1
|
Kiltschewskij DJ, Reay WR, Cairns MJ. Schizophrenia is associated with altered DNA methylation variance. Mol Psychiatry 2024:10.1038/s41380-024-02749-5. [PMID: 39271751 DOI: 10.1038/s41380-024-02749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Varying combinations of genetic and environmental risk factors are thought to underpin phenotypic heterogeneity between individuals in psychiatric conditions such as schizophrenia. While epigenome-wide association studies in schizophrenia have identified extensive alteration of mean DNA methylation levels, less is known about the location and impact of DNA methylation variance, which could contribute to phenotypic and treatment response heterogeneity. To explore this question, we conducted the largest meta-analysis of blood DNA methylation variance in schizophrenia to date, leveraging three cohorts comprising 1036 individuals with schizophrenia and 954 non-psychiatric controls. Surprisingly, only a small proportion (0.1%) of the 213 variably methylated positions (VMPs) associated with schizophrenia (Benjamini-Hochberg FDR < 0.05) were shared with differentially methylated positions (DMPs; sites with mean changes between cases and controls). These blood-derived VMPs were found to be overrepresented in genes previously associated with schizophrenia and amongst brain-enriched genes, with evidence of concordant changes at VMPs in the cerebellum, hippocampus, prefrontal cortex, or striatum. Epigenetic covariance was also observed with respect to clinically significant metrics including age of onset, cognitive deficits, and symptom severity. We also uncovered a significant VMP in individuals with first-episode psychosis (n = 644) from additional cohorts and a non-psychiatric comparison group (n = 633). Collectively, these findings suggest schizophrenia is associated with significant changes in DNA methylation variance, which may contribute to individual-to-individual heterogeneity.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - William R Reay
- Menzies Institute for Medical Research, Hobart, TAS, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
2
|
Leone R, Zuglian C, Brambilla R, Morella I. Understanding copy number variations through their genes: a molecular view on 16p11.2 deletion and duplication syndromes. Front Pharmacol 2024; 15:1407865. [PMID: 38948459 PMCID: PMC11211608 DOI: 10.3389/fphar.2024.1407865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) include a broad spectrum of pathological conditions that affect >4% of children worldwide, share common features and present a variegated genetic origin. They include clinically defined diseases, such as autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD), motor disorders such as Tics and Tourette's syndromes, but also much more heterogeneous conditions like intellectual disability (ID) and epilepsy. Schizophrenia (SCZ) has also recently been proposed to belong to NDDs. Relatively common causes of NDDs are copy number variations (CNVs), characterised by the gain or the loss of a portion of a chromosome. In this review, we focus on deletions and duplications at the 16p11.2 chromosomal region, associated with NDDs, ID, ASD but also epilepsy and SCZ. Some of the core phenotypes presented by human carriers could be recapitulated in animal and cellular models, which also highlighted prominent neurophysiological and signalling alterations underpinning 16p11.2 CNVs-associated phenotypes. In this review, we also provide an overview of the genes within the 16p11.2 locus, including those with partially known or unknown function as well as non-coding RNAs. A particularly interesting interplay was observed between MVP and MAPK3 in modulating some of the pathological phenotypes associated with the 16p11.2 deletion. Elucidating their role in intracellular signalling and their functional links will be a key step to devise novel therapeutic strategies for 16p11.2 CNVs-related syndromes.
Collapse
Affiliation(s)
- Roberta Leone
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Cecilia Zuglian
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Riccardo Brambilla
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| | - Ilaria Morella
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| |
Collapse
|
3
|
Guiberson NGL, Black LS, Haller JE, Brukner A, Abramov D, Ahmad S, Xie YX, Sharma M, Burré J. Disease-linked mutations in Munc18-1 deplete synaptic Doc2. Brain 2024; 147:2185-2202. [PMID: 38242640 PMCID: PMC11146428 DOI: 10.1093/brain/awae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Heterozygous de novo mutations in the neuronal protein Munc18-1/STXBP1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia and tremor, summarized as STXBP1 encephalopathies. Although haploinsufficiency is the prevailing disease mechanism, it remains unclear how the reduction in Munc18-1 levels causes synaptic dysfunction in disease as well as how haploinsufficiency alone can account for the significant heterogeneity among patients in terms of the presence, onset and severity of different symptoms. Using biochemical and cell biological readouts on mouse brains, cultured mouse neurons and heterologous cells, we found that the synaptic Munc18-1 interactors Doc2A and Doc2B are unstable in the absence of Munc18-1 and aggregate in the presence of disease-causing Munc18-1 mutants. In haploinsufficiency-mimicking heterozygous knockout neurons, we found a reduction in Doc2A/B levels that is further aggravated by the presence of the disease-causing Munc18-1 mutation G544D as well as an impairment in Doc2A/B synaptic targeting in both genotypes. We also demonstrated that overexpression of Doc2A/B partially rescues synaptic dysfunction in heterozygous knockout neurons but not heterozygous knockout neurons expressing G544D Munc18-1. Our data demonstrate that STXBP1 encephalopathies are not only characterized by the dysfunction of Munc18-1 but also by the dysfunction of the Munc18-1 binding partners Doc2A and Doc2B, and that this dysfunction is exacerbated by the presence of a Munc18-1 missense mutant. These findings may offer a novel explanation for the significant heterogeneity in symptoms observed among STXBP1 encephalopathy patients.
Collapse
Affiliation(s)
- Noah Guy Lewis Guiberson
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luca S Black
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jillian E Haller
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Aniv Brukner
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Debra Abramov
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Saad Ahmad
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yan Xin Xie
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Burré
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
4
|
Zhang H, Lei M, Zhang Y, Li H, He Z, Xie S, Zhu L, Wang S, Liu J, Li Y, Lu Y, Ma C. Phosphorylation of Doc2 by EphB2 modulates Munc13-mediated SNARE complex assembly and neurotransmitter release. SCIENCE ADVANCES 2024; 10:eadi7024. [PMID: 38758791 PMCID: PMC11100570 DOI: 10.1126/sciadv.adi7024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
At the synapse, presynaptic neurotransmitter release is tightly controlled by release machinery, involving the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and Munc13. The Ca2+ sensor Doc2 cooperates with Munc13 to regulate neurotransmitter release, but the underlying mechanisms remain unclear. In our study, we have characterized the binding mode between Doc2 and Munc13 and found that Doc2 originally occludes Munc13 to inhibit SNARE complex assembly. Moreover, our investigation unveiled that EphB2, a presynaptic adhesion molecule (SAM) with inherent tyrosine kinase functionality, exhibits the capacity to phosphorylate Doc2. This phosphorylation attenuates Doc2 block on Munc13 to promote SNARE complex assembly, which functionally induces spontaneous release and synaptic augmentation. Consistently, application of a Doc2 peptide that interrupts Doc2-Munc13 interplay impairs excitatory synaptic transmission and leads to dysfunction in spatial learning and memory. These data provide evidence that SAMs modulate neurotransmitter release by controlling SNARE complex assembly.
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Mengshi Lei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Hao Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Sheng Xie
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Le Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Youming Lu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Thoreson WB, Zenisek D. Presynaptic Proteins and Their Roles in Visual Processing by the Retina. Annu Rev Vis Sci 2024; 10:10.1146/annurev-vision-101322-111204. [PMID: 38621251 PMCID: PMC11536687 DOI: 10.1146/annurev-vision-101322-111204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The sense of vision begins in the retina, where light is detected and processed through a complex series of synaptic connections into meaningful information relayed to the brain via retinal ganglion cells. Light responses begin as tonic and graded signals in photoreceptors, later emerging from the retina as a series of spikes from ganglion cells. Processing by the retina extracts critical features of the visual world, including spatial frequency, temporal frequency, motion direction, color, contrast, and luminance. To achieve this, the retina has evolved specialized and unique synapse types. These include the ribbon synapses of photoreceptors and bipolar cells, the dendritic synapses of amacrine and horizontal cells, and unconventional synaptic feedback from horizontal cells to photoreceptors. We review these unique synapses in the retina with a focus on the presynaptic molecules and physiological properties that shape their capabilities.
Collapse
Affiliation(s)
- Wallace B Thoreson
- 1Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; ; https://orcid.org/0000-0001-7104-042X
| | - David Zenisek
- 2Departments of Cellular and Molecular Physiology, Ophthalmology and Visual Sciences, and Neuroscience, Yale University, New Haven, Connecticut, USA; ; https://orcid.org/0000-0001-6052-0348
| |
Collapse
|
6
|
Wan C, Xia Y, Yan J, Lin W, Yao L, Zhang M, Gaisler-Salomon I, Mei L, Yin DM, Chen Y. nNOS in Erbb4-positive neurons regulates GABAergic transmission in mouse hippocampus. Cell Death Dis 2024; 15:167. [PMID: 38396027 PMCID: PMC10891175 DOI: 10.1038/s41419-024-06557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Neuronal nitric oxide synthase (nNOS, gene name Nos1) orchestrates the synthesis of nitric oxide (NO) within neurons, pivotal for diverse neural processes encompassing synaptic transmission, plasticity, neuronal excitability, learning, memory, and neurogenesis. Despite its significance, the precise regulation of nNOS activity across distinct neuronal types remains incompletely understood. Erb-b2 receptor tyrosine kinase 4 (ErbB4), selectively expressed in GABAergic interneurons and activated by its ligand neuregulin 1 (NRG1), modulates GABA release in the brain. Our investigation reveals the presence of nNOS in a subset of GABAergic interneurons expressing ErbB4. Notably, NRG1 activates nNOS via ErbB4 and its downstream phosphatidylinositol 3-kinase (PI3K), critical for NRG1-induced GABA release. Genetic removal of nNos from Erbb4-positive neurons impairs GABAergic transmission, partially rescued by the NO donor sodium nitroprusside (SNP). Intriguingly, the genetic deletion of nNos from Erbb4-positive neurons induces schizophrenia-relevant behavioral deficits, including hyperactivity, impaired sensorimotor gating, and deficient working memory and social interaction. These deficits are ameliorated by the atypical antipsychotic clozapine. This study underscores the role and regulation of nNOS within a specific subset of GABAergic interneurons, offering insights into the pathophysiological mechanisms of schizophrenia, given the association of Nrg1, Erbb4, Pi3k, and Nos1 genes with this mental disorder.
Collapse
Affiliation(s)
- Chaofan Wan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Rehabilitation, School of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yucen Xia
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinglan Yan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Weipeng Lin
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Meng Zhang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Lin Mei
- Chinese Institute for Medical Research, Beijing, 100069, China
- Capital Medical University, Beijing, 100069, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Dong-Min Yin
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200062, China.
| | - Yongjun Chen
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Bonnin EA, Golmohammadi A, Rehm R, Tetzlaff C, Rizzoli SO. High-resolution analysis of bound Ca 2+ in neurons and synapses. Life Sci Alliance 2024; 7:e202302030. [PMID: 37833073 PMCID: PMC10575792 DOI: 10.26508/lsa.202302030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Calcium (Ca2+) is a well-known second messenger in all cells, and is especially relevant for neuronal activity. Neuronal Ca2+ is found in different forms, with a minority being freely soluble in the cell and more than 99% being bound to proteins. Free Ca2+ has received much attention over the last few decades, but protein-bound Ca2+ has been difficult to analyze. Here, we introduce correlative fluorescence and nanoscale secondary ion mass spectrometry imaging as a tool to describe bound Ca2+ As expected, bound Ca2+ is ubiquitous. It does not correlate to free Ca2+ dynamics at the whole-neuron level, but does correlate significantly to the intensity of markers for GABAergic pre-synapse and glutamatergic post-synapses. In contrast, a negative correlation to pre-synaptic activity was observed, with lower levels of bound Ca2+ observed in the more active synapses. We conclude that bound Ca2+ may regulate neuronal activity and should receive more attention in the future.
Collapse
Affiliation(s)
- Elisa A Bonnin
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Excellence Cluster Multiscale Bioimaging (MBExC), Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| | - Arash Golmohammadi
- Group of Computational Synaptic Physiology, Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Ronja Rehm
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- Group of Computational Synaptic Physiology, Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Excellence Cluster Multiscale Bioimaging (MBExC), Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Wang QW, Qin J, Chen YF, Tu Y, Xing YY, Wang Y, Yang LY, Lu SY, Geng L, Shi W, Yang Y, Yao J. 16p11.2 CNV gene Doc2α functions in neurodevelopment and social behaviors through interaction with Secretagogin. Cell Rep 2023; 42:112691. [PMID: 37354460 DOI: 10.1016/j.celrep.2023.112691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
Copy-number variations (CNVs) of the human 16p11.2 genetic locus are associated with neurodevelopmental disorders, including autism spectrum disorders (ASDs) and schizophrenia. However, it remains largely unclear how this locus is involved in the disease pathogenesis. Doc2α is localized within this locus. Here, using in vivo and ex vivo electrophysiological and morphological approaches, we show that Doc2α-deficient mice have neuronal morphological abnormalities and defects in neural activity. Moreover, the Doc2α-deficient mice exhibit social and repetitive behavioral deficits. Furthermore, we demonstrate that Doc2α functions in behavioral and neural phenotypes through interaction with Secretagogin (SCGN). Finally, we demonstrate that SCGN functions in social/repetitive behaviors, glutamate release, and neuronal morphology of the mice through its Doc2α-interacting activity. Therefore, Doc2α likely contributes to neurodevelopmental disorders through its interaction with SCGN.
Collapse
Affiliation(s)
- Qiu-Wen Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junhong Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan-Fen Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yun-Yun Xing
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Yuchen Wang
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lv-Yu Yang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Si-Yao Lu
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Libo Geng
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Wei Shi
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Yiming Yang
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China.
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Feldthouse MG, Vyleta NP, Smith SM. PLC regulates spontaneous glutamate release triggered by extracellular calcium and readily releasable pool size in neocortical neurons. Front Cell Neurosci 2023; 17:1193485. [PMID: 37260580 PMCID: PMC10228687 DOI: 10.3389/fncel.2023.1193485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Dynamic physiological changes in brain extracellular calcium ([Ca2+]o) occur when high levels of neuronal activity lead to substantial Ca2+ entry via ion channels reducing local [Ca2+]o. Perturbations of the extracellular microenvironment that increase [Ca2+]o are commonly used to study how [Ca2+] regulates neuronal activity. At excitatory synapses, the Ca2+-sensing receptor (CaSR) and other G-protein coupled receptors link [Ca2+]o and spontaneous glutamate release. Phospholipase C (PLC) is activated by G-proteins and is hypothesized to mediate this process. Methods Patch-clamping cultured neocortical neurons, we tested how spontaneous glutamate release was affected by [Ca2+]o and inhibition of PLC activity. We used hypertonic sucrose (HS) to evaluate the readily releasable pool (RRP) and test if it was affected by inhibition of PLC activity. Results Spontaneous glutamate release substantially increased with [Ca2+]o, and inhibition of PLC activity, with U73122, abolished this effect. PLC-β1 is an abundant isoform in the neocortex, however, [Ca2+]o-dependent spontaneous release was unchanged in PLC-β1 null mutants (PLC-β1-/-). U73122 completely suppressed this response in PLC-β1-/- neurons, indicating that this residual [Ca2+]o-sensitivity may be mediated by other PLC isoforms. The RRP size was substantially reduced after incubation in U73122, but not U73343. Phorbol esters increased RRP size after PLC inhibition. Discussion Together these data point to a strong role for PLC in mediating changes in spontaneous release elicited by [Ca2+]o and other extracellular cues, possibly by modifying the size of the RRP.
Collapse
Affiliation(s)
- Maya G. Feldthouse
- Section of Pulmonary and Critical Care Medicine and Research and Development, VA Portland Health Care System, Portland, OR, United States
| | - Nicholas P. Vyleta
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Stephen M. Smith
- Section of Pulmonary and Critical Care Medicine and Research and Development, VA Portland Health Care System, Portland, OR, United States
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
10
|
Chiantia G, Hidisoglu E, Marcantoni A. The Role of Ryanodine Receptors in Regulating Neuronal Activity and Its Connection to the Development of Alzheimer's Disease. Cells 2023; 12:cells12091236. [PMID: 37174636 PMCID: PMC10177020 DOI: 10.3390/cells12091236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Research into the early impacts of Alzheimer's disease (AD) on synapse function is one of the most promising approaches to finding a treatment. In this context, we have recently demonstrated that the Abeta42 peptide, which builds up in the brain during the processing of the amyloid precursor protein (APP), targets the ryanodine receptors (RyRs) of mouse hippocampal neurons and potentiates calcium (Ca2+) release from the endoplasmic reticulum (ER). The uncontrolled increase in intracellular calcium concentration ([Ca2+]i), leading to the development of Ca2+ dysregulation events and related excitable and synaptic dysfunctions, is a consolidated hallmark of AD onset and possibly other neurodegenerative diseases. Since RyRs contribute to increasing [Ca2+]i and are thought to be a promising target for AD treatment, the goal of this review is to summarize the current level of knowledge regarding the involvement of RyRs in governing neuronal function both in physiological conditions and during the onset of AD.
Collapse
Affiliation(s)
| | - Enis Hidisoglu
- Department of Drug and Science Technology, University of Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Andrea Marcantoni
- Department of Drug and Science Technology, University of Torino, Corso Raffaello 30, 10125 Torino, Italy
- N.I.S. Center, University of Torino, 10125 Turin, Italy
| |
Collapse
|
11
|
Wen L, Yang X, Wu Z, Fu S, Zhan Y, Chen Z, Bi D, Shen Y. The complement inhibitor CD59 is required for GABAergic synaptic transmission in the dentate gyrus. Cell Rep 2023; 42:112349. [PMID: 37027303 DOI: 10.1016/j.celrep.2023.112349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Complement-dependent microglia pruning of excitatory synapses has been widely reported in physiological and pathological conditions, with few reports concerning pruning of inhibitory synapses or direct regulation of synaptic transmission by complement components. Here, we report that loss of CD59, an important endogenous inhibitor of the complement system, leads to compromised spatial memory performance. Furthermore, CD59 deficiency impairs GABAergic synaptic transmission in the hippocampal dentate gyrus (DG). This depends on regulation of GABA release triggered by Ca2+ influx through voltage-gated calcium channels (VGCCs) rather than inhibitory synaptic pruning by microglia. Notably, CD59 colocalizes with inhibitory pre-synaptic terminals and regulates SNARE complex assembly. Together, these results demonstrate that the complement regulator CD59 plays an important role in normal hippocampal function.
Collapse
Affiliation(s)
- Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoli Yang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zujun Wu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shumei Fu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yaxi Zhan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zuolong Chen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China
| | - Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
12
|
Grasskamp AT, Jusyte M, McCarthy AW, Götz TWB, Ditlevsen S, Walter AM. Spontaneous neurotransmission at evocable synapses predicts their responsiveness to action potentials. Front Cell Neurosci 2023; 17:1129417. [PMID: 36970416 PMCID: PMC10030884 DOI: 10.3389/fncel.2023.1129417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023] Open
Abstract
Synaptic transmission relies on presynaptic neurotransmitter (NT) release from synaptic vesicles (SVs) and on NT detection by postsynaptic receptors. Transmission exists in two principal modes: action-potential (AP) evoked and AP-independent, "spontaneous" transmission. AP-evoked neurotransmission is considered the primary mode of inter-neuronal communication, whereas spontaneous transmission is required for neuronal development, homeostasis, and plasticity. While some synapses appear dedicated to spontaneous transmission only, all AP-responsive synapses also engage spontaneously, but whether this encodes functional information regarding their excitability is unknown. Here we report on functional interdependence of both transmission modes at individual synaptic contacts of Drosophila larval neuromuscular junctions (NMJs) which were identified by the presynaptic scaffolding protein Bruchpilot (BRP) and whose activities were quantified using the genetically encoded Ca2+ indicator GCaMP. Consistent with the role of BRP in organizing the AP-dependent release machinery (voltage-dependent Ca2+ channels and SV fusion machinery), most active BRP-positive synapses (>85%) responded to APs. At these synapses, the level of spontaneous activity was a predictor for their responsiveness to AP-stimulation. AP-stimulation resulted in cross-depletion of spontaneous activity and both transmission modes were affected by the non-specific Ca2+ channel blocker cadmium and engaged overlapping postsynaptic receptors. Thus, by using overlapping machinery, spontaneous transmission is a continuous, stimulus independent predictor for the AP-responsiveness of individual synapses.
Collapse
Affiliation(s)
| | - Meida Jusyte
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Einstein Center for Neurosciences, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | | | - Torsten W. B. Götz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander M. Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Einstein Center for Neurosciences, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Synaptotagmin 9 Modulates Spontaneous Neurotransmitter Release in Striatal Neurons by Regulating Substance P Secretion. J Neurosci 2023; 43:1475-1491. [PMID: 36732068 PMCID: PMC9992334 DOI: 10.1523/jneurosci.1857-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Synaptotagmin 9 (SYT9) is a tandem C2 domain Ca2+ sensor for exocytosis in neuroendocrine cells; its function in neurons remains unclear. Here, we show that, in mixed-sex cultures, SYT9 does not trigger rapid synaptic vesicle exocytosis in mouse cortical, hippocampal, or striatal neurons, unless it is massively overexpressed. In striatal neurons, loss of SYT9 reduced the frequency of spontaneous neurotransmitter release events (minis). We delved into the underlying mechanism and discovered that SYT9 was localized to dense-core vesicles that contain substance P (SP). Loss of SYT9 impaired SP release, causing the observed decrease in mini frequency. This model is further supported by loss of function mutants. Namely, Ca2+ binding to the C2A domain of SYT9 triggered membrane fusion in vitro, and mutations that disrupted this activity abolished the ability of SYT9 to regulate both SP release and mini frequency. We conclude that SYT9 indirectly regulates synaptic transmission in striatal neurons by controlling SP release.SIGNIFICANCE STATEMENT Synaptotagmin 9 (SYT9) has been described as a Ca2+ sensor for dense-core vesicle (DCV) exocytosis in neuroendocrine cells, but its role in neurons remains unclear, despite widespread expression in the brain. This article examines the role of SYT9 in synaptic transmission across cultured cortical, hippocampal, and striatal neuronal preparations. We found that SYT9 regulates spontaneous neurotransmitter release in striatal neurons by serving as a Ca2+ sensor for the release of the neuromodulator substance P from DCVs. This demonstrates a novel role for SYT9 in neurons and uncovers a new field of study into neuromodulation by SYT9, a protein that is widely expressed in the brain.
Collapse
|
14
|
Mueller BD, Merrill SA, Watanabe S, Liu P, Niu L, Singh A, Maldonado-Catala P, Cherry A, Rich MS, Silva M, Maricq AV, Wang ZW, Jorgensen EM. CaV1 and CaV2 calcium channels mediate the release of distinct pools of synaptic vesicles. eLife 2023; 12:e81407. [PMID: 36820519 PMCID: PMC10023163 DOI: 10.7554/elife.81407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 02/22/2023] [Indexed: 02/24/2023] Open
Abstract
Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.
Collapse
Affiliation(s)
- Brian D Mueller
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Sean A Merrill
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Shigeki Watanabe
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Ping Liu
- Department of Neuroscience, University of Connecticut Medical SchoolFarmingtonUnited States
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut Medical SchoolFarmingtonUnited States
| | - Anish Singh
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | | | - Alex Cherry
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Matthew S Rich
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Malan Silva
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | | | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Medical SchoolFarmingtonUnited States
| | - Erik M Jorgensen
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| |
Collapse
|
15
|
Zhou Q. Calcium Sensors of Neurotransmitter Release. ADVANCES IN NEUROBIOLOGY 2023; 33:119-138. [PMID: 37615865 DOI: 10.1007/978-3-031-34229-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Calcium (Ca2+) plays a critical role in triggering all three primary modes of neurotransmitter release (synchronous, asynchronous, and spontaneous). Synaptotagmin1, a protein with two C2 domains, is the first isoform of the synaptotagmin family that was identified and demonstrated as the primary Ca2+ sensor for synchronous neurotransmitter release. Other isoforms of the synaptotagmin family as well as other C2 proteins such as the double C2 domain protein family were found to act as Ca2+ sensors for different modes of neurotransmitter release. Major recent advances and previous data suggest a new model, release-of-inhibition, for the initiation of Ca2+-triggered synchronous neurotransmitter release. Synaptotagmin1 binds Ca2+ via its two C2 domains and relieves a primed pre-fusion machinery. Before Ca2+ triggering, synaptotagmin1 interacts Ca2+ independently with partially zippered SNARE complexes, the plasma membrane, phospholipids, and other components to form a primed pre-fusion state that is ready for fast release. However, membrane fusion is inhibited until the arrival of Ca2+ reorients the Ca2+-binding loops of the C2 domain to perturb the lipid bilayers, help bridge the membranes, and/or induce membrane curvatures, which serves as a power stroke to activate fusion. This chapter reviews the evidence supporting these models and discusses the molecular interactions that may underlie these abilities.
Collapse
Affiliation(s)
- Qiangjun Zhou
- Department of Cell and Developmental Biology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
16
|
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Alterations of presynaptic proteins in autism spectrum disorder. Front Mol Neurosci 2022; 15:1062878. [PMID: 36466804 PMCID: PMC9715400 DOI: 10.3389/fnmol.2022.1062878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2025] Open
Abstract
The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Woo Ri Chae
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sangyong Jung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Tai DJC, Razaz P, Erdin S, Gao D, Wang J, Nuttle X, de Esch CE, Collins RL, Currall BB, O'Keefe K, Burt ND, Yadav R, Wang L, Mohajeri K, Aneichyk T, Ragavendran A, Stortchevoi A, Morini E, Ma W, Lucente D, Hastie A, Kelleher RJ, Perlis RH, Talkowski ME, Gusella JF. Tissue- and cell-type-specific molecular and functional signatures of 16p11.2 reciprocal genomic disorder across mouse brain and human neuronal models. Am J Hum Genet 2022; 109:1789-1813. [PMID: 36152629 PMCID: PMC9606388 DOI: 10.1016/j.ajhg.2022.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
Chromosome 16p11.2 reciprocal genomic disorder, resulting from recurrent copy-number variants (CNVs), involves intellectual disability, autism spectrum disorder (ASD), and schizophrenia, but the responsible mechanisms are not known. To systemically dissect molecular effects, we performed transcriptome profiling of 350 libraries from six tissues (cortex, cerebellum, striatum, liver, brown fat, and white fat) in mouse models harboring CNVs of the syntenic 7qF3 region, as well as cellular, transcriptional, and single-cell analyses in 54 isogenic neural stem cell, induced neuron, and cerebral organoid models of CRISPR-engineered 16p11.2 CNVs. Transcriptome-wide differentially expressed genes were largely tissue-, cell-type-, and dosage-specific, although more effects were shared between deletion and duplication and across tissue than expected by chance. The broadest effects were observed in the cerebellum (2,163 differentially expressed genes), and the greatest enrichments were associated with synaptic pathways in mouse cerebellum and human induced neurons. Pathway and co-expression analyses identified energy and RNA metabolism as shared processes and enrichment for ASD-associated, loss-of-function constraint, and fragile X messenger ribonucleoprotein target gene sets. Intriguingly, reciprocal 16p11.2 dosage changes resulted in consistent decrements in neurite and electrophysiological features, and single-cell profiling of organoids showed reciprocal alterations to the proportions of excitatory and inhibitory GABAergic neurons. Changes both in neuronal ratios and in gene expression in our organoid analyses point most directly to calretinin GABAergic inhibitory neurons and the excitatory/inhibitory balance as targets of disruption that might contribute to changes in neurodevelopmental and cognitive function in 16p11.2 carriers. Collectively, our data indicate the genomic disorder involves disruption of multiple contributing biological processes and that this disruption has relative impacts that are context specific.
Collapse
Affiliation(s)
- Derek J C Tai
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Parisa Razaz
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Serkan Erdin
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dadi Gao
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer Wang
- Center for Quantitative Health, Division of Clinical Research, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xander Nuttle
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E de Esch
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan L Collins
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin B Currall
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn O'Keefe
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicholas D Burt
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rachita Yadav
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lily Wang
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kiana Mohajeri
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tatsiana Aneichyk
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashok Ragavendran
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexei Stortchevoi
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elisabetta Morini
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Weiyuan Ma
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Raymond J Kelleher
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Roy H Perlis
- Center for Quantitative Health, Division of Clinical Research, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael E Talkowski
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Xiao J, Meng X, Chen K, Wang J, Wu L, Chen Y, Yu X, Feng J, Li Z. Down-Regulation of Double C2 Domain Alpha Promotes the Formation of Hyperplastic Nerve Fibers in Aganglionic Segments of Hirschsprung’s Disease. Int J Mol Sci 2022; 23:ijms231810204. [PMID: 36142117 PMCID: PMC9499397 DOI: 10.3390/ijms231810204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Hirschsprung’s disease (HSCR) is a common developmental anomaly of the gastrointestinal tract in children. The most significant characteristics of aganglionic segments in HSCR are hyperplastic extrinsic nerve fibers and the absence of endogenous ganglion plexus. Double C2 domain alpha (DOC2A) is mainly located in the nucleus and is involved in Ca2+-dependent neurotransmitter release. The loss function of DOC2A influences postsynaptic protein synthesis, dendrite morphology, postsynaptic receptor density and synaptic plasticity. It is still unknown why hyperplastic extrinsic nerve fibers grow into aganglionic segments in HSCR. We detected the expression of DOC2A in HSCR aganglionic segment colons and established three DOC2A-knockdown models in the Neuro-2a cell line, neural spheres and zebrafish separately. First, we detected the protein and mRNA expression of DOC2A and found that DOC2A was negatively correlated with AChE+ grades. Second, in the Neuro-2a cell lines, we found that the amount of neurite outgrowth and mean area per cell were significantly increased, which suggested that the inhibition of DOC2A promotes nerve fiber formation and the neuron’s polarity. In the neural spheres, we found that the DOC2A knockdown was manifested by a more obvious connection of nerve fibers in neural spheres. Then, we knocked down Doc2a in zebrafish and found that the down-regulation of Doc2a accelerates the formation of hyperplastic nerve fibers in aganglionic segments in zebrafish. Finally, we detected the expression of MUNC13-2 (UNC13B), which was obviously up-regulated in Grade3/4 (lower DOC2A expression) compared with Grade1/2 (higher DOC2A expression) in the circular muscle layer and longitudinal muscle layer. The expression of UNC13B was up-regulated with the knocking down of DOC2A, and there were protein interactions between DOC2A and UNC13B. The down-regulation of DOC2A may be an important factor leading to hyperplastic nerve fibers in aganglionic segments of HSCR. UNC13B seems to be a downstream molecule to DOC2A, which may participate in the spasm of aganglionic segments of HSCR patient colons.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Yingjian Chen
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
- Correspondence: (J.F.); (Z.L.)
| | - Zhi Li
- Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Wuhan 430030, China
- Correspondence: (J.F.); (Z.L.)
| |
Collapse
|
19
|
Wu Z, Ma L, Courtney NA, Zhu J, Landajuela A, Zhang Y, Chapman ER, Karatekin E. Polybasic Patches in Both C2 Domains of Synaptotagmin-1 Are Required for Evoked Neurotransmitter Release. J Neurosci 2022; 42:5816-5829. [PMID: 35701163 PMCID: PMC9337609 DOI: 10.1523/jneurosci.1385-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/04/2022] [Accepted: 03/13/2022] [Indexed: 01/29/2023] Open
Abstract
Synaptotagmin-1 (Syt1) is a vesicular calcium sensor required for synchronous neurotransmitter release, composed of a single-pass transmembrane domain linked to two C2 domains (C2A and C2B) that bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. Despite its essential role, how Syt1 couples calcium entry to synchronous release is poorly understood. Calcium binding to C2B is critical for synchronous release, and C2B additionally binds the SNARE complex. The C2A domain is also required for Syt1 function, but it is not clear why. Here, we asked what critical feature of C2A may be responsible for its functional role and compared this to the analogous feature in C2B. We focused on highly conserved poly-lysine patches located on the sides of C2A (K189-192) and C2B (K324-327). We tested effects of charge-neutralization mutations in either region (Syt1K189-192A and Syt1K326-327A) side by side to determine their relative contributions to Syt1 function in cultured cortical neurons from mice of either sex and in single-molecule experiments. Combining electrophysiological recordings and optical tweezers measurements to probe dynamic single C2 domain-membrane interactions, we show that both C2A and C2B polybasic patches contribute to membrane binding, and both are required for evoked release. The size of the readily releasable vesicle pool and the rate of spontaneous release were unaffected, so both patches are likely required specifically for synchronization of release. We suggest these patches contribute to cooperative membrane binding, increasing the overall affinity of Syt1 for negatively charged membranes and facilitating evoked release.SIGNIFICANCE STATEMENT Synaptotagmin-1 is a vesicular calcium sensor required for synchronous neurotransmitter release. Its tandem cytosolic C2 domains (C2A and C2B) bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. How calcium binding to Synaptotagmin-1 leads to release and the relative contributions of the C2 domains are unclear. Combining electrophysiological recordings from cultured neurons and optical tweezers measurements of single C2 domain-membrane interactions, we show that conserved polybasic regions in both domains contribute to membrane binding cooperatively, and both are required for evoked release, likely by increasing the overall affinity of Synaptotagmin-1 for acidic membranes.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
| | - Lu Ma
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Nicholas A Courtney
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Jie Zhu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
| | - Ane Landajuela
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
- Saints-Pères Paris Institute for the Neurosciences, Université de Paris, Centre National de la Recherche Scientifique UMR 8003, 75270 Paris, France
| |
Collapse
|
20
|
PC-12 Cell Line as a Neuronal Cell Model for Biosensing Applications. BIOSENSORS 2022; 12:bios12070500. [PMID: 35884303 PMCID: PMC9313070 DOI: 10.3390/bios12070500] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022]
Abstract
PC-12 cells have been widely used as a neuronal line study model in many biosensing devices, mainly due to the neurogenic characteristics acquired after differentiation, such as high level of secreted neurotransmitter, neuron morphology characterized by neurite outgrowth, and expression of ion and neurotransmitter receptors. For understanding the pathophysiology processes involved in brain disorders, PC-12 cell line is extensively assessed in neuroscience research, including studies on neurotoxicity, neuroprotection, or neurosecretion. Various analytical technologies have been developed to investigate physicochemical processes and the biosensors based on optical and electrochemical techniques, among others, have been at the forefront of this development. This article summarizes the application of different biosensors in PC-12 cell cultures and presents the modern approaches employed in neuronal networks biosensing.
Collapse
|
21
|
Lima-Silveira L, Hasser EM, Kline DD. Cardiovascular deconditioning increases GABA signaling in the nucleus tractus solitarii. J Neurophysiol 2022; 128:28-39. [PMID: 35642806 PMCID: PMC9236861 DOI: 10.1152/jn.00102.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus tractus solitarii (nTS) is the major integrative brainstem region for autonomic modulation and processing of cardiovascular reflexes. GABA and glutamate are the main inhibitory and excitatory neurotransmitters, respectively, within this nucleus. Alterations in the GABA-glutamate regulation in the nTS are related to numerous cardiovascular comorbidities. Bedridden individuals and people exposed to microgravity exhibit dysautonomia and cardiovascular deconditioning that are mimicked in the hindlimb unloading (HU) rat model. We have previously shown in the nTS that HU increases glutamatergic neurotransmission yet decreases neuronal excitability. In this study, we investigated the effects of HU on nTS GABAergic neurotransmission. We hypothesized that HU potentiates GABA signaling via increased GABAergic release and postsynaptic GABA receptor expression. Following HU or control postural exposure, GABAergic neurotransmission was assessed using whole cell patch clamp whereas the magnitude of GABA release was evaluated via an intensity-based GABA sensing fluorescence reporter (iGABASnFR). In response to GABA interneuron stimulation, the evoked inhibitory postsynaptic current (nTS-IPSC) amplitude and area, as well as iGABASnFR fluorescence, were greater in HU than in control. HU also elevated the frequency but not the amplitude of spontaneous miniature IPSCs. Picoapplication of GABA produced similar postsynaptic current responses in nTS neurons of HU and control. Moreover, HU did not alter GABAA receptor α1 subunit expression, indicating minimal alterations in postsynaptic membrane receptor expression. These results indicate that HU increases GABAergic signaling in the nTS likely via augmented release of GABA from presynaptic terminals. Altogether, our data indicate GABA plasticity contributes to the autonomic and cardiovascular alterations following cardiovascular deconditioning (CVD).NEW & NOTEWORTHY Gravity influences distribution of blood volume and autonomic function. Microgravity and prolonged bed rest induce cardiovascular deconditioning (CVD). We used hindlimb unloading (HU), a rat analog for bed rest, to investigate CVD-induced neuroplasticity in the brainstem. Our data demonstrate that HU increases GABA modulation of nucleus tractus solitarii (nTS) neurons via presynaptic plasticity. Given the importance of nTS in integrating cardiovascular reflexes, this study provides new evidence on the central mechanisms behind CVD following HU.
Collapse
Affiliation(s)
- Ludmila Lima-Silveira
- 1Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,3Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Eileen M. Hasser
- 1Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,2Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri,3Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - David D. Kline
- 1Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,2Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri,3Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
22
|
Khan S. Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis. Mol Neurobiol 2022; 59:5630-5655. [PMID: 35739409 DOI: 10.1007/s12035-022-02916-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The ER (endoplasmic reticulum) is a Ca2+ reservoir and the unique protein-synthesizing machinery which is distributed throughout the neuron and composed of multiple different structural domains. One such domain is called EMC (endoplasmic reticulum membrane protein complex), pleiotropic nature in cellular functions. The ER/EMC position inside the neurons unmasks its contribution to synaptic plasticity via regulating various cellular processes from protein synthesis to Ca2+ signaling. Since presynaptic Ca2+ channels and postsynaptic ionotropic receptors are organized into the nanodomains, thus ER can be a crucial player in establishing TMNCs (transsynaptic molecular nanocolumns) to shape efficient neural communications. This review hypothesized that ER is not only involved in stress-mediated neurodegeneration but also axon regrowth, remyelination, neurotransmitter switching, information processing, and regulation of pre- and post-synaptic functions. Thus ER might not only be a protein-synthesizing and quality control machinery but also orchestrates plasticity of plasticity (metaplasticity) within the neuron to execute higher-order brain functions and neural repair.
Collapse
Affiliation(s)
- Shumsuzzaman Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
23
|
Abstract
Major recent advances and previous data have led to a plausible model of how key proteins mediate neurotransmitter release. In this model, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin form tight complexes that bring the membranes together and are crucial for membrane fusion. NSF and SNAPs disassemble SNARE complexes and ensure that fusion occurs through an exquisitely regulated pathway that starts with Munc18-1 bound to a closed conformation of syntaxin-1. Munc18-1 also binds to synaptobrevin, forming a template to assemble the SNARE complex when Munc13-1 opens syntaxin-1 while bridging the vesicle and plasma membranes. Synaptotagmin-1 and complexin bind to partially assembled SNARE complexes, likely stabilizing them and preventing fusion until Ca2+ binding to synaptotagmin-1 causes dissociation from the SNARE complex and induces interactions with phospholipids that help trigger release. Although fundamental questions remain about the mechanism of membrane fusion, these advances provide a framework to investigate the mechanisms underlying presynaptic plasticity.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
24
|
Egashira Y, Kumade A, Ojida A, Ono F. Spontaneously Recycling Synaptic Vesicles Constitute Readily Releasable Vesicles in Intact Neuromuscular Synapses. J Neurosci 2022; 42:3523-3536. [PMID: 35332083 PMCID: PMC9053852 DOI: 10.1523/jneurosci.2005-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence shows that spontaneous synaptic transmission plays crucial roles on neuronal functions through presynaptic molecular mechanisms distinct from that of action potential (AP)-evoked transmission. However, whether the synaptic vesicle (SV) population undergoing the two forms of transmission is segregated remains controversial due in part to the conflicting results observed in cultured neurons. Here we address this issue in intact neuromuscular synapses using transgenic zebrafish larvae expressing two different indicators targeted in the SVs: a pH-sensitive fluorescent protein, pHluorin, and a tag protein, HaloTag. By establishing a quantitative measure of recycled SV fractions, we found that ∼85% of SVs were mobilized by high-frequency AP firings. In contrast, spontaneously recycling SVs were mobilized only from <8% of SVs with a time constant of 45 min at 25°C, although prolonged AP inhibition mobilized an additional population with a delayed onset. The mobilization of the early-onset population was less temperature-sensitive and resistant to tetanus toxin, whereas that of the late-onset population was more sensitive to temperature and was inhibited by tetanus toxin, indicating that prolonged AP inhibition activated a distinct molecular machinery for spontaneous SV fusion. Therefore, the early-onset population limited to <8% was likely the only source of spontaneous release that occurred physiologically. We further showed that this limited population was independent from those reluctant to fuse during AP firing and was used in both the hypertonic stimulation and the immediate phase of AP-evoked releases, thereby matching the characteristics of the readily releasable pool.SIGNIFICANCE STATEMENT Synaptic vesicles (SVs) are divided into functionally distinct pools depending on how they respond to action potential (AP) firing. The origin of SVs used for spontaneous fusion remains enigmatic despite intensive studies in cultured preparations. We addressed this question in intact neuromuscular synapses and provided two findings. First, prolonged AP inhibition activated a distinct population of fusion, which needs to be distinguished from genuine spontaneous fusion arising from a highly limited fraction. Second, the limited fraction observed early in the AP inhibition period exhibited the characteristics of readily releasable pool in the subsequent round of stimulation. Our study revealed that the origin of spontaneous SV fusion is restricted to the readily releasable pool among the SV pools involved in AP-evoked fusion.
Collapse
Affiliation(s)
- Yoshihiro Egashira
- Department of Physiology, Osaka Medical and Pharmaceutical University, Takatsuki, 569-8686, Japan
| | - Ayane Kumade
- Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical and Pharmaceutical University, Takatsuki, 569-8686, Japan
| |
Collapse
|
25
|
Chanaday NL, Kavalali ET. Role of the endoplasmic reticulum in synaptic transmission. Curr Opin Neurobiol 2022; 73:102538. [PMID: 35395547 PMCID: PMC9167765 DOI: 10.1016/j.conb.2022.102538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
Neurons possess a complex morphology spanning long distances and a large number of subcellular specializations such as presynaptic terminals and dendritic spines. This structural complexity is essential for maintenance of synaptic junctions and associated electrical as well as biochemical signaling events. Given the structural and functional complexity of neurons, neuronal endoplasmic reticulum is emerging as a key regulator of neuronal function, in particular synaptic signaling. Neuronal endoplasmic reticulum mediates calcium signaling, calcium and lipid homeostasis, vesicular trafficking, and proteostasis events that underlie autonomous functions of numerous subcellular compartments. However, based on its geometric complexity spanning the whole neuron, endoplasmic reticulum also integrates the activity of these autonomous compartments across the neuron and coordinates their interactions with the soma. In this article, we review recent work regarding neuronal endoplasmic reticulum function and its relationship to neurotransmission and plasticity.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| | - Ege T Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
26
|
Alten B, Guzikowski NJ, Zurawski Z, Hamm HE, Kavalali ET. Presynaptic mechanisms underlying GABA B-receptor-mediated inhibition of spontaneous neurotransmitter release. Cell Rep 2022; 38:110255. [PMID: 35045279 PMCID: PMC8793855 DOI: 10.1016/j.celrep.2021.110255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Inhibition of neurotransmitter release by neurotransmitter substances constitutes a fundamental means of neuromodulation. In contrast to well-delineated mechanisms that underlie inhibition of evoked release via suppression of voltage-gated Ca2+ channels, processes that underlie neuromodulatory inhibition of spontaneous release remain unclear. Here, we interrogated inhibition of spontaneous glutamate and GABA release by presynaptic metabotropic GABAB receptors. Our findings show that this inhibition relies on Gβγ subunit action at the membrane, and it is largely independent of presynaptic Ca2+ signaling for both forms of release. In the case of spontaneous glutamate release, inhibition requires Gβγ interaction with the C terminus of the key fusion machinery component SNAP25, and it is modulated by synaptotagmin-1. Inhibition of spontaneous GABA release, on the other hand, is independent of these pathways and likely requires alternative Gβγ targets at the presynaptic terminal.
Collapse
Affiliation(s)
- Baris Alten
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Natalie J. Guzikowski
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA,Lead contact,Correspondence:
| |
Collapse
|
27
|
Guzikowski NJ, Kavalali ET. Nano-Organization at the Synapse: Segregation of Distinct Forms of Neurotransmission. Front Synaptic Neurosci 2022; 13:796498. [PMID: 35002671 PMCID: PMC8727373 DOI: 10.3389/fnsyn.2021.796498] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023] Open
Abstract
Synapses maintain synchronous, asynchronous, and spontaneous modes of neurotransmission through distinct molecular and biochemical pathways. Traditionally a single synapse was assumed to have a homogeneous organization of molecular components both at the active zone and post-synaptically. However, recent advancements in experimental tools and the further elucidation of the physiological significance of distinct forms of release have challenged this notion. In comparison to rapid evoked release, the physiological significance of both spontaneous and asynchronous neurotransmission has only recently been considered in parallel with synaptic structural organization. Active zone nanostructure aligns with postsynaptic nanostructure creating a precise trans-synaptic alignment of release sites and receptors shaping synaptic efficacy, determining neurotransmission reliability, and tuning plasticity. This review will discuss how studies delineating synaptic nanostructure create a picture of a molecularly heterogeneous active zone tuned to distinct forms of release that may dictate diverse synaptic functional outputs.
Collapse
Affiliation(s)
- Natalie J Guzikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
28
|
Synaptotagmin 1 oligomerization via the juxtamembrane linker regulates spontaneous and evoked neurotransmitter release. Proc Natl Acad Sci U S A 2021; 118:2113859118. [PMID: 34810248 PMCID: PMC8694047 DOI: 10.1073/pnas.2113859118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Synaptotagmin 1 (syt1) is a synaptic vesicle (SV) protein that is rapidly activated by Ca2+ influx into presynaptic nerve terminals, triggering SV exocytosis. Syt1 also inhibits exocytosis, prior to Ca2+ influx, and thus helps synchronize evoked exocytosis upon Ca2+ binding. Herein, we identified a cluster of lysine residues, in the oft-ignored juxtamembrane linker region of syt1, that governs homo-multimerization in an anionic lipid-dependent manner. Neutralization of this positively charged region abolished syt1 self-association on phospholipid bilayers in vitro. Subsequently, in neurons, we found mutations that disrupted syt1 self-association were correlated with defects in clamping spontaneous SV release and in triggering and synchronizing evoked exocytosis. Thus, syt1 regulates SV exocytosis as an oligomer via charged residues in the juxtamembrane linker. Synaptotagmin 1 (syt1) is a Ca2+ sensor that regulates synaptic vesicle exocytosis. Cell-based experiments suggest that syt1 functions as a multimer; however, biochemical and electron microscopy studies have yielded contradictory findings regarding putative self-association. Here, we performed dynamic light scattering on syt1 in solution, followed by electron microscopy, and we used atomic force microscopy to study syt1 self-association on supported lipid bilayers under aqueous conditions. Ring-like multimers were clearly observed. Multimerization was enhanced by Ca2+ and required anionic phospholipids. Large ring-like structures (∼180 nm) were reduced to smaller rings (∼30 nm) upon neutralization of a cluster of juxtamembrane lysine residues; further substitution of residues in the second C2-domain completely abolished self-association. When expressed in neurons, syt1 mutants with graded reductions in self-association activity exhibited concomitant reductions in 1) clamping spontaneous release and 2) triggering and synchronizing evoked release. Thus, the juxtamembrane linker of syt1 plays a crucial role in exocytosis by mediating multimerization.
Collapse
|
29
|
Lee BJ, Yang CH, Lee SY, Lee SH, Kim Y, Ho WK. Voltage-gated calcium channels contribute to spontaneous glutamate release directly via nanodomain coupling or indirectly via calmodulin. Prog Neurobiol 2021; 208:102182. [PMID: 34695543 DOI: 10.1016/j.pneurobio.2021.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Neurotransmitter release occurs either synchronously with action potentials (evoked release) or spontaneously (spontaneous release). Whether the molecular mechanisms underlying evoked and spontaneous release are identical, especially whether voltage-gated calcium channels (VGCCs) can trigger spontaneous events, is still a matter of debate in glutamatergic synapses. To elucidate this issue, we characterized the VGCC dependence of miniature excitatory postsynaptic currents (mEPSCs) in various synapses with different coupling distances between VGCCs and synaptic vesicles, known as a critical factor in evoked release. We found that most of the extracellular calcium-dependent mEPSCs were attributable to VGCCs in cultured autaptic hippocampal neurons and the mature calyx of Held where VGCCs and vesicles were tightly coupled. Among loosely coupled synapses, mEPSCs were not VGCC-dependent at immature calyx of Held and CA1 pyramidal neuron synapses, whereas VGCCs contribution was significant at CA3 pyramidal neuron synapses. Interestingly, the contribution of VGCCs to spontaneous glutamate release in CA3 pyramidal neurons was abolished by a calmodulin antagonist, calmidazolium. These data suggest that coupling distance between VGCCs and vesicles determines VGCC dependence of spontaneous release at tightly coupled synapses, yet VGCC contribution can be achieved indirectly at loosely coupled synapses.
Collapse
Affiliation(s)
- Byoung Ju Lee
- Department of Biomedical Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Che Ho Yang
- Department of Biomedical Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Natural Science, Seoul, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Suk-Ho Lee
- Department of Biomedical Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Natural Science, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Yujin Kim
- Department of Physiology, Seoul National University College of Natural Science, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea.
| | - Won-Kyung Ho
- Department of Biomedical Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Natural Science, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Satake SI, Konishi S. Topographical distance between presynaptic Ca 2+ channels and exocytotic Ca 2+ sensors contributes to differential facilitatory actions of roscovitine on neurotransmitter release at cerebellar glutamatergic and GABAergic synapses. Eur J Neurosci 2021; 54:7048-7062. [PMID: 34622493 DOI: 10.1111/ejn.15487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022]
Abstract
Calcium influx into presynaptic terminals through voltage-gated Ca2+ channels triggers univesicular or multivesicular release of neurotransmitters depending on the characteristics of the release machinery. However, the mechanisms underlying multivesicular release (MVR) and its regulation remain unclear. Previous studies showed that in rat cerebellum, the cyclin-dependent kinase inhibitor roscovitine profoundly increases excitatory postsynaptic current (EPSC) amplitudes at granule cell (GC)-Purkinje cell (PC) synapses by enhancing the MVR of glutamate. This compound can also moderately augment the amplitude and prolong the decay time of inhibitory postsynaptic currents (IPSCs) at molecular layer interneuron (MLI)-PC synapses via MVR enhancement and GABA spillover, thus allowing for persistent activation of perisynaptic GABA receptors. The enhanced MVR may depend on the driving force for Cav 2.1 channel-mediated Ca2+ influx. To determine whether the distinct spatiotemporal dynamics of presynaptic Ca2+ influence MVR, we compared the effects of slow and fast Ca2+ chelators, that is, EGTA and BAPTA, respectively, on roscovitine-induced actions at GC-PC and MLI-PC synapses. Membrane-permeable EGTA-AM decreased GC-PC EPSC and MLI-PC IPSC amplitudes to a similar extent but suppressed the roscovitine-induced enhancement of EPSCs. In contrast, BAPTA-AM attenuated the effects of roscovitine on IPSCs. These results suggest that roscovitine augmented glutamate release by activating the release machinery located distally from the Cav 2.1 channel clusters, while it enhanced GABA release in a manner less dependent on those at distal sites. Therefore, the spatial relationships among Ca2+ channels, buffers, and sensors are critical determinants of the differential facilitatory actions of roscovitine on glutamatergic and GABAergic synapses in the cerebellar cortex.
Collapse
Affiliation(s)
- Shin' Ichiro Satake
- Brain Research Support Center, National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Shiro Konishi
- Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Japan
| |
Collapse
|
31
|
Li L, Liu H, Krout M, Richmond JE, Wang Y, Bai J, Weeratunga S, Collins BM, Ventimiglia D, Yu Y, Xia J, Tang J, Liu J, Hu Z. A novel dual Ca2+ sensor system regulates Ca2+-dependent neurotransmitter release. J Cell Biol 2021; 220:211787. [PMID: 33570571 PMCID: PMC7883739 DOI: 10.1083/jcb.202008121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023] Open
Abstract
Ca2+-dependent neurotransmitter release requires synaptotagmins as Ca2+ sensors to trigger synaptic vesicle (SV) exocytosis via binding of their tandem C2 domains—C2A and C2B—to Ca2+. We have previously demonstrated that SNT-1, a mouse synaptotagmin-1 (Syt1) homologue, functions as the fast Ca2+ sensor in Caenorhabditis elegans. Here, we report a new Ca2+ sensor, SNT-3, which triggers delayed Ca2+-dependent neurotransmitter release. snt-1;snt-3 double mutants abolish evoked synaptic transmission, demonstrating that C. elegans NMJs use a dual Ca2+ sensor system. SNT-3 possesses canonical aspartate residues in both C2 domains, but lacks an N-terminal transmembrane (TM) domain. Biochemical evidence demonstrates that SNT-3 binds both Ca2+ and the plasma membrane. Functional analysis shows that SNT-3 is activated when SNT-1 function is impaired, triggering SV release that is loosely coupled to Ca2+ entry. Compared with SNT-1, which is tethered to SVs, SNT-3 is not associated with SV. Eliminating the SV tethering of SNT-1 by removing the TM domain or the whole N terminus rescues fast release kinetics, demonstrating that cytoplasmic SNT-1 is still functional and triggers fast neurotransmitter release, but also exhibits decreased evoked amplitude and release probability. These results suggest that the fast and slow properties of SV release are determined by the intrinsically different C2 domains in SNT-1 and SNT-3, rather than their N-termini–mediated membrane tethering. Our findings therefore reveal a novel dual Ca2+ sensor system in C. elegans and provide significant insights into Ca2+-regulated exocytosis.
Collapse
Affiliation(s)
- Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Mia Krout
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - Yu Wang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Saroja Weeratunga
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Donovan Ventimiglia
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY
| | - Yi Yu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Jingyao Xia
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Jing Tang
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Jie Liu
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
32
|
Unique dynamics and exocytosis properties of GABAergic synaptic vesicles revealed by three-dimensional single vesicle tracking. Proc Natl Acad Sci U S A 2021; 118:2022133118. [PMID: 33622785 DOI: 10.1073/pnas.2022133118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintaining the balance between neuronal excitation and inhibition is essential for proper function of the central nervous system. Inhibitory synaptic transmission plays an important role in maintaining this balance. Although inhibitory transmission has higher kinetic demands compared to excitatory transmission, its properties are poorly understood. In particular, the dynamics and exocytosis of single inhibitory vesicles have not been investigated, due largely to both technical and practical limitations. Using a combination of quantum dots (QDs) conjugated to antibodies against the luminal domain of the vesicular GABA transporter to selectively label GABAergic (i.e., predominantly inhibitory) vesicles together with dual-focus imaging optics, we tracked the real-time three-dimensional position of single GABAergic vesicles up to the moment of exocytosis (i.e., fusion). Using three-dimensional trajectories, we found that GABAergic synaptic vesicles traveled a shorter distance prior to fusion and had a shorter time to fusion compared to synaptotagmin-1 (Syt1)-labeled vesicles, which were mostly from excitatory neurons. Moreover, our analysis revealed that GABAergic synaptic vesicles move more straightly to their release sites than Syt1-labeled vesicles. Finally, we found that GABAergic vesicles have a higher prevalence of kiss-and-run fusion than Syt1-labeled vesicles. These results indicate that inhibitory synaptic vesicles have a unique set of dynamics and exocytosis properties to support rapid synaptic inhibition, thereby maintaining a tightly regulated coordination between excitation and inhibition in the central nervous system.
Collapse
|
33
|
Chanaday NL, Nosyreva E, Shin OH, Zhang H, Aklan I, Atasoy D, Bezprozvanny I, Kavalali ET. Presynaptic store-operated Ca 2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron 2021; 109:1314-1332.e5. [PMID: 33711258 PMCID: PMC8068669 DOI: 10.1016/j.neuron.2021.02.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Store-operated calcium entry (SOCE) is activated by depletion of Ca2+ from the endoplasmic reticulum (ER) and mediated by stromal interaction molecule (STIM) proteins. Here, we show that in rat and mouse hippocampal neurons, acute ER Ca2+ depletion increases presynaptic Ca2+ levels and glutamate release through a pathway dependent on STIM2 and the synaptic Ca2+ sensor synaptotagmin-7 (syt7). In contrast, synaptotagmin-1 (syt1) can suppress SOCE-mediated spontaneous release, and STIM2 is required for the increase in spontaneous release seen during syt1 loss of function. We also demonstrate that chronic ER stress activates the same pathway leading to syt7-dependent potentiation of spontaneous glutamate release. During ER stress, inhibition of SOCE or syt7-driven fusion partially restored basal neurotransmission and decreased expression of pro-apoptotic markers, indicating that these processes participate in the amplification of ER-stress-related damage. Taken together, we propose that presynaptic SOCE links ER stress and augmented spontaneous neurotransmission, which may, in turn, facilitate neurodegeneration.
Collapse
Affiliation(s)
- Natali L. Chanaday
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Elena Nosyreva
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ok-Ho Shin
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Hua Zhang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Iltan Aklan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA,FOE Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Ilya Bezprozvanny
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.,Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Ege T. Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA.,Vanderbilt Brain Institute.,Corresponding author: Ege T. Kavalali, Ph.D., Department of Pharmacology, Vanderbilt University, 465 21st Avenue South, 7130A MRBIII, PMB407933 Nashville, TN 37240-7933, phone: 615-343-5480,
| |
Collapse
|
34
|
Bourgeois-Jaarsma Q, Miaja Hernandez P, Groffen AJ. Ca 2+ sensor proteins in spontaneous release and synaptic plasticity: Limited contribution of Doc2c, rabphilin-3a and synaptotagmin 7 in hippocampal glutamatergic neurons. Mol Cell Neurosci 2021; 112:103613. [PMID: 33753311 DOI: 10.1016/j.mcn.2021.103613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022] Open
Abstract
Presynaptic neurotransmitter release is strictly regulated by SNARE proteins, Ca2+ and a number of Ca2+ sensors including synaptotagmins (Syts) and Double C2 domain proteins (Doc2s). More than seventy years after the original description of spontaneous release, the mechanism that regulates this process is still poorly understood. Syt-1, Syt7 and Doc2 proteins contribute predominantly, but not exclusively, to synchronous, asynchronous and spontaneous phases of release. The proteins share a conserved tandem C2 domain architecture, but are functionally diverse in their subcellular location, Ca2+-binding properties and protein interactions. In absence of Syt-1, Doc2a and -b, neurons still exhibit spontaneous vesicle fusion which remains Ca2+-sensitive, suggesting the existence of additional sensors. Here, we selected Doc2c, rabphilin-3a and Syt-7 as three potential Ca2+ sensors for their sequence homology with Syt-1 and Doc2b. We genetically ablated each candidate gene in absence of Doc2a and -b and investigated spontaneous and evoked release in glutamatergic hippocampal neurons, cultured either in networks or on microglial islands (autapses). The removal of Doc2c had no effect on spontaneous or evoked release. Syt-7 removal also did not affect spontaneous release, although it altered short-term plasticity by accentuating short-term depression. The removal of rabphilin caused an increased spontaneous release frequency in network cultures, an effect that was not observed in autapses. Taken together, we conclude that Doc2c and Syt-7 do not affect spontaneous release of glutamate in hippocampal neurons, while our results suggest a possible regulatory role of rabphilin-3a in neuronal networks. These findings importantly narrow down the repertoire of synaptic Ca2+ sensors that may be implicated in the spontaneous release of glutamate.
Collapse
Affiliation(s)
- Quentin Bourgeois-Jaarsma
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Pablo Miaja Hernandez
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Alexander J Groffen
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Department of Clinical Genetics, VU Medical Center, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
35
|
Abramov D, Guiberson NGL, Burré J. STXBP1 encephalopathies: Clinical spectrum, disease mechanisms, and therapeutic strategies. J Neurochem 2021; 157:165-178. [PMID: 32643187 PMCID: PMC7812771 DOI: 10.1111/jnc.15120] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Mutations in Munc18-1/STXBP1 (syntaxin-binding protein 1) are linked to various severe early epileptic encephalopathies and neurodevelopmental disorders. Heterozygous mutations in the STXBP1 gene include missense, nonsense, frameshift, and splice site mutations, as well as intragenic deletions and duplications and whole-gene deletions. No genotype-phenotype correlation has been identified so far, and patients are treated by anti-epileptic drugs because of the lack of a specific disease-modifying therapy. The molecular disease mechanisms underlying STXBP1-linked disorders are yet to be fully understood, but both haploinsufficiency and dominant-negative mechanisms have been proposed. This review focuses on the current understanding of the phenotypic spectrum of STXBP1-linked disorders, as well as discusses disease mechanisms in the context of the numerous pathways in which STXBP1 functions in the brain. We additionally evaluate the available animal models to study these disorders and highlight potential therapeutic approaches for treating these devastating diseases.
Collapse
Affiliation(s)
- Debra Abramov
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Noah Guy Lewis Guiberson
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
36
|
Shin OH, Kavalali ET. Evolutionary diversity of the dual Ca 2+ sensor system for neurotransmitter release. Cell Calcium 2021; 96:102402. [PMID: 33813181 DOI: 10.1016/j.ceca.2021.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Several proteins containing C2 domains have been identified as Ca2+ sensors for neurotransmitter release. In several cases, multiple C2 domain containing proteins function together to sustain evoked synchronous and asynchronous release as well as Ca2+-dependent forms of spontaneous release. Most recent publication by Li and colleagues have identified a novel Ca2+ sensor at the C. elegans neuromuscular junction [8] that complements the fast Ca2+ sensor synaptotagmin-1 in mediating a slower form of evoked release. Here, we discuss these results as well as earlier work suggesting an evolutionarily conserved diversity of Ca2+ sensors mediating distinct forms of neurotransmitter release.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
37
|
Chen Y, Wang YH, Zheng Y, Li M, Wang B, Wang QW, Fu CL, Liu YN, Li X, Yao J. Synaptotagmin-1 interacts with PI(4,5)P2 to initiate synaptic vesicle docking in hippocampal neurons. Cell Rep 2021; 34:108842. [PMID: 33730593 DOI: 10.1016/j.celrep.2021.108842] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/24/2021] [Accepted: 02/17/2021] [Indexed: 01/19/2023] Open
Abstract
Synaptic vesicle (SV) docking is a dynamic multi-stage process that is required for efficient neurotransmitter release in response to nerve impulses. Although the steady-state SV docking likely involves the cooperation of Synaptotagmin-1 (Syt1) and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), where and how the docking process initiates remains unknown. Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) can interact with Syt1 and SNAREs to contribute to vesicle exocytosis. In the present study, using the CRISPRi-mediated multiplex gene knockdown and 3D electron tomography approaches, we show that in mouse hippocampal synapses, SV docking initiates at ∼12 nm to the active zone (AZ) by Syt1. Furthermore, we demonstrate that PI(4,5)P2 is the membrane partner of Syt1 to initiate SV docking, and disrupting their interaction could abolish the docking initiation. In contrast, the SNARE complex contributes only to the tight SV docking within 0-2 nm. Therefore, Syt1 interacts with PI(4,5)P2 to loosely dock SVs within 2-12 nm to the AZ in hippocampal neurons.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying-Han Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Zheng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meijing Li
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Bing Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiu-Wen Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chong-Lei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yao-Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueming Li
- MOE Key Laboratory of Protein Science, Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
38
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
39
|
Li ZY, Zhu LQ, Guo LQ, Ren ZY, Xiao H, Cai JC. Mimicking Neurotransmitter Activity and Realizing Algebraic Arithmetic on Flexible Protein-Gated Oxide Neuromorphic Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7784-7791. [PMID: 33533611 DOI: 10.1021/acsami.0c22047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, flexible neuromorphic devices have attracted extensive attention for the construction of perception cognitive systems with the ultimate objective to achieve robust computation, efficient learning, and adaptability to evolutionary changes. In particular, the design of flexible neuromorphic devices with data processing and arithmetic capabilities is highly desirable for wearable cognitive platforms. Here, an albumen-based protein-gated flexible indium tin oxide (ITO) ionotronic neuromorphic transistor was proposed. First, the transistor demonstrates excellent mechanical robustness against bending stress. Moreover, spike-duration-dependent synaptic plasticity and spike-amplitude-dependent synaptic plasticity behaviors are not affected by bending stress. With the unique protonic gating behaviors, neurotransmission processes in biological synapses are emulated, exhibiting three characteristics in neurotransmitter release, including quantal release, stochastic release, and excitatory or inhibitory release. In addition, three types of spike-timing-dependent plasticity learning rules are mimicked on the ITO ionotronic neuromorphic transistor. Most interestingly, algebraic arithmetic operations, including addition, subtraction, multiplication, and division, are implemented on the protein gated neuromorphic transistor for the first time. The present work would open a promising biorealistic avenue to the scientific community to control and design wearable "green" cognitive platforms, with potential applications including but not limited to intelligent humanoid robots and replacement neuroprosthetics.
Collapse
Affiliation(s)
- Zhi Yuan Li
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Li Qiang Zhu
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Li Qiang Guo
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zheng Yu Ren
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Hui Xiao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Jia Cheng Cai
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| |
Collapse
|
40
|
Alten B, Zhou Q, Shin OH, Esquivies L, Lin PY, White KI, Sun R, Chung WK, Monteggia LM, Brunger AT, Kavalali ET. Role of Aberrant Spontaneous Neurotransmission in SNAP25-Associated Encephalopathies. Neuron 2020; 109:59-72.e5. [PMID: 33147442 DOI: 10.1016/j.neuron.2020.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/09/2020] [Accepted: 10/07/2020] [Indexed: 01/19/2023]
Abstract
SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) complex, composed of synaptobrevin, syntaxin, and SNAP25, forms the essential fusion machinery for neurotransmitter release. Recent studies have reported several mutations in the gene encoding SNAP25 as a causative factor for developmental and epileptic encephalopathies of infancy and childhood with diverse clinical manifestations. However, it remains unclear how SNAP25 mutations give rise to these disorders. Here, we show that although structurally clustered mutations in SNAP25 give rise to related synaptic transmission phenotypes, specific alterations in spontaneous neurotransmitter release are a key factor to account for disease heterogeneity. Importantly, we identified a single mutation that augments spontaneous release without altering evoked release, suggesting that aberrant spontaneous release is sufficient to cause disease in humans.
Collapse
Affiliation(s)
- Baris Alten
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Qiangjun Zhou
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ok-Ho Shin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Pei-Yi Lin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Rong Sun
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Wendy K Chung
- Department of Pediatrics (in Medicine), Columbia University Medical Center, New York, NY 10032, USA
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|
41
|
Huson V, Meijer M, Dekker R, Ter Veer M, Ruiter M, van Weering JR, Verhage M, Cornelisse LN. Post-tetanic potentiation lowers the energy barrier for synaptic vesicle fusion independently of Synaptotagmin-1. eLife 2020; 9:55713. [PMID: 32831174 PMCID: PMC7500951 DOI: 10.7554/elife.55713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/23/2020] [Indexed: 11/13/2022] Open
Abstract
Previously, we showed that modulation of the energy barrier for synaptic vesicle fusion boosts release rates supralinearly (Schotten, 2015). Here we show that mouse hippocampal synapses employ this principle to trigger Ca2+-dependent vesicle release and post-tetanic potentiation (PTP). We assess energy barrier changes by fitting release kinetics in response to hypertonic sucrose. Mimicking activation of the C2A domain of the Ca2+-sensor Synaptotagmin-1 (Syt1), by adding a positive charge (Syt1D232N) or increasing its hydrophobicity (Syt14W), lowers the energy barrier. Removing Syt1 or impairing its release inhibitory function (Syt19Pro) increases spontaneous release without affecting the fusion barrier. Both phorbol esters and tetanic stimulation potentiate synaptic strength, and lower the energy barrier equally well in the presence and absence of Syt1. We propose a model where tetanic stimulation activates Syt1-independent mechanisms that lower the energy barrier and act additively with Syt1-dependent mechanisms to produce PTP by exerting multiplicative effects on release rates.
Collapse
Affiliation(s)
- Vincent Huson
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Marieke Meijer
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Rien Dekker
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Mirelle Ter Veer
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Marvin Ruiter
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Jan Rt van Weering
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Lennart Niels Cornelisse
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
42
|
Wolfes AC, Dean C. The diversity of synaptotagmin isoforms. Curr Opin Neurobiol 2020; 63:198-209. [PMID: 32663762 DOI: 10.1016/j.conb.2020.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
The synaptotagmin family of molecules is known for regulating calcium-dependent membrane fusion events. Mice and humans express 17 synaptotagmin isoforms, where most studies have focused on isoforms 1, 2, and 7, which are involved in synaptic vesicle exocytosis. Recent work has highlighted how brain function relies on additional isoforms, with roles in postsynaptic receptor endocytosis, vesicle trafficking, membrane repair, synaptic plasticity, and protection against neurodegeneration, for example, in addition to the traditional concept of synaptotagmin-mediated neurotransmitter release - in neurons as well as glia, and at different timepoints. In fact, it is not uncommon for the same isoform to feature several splice isoforms, form homo- and heterodimers, and function in different subcellular locations and cell types. This review aims to highlight the diversity of synaptotagmins, offers a concise summary of key findings on all isoforms, and discusses different ways of grouping these.
Collapse
Affiliation(s)
- Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK; UK Dementia Research Institute at Imperial College, London, UK
| | - Camin Dean
- German Center for Neurodegenerative Diseases, Charité University of Medicine - Berlin, 10117 Berlin, Germany.
| |
Collapse
|
43
|
The Synaptic Vesicle Cycle Revisited: New Insights into the Modes and Mechanisms. J Neurosci 2020; 39:8209-8216. [PMID: 31619489 DOI: 10.1523/jneurosci.1158-19.2019] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 02/01/2023] Open
Abstract
Neurotransmission is sustained by endocytosis and refilling of synaptic vesicles (SVs) locally within the presynapse. Until recently, a consensus formed that after exocytosis, SVs are recovered by either fusion pore closure (kiss-and-run) or clathrin-mediated endocytosis directly from the plasma membrane. However, recent data have revealed that SV formation is more complex than previously envisaged. For example, two additional recycling pathways have been discovered, ultrafast endocytosis and activity-dependent bulk endocytosis, in which SVs are regenerated from the internalized membrane and synaptic endosomes. Furthermore, these diverse modes of endocytosis appear to influence both the molecular composition and subsequent physiological role of individual SVs. In addition, previously unknown complexity in SV refilling and reclustering has been revealed. This review presents a modern view of the SV life cycle and discusses how neuronal subtype, physiological temperature, and individual activity patterns can recruit different endocytic modes to generate new SVs and sculpt subsequent presynaptic performance.
Collapse
|
44
|
Sleiman M, Stevens DR, Chitirala P, Rettig J. Cytotoxic Granule Trafficking and Fusion in Synaptotagmin7-Deficient Cytotoxic T Lymphocytes. Front Immunol 2020; 11:1080. [PMID: 32547563 PMCID: PMC7273742 DOI: 10.3389/fimmu.2020.01080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 11/13/2022] Open
Abstract
Granules of cytotoxic T lymphocytes (CTL) are derived from the lysosomal compartment. Synaptotagmin7 (Syt7) appears to be the calcium sensor triggering fusion of lysosomes in fibroblasts. Syt7 has been proposed to control cytotoxic granule (CG) fusion in lymphocytes and mice lacking Syt7 have reduced ability to clear infections. However, fusion of CG persists in the absence of Syt7. To clarify the role of Syt7 in CTL function, we have examined the fusion of cytotoxic granules of CD8+ T-lymphocytes from Syt7 knock-out mice. We have recorded granule fusion in living CTL, using total internal reflection microscopy. Since Syt7 is considered a high affinity calcium-sensor specialized for fusion under low calcium conditions, we have compared cytotoxic granule fusion under low and high calcium conditions in the same CTL. There was no difference in latencies or numbers of fusion events per CTL under low-calcium conditions, indicating that Syt7 is not required for cytotoxic granule fusion. A deficit of fusion in Syt7 KO CTL was seen when a high-calcium solution was introduced. Expressing wild type Syt7 in Syt7 KO lymphocytes reversed this deficit, confirming its Syt7-dependence. Mutations of Syt7 which disrupt calcium binding to its C2A domain reduced the efficacy of this rescue. We counted the cytotoxic granules present at the plasma membrane to determine if the lack of fusion events in the Syt7 KO CTL was due to a lack of granules. In low calcium there were no differences in fusion events per CTL, and granule numbers were similar. In high calcium, granule number was similar though wild type CTL exhibited significantly more fusion than Syt7 KO CTL. The modest differences in granule counts do not account for the lack of fusion in high calcium in Syt7 KO CTL. In Syt7 KO CTL expressing wild type Syt7, delivery of cytotoxic granules to the plasma membrane was comparable to that of wild type CTL. Syt7 KO CTL expressing Syt7 with deficient calcium binding in the C2A domain had significantly less fusion and fewer CG at the plasma membrane. These results indicate that Syt7 is involved in trafficking of CG to the plasma membrane.
Collapse
Affiliation(s)
- Marwa Sleiman
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - David R Stevens
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Praneeth Chitirala
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| |
Collapse
|
45
|
VAMP4 Maintains a Ca 2+-Sensitive Pool of Spontaneously Recycling Synaptic Vesicles. J Neurosci 2020; 40:5389-5401. [PMID: 32532887 DOI: 10.1523/jneurosci.2386-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
Spontaneous neurotransmitter release is a fundamental property of synapses in which neurotransmitter filled vesicles release their content independent of presynaptic action potentials (APs). Despite their seemingly random nature, these spontaneous fusion events can be regulated by Ca2+ signaling pathways. Here, we probed the mechanisms that maintain Ca2+ sensitivity of spontaneous release events in synapses formed between hippocampal neurons cultured from rats of both sexes. In this setting, we examined the potential role of vesicle-associated membrane protein 4 (VAMP4), a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein in spontaneous neurotransmission. Our results show that VAMP4 is required for Ca2+-dependent spontaneous excitatory neurotransmission, with a limited role in spontaneous inhibitory neurotransmission. Key residues in VAMP4 that regulate its retrieval as well as functional clathrin-mediated vesicle trafficking were essential for the maintenance of VAMP4-mediated spontaneous release. Moreover, high-frequency stimulation (HFS) that typically triggers asynchronous release and retrieval of VAMP4 from the plasma membrane also augmentsCa2+-sensitive spontaneous release for up to 30 min in a VAMP4-dependent manner. This VAMP4-mediated link between asynchronous and spontaneous excitatory neurotransmission might serve as a presynaptic substrate for synaptic plasticity coupling distinct forms of release.SIGNIFICANCE STATEMENT Spontaneous neurotransmitter release that occurs independent of presynaptic action potentials (APs) shows significant sensitivity to intracellular Ca2+ levels. In this study, we identify the vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) molecule vesicle-associated membrane protein 4 (VAMP4) as a key component of the machinery that maintains these Ca2+-sensitive fraction of spontaneous release events. Following brief intense activity, VAMP4-dependent synaptic vesicle retrieval supports a pool of vesicles that fuse spontaneously in the long term. We propose that this vesicle trafficking pathway acts to shape spontaneous release and associated signaling based on previous activity history of synapses.
Collapse
|
46
|
Yin C, Ishii T, Kaneda M. Two Types of Cl Transporters Contribute to the Regulation of Intracellular Cl Concentrations in ON- and OFF-type Bipolar Cells in the Mouse Retina. Neuroscience 2020; 440:267-276. [PMID: 32531472 DOI: 10.1016/j.neuroscience.2020.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
In the retina, ON- and OFF-type bipolar cells are classified by subtype-specific center responses, which are attributed to differences in glutamate receptor subtypes. However, the mechanisms by which ON- and OFF-type bipolar cells generate subtype-specific surround responses remain unclear. One hypothesis for surround responses is that intracellular Cl concentrations ([Cl-]i) are set at different levels to achieve opposite polarities for GABA responses in ON- and OFF-type bipolar cells. Although this hypothesis is supported by previous findings obtained from rod (ON-) type bipolar cells, there is currently no information on OFF-type bipolar cells. In the present study, we examined the distribution and function of the Cl transporters, the Na-K-Cl co-transporter (NKCC1) and K-Cl co-transporter (KCC2), in rod (ON-) and OFF-type bipolar cells using immunohistochemical, in situ hybridization, and electrophysiological methods. Rod (ON-) and OFF-type bipolar cells both expressed NKCC1 and KCC2. However, the functional contribution of NKCC1 and KCC2 to the regulation of [Cl-]i differed between rod (ON-) and OFF-type bipolar cells. Strong NKCC1 activity increased [Cl-]i in rod (ON-) type bipolar cells, while that of KCC2 decreased [Cl-]i in OFF-type bipolar cells. We also confirmed the presence of a [Cl-]i gradient between dendrites and axon terminals in rod (ON-type) bipolar cells. Thus, the subtype-specific control of [Cl-]i is achieved by the activity of NKCC1 relative to that of KCC2 and appears to influence the polarity of surround responses.
Collapse
Affiliation(s)
- Chengzhu Yin
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
47
|
López-Murcia FJ, Reim K, Jahn O, Taschenberger H, Brose N. Acute Complexin Knockout Abates Spontaneous and Evoked Transmitter Release. Cell Rep 2020; 26:2521-2530.e5. [PMID: 30840877 DOI: 10.1016/j.celrep.2019.02.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/05/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
SNARE-mediated synaptic vesicle (SV) fusion is controlled by multiple regulatory proteins that determine neurotransmitter release efficiency. Complexins are essential SNARE regulators whose mode of action is unclear, as available evidence indicates positive SV fusion facilitation and negative "fusion clamp"-like activities, with the latter occurring only in certain contexts. Because these contradictory findings likely originate in part from different experimental perturbation strategies, we attempted to resolve them by examining a conditional complexin-knockout mouse line as the most stringent genetic perturbation model available. We found that acute complexin loss after synaptogenesis in autaptic and mass-cultured hippocampal neurons reduces SV fusion probability and thus abates the rates of spontaneous, synchronous, asynchronous, and delayed transmitter release but does not affect SV priming or cause "unclamping" of spontaneous SV fusion. Thus, complexins act as facilitators of SV fusion but are dispensable for "fusion clamping" in mammalian forebrain neurons.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany.
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany.
| |
Collapse
|
48
|
Horvath PM, Piazza MK, Monteggia LM, Kavalali ET. Spontaneous and evoked neurotransmission are partially segregated at inhibitory synapses. eLife 2020; 9:52852. [PMID: 32401197 PMCID: PMC7250572 DOI: 10.7554/elife.52852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
Synaptic transmission is initiated via spontaneous or action-potential evoked fusion of synaptic vesicles. At excitatory synapses, glutamatergic receptors activated by spontaneous and evoked neurotransmission are segregated. Although inhibitory synapses also transmit signals spontaneously or in response to action potentials, they differ from excitatory synapses in both structure and function. Therefore, we hypothesized that inhibitory synapses may have different organizing principles. We report picrotoxin, a GABAAR antagonist, blocks neurotransmission in a use-dependent manner at rat hippocampal synapses and therefore can be used to interrogate synaptic properties. Using this tool, we uncovered partial segregation of inhibitory spontaneous and evoked neurotransmission. We found up to 40% of the evoked response is mediated through GABAARs which are only activated by evoked neurotransmission. These data indicate GABAergic spontaneous and evoked neurotransmission processes are partially non-overlapping, suggesting they may serve divergent roles in neuronal signaling.
Collapse
Affiliation(s)
- Patricia M Horvath
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, United States
| | - Michelle K Piazza
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States.,Neuroscience Program, Vanderbilt University, Nashville, United States
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States
| |
Collapse
|
49
|
Bradberry MM, Courtney NA, Dominguez MJ, Lofquist SM, Knox AT, Sutton RB, Chapman ER. Molecular Basis for Synaptotagmin-1-Associated Neurodevelopmental Disorder. Neuron 2020; 107:52-64.e7. [PMID: 32362337 DOI: 10.1016/j.neuron.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/09/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
At neuronal synapses, synaptotagmin-1 (syt1) acts as a Ca2+ sensor that synchronizes neurotransmitter release with Ca2+ influx during action potential firing. Heterozygous missense mutations in syt1 have recently been associated with a severe but heterogeneous developmental syndrome, termed syt1-associated neurodevelopmental disorder. Well-defined pathogenic mechanisms, and the basis for phenotypic heterogeneity in this disorder, remain unknown. Here, we report the clinical, physiological, and biophysical characterization of three syt1 mutations from human patients. Synaptic transmission was impaired in neurons expressing mutant variants, which demonstrated potent, graded dominant-negative effects. Biophysical interrogation of the mutant variants revealed novel mechanistic features concerning the cooperative action, and functional specialization, of the tandem Ca2+-sensing domains of syt1. These mechanistic studies led to the discovery that a clinically approved K+ channel antagonist is able to rescue the dominant-negative heterozygous phenotype. Our results establish a molecular cause, basis for phenotypic heterogeneity, and potential treatment approach for syt1-associated neurodevelopmental disorder.
Collapse
Affiliation(s)
- Mazdak M Bradberry
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Nicholas A Courtney
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Matthew J Dominguez
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sydney M Lofquist
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Andrew T Knox
- Department of Neurology, Section of Pediatric Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - R Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
50
|
Khan MM, Regehr WG. Loss of Doc2b does not influence transmission at Purkinje cell to deep nuclei synapses under physiological conditions. eLife 2020; 9:55165. [PMID: 32347796 PMCID: PMC7190354 DOI: 10.7554/elife.55165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/26/2022] Open
Abstract
Doc2a and Doc2b are high-affinity calcium-binding proteins that interact with SNARE proteins and phospholipids. Experiments performed on cultured cells indicated that Doc2 proteins promote spontaneous vesicle fusion and asynchronous neurotransmitter release, regulate vesicle priming, mediate augmentation, and regulate transmission during sustained activity. Here, we assess the role of Doc2 proteins in synaptic transmission under physiological conditions at mature synapses made by Purkinje cells onto neurons in the deep cerebellar nuclei (PC to DCN synapses). PCs express Doc2b but not Doc2a. Surprisingly, spontaneous neurotransmitter release, synaptic strength, the time course of evoked release, responses evoked by sustained high-frequency stimulation, and short-term plasticity were normal in Doc2b KO mice. Thus, in stark contrast to numerous functions previously proposed for Doc2, here we find that Doc2b removal does not influence transmission at PC-to-DCN synapses, indicating that conclusions based on studies of Doc2b in cultured cells do not necessarily generalize to mature synapses under physiological conditions.
Collapse
Affiliation(s)
- Mehak M Khan
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|