraja erinacea, a cartilaginous fish, displays pelvic fin driven walking-like behavior using genetic programs and neuronal subtypes similar to those of land vertebrates. However, mechanistic studies on little skate motor circuit development have been limited, due to a lack of high-quality reference genome. Here, we generated an assembly of the little skate genome, with precise gene annotation and structures, which allowed post-genome analysis of spinal motor neurons (MNs) essential for locomotion. Through interspecies comparison of mouse, skate and chicken MN transcriptomes, shared and divergent gene expression profiles were identified. Comparison of accessible chromatin regions between mouse and skate MNs predicted shared transcription factor (TF) motifs with divergent ones, which could be used for achieving differential regulation of MN-expressed genes. A greater number of TF motif predictions were observed in MN-expressed genes in mouse than in little skate. These findings suggest conserved and divergent molecular mechanisms controlling MN development of vertebrates during evolution, which might contribute to intricate gene regulatory networks in the emergence of a more sophisticated motor system in tetrapods.
Collapse
Affiliation(s)
- DongAhn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
| | - Junhee Park
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
| | - Injun Song
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| | - Young Ho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
| | - Tery Yun
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| | - Hyemin Lee
- Department of Biology, Graduate School of Arts and Science, NYUNew YorkUnited States
| | - Adriana Heguy
- Genome Technology Center, Division for Advanced Research Technologies, and Department of Pathology, NYU School of MedicineNew YorkUnited States
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Seoul National UniversitySeoulRepublic of Korea
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoulRepublic of Korea
- eGnome, IncSeoulRepublic of Korea
| | - Myungin Baek
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| |
Collapse
|
28
|
Iyer NR, Shin J, Cuskey S, Tian Y, Nicol NR, Doersch TE, Seipel F, McCalla SG, Roy S, Ashton RS. Modular derivation of diverse, regionally discrete human posterior CNS neurons enables discovery of transcriptomic patterns. SCIENCE ADVANCES 2022; 8:eabn7430. [PMID: 36179024 PMCID: PMC9524835 DOI: 10.1126/sciadv.abn7430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/16/2022] [Indexed: 06/02/2023]
Abstract
Our inability to derive the neuronal diversity that comprises the posterior central nervous system (pCNS) using human pluripotent stem cells (hPSCs) poses an impediment to understanding human neurodevelopment and disease in the hindbrain and spinal cord. Here, we establish a modular, monolayer differentiation paradigm that recapitulates both rostrocaudal (R/C) and dorsoventral (D/V) patterning, enabling derivation of diverse pCNS neurons with discrete regional specificity. First, neuromesodermal progenitors (NMPs) with discrete HOX profiles are converted to pCNS progenitors (pCNSPs). Then, by tuning D/V signaling, pCNSPs are directed to locomotor or somatosensory neurons. Expansive single-cell RNA-sequencing (scRNA-seq) analysis coupled with a novel computational pipeline allowed us to detect hundreds of transcriptional markers within region-specific phenotypes, enabling discovery of gene expression patterns across R/C and D/V developmental axes. These findings highlight the potential of these resources to advance a mechanistic understanding of pCNS development, enhance in vitro models, and inform therapeutic strategies.
Collapse
Affiliation(s)
- Nisha R. Iyer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Junha Shin
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephanie Cuskey
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Yucheng Tian
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Noah R. Nicol
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Tessa E. Doersch
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Frank Seipel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sunnie Grace McCalla
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Randolph S. Ashton
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
29
|
Jankowska E. Basic principles of processing of afferent information by spinal interneurons. J Neurophysiol 2022; 128:689-695. [PMID: 36043802 DOI: 10.1152/jn.00344.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Integrative functions of spinal interneurons are well recognized but the relative role of different interneuronal populations in this process continues to be investigated. It therefore appeared useful to review the principles of integration of afferent information by the interneurons analyzed so far as these principles should apply also to those remaining to be analyzed. Considering the results of both functional and morphological studies of spinal interneurons and of the morphology and immunochemistry of afferent fibres that provide input to them, the following five basic principles of processing of afferent information by them will be outlined; (i) afferent information of any origin is forwarded to several neuronal populations, (ii) information from any sources of input is distributed unevenly, (iii) input from several sources is integrated by individual neurons as well as by their populations, (iv) specific combinations of input are integrated by different neuronal populations and (v) afferent input to spinal interneurons is only one of the features distinguishing their functional populations. As the spinal neuronal organization and properties of neurons and afferent fibres in the so far investigated species (cat, rodents, primates) have been found to resemble, future studies utilizing molecular techniques in the mouse should allow the new data to integrate with those of the preceding studies and the principles outlined above as well as any new ones should apply also in humans.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
30
|
Needham J, Metzis V. Heads or tails: Making the spinal cord. Dev Biol 2022; 485:80-92. [DOI: 10.1016/j.ydbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
31
|
Feng W, Li Y, Kratsios P. Emerging Roles for Hox Proteins in the Last Steps of Neuronal Development in Worms, Flies, and Mice. Front Neurosci 2022; 15:801791. [PMID: 35185450 PMCID: PMC8855150 DOI: 10.3389/fnins.2021.801791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 12/28/2022] Open
Abstract
A remarkable diversity of cell types characterizes every animal nervous system. Previous studies provided important insights into how neurons commit to a particular fate, migrate to the right place and form precise axodendritic patterns. However, the mechanisms controlling later steps of neuronal development remain poorly understood. Hox proteins represent a conserved family of homeodomain transcription factors with well-established roles in anterior-posterior (A-P) patterning and the early steps of nervous system development, including progenitor cell specification, neuronal migration, cell survival, axon guidance and dendrite morphogenesis. This review highlights recent studies in Caenorhabditis elegans, Drosophila melanogaster and mice that suggest new roles for Hox proteins in processes occurring during later steps of neuronal development, such as synapse formation and acquisition of neuronal terminal identity features (e.g., expression of ion channels, neurotransmitter receptors, and neuropeptides). Moreover, we focus on exciting findings suggesting Hox proteins are required to maintain synaptic structures and neuronal terminal identity during post-embryonic life. Altogether, these studies, in three model systems, support the hypothesis that certain Hox proteins are continuously required, from early development throughout post-embryonic life, to build and maintain a functional nervous system, significantly expanding their functional repertoire beyond the control of early A-P patterning.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, United States
| | - Yinan Li
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
- Committee on Neurobiology, University of Chicago, Chicago, IL, United States
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
| |
Collapse
|
32
|
Dasen JS. Establishing the Molecular and Functional Diversity of Spinal Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:3-44. [PMID: 36066819 DOI: 10.1007/978-3-031-07167-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.
Collapse
Affiliation(s)
- Jeremy S Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Namboori SC, Thomas P, Ames R, Hawkins S, Garrett LO, Willis CRG, Rosa A, Stanton LW, Bhinge A. Single-cell transcriptomics identifies master regulators of neurodegeneration in SOD1 ALS iPSC-derived motor neurons. Stem Cell Reports 2021; 16:3020-3035. [PMID: 34767750 PMCID: PMC8693652 DOI: 10.1016/j.stemcr.2021.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterized by the loss of motor neurons. We utilized single-cell transcriptomics to uncover dysfunctional pathways in degenerating motor neurons differentiated from SOD1 E100G ALS patient-derived induced pluripotent stem cells (iPSCs) and respective isogenic controls. Differential gene expression and network analysis identified activation of developmental pathways and core transcriptional factors driving the ALS motor neuron gene dysregulation. Specifically, we identified activation of SMAD2, a downstream mediator of the transforming growth factor β (TGF-β) signaling pathway as a key driver of SOD1 iPSC-derived motor neuron degeneration. Importantly, our analysis indicates that activation of TGFβ signaling may be a common mechanism shared between SOD1, FUS, C9ORF72, VCP, and sporadic ALS motor neurons. Our results demonstrate the utility of single-cell transcriptomics in mapping disease-relevant gene regulatory networks driving neurodegeneration in ALS motor neurons. We find that ALS-associated mutant SOD1 targets transcriptional networks that perturb motor neuron homeostasis. Single-cell transcriptomic analysis of SOD1 E100G ALS iPSC-derived motor neurons Mapping an ALS-relevant transcriptional network Upregulation of developmental programs in familial and sporadic ALS motor neurons Inhibition of TGFβ pathway improves SOD1 ALS iPSC-derived motor neuron survival
Collapse
Affiliation(s)
- Seema C Namboori
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Patricia Thomas
- Institute of Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Ryan Ames
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sophie Hawkins
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | | | - Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Viale Regina Elena 291, 00161 Rome, Italy
| | - Lawrence W Stanton
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Akshay Bhinge
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK.
| |
Collapse
|
34
|
Falgairolle M, O'Donovan MJ. Optogenetic Activation of V1 Interneurons Reveals the Multimodality of Spinal Locomotor Networks in the Neonatal Mouse. J Neurosci 2021; 41:8545-8561. [PMID: 34446573 PMCID: PMC8513699 DOI: 10.1523/jneurosci.0875-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
In the spinal cord, classes of interneurons have been studied in vitro to determine their role in producing or regulating locomotion. It is unclear whether all locomotor behaviors are produced by the same circuitry or engage different subsets of neurons. Here, in neonatal mice of either sex, we test this idea by comparing the actions of a class of spinal, inhibitory interneuron (V1) expressing channelrhodopsin driven by the engrailed-1 transcription factor on the rhythms elicited by different methods. We find that, although the overall locomotor activities in vitro are similar, V1 interneuron depolarization produces opposite effects depending of the mode of activation of the locomotor circuitry. The differential behavior of V1 neurons suggests that their function depends on how the locomotor rhythm is activated and is consistent with the idea that the functional organization of the corresponding locomotor networks also differs.SIGNIFICANCE STATEMENT The neural networks dictating the execution of fictive locomotion are located in the spinal cord. It is generally assumed that the mode of activation of these spinal networks should not change the recruitment or function of neurons. Here, we manipulated the activity of a class of interneuron (V1), which targets these networks and found that their activation induces opposite effects depending on the mode of activation. This suggests that the mode of activation of the spinal networks differentially recruits either V1 interneurons or other interneurons, or both.
Collapse
Affiliation(s)
- Melanie Falgairolle
- Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael J O'Donovan
- Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
35
|
Nicola FDC, Hua I, Levine AJ. Intersectional genetic tools to study skilled reaching in mice. Exp Neurol 2021; 347:113879. [PMID: 34597682 DOI: 10.1016/j.expneurol.2021.113879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
Reaching to grasp is an evolutionarily conserved behavior and a crucial part of the motor repertoire in mammals. As it is studied in the laboratory, reaching has become the prototypical example of dexterous forelimb movements, illuminating key principles of motor control throughout the spinal cord, brain, and peripheral nervous system. Here, we (1) review the motor elements or phases that comprise the reach, grasp, and retract movements of reaching behavior, (2) highlight the role of intersectional genetic tools in linking these movements to their neuronal substrates, (3) describe spinal cord cell types and their roles in skilled reaching, and (4) how descending pathways from the brain and the sensory systems contribute to skilled reaching. We emphasize that genetic perturbation experiments can pin-point the neuronal substrates of specific phases of reaching behavior.
Collapse
Affiliation(s)
- Fabricio do Couto Nicola
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Isabelle Hua
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States of America.
| |
Collapse
|
36
|
Russ DE, Cross RBP, Li L, Koch SC, Matson KJE, Yadav A, Alkaslasi MR, Lee DI, Le Pichon CE, Menon V, Levine AJ. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat Commun 2021; 12:5722. [PMID: 34588430 PMCID: PMC8481483 DOI: 10.1038/s41467-021-25125-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell RNA sequencing data can unveil the molecular diversity of cell types. Cell type atlases of the mouse spinal cord have been published in recent years but have not been integrated together. Here, we generate an atlas of spinal cell types based on single-cell transcriptomic data, unifying the available datasets into a common reference framework. We report a hierarchical structure of postnatal cell type relationships, with location providing the highest level of organization, then neurotransmitter status, family, and finally, dozens of refined populations. We validate a combinatorial marker code for each neuronal cell type and map their spatial distributions in the adult spinal cord. We also show complex lineage relationships among postnatal cell types. Additionally, we develop an open-source cell type classifier, SeqSeek, to facilitate the standardization of cell type identification. This work provides an integrated view of spinal cell types, their gene expression signatures, and their molecular organization.
Collapse
Affiliation(s)
- Daniel E Russ
- Division of Cancer Epidemiology and Genetics, Data Science Research Group, National Cancer Institute, NIH, Rockville, MD, USA
| | - Ryan B Patterson Cross
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Li Li
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Stephanie C Koch
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London, UK
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Archana Yadav
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Mor R Alkaslasi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Dylan I Lee
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| |
Collapse
|
37
|
Grillner S. Evolution of the vertebrate motor system - from forebrain to spinal cord. Curr Opin Neurobiol 2021; 71:11-18. [PMID: 34450468 DOI: 10.1016/j.conb.2021.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/12/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
A comparison of the vertebrate motor systems of the oldest group of now living vertebrates (lamprey) with that of mammals shows that there are striking similarities not only in the basic organization but also with regard to synaptic properties, transmitters and neuronal properties. The lamprey dorsal pallium (cortex) has a motor, a visual and a somatosensory area, and the basal ganglia, including the dopamine system, are organized in a virtually identical way in the lamprey and rodents. This also applies to the midbrain, brainstem and spinal cord. However, during evolution additional capabilities such as systems for the control of foreleg/arms, hands and fingers have evolved. The findings suggest that when the evolutionary lineages of mammals and lamprey became separate around 500 million years ago, the blueprint of the vertebrate motor system had already evolved.
Collapse
Affiliation(s)
- Sten Grillner
- Department of Neuroscience, Karolinska Institutet, SE 17177, Stockholm, Sweden.
| |
Collapse
|
38
|
Haimson B, Hadas Y, Bernat N, Kania A, Daley MA, Cinnamon Y, Lev-Tov A, Klar A. Spinal lumbar dI2 interneurons contribute to stability of bipedal stepping. eLife 2021; 10:62001. [PMID: 34396953 PMCID: PMC8448531 DOI: 10.7554/elife.62001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Peripheral and intraspinal feedback is required to shape and update the output of spinal networks that execute motor behavior. We report that lumbar dI2 spinal interneurons in chicks receive synaptic input from afferents and premotor neurons. These interneurons innervate contralateral premotor networks in the lumbar and brachial spinal cord, and their ascending projections innervate the cerebellum. These findings suggest that dI2 neurons function as interneurons in local lumbar circuits, are involved in lumbo-brachial coupling, and that part of them deliver peripheral and intraspinal feedback to the cerebellum. Silencing of dI2 neurons leads to destabilized stepping in P8 hatchlings, with occasional collapses, variable step profiles and a wide-base walking gait, suggesting that dI2 neurons may contribute to the stabilization of the bipedal gait.
Collapse
Affiliation(s)
- Baruch Haimson
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, jerusalem, Israel
| | - Yoav Hadas
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, Jerusalem, Israel
| | - Nimrod Bernat
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, jerusalem, Israel
| | - Artur Kania
- Anatomy and Cell Biology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Canada
| | - Monica A Daley
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Yuval Cinnamon
- Institute of Animal Science Poultry and Aquaculture Sci. Dept, Institute of Animal Science Poultry and Aquaculture Sci. Dept. Agricultural Research Organization, The Volcani Center, Israel, Rehovot, Israel
| | - Aharon Lev-Tov
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, Jerisalem, Israel
| | - Avihu Klar
- Medical Neurobiology, Hebrew University, Jerusalem, Israel
| |
Collapse
|
39
|
The Temporal Mechanisms Guiding Interneuron Differentiation in the Spinal Cord. Int J Mol Sci 2021; 22:ijms22158025. [PMID: 34360788 PMCID: PMC8347920 DOI: 10.3390/ijms22158025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Neurogenesis timing is an essential developmental mechanism for neuronal diversity and organization throughout the central nervous system. In the mouse spinal cord, growing evidence is beginning to reveal that neurogenesis timing acts in tandem with spatial molecular controls to diversify molecularly and functionally distinct post-mitotic interneuron subpopulations. Particularly, in some cases, this temporal ordering of interneuron differentiation has been shown to instruct specific sensorimotor circuit wirings. In zebrafish, in vivo preparations have revealed that sequential neurogenesis waves of interneurons and motor neurons form speed-dependent locomotor circuits throughout the spinal cord and brainstem. In the present review, we discuss temporal principals of interneuron diversity taken from both mouse and zebrafish systems highlighting how each can lend illuminating insights to the other. Moving forward, it is important to combine the collective knowledge from different systems to eventually understand how temporally regulated subpopulation function differentially across speed- and/or state-dependent sensorimotor movement tasks.
Collapse
|
40
|
Imai F, Adam M, Potter SS, Yoshida Y. HoxD transcription factors define monosynaptic sensory-motor specificity in the developing spinal cord. Development 2021; 148:269156. [PMID: 34128984 DOI: 10.1242/dev.191122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
The specificity of monosynaptic connections between proprioceptive sensory neurons and their recipient spinal motor neurons depends on multiple factors, including motor neuron positioning and dendrite morphology, axon projection patterns of proprioceptive sensory neurons in the spinal cord, and the ligand-receptor molecules involved in cell-to-cell recognition. However, with few exceptions, the transcription factors engaged in this process are poorly characterized. Here, we show that members of the HoxD family of transcription factors play a crucial role in the specificity of monosynaptic sensory-motor connections. Mice lacking Hoxd9, Hoxd10 and Hoxd11 exhibit defects in locomotion but have no obvious defects in motor neuron positioning or dendrite morphology through the medio-lateral and rostro-caudal axes. However, we found that quadriceps motor neurons in these mice show aberrant axon development and receive inappropriate inputs from proprioceptive sensory axons innervating the obturator muscle. These genetic studies demonstrate that the HoxD transcription factors play an integral role in the synaptic specificity of monosynaptic sensory-motor connections in the developing spinal cord.
Collapse
Affiliation(s)
- Fumiyasu Imai
- Neural Connectivity Development in Physiology and Disease Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yutaka Yoshida
- Neural Connectivity Development in Physiology and Disease Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
41
|
Blum JA, Klemm S, Shadrach JL, Guttenplan KA, Nakayama L, Kathiria A, Hoang PT, Gautier O, Kaltschmidt JA, Greenleaf WJ, Gitler AD. Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons. Nat Neurosci 2021; 24:572-583. [PMID: 33589834 PMCID: PMC8016743 DOI: 10.1038/s41593-020-00795-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023]
Abstract
The spinal cord is a fascinating structure that is responsible for coordinating movement in vertebrates. Spinal motor neurons control muscle activity by transmitting signals from the spinal cord to diverse peripheral targets. In this study, we profiled 43,890 single-nucleus transcriptomes from the adult mouse spinal cord using fluorescence-activated nuclei sorting to enrich for motor neuron nuclei. We identified 16 sympathetic motor neuron clusters, which are distinguishable by spatial localization and expression of neuromodulatory signaling genes. We found surprising skeletal motor neuron heterogeneity in the adult spinal cord, including transcriptional differences that correlate with electrophysiologically and spatially distinct motor pools. We also provide evidence for a novel transcriptional subpopulation of skeletal motor neuron (γ*). Collectively, these data provide a single-cell transcriptional atlas ( http://spinalcordatlas.org ) for investigating the organizing molecular logic of adult motor neuron diversity, as well as the cellular and molecular basis of motor neuron function in health and disease.
Collapse
Affiliation(s)
- Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sandy Klemm
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer L Shadrach
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin A Guttenplan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Arwa Kathiria
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Phuong T Hoang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia Gautier
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
42
|
Chang SH, Su YC, Chang M, Chen JA. MicroRNAs mediate precise control of spinal interneuron populations to exert delicate sensory-to-motor outputs. eLife 2021; 10:63768. [PMID: 33787491 PMCID: PMC8075582 DOI: 10.7554/elife.63768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Although the function of microRNAs (miRNAs) during embryonic development has been intensively studied in recent years, their postnatal physiological functions remain largely unexplored due to inherent difficulties with the presence of redundant paralogs of the same seed. Thus, it is particularly challenging to uncover miRNA functions at neural circuit level since animal behaviors would need to be assessed upon complete loss of miRNA family functions. Here, we focused on the neural functions of MiR34/449 that manifests a dynamic expression pattern in the spinal cord from embryonic to postnatal stages. Our behavioral assays reveal that the loss of MiR34/449 miRNAs perturb thermally induced pain response thresholds and compromised delicate motor output in mice. Mechanistically, MiR34/449 directly target Satb1 and Satb2 to fine-tune the precise number of a sub-population of motor synergy encoder (MSE) neurons. Thus, MiR34/449 fine-tunes optimal development of Satb1/2on interneurons in the spinal cord, thereby refining explicit sensory-to-motor circuit outputs. The spinal cord is an information superhighway that connects the body with the brain. There, circuits of neurons process information from the brain before sending commands to muscles to generate movement. Each spinal cord circuit contains many types of neurons, whose identity is defined by the set of genes that are active or ‘expressed’ in each cell. When a gene is turned on, its DNA sequence is copied to produce a messenger RNA (mRNA), a type of molecule that the cell then uses as a template to produce a protein. MicroRNAs (or miRNAs), on the other hand, are tiny RNA molecules that help to regulate gene expression by binding to and ‘deactivating’ specific mRNAs, stopping them from being used to make proteins. Mammalian cells contain thousands of types of microRNAs, many of which have unknown roles: this includes MiR34/449, a group of six microRNAs found mainly within the nervous system. By using genetic technology to delete this family from the mouse genome, Chang et al. now show that MiR34/449 has a key role in regulating spinal cord circuits. The first clue came from discovering that mice without the MiR34/449 family had unusual posture and a tendency to walk on tiptoe. The animals were also more sensitive to heat, flicking their tails away from a heat source more readily than control mice. At a finer level, the spinal cords of the mutants contained greater numbers of cells in which two genes, Satb1 and Satb2, were turned on. Compared to their counterparts in control mice, the Satb1/2-positive neurons also showed differences in the rest of the genes they expressed. In essence, these neurons had a different genetic profile in MiR34/449 mutant mice, therefore disrupting the neural circuit they belong to. Based on these findings, Chang et al. propose that in wild-type mice, the MiR34/449 family fine-tunes the expression of Satb1/2 in the spinal cord during development. In doing so, it regulates the formation of the spinal cord circuits that help to control movement. More generally, these results provide clues about how miRNAs help to determine cell identities; further studies could then examine whether other miRNAs contribute to the development and maintenance of neuronal circuits.
Collapse
Affiliation(s)
- Shih-Hsin Chang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Yi-Ching Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
43
|
Wilmerding A, Rinaldi L, Caruso N, Lo Re L, Bonzom E, Saurin AJ, Graba Y, Delfini MC. HoxB genes regulate neuronal delamination in the trunk neural tube by controlling the expression of Lzts1. Development 2021; 148:dev.195404. [PMID: 33472847 DOI: 10.1242/dev.195404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
Differential Hox gene expression is central for specification of axial neuronal diversity in the spinal cord. Here, we uncover an additional function of Hox proteins in the developing spinal cord, restricted to B cluster Hox genes. We found that members of the HoxB cluster are expressed in the trunk neural tube of chicken embryo earlier than Hox from the other clusters, with poor antero-posterior axial specificity and with overlapping expression in the intermediate zone (IZ). Gain-of-function experiments of HoxB4, HoxB8 and HoxB9, respectively, representative of anterior, central and posterior HoxB genes, resulted in ectopic progenitor cells in the mantle zone. The search for HoxB8 downstream targets in the early neural tube identified the leucine zipper tumor suppressor 1 gene (Lzts1), the expression of which is also activated by HoxB4 and HoxB9. Gain- and loss-of-function experiments showed that Lzts1, which is expressed endogenously in the IZ, controls neuronal delamination. These data collectively indicate that HoxB genes have a generic function in the developing spinal cord, controlling the expression of Lzts1 and neuronal delamination.
Collapse
Affiliation(s)
| | | | - Nathalie Caruso
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Laure Lo Re
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Emilie Bonzom
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Andrew J Saurin
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Yacine Graba
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | | |
Collapse
|
44
|
Zholudeva LV, Abraira VE, Satkunendrarajah K, McDevitt TC, Goulding MD, Magnuson DSK, Lane MA. Spinal Interneurons as Gatekeepers to Neuroplasticity after Injury or Disease. J Neurosci 2021; 41:845-854. [PMID: 33472820 PMCID: PMC7880285 DOI: 10.1523/jneurosci.1654-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal interneurons are important facilitators and modulators of motor, sensory, and autonomic functions in the intact CNS. This heterogeneous population of neurons is now widely appreciated to be a key component of plasticity and recovery. This review highlights our current understanding of spinal interneuron heterogeneity, their contribution to control and modulation of motor and sensory functions, and how this role might change after traumatic spinal cord injury. We also offer a perspective for how treatments can optimize the contribution of interneurons to functional improvement.
Collapse
Affiliation(s)
| | - Victoria E Abraira
- Department of Cell Biology & Neuroscience, Rutgers University, The State University of New Jersey, New Jersey, 08854
| | - Kajana Satkunendrarajah
- Departments of Neurosurgery and Physiology, Medical College of Wisconsin, Wisconsin, 53226
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, 53295
| | - Todd C McDevitt
- Gladstone Institutes, San Francisco, California, 94158
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94143
| | | | - David S K Magnuson
- University of Louisville, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, 40208
| | - Michael A Lane
- Department of Neurobiology and Anatomy, and the Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, Pennsylvania, 19129
| |
Collapse
|
45
|
Zampieri N, de Nooij JC. Regulating muscle spindle and Golgi tendon organ proprioceptor phenotypes. CURRENT OPINION IN PHYSIOLOGY 2021; 19:204-210. [PMID: 33381667 PMCID: PMC7769215 DOI: 10.1016/j.cophys.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proprioception is an essential part of motor control. The main sensory subclasses that underlie this feedback control system - muscle spindle and Golgi tendon organ afferents - have been extensively characterized at a morphological and physiological level. More recent studies are beginning to reveal the molecular foundation for distinct proprioceptor subtypes, offering new insights into their developmental ontogeny and phenotypic diversity. This review intends to highlight some of these new findings.
Collapse
Affiliation(s)
- Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Joriene C. de Nooij
- Dept. of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032.,Columbia University Motor Neuron Center, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032.,Corresponding author:
| |
Collapse
|
46
|
Schwenkgrub J, Harrell ER, Bathellier B, Bouvier J. Deep imaging in the brainstem reveals functional heterogeneity in V2a neurons controlling locomotion. SCIENCE ADVANCES 2020; 6:6/49/eabc6309. [PMID: 33277252 PMCID: PMC7821901 DOI: 10.1126/sciadv.abc6309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/20/2020] [Indexed: 05/28/2023]
Abstract
V2a neurons are a genetically defined cell class that forms a major excitatory descending pathway from the brainstem reticular formation to the spinal cord. Their activation has been linked to the termination of locomotor activity based on broad optogenetic manipulations. However, because of the difficulties involved in accessing brainstem structures for in vivo cell type-specific recordings, V2a neuron function has never been directly observed during natural behaviors. Here, we imaged the activity of V2a neurons using micro-endoscopy in freely moving mice. We find that as many as half of the V2a neurons are excited at locomotion arrest and with low reliability. Other V2a neurons are inhibited at locomotor arrests and/or activated during other behaviors such as locomotion initiation or stationary grooming. Our results establish that V2a neurons not only drive stops as suggested by bulk optogenetics but also are stratified into subpopulations that likely contribute to diverse motor patterns.
Collapse
Affiliation(s)
- Joanna Schwenkgrub
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
- Institut Pasteur, INSERM, Institut de l'Audition, 63 rue de Charenton, F-75012 Paris, France
| | - Evan R Harrell
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
- Institut Pasteur, INSERM, Institut de l'Audition, 63 rue de Charenton, F-75012 Paris, France
| | - Brice Bathellier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France.
- Institut Pasteur, INSERM, Institut de l'Audition, 63 rue de Charenton, F-75012 Paris, France
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
47
|
Bulajić M, Srivastava D, Dasen JS, Wichterle H, Mahony S, Mazzoni EO. Differential abilities to engage inaccessible chromatin diversify vertebrate Hox binding patterns. Development 2020; 147:dev194761. [PMID: 33028607 PMCID: PMC7710020 DOI: 10.1242/dev.194761] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Although Hox genes encode for conserved transcription factors (TFs), they are further divided into anterior, central and posterior groups based on their DNA-binding domain similarity. The posterior Hox group expanded in the deuterostome clade and patterns caudal and distal structures. We aimed to address how similar Hox TFs diverge to induce different positional identities. We studied Hox TF DNA-binding and regulatory activity during an in vitro motor neuron differentiation system that recapitulates embryonic development. We found diversity in the genomic binding profiles of different Hox TFs, even among the posterior group paralogs that share similar DNA-binding domains. These differences in genomic binding were explained by differing abilities to bind to previously inaccessible sites. For example, the posterior group HOXC9 had a greater ability to bind occluded sites than the posterior HOXC10, producing different binding patterns and driving differential gene expression programs. From these results, we propose that the differential abilities of posterior Hox TFs to bind to previously inaccessible chromatin drive patterning diversification.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Milica Bulajić
- Department of Biology, New York University, New York, NY 10003, USA
| | - Divyanshi Srivastava
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
48
|
Solanelles-Farré L, Telley L. New insights into CNS development from multiomics approaches. Curr Opin Neurobiol 2020; 66:116-124. [PMID: 33171340 DOI: 10.1016/j.conb.2020.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Our understanding of the central nervous system (CNS) development has been strongly enhanced by the recent progress of single-cell multiomics approaches. Certainly, the multiplex profiling of individual cell epigenomes and transcriptomes together with dynamic lineage tracing systems brings encouraging new perspectives and prompts a paradigm shift in neuroscience developmental research. In this review, we outline the latest multiomics -based findings in CNS development, from the early CNS patterning to the regional specification of the CNS along anterior-posterior axis (forebrain, midbrain, hindbrain and spinal cord). Overall, multiomics development has substantially impacted current knowledge and has challenged our classical models for embryonic CNS development. Integrating all these newly generated -omics databases represents the next step to overcome challenges in understanding developmental diseases.
Collapse
Affiliation(s)
| | - Ludovic Telley
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
49
|
Differential Loss of Spinal Interneurons in a Mouse Model of ALS. Neuroscience 2020; 450:81-95. [PMID: 32858144 DOI: 10.1016/j.neuroscience.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) leads to a loss of specific motor neuron populations in the spinal cord and cortex. Emerging evidence suggests that interneurons may also be affected, but a detailed characterization of interneuron loss and its potential impacts on motor neuron loss and disease progression is lacking. To examine this issue, the fate of V1 inhibitory neurons during ALS was assessed in the ventral spinal cord using the SODG93A mouse model. The V1 population makes up ∼30% of all ventral inhibitory neurons, ∼50% of direct inhibitory synaptic contacts onto motor neuron cell bodies, and is thought to play a key role in modulating motor output, in part through recurrent and reciprocal inhibitory circuits. We find that approximately half of V1 inhibitory neurons are lost in SODG93A mice at late disease stages, but that this loss is delayed relative to the loss of motor neurons and V2a excitatory neurons. We further identify V1 subpopulations based on transcription factor expression that are differentially susceptible to degeneration in SODG93A mice. At an early disease stage, we show that V1 synaptic contacts with motor neuron cell bodies increase, suggesting an upregulation of inhibition before V1 neurons are lost in substantial numbers. These data support a model in which progressive changes in V1 synaptic contacts early in disease, and in select V1 subpopulations at later stages, represent a compensatory upregulation and then deleterious breakdown of specific interneuron circuits within the spinal cord.
Collapse
|
50
|
Shin MM, Catela C, Dasen J. Intrinsic control of neuronal diversity and synaptic specificity in a proprioceptive circuit. eLife 2020; 9:56374. [PMID: 32808924 PMCID: PMC7467731 DOI: 10.7554/elife.56374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Relay of muscle-derived sensory information to the CNS is essential for the execution of motor behavior, but how proprioceptive sensory neurons (pSNs) establish functionally appropriate connections is poorly understood. A prevailing model of sensory-motor circuit assembly is that peripheral, target-derived, cues instruct pSN identities and patterns of intraspinal connectivity. To date no known intrinsic determinants of muscle-specific pSN fates have been described in vertebrates. We show that expression of Hox transcription factors defines pSN subtypes, and these profiles are established independently of limb muscle. The Hoxc8 gene is expressed by pSNs and motor neurons (MNs) targeting distal forelimb muscles, and sensory-specific depletion of Hoxc8 in mice disrupts sensory-motor synaptic matching, without affecting pSN survival or muscle targeting. These results indicate that the diversity and central specificity of pSNs and MNs are regulated by a common set of determinants, thus linking early rostrocaudal patterning to the assembly of limb control circuits.
Collapse
Affiliation(s)
- Maggie M Shin
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
| | - Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Jeremy Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
| |
Collapse
|