1
|
Pariyar R, Wang J, Hammond R, Koo H, Dalley N, La JH. TRPA1 Agonist-Responsive Afferents Contribute to Central Sensitization by Suppressing Spinal GABAergic Interneurons Through Somatostatin 2A Receptors. THE JOURNAL OF PAIN 2024; 25:104686. [PMID: 39321909 DOI: 10.1016/j.jpain.2024.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Altered nociception, a key feature of nociplastic pain, often involves central sensitization. We previously found that central sensitization underlying a nociplastic pain state in female mice depends on the ongoing activity of TRPA1 agonist-responsive afferents. Here, we investigated how the activity of these afferents induces and maintains central sensitization at the spinal level. We hypothesized that, in the superficial dorsal horn where somatostatin (SST) is expressed in excitatory interneurons and the SST2A receptor (SST2A-R) in GABAergic inhibitory interneurons (GABAn), TRPA1 agonist-responsive afferents stimulate SST-expressing excitatory interneurons (SSTn), leading to GABAn suppression through SST2A-R and resulting in altered nociception. We tested this hypothesis using ex vivo Ca2+ imaging of dorsal root-attached spinal cord slices expressing GCaMP6f in either SSTn or GABAn and in vivo assessment of mechanical hypersensitivity. The dorsal root was chemically (with allyl isothiocyanate [AITC]) and electrically stimulated to activate TRPA1-expressing nociceptors and all afferents, respectively. The stimulation of dorsal root with AITC excited SSTn. During activation of AITC-responsive afferents, a subset of SSTn showed potentiated responses to both low- and high-threshold afferent inputs, whereas a subset of GABAn showed suppressed responses to those afferents in an SST2A-R-dependent manner. Intrathecally administered SST2A-R antagonist inhibited the development of mechanical hypersensitivity by intraplantar AITC injection and alleviated persistent mechanical hypersensitivity in the murine model of nociplastic pain. These results suggest that the activity of TRPA1 agonist-responsive afferents induces and maintains central sensitization by activating dorsal horn SSTn and suppressing GABAn via SST2A-R, resulting in altered nociception that manifests as mechanical hypersensitivity. PERSPECTIVE: This article presents experimental evidence that TRPA1 agonist-responsive afferents induce and maintain central sensitization at the spinal level by activating SST-expressing excitatory interneurons and suppressing GABAergic inhibitory interneurons via SST2A-R. Spinal SST2A-R may represent a promising target for treating mechanical pain hypersensitivity due to central sensitization by TRPA1 agonist-responsive afferents.
Collapse
Affiliation(s)
- Ramesh Pariyar
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Jigong Wang
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Regan Hammond
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Ho Koo
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Nicholas Dalley
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas
| | - Jun-Ho La
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
2
|
Lian YN, Cao XW, Wu C, Pei CY, Liu L, Zhang C, Li XY. Deconstruction the feedforward inhibition changes in the layer III of anterior cingulate cortex after peripheral nerve injury. Commun Biol 2024; 7:1237. [PMID: 39354145 PMCID: PMC11445484 DOI: 10.1038/s42003-024-06849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
The anterior cingulate cortex (ACC) is one of the critical brain areas for processing noxious information. Previous studies showed that peripheral nerve injury induced broad changes in the ACC, contributing to pain hypersensitivity. The neurons in layer 3 (L3) of the ACC receive the inputs from the mediodorsal thalamus (MD) and form the feedforward inhibition (FFI) microcircuits. The effects of peripheral nerve injury on the MD-driven FFI in L3 of ACC are unknown. In our study, we record the enhanced excitatory synaptic transmissions from the MD to L3 of the ACC in mice with common peroneal nerve ligation, affecting FFI. Chemogenetically activating the MD-to-ACC projections induces pain sensitivity and place aversion in naive mice. Furthermore, chemogenetically inactivating MD-to-ACC projections decreases pain sensitivity and promotes place preference in nerve-injured mice. Our results indicate that the peripheral nerve injury changes the MD-to-ACC projections, contributing to pain hypersensitivity and aversion.
Collapse
Affiliation(s)
- Yan-Na Lian
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiao-Wen Cao
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Cheng Wu
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, 314400, China
| | - Chen-Yu Pei
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chen Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair & Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Xiang-Yao Li
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China.
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, 314400, China.
| |
Collapse
|
3
|
Ginsberg AG, Lempka SF, Duan B, Booth V, Crodelle J. Mechanisms for dysregulation of excitatory-inhibitory balance underlying allodynia in dorsal horn neural subcircuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598179. [PMID: 38915505 PMCID: PMC11195069 DOI: 10.1101/2024.06.10.598179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common type of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord. In this work, we analyze biophysically-motivated subcircuit structures that represent common motifs in neural circuits in layers I-II of the dorsal horn. These circuits are hypothesized to be part of the neural pathways that mediate two different types of allodynia: static and dynamic. We use neural firing rate models to describe the activity of populations of excitatory and inhibitory interneurons within each subcircuit. By accounting for experimentally-observed responses under healthy conditions, we specify model parameters defining populations of subcircuits that yield typical behavior under normal conditions. Then, we implement a sensitivity analysis approach to identify the mechanisms most likely to cause allodynia-producing dysregulation of the subcircuit's E-I signaling. We find that disruption of E-I balance generally occurs either due to downregulation of inhibitory signaling so that excitatory neurons are "released" from inhibitory control, or due to upregulation of excitatory neuron responses so that excitatory neurons "escape" their inhibitory control. Which of these mechanisms is most likely to occur, the subcircuit components involved in the mechanism, and the proportion of subcircuits exhibiting the mechanism can vary depending on the subcircuit structure. These results suggest specific hypotheses about diverse mechanisms that may be most likely responsible for allodynia, thus offering predictions for the high interindividual variability observed in allodynia and identifying targets for further experimental studies on the underlying mechanisms of this chronic pain condition.
Collapse
Affiliation(s)
- Alexander G. Ginsberg
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Bo Duan
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jennifer Crodelle
- Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, United States
| |
Collapse
|
4
|
Malapert P, Robert G, Brunet E, Chemin J, Bourinet E, Moqrich A. A novel Na v1.8-FLPo driver mouse for intersectional genetics to uncover the functional significance of primary sensory neuron diversity. iScience 2024; 27:109396. [PMID: 38510134 PMCID: PMC10952036 DOI: 10.1016/j.isci.2024.109396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The recent development of single-cell and single-nucleus RNA sequencing has highlighted the extraordinary diversity of dorsal root ganglia neurons. However, the few available genetic tools limit our understanding of the functional significance of this heterogeneity. We generated a new mouse line expressing the flippase recombinase from the scn10a locus. By crossing Nav1.8Ires-FLPo mice with the AdvillinCre and RC::FL-hM3Dq mouse lines in an intersectional genetics approach, we were able to obtain somatodendritic expression of hM3Dq-mCherry selectively in the Nav1.8 lineage. The bath application of clozapine N-oxide triggered strong calcium responses selectively in mCherry+ neurons. The intraplantar injection of CNO caused robust flinching, shaking, and biting responses accompanied by strong cFos activation in the ipsilateral lumbar spinal cord. The Nav1.8Ires-FLPo mouse model will be a valuable tool for extending our understanding of the in vivo functional specialization of neuronal subsets of the Nav1.8 lineage for which inducible Cre lines are available.
Collapse
Affiliation(s)
- Pascale Malapert
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, Marseille, France
| | - Guillaume Robert
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, Marseille, France
| | - Elena Brunet
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, Marseille, France
| | - Jean Chemin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Bourinet
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Aziz Moqrich
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, Marseille, France
| |
Collapse
|
5
|
Gradwell MA, Ozeri-Engelhard N, Eisdorfer JT, Laflamme OD, Gonzalez M, Upadhyay A, Medlock L, Shrier T, Patel KR, Aoki A, Gandhi M, Abbas-Zadeh G, Oputa O, Thackray JK, Ricci M, George A, Yusuf N, Keating J, Imtiaz Z, Alomary SA, Bohic M, Haas M, Hernandez Y, Prescott SA, Akay T, Abraira VE. Multimodal sensory control of motor performance by glycinergic interneurons of the mouse spinal cord deep dorsal horn. Neuron 2024; 112:1302-1327.e13. [PMID: 38452762 DOI: 10.1016/j.neuron.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Sensory feedback is integral for contextually appropriate motor output, yet the neural circuits responsible remain elusive. Here, we pinpoint the medial deep dorsal horn of the mouse spinal cord as a convergence point for proprioceptive and cutaneous input. Within this region, we identify a population of tonically active glycinergic inhibitory neurons expressing parvalbumin. Using anatomy and electrophysiology, we demonstrate that deep dorsal horn parvalbumin-expressing interneuron (dPV) activity is shaped by convergent proprioceptive, cutaneous, and descending input. Selectively targeting spinal dPVs, we reveal their widespread ipsilateral inhibition onto pre-motor and motor networks and demonstrate their role in gating sensory-evoked muscle activity using electromyography (EMG) recordings. dPV ablation altered limb kinematics and step-cycle timing during treadmill locomotion and reduced the transitions between sub-movements during spontaneous behavior. These findings reveal a circuit basis by which sensory convergence onto dorsal horn inhibitory neurons modulates motor output to facilitate smooth movement and context-appropriate transitions.
Collapse
Affiliation(s)
- Mark A Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nofar Ozeri-Engelhard
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jaclyn T Eisdorfer
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olivier D Laflamme
- Dalhousie PhD program, Dalhousie University, Halifax, NS, Canada; Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Melissa Gonzalez
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Biomedical Engineering, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Aman Upadhyay
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Laura Medlock
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tara Shrier
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Komal R Patel
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Adin Aoki
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Melissa Gandhi
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gloria Abbas-Zadeh
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olisemaka Oputa
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Joshua K Thackray
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, NJ, USA; Tourette International Collaborative Genetics Study (TIC Genetics)
| | - Matthew Ricci
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arlene George
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nusrath Yusuf
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jessica Keating
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Zarghona Imtiaz
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Simona A Alomary
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Manon Bohic
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Michael Haas
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yurdiana Hernandez
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Steven A Prescott
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Victoria E Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
6
|
Kan BF, Liu XY, Han MM, Yang CW, Zhu X, Jin Y, Wang D, Huang X, Wu WJ, Fu T, Kang F, Zhang Z, Li J. Nerve Growth Factor/Tyrosine Kinase A Receptor Pathway Enhances Analgesia in an Experimental Mouse Model of Bone Cancer Pain by Increasing Membrane Levels of δ-Opioid Receptors. Anesthesiology 2024; 140:765-785. [PMID: 38118180 DOI: 10.1097/aln.0000000000004880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
BACKGROUND The role of nerve growth factor (NGF)/tyrosine kinase A receptor (TrKA) signaling, which is activated in a variety of pain states, in regulating membrane-associated δ-opioid receptor (mDOR) expression is poorly understood. The hypothesis was that elevated NGF in bone cancer tumors could upregulate mDOR expression in spinal cord neurons and that mDOR agonism might alleviate bone cancer pain. METHODS Bone cancer pain (BCP) was induced by inoculating Lewis lung carcinoma cells into the femoral marrow cavity of adult C57BL/6J mice of both sexes. Nociceptive behaviors were evaluated by the von Frey and Hargreaves tests. Protein expression in the spinal dorsal horn of animals was measured by biochemical analyses, and excitatory synaptic transmission was recorded in miniature excitatory synaptic currents. RESULTS The authors found that mDOR expression was increased in BCP mice (BCP vs. sham, mean ± SD: 0.18 ± 0.01 g vs. mean ± SD: 0.13 ± 0.01 g, n = 4, P < 0.001) and that administration of the DOR agonist deltorphin 2 (Del2) increased nociceptive thresholds (Del2 vs. vehicle, median [25th, 75th percentiles]: 1.00 [0.60, 1.40] g vs. median [25th, 75th percentiles]: 0.40 [0.16, 0.45] g, n = 10, P = 0.001) and reduced miniature excitatory synaptic current frequency in lamina II outer neurons (Del2 vs. baseline, mean ± SD: 2.21 ± 0.81 Hz vs. mean ± SD: 2.43 ± 0.90 Hz, n = 12, P < 0.001). Additionally, NGF expression was increased in BCP mice (BCP vs. sham, mean ± SD: 0.36 ± 0.03 vs. mean ± SD: 0.16 ± 0.02, n = 4, P < 0.001), and elevated NGF was associated with enhanced mDOR expression via TrKA signaling. CONCLUSIONS Activation of mDOR produces analgesia that is dependent on the upregulation of the NGF/TrKA pathway by increasing mDOR levels under conditions of BCP in mice. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Bu-Fan Kan
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xing-Yun Liu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming-Ming Han
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cheng-Wei Yang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xia Zhu
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Jin
- Stroke Center and Department of Neurology, Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Di Wang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Huang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen-Jie Wu
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Tong Fu
- Graduate School of Wannan Medical College, Wuhu, China
| | - Fang Kang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; and Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, University of Science and Technology of China, Hefei, China
| | - Juan Li
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Chen Q, Wang Z, Zhang S. Mechanism, application and effect evaluation of nerve mobilization in the treatment of low back pain: A narrative review. Medicine (Baltimore) 2023; 102:e34961. [PMID: 37653794 PMCID: PMC10470699 DOI: 10.1097/md.0000000000034961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Lower back pain is a prevalent condition affecting people across all age groups and causing significant personal and societal burdens. While numerous treatments exist, nerve mobilization has emerged as a promising approach for managing lower back pain. Nerve mobilization involves applying gentle and rhythmic movements to the affected nerves, promoting normal nerve function and releasing tension. It has been well documented that nerve mobilization can be effective in reducing pain and improving function in patients with lower back pain, but the underlying mechanisms have not been clarified. This study aims to review the mechanisms of nerve mobilization in the management of lower back pain, its application, and effectiveness evaluation, and provide a potential solution for managing lower back pain.
Collapse
Affiliation(s)
- Quanzheng Chen
- Department of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Zhenshan Wang
- Department of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Shuna Zhang
- Department of Physical Education and Health, Guangxi Normal University, Guilin, China
| |
Collapse
|
8
|
Du F, Yin G, Han L, Liu X, Dong D, Duan K, Huo J, Sun Y, Cheng L. Targeting Peripheral μ-opioid Receptors or μ-opioid Receptor-Expressing Neurons Does not Prevent Morphine-induced Mechanical Allodynia and Anti-allodynic Tolerance. Neurosci Bull 2023; 39:1210-1228. [PMID: 36622575 PMCID: PMC10387027 DOI: 10.1007/s12264-022-01009-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023] Open
Abstract
The chronic use of morphine and other opioids is associated with opioid-induced hypersensitivity (OIH) and analgesic tolerance. Among the different forms of OIH and tolerance, the opioid receptors and cell types mediating opioid-induced mechanical allodynia and anti-allodynic tolerance remain unresolved. Here we demonstrated that the loss of peripheral μ-opioid receptors (MORs) or MOR-expressing neurons attenuated thermal tolerance, but did not affect the expression and maintenance of morphine-induced mechanical allodynia and anti-allodynic tolerance. To confirm this result, we made dorsal root ganglia-dorsal roots-sagittal spinal cord slice preparations and recorded low-threshold Aβ-fiber stimulation-evoked inputs and outputs in superficial dorsal horn neurons. Consistent with the behavioral results, peripheral MOR loss did not prevent the opening of Aβ mechanical allodynia pathways in the spinal dorsal horn. Therefore, the peripheral MOR signaling pathway may not be an optimal target for preventing mechanical OIH and analgesic tolerance. Future studies should focus more on central mechanisms.
Collapse
Affiliation(s)
- Feng Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guangjuan Yin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Han
- Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China
| | - Xi Liu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Dong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaifang Duan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiantao Huo
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanyan Sun
- Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China.
| | - Longzhen Cheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Paladini A, Barrientos Penaloza J, Plancarte Sanchez R, Ergönenç T, Varrassi G. Bridging Old and New in Pain Medicine: An Historical Review. Cureus 2023; 15:e43639. [PMID: 37719480 PMCID: PMC10504912 DOI: 10.7759/cureus.43639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Pain is both one of the oldest complaints known to medicine and a field for some of medicine's latest breakthroughs and innovations. Pharmacologic treatment of pain is one of the oldest remedies, and opioids have been used since ancient times as an effective pain reliever but with certain specific risks for abuse. Greater knowledge of opioids led to a more thorough understanding of the complexities of pain, which may have any number of mechanisms. A greater understanding of nerve fibers and pain signaling led to the development of more drugs and the more targeted delivery of analgesics using the hollow needle. The hollow needle changed pain treatment and led to percutaneous injections and what would later become interventional pain medicine with regional anesthesia and nerve blocks. Today, imaging can be combined with interventional techniques for more precise localization of nerves for diagnosis and treatment. The role of artificial intelligence in interventional pain medicine, especially in imaging for interventional procedures, remains unknown but will likely become extremely beneficial.
Collapse
Affiliation(s)
- Antonella Paladini
- Life, Health & Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, ITA
| | | | | | - Tolga Ergönenç
- Anesthesia and Reanimation, Morphological Madrid Research Center, Madrid, ESP
- Anesthesia and Reanimation, Akyazi Hospital Pain and Palliative Care, Sakarya, TUR
| | | |
Collapse
|
10
|
Ma Q, Su D, Huo J, Yin G, Dong D, Duan K, Cheng H, Xu H, Ma J, Liu D, Mou B, Peng J, Cheng L. Microglial Depletion does not Affect the Laterality of Mechanical Allodynia in Mice. Neurosci Bull 2023; 39:1229-1245. [PMID: 36637789 PMCID: PMC10387012 DOI: 10.1007/s12264-022-01017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 01/14/2023] Open
Abstract
Mechanical allodynia (MA), including punctate and dynamic forms, is a common and debilitating symptom suffered by millions of chronic pain patients. Some peripheral injuries result in the development of bilateral MA, while most injuries usually led to unilateral MA. To date, the control of such laterality remains poorly understood. Here, to study the role of microglia in the control of MA laterality, we used genetic strategies to deplete microglia and tested both dynamic and punctate forms of MA in mice. Surprisingly, the depletion of central microglia did not prevent the induction of bilateral dynamic and punctate MA. Moreover, in dorsal root ganglion-dorsal root-sagittal spinal cord slice preparations we recorded the low-threshold Aβ-fiber stimulation-evoked inputs and outputs of superficial dorsal horn neurons. Consistent with behavioral results, microglial depletion did not prevent the opening of bilateral gates for Aβ pathways in the superficial dorsal horn. This study challenges the role of microglia in the control of MA laterality in mice. Future studies are needed to further understand whether the role of microglia in the control of MA laterality is etiology-or species-specific.
Collapse
Affiliation(s)
- Quan Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongmei Su
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiantao Huo
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guangjuan Yin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Dong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaifang Duan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Cheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huiling Xu
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiao Ma
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Liu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Mou
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jiyun Peng
- Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Longzhen Cheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Wang L, Su X, Yan J, Wu Q, Xu X, Wang X, Liu X, Song X, Zhang Z, Hu W, Liu X, Zhang Y. Involvement of Mrgprd-expressing nociceptors-recruited spinal mechanisms in nerve injury-induced mechanical allodynia. iScience 2023; 26:106764. [PMID: 37250305 PMCID: PMC10214713 DOI: 10.1016/j.isci.2023.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Mechanical allodynia and hyperalgesia are intractable symptoms lacking effective clinical treatments in patients with neuropathic pain. However, whether and how mechanically responsive non-peptidergic nociceptors are involved remains elusive. Here, we showed that von Frey-evoked static allodynia and aversion, along with mechanical hyperalgesia after spared nerve injury (SNI) were reduced by ablation of MrgprdCreERT2-marked neurons. Electrophysiological recordings revealed that SNI-opened Aβ-fiber inputs to laminae I-IIo and vIIi, as well as C-fiber inputs to vIIi, were all attenuated in Mrgprd-ablated mice. In addition, priming chemogenetic or optogenetic activation of Mrgprd+ neurons drove mechanical allodynia and aversion to low-threshold mechanical stimuli, along with mechanical hyperalgesia. Mechanistically, gated Aβ and C inputs to vIIi were opened, potentially via central sensitization by dampening potassium currents. Altogether, we uncovered the involvement of Mrgprd+ nociceptors in nerve injury-induced mechanical pain and dissected the underlying spinal mechanisms, thus providing insights into potential therapeutic targets for pain management.
Collapse
Affiliation(s)
- Liangbiao Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaojing Su
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jinjin Yan
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Qiaofeng Wu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiang Xu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xinyue Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaoqing Liu
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xinfeng Liu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yan Zhang
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
12
|
Frezel N, Ranucci M, Foster E, Wende H, Pelczar P, Mendes R, Ganley RP, Werynska K, d'Aquin S, Beccarini C, Birchmeier C, Zeilhofer HU, Wildner H. c-Maf-positive spinal cord neurons are critical elements of a dorsal horn circuit for mechanical hypersensitivity in neuropathy. Cell Rep 2023; 42:112295. [PMID: 36947543 PMCID: PMC10157139 DOI: 10.1016/j.celrep.2023.112295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Corticospinal tract (CST) neurons innervate the deep spinal dorsal horn to sustain chronic neuropathic pain. The majority of neurons targeted by the CST are interneurons expressing the transcription factor c-Maf. Here, we used intersectional genetics to decipher the function of these neurons in dorsal horn sensory circuits. We find that excitatory c-Maf (c-MafEX) neurons receive sensory input mainly from myelinated fibers and target deep dorsal horn parabrachial projection neurons and superficial dorsal horn neurons, thereby connecting non-nociceptive input to nociceptive output structures. Silencing c-MafEX neurons has little effect in healthy mice but alleviates mechanical hypersensitivity in neuropathic mice. c-MafEX neurons also receive input from inhibitory c-Maf and parvalbumin neurons, and compromising inhibition by these neurons caused mechanical hypersensitivity and spontaneous aversive behaviors reminiscent of c-MafEX neuron activation. Our study identifies c-MafEX neurons as normally silent second-order nociceptors that become engaged in pathological pain signaling upon loss of inhibitory control.
Collapse
Affiliation(s)
- Noémie Frezel
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Matteo Ranucci
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Edmund Foster
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | | | - Pawel Pelczar
- Center for Transgenic Models (CTM), University of Basel, 4001 Basel, Switzerland
| | - Raquel Mendes
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Robert P Ganley
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Karolina Werynska
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Simon d'Aquin
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Camilla Beccarini
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | | | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland; Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, 8092 Zürich, Switzerland.
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
13
|
Huo J, Du F, Duan K, Yin G, Liu X, Ma Q, Dong D, Sun M, Hao M, Su D, Huang T, Ke J, Lai S, Zhang Z, Guo C, Sun Y, Cheng L. Identification of brain-to-spinal circuits controlling the laterality and duration of mechanical allodynia in mice. Cell Rep 2023; 42:112300. [PMID: 36952340 DOI: 10.1016/j.celrep.2023.112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Mechanical allodynia (MA) represents one prevalent symptom of chronic pain. Previously we and others have identified spinal and brain circuits that transmit or modulate the initial establishment of MA. However, brain-derived descending pathways that control the laterality and duration of MA are still poorly understood. Here we report that the contralateral brain-to-spinal circuits, from Oprm1 neurons in the lateral parabrachial nucleus (lPBNOprm1), via Pdyn neurons in the dorsal medial regions of hypothalamus (dmHPdyn), to the spinal dorsal horn (SDH), act to prevent nerve injury from inducing contralateral MA and reduce the duration of bilateral MA induced by capsaicin. Ablating/silencing dmH-projecting lPBNOprm1 neurons or SDH-projecting dmHPdyn neurons, deleting Dyn peptide from dmH, or blocking spinal κ-opioid receptors all led to long-lasting bilateral MA. Conversely, activation of dmHPdyn neurons or their axonal terminals in SDH can suppress sustained bilateral MA induced by lPBN lesion.
Collapse
Affiliation(s)
- Jiantao Huo
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng Du
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaifang Duan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangjuan Yin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Liu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Quan Ma
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Dong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mengge Sun
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mei Hao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dongmei Su
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tianwen Huang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Jin Ke
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shishi Lai
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zhi Zhang
- Division of Life Sciences and Medicine, CAS Key Laboratory of Brain Function and Diseases, University of Science and Technology of China, Hefei 230027, China
| | - Chao Guo
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanjie Sun
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Longzhen Cheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| |
Collapse
|
14
|
Cao B, Scherrer G, Chen L. Spinal cord retinoic acid receptor signaling gates mechanical hypersensitivity in neuropathic pain. Neuron 2022; 110:4108-4124.e6. [PMID: 36223767 PMCID: PMC9789181 DOI: 10.1016/j.neuron.2022.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 02/08/2023]
Abstract
Central sensitization caused by spinal disinhibition is a key mechanism of mechanical allodynia in neuropathic pain. However, the molecular mechanisms underlying spinal disinhibition after nerve injury remain unclear. Here, we show in mice that spared nerve injury (SNI), which induces mechanical hypersensitivity and neuropathic pain, triggers homeostatic reduction of inhibitory outputs from dorsal horn parvalbumin-positive (PV+) interneurons onto both primary afferent terminals and excitatory interneurons. The reduction in inhibitory outputs drives hyperactivation of the spinal cord nociceptive pathway, causing mechanical hypersensitivity. We identified the retinoic acid receptor RARα, a central regulator of homeostatic plasticity, as the key molecular mediator for this synaptic disinhibition. Deletion of RARα in spinal PV+ neurons or application of an RARα antagonist in the spinal cord prevented the development of SNI-induced mechanical hypersensitivity. Our results identify RARα as a crucial molecular effector for neuropathic pain and a potential target for its treatment.
Collapse
Affiliation(s)
- Bing Cao
- Department of Neurosurgery, Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lu Chen
- Department of Neurosurgery, Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
From Low-Grade Inflammation in Osteoarthritis to Neuropsychiatric Sequelae: A Narrative Review. Int J Mol Sci 2022; 23:ijms232416031. [PMID: 36555670 PMCID: PMC9784931 DOI: 10.3390/ijms232416031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nowadays, osteoarthritis (OA), a common, multifactorial musculoskeletal disease, is considered to have a low-grade inflammatory pathogenetic component. Lately, neuropsychiatric sequelae of the disease have gained recognition. However, a link between the peripheral inflammatory process of OA and the development of neuropsychiatric pathology is not completely understood. In this review, we provide a narrative that explores the development of neuropsychiatric disease in the presence of chronic peripheral low-grade inflammation with a focus on its signaling to the brain. We describe the development of a pro-inflammatory environment in the OA-affected joint. We discuss inflammation-signaling pathways that link the affected joint to the central nervous system, mainly using primary sensory afferents and blood circulation via circumventricular organs and cerebral endothelium. The review describes molecular and cellular changes in the brain, recognized in the presence of chronic peripheral inflammation. In addition, changes in the volume of gray matter and alterations of connectivity important for the assessment of the efficacy of treatment in OA are discussed in the given review. Finally, the narrative considers the importance of the use of neuropsychiatric diagnostic tools for a disease with an inflammatory component in the clinical setting.
Collapse
|
16
|
Parkinson SD, Zanotto GM, Maldonado MD, King MR, Haussler KK. The Effect of Capacitive-Resistive Electrical Therapy on Neck Pain and Dysfunction in Horses. J Equine Vet Sci 2022; 117:104091. [PMID: 35908601 DOI: 10.1016/j.jevs.2022.104091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
Neck pain and stiffness are increasingly recognized in horses and often treated using multimodal pharmaceutical and rehabilitation approaches. In humans, deep tissue heating is reported to reduce neck pain and increase flexibility. The objective of this project was to determine the effects of capacitive-resistive electrical therapy on neck pain and stiffness in horses. A blinded, randomized, controlled clinical trial with 10 horses assigned to active and 10 horses assigned to sham treatment groups. Neck pain, stiffness, and muscle hypertonicity were assessed by manual palpation. Forelimb postural stability was evaluated using a portable media device with built-in inertial sensing components. All outcome parameters were recorded once weekly for four weeks. Using manufacturer recommendations, the treatment group received active capacitive-resistive electrical therapy to the lower cervical region (C4-C7), twice weekly for a total of six treatments, while the control group received a sham (inactive) treatment. Data was analyzed using a mixed model that was fit separately for each response variable. There were no significant differences noted over time or between groups for any outcome parameter evaluated. While neck pain and stiffness decreased by week three in both groups, the improvement was not significant. Limitations include the lack of a definitive pathoanatomic diagnosis of cervical pathology and in vivo temperature measurements. Capacitive-resistive electrical therapy was ineffective in reducing neck pain and dysfunction using the recommended treatment protocols. No short-term adverse effects were noted. Specific clinical applications and effective treatment parameters need further evaluation.
Collapse
Affiliation(s)
- Samantha D Parkinson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO; Present address: Samantha Parkinson, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH
| | - Gustavo M Zanotto
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Mikaela D Maldonado
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Melissa R King
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - K K Haussler
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO.
| |
Collapse
|
17
|
Huang JP, Liang ZM, Zou QW, Zhan J, Li WT, Li S, Li K, Fu WB, Liu JH. Electroacupuncture on Hemifacial Spasm and Temporomandibular Joint Pain Co-Morbidity: A Case Report. Front Neurol 2022; 13:931412. [PMID: 35837227 PMCID: PMC9273903 DOI: 10.3389/fneur.2022.931412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
Hemifacial spasm (HFS) and temporomandibular joint (TMJ) pain are common facial diseases which cause depression, anxiety, insomnia, and poor quality of life. However, currently there are still no effective therapies to treat HFS and TMJ. Electroacupuncture (EA) has advantages of safety, rapid work, easy operation and convenience. Here, we reported a case of a 50-year-old woman who presented with irregular spasm of eyelids and facial muscles on the left side, and TMJ pain on the right side. The patient had been treated with carbamazepine (20mg per day) and alternative therapies for a year, but still not much improvement in the symptoms. The scores of the Jankovic Rating Scale (JRS), global rating scale (GRS), and visual analog scale (VAS) were 7, 60, and 7 points, respectively. The EMG test showed that the spastic side had higher R1 amplitude, longer R2 duration, and larger R2 area than the non-spasmodic side, and the occurrence rate of the lateral spread responses (LSR) in the Orbicularis oris and the Orbicularis oculi muscle was 60% and 40%, respectively. We considered this patient had left HFS and right TMJ pain. EA was successfully undertaken for two periods over 30 weeks. After EA, JRS and VAS were reduced sharply, and the symptoms of HFS were stable without recurrence. However, the frequency of the lower eyelid increased gradually during the 6-month follow-up. These findings reveal that EA with the frequency of 2 Hz and intensity of ~ 1–2 mA may be a benefit for alleviating symptoms of HFS and TMJ pain without adverse reaction. The potential mechanisms of EA in HFS and TMJ pain co-morbidity involve brain stem mechanism and DNIC mechanism for distal acupuncture and segmental mechanism for local acupuncture analgesia.
Collapse
Affiliation(s)
- Jian-peng Huang
- Research Team for Acupuncture Effect and Mechanism, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhan-mou Liang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi-wen Zou
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Zhan
- Research Team for Acupuncture Effect and Mechanism, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-ting Li
- Research Team for Acupuncture Effect and Mechanism, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sheng Li
- Research Team for Acupuncture Effect and Mechanism, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Li
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-bin Fu
- Research Team for Acupuncture Effect and Mechanism, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wen-bin Fu
| | - Jian-hua Liu
- Research Team for Acupuncture Effect and Mechanism, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Jian-hua Liu
| |
Collapse
|
18
|
Ishibashi T, Yoshikawa Y, Sueto D, Tashima R, Tozaki-Saitoh H, Koga K, Yamaura K, Tsuda M. Selective Involvement of a Subset of Spinal Dorsal Horn Neurons Operated by a Prodynorphin Promoter in Aβ Fiber-Mediated Neuropathic Allodynia-Like Behavioral Responses in Rats. Front Mol Neurosci 2022; 15:911122. [PMID: 35813063 PMCID: PMC9260077 DOI: 10.3389/fnmol.2022.911122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanical allodynia (pain produced by innocuous stimuli such as touch) is the main symptom of neuropathic pain. Its underlying mechanism remains to be elucidated, but peripheral nerve injury (PNI)-induced malfunction of neuronal circuits in the central nervous system, including the spinal dorsal horn (SDH), is thought to be involved in touch-pain conversion. Here, we found that intra-SDH injection of adeno-associated viral vectors including a prodynorphin promoter (AAV-PdynP) captured a subset of neurons that were mainly located in the superficial laminae, including lamina I, and exhibited mostly inhibitory characteristics. Using transgenic rats that enable optogenetic stimulation of touch-sensing Aβ fibers, we found that the light-evoked paw withdrawal behavior and aversive responses after PNI were attenuated by selective ablation of AAV-PdynP-captured SDH neurons. Notably, the ablation had no effect on withdrawal behavior from von Frey filaments. Furthermore, Aβ fiber stimulation did not excite AAV-PdynP+ SDH neurons under normal conditions, but after PNI, this induced excitation, possibly due to enhanced Aβ fiber-evoked excitatory synaptic inputs and elevated resting membrane potentials of these neurons. Moreover, the chemogenetic silencing of AAV-PdynP+ neurons of PNI rats attenuated the Aβ fiber-evoked paw withdrawal behavior and c-FOS expression in superficial SDH neurons. Our findings suggest that PNI renders AAV-PdynP-captured neurons excitable to Aβ fiber stimulation, which selectively contributes to the conversion of Aβ fiber-mediated touch signal to nociceptive. Thus, reducing the excitability of AAV-PdynP-captured neurons may be a new option for the treatment of neuropathic allodynia.
Collapse
Affiliation(s)
- Tadayuki Ishibashi
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu Yoshikawa
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Daichi Sueto
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoichi Tashima
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetoshi Tozaki-Saitoh
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Keisuke Koga
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Kyushu University Institute for Advanced Study, Fukuoka, Japan
- *Correspondence: Makoto Tsuda
| |
Collapse
|
19
|
Wang LB, Su XJ, Wu QF, Xu X, Wang XY, Chen M, Ye JR, Maimaitiabula A, Liu XQ, Sun W, Zhang Y. Parallel Spinal Pathways for Transmitting Reflexive and Affective Dimensions of Nocifensive Behaviors Evoked by Selective Activation of the Mas-Related G Protein-Coupled Receptor D-Positive and Transient Receptor Potential Vanilloid 1-Positive Subsets of Nociceptors. Front Cell Neurosci 2022; 16:910670. [PMID: 35693883 PMCID: PMC9175034 DOI: 10.3389/fncel.2022.910670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
The high incidence of treatment-resistant pain calls for the urgent preclinical translation of new analgesics. Understanding the behavioral readout of pain in animals is crucial for efficacy evaluation when developing novel analgesics. Mas-related G protein-coupled receptor D-positive (Mrgprd+) and transient receptor potential vanilloid 1-positive (TRPV1+) sensory neurons are two major non-overlapping subpopulations of C-fiber nociceptors. Their activation has been reported to provoke diverse nocifensive behaviors. However, what kind of behavior reliably represents subjectively conscious pain perception needs to be revisited. Here, we generated transgenic mice in which Mrgprd+ or TRPV1+ sensory neurons specifically express channelrhodopsin-2 (ChR2). Under physiological conditions, optogenetic activation of hindpaw Mrgprd+ afferents evoked reflexive behaviors (lifting, etc.), but failed to produce aversion. In contrast, TRPV1+ afferents activation evoked marked reflexive behaviors and affective responses (licking, etc.), as well as robust aversion. Under neuropathic pain conditions induced by spared nerve injury (SNI), affective behaviors and avoidance can be elicited by Mrgprd+ afferents excitation. Mechanistically, spinal cord-lateral parabrachial nucleus (lPBN) projecting neurons in superficial layers (lamina I–IIo) were activated by TRPV1+ nociceptors in naïve conditions or by Mrgprd+ nociceptors after SNI, whereas only deep spinal cord neurons were activated by Mrgprd+ nociceptors in naïve conditions. Moreover, the excitatory inputs from Mrgprd+ afferents to neurons within inner lamina II (IIi) are partially gated under normal conditions. Altogether, we conclude that optogenetic activation of the adult Mrgprd+ nociceptors drives non-pain-like reflexive behaviors via the deep spinal cord pathway under physiological conditions and drives pain-like affective behaviors via superficial spinal cord pathway under pathological conditions. The distinct spinal pathway transmitting different forms of nocifensive behaviors provides different therapeutic targets. Moreover, this study appeals to the rational evaluation of preclinical analgesic efficacy by using comprehensive and suitable behavioral assays, as well as by assessing neural activity in the two distinct pathways.
Collapse
Affiliation(s)
- Liang-Biao Wang
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Jing Su
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiao-Feng Wu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Xu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin-Yue Wang
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mo Chen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jia-Reng Ye
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Abasi Maimaitiabula
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Qing Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen Sun
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Wen Sun,
| | - Yan Zhang
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yan Zhang,
| |
Collapse
|
20
|
Medlock L, Sekiguchi K, Hong S, Dura-Bernal S, Lytton WW, Prescott SA. Multiscale Computer Model of the Spinal Dorsal Horn Reveals Changes in Network Processing Associated with Chronic Pain. J Neurosci 2022; 42:3133-3149. [PMID: 35232767 PMCID: PMC8996343 DOI: 10.1523/jneurosci.1199-21.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
Pain-related sensory input is processed in the spinal dorsal horn (SDH) before being relayed to the brain. That processing profoundly influences whether stimuli are correctly or incorrectly perceived as painful. Significant advances have been made in identifying the types of excitatory and inhibitory neurons that comprise the SDH, and there is some information about how neuron types are connected, but it remains unclear how the overall circuit processes sensory input or how that processing is disrupted under chronic pain conditions. To explore SDH function, we developed a computational model of the circuit that is tightly constrained by experimental data. Our model comprises conductance-based neuron models that reproduce the characteristic firing patterns of spinal neurons. Excitatory and inhibitory neuron populations, defined by their expression of genetic markers, spiking pattern, or morphology, were synaptically connected according to available qualitative data. Using a genetic algorithm, synaptic weights were tuned to reproduce projection neuron firing rates (model output) based on primary afferent firing rates (model input) across a range of mechanical stimulus intensities. Disparate synaptic weight combinations could produce equivalent circuit function, revealing degeneracy that may underlie heterogeneous responses of different circuits to perturbations or pathologic insults. To validate our model, we verified that it responded to the reduction of inhibition (i.e., disinhibition) and ablation of specific neuron types in a manner consistent with experiments. Thus validated, our model offers a valuable resource for interpreting experimental results and testing hypotheses in silico to plan experiments for examining normal and pathologic SDH circuit function.SIGNIFICANCE STATEMENT We developed a multiscale computer model of the posterior part of spinal cord gray matter (spinal dorsal horn), which is involved in perceiving touch and pain. The model reproduces several experimental observations and makes predictions about how specific types of spinal neurons and synapses influence projection neurons that send information to the brain. Misfiring of these projection neurons can produce anomalous sensations associated with chronic pain. Our computer model will not only assist in planning future experiments, but will also be useful for developing new pharmacotherapy for chronic pain disorders, connecting the effect of drugs acting at the molecular scale with emergent properties of neurons and circuits that shape the pain experience.
Collapse
Affiliation(s)
- Laura Medlock
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Kazutaka Sekiguchi
- Drug Developmental Research Laboratory, Shionogi Pharmaceutical Research Center, Toyonaka, Osaka 561-0825, Japan
- State University of New York Downstate Health Science University, Brooklyn, New York 11203
| | - Sungho Hong
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Salvador Dura-Bernal
- State University of New York Downstate Health Science University, Brooklyn, New York 11203
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - William W Lytton
- State University of New York Downstate Health Science University, Brooklyn, New York 11203
- Kings County Hospital, Brooklyn, New York 11207
| | - Steven A Prescott
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
21
|
Zhi YR, Cao F, Su XJ, Gao SW, Zheng HN, Jiang JY, Su L, Liu J, Wang Y, Zhang Y, Zhang Y. The T-Type Calcium Channel Cav3.2 in Somatostatin Interneurons in Spinal Dorsal Horn Participates in Mechanosensation and Mechanical Allodynia in Mice. Front Cell Neurosci 2022; 16:875726. [PMID: 35465611 PMCID: PMC9024096 DOI: 10.3389/fncel.2022.875726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Somatostatin-positive (SOM+) neurons have been proposed as one of the key populations of excitatory interneurons in the spinal dorsal horn involved in mechanical pain. However, the molecular mechanism for their role in pain modulation remains unknown. Here, we showed that the T-type calcium channel Cav3.2 was highly expressed in spinal SOM+ interneurons. Colocalization of Cacna1h (which codes for Cav3.2) and SOMtdTomato was observed in the in situ hybridization studies. Fluorescence-activated cell sorting of SOMtdTomato cells in spinal dorsal horn also proved a high expression of Cacna1h in SOM+ neurons. Behaviorally, virus-mediated knockdown of Cacna1h in spinal SOM+ neurons reduced the sensitivity to light touch and responsiveness to noxious mechanical stimuli in naïve mice. Furthermore, knockdown of Cacna1h in spinal SOM+ neurons attenuated thermal hyperalgesia and dynamic allodynia in the complete Freund’s adjuvant-induced inflammatory pain model, and reduced both dynamic and static allodynia in a neuropathic pain model of spared nerve injury. Mechanistically, a decrease in the percentage of neurons with Aβ-eEPSCs and Aβ-eAPs in superficial dorsal horn was observed after Cacna1h knockdown in spinal SOM+ neurons. Altogether, our results proved a crucial role of Cav3.2 in spinal SOM+ neurons in mechanosensation under basal conditions and in mechanical allodynia under pathological pain conditions. This work reveals a molecular basis for SOM+ neurons in transmitting mechanical pain and shows a functional role of Cav3.2 in tactile and pain processing at the level of spinal cord in addition to its well-established peripheral role.
Collapse
Affiliation(s)
- Yu-Ru Zhi
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Feng Cao
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Xiao-Jing Su
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shu-Wen Gao
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Hao-Nan Zheng
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Jin-Yan Jiang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Yun Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yan Zhang
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Ying Zhang,
| | - Ying Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
- Yan Zhang,
| |
Collapse
|
22
|
Clerc N, Moqrich A. Diverse roles and modulations of I A in spinal cord pain circuits. Cell Rep 2022; 38:110588. [PMID: 35354022 DOI: 10.1016/j.celrep.2022.110588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 11/03/2022] Open
Abstract
This review highlights recent findings of different amplitude ranges, roles, and modulations of A-type K+ currents (IA) in excitatory (GAD67-GFP-) and inhibitory (GAD67-GFP+) interneurons in mouse spinal cord pain pathways. Endogenous neuropeptides, such as TAFA4, oxytocin, and dynorphin in particular, have been reported to modulate IA in these pain pathways, but only TAFA4 has been shown to fully reverse the opposing modulations that occur selectively in LIIo GAD67-GFP- and LIIi GAD67-GFP+ interneurons following both neuropathic and inflammatory pain. If, as hypothesized here, Kv4 subunits underlie IA in both GAD67-GFP- and GAD67-GFP+ interneurons, then IA diversity in spinal cord pain pathways may depend on the interneuron-subtype-selective expression of Kv4 auxiliary subunits with functionally different N-terminal variants. Thus, IA emerges as a good candidate for explaining the mechanisms underlying injury-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Nadine Clerc
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France.
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| |
Collapse
|
23
|
Ma Q. A functional subdivision within the somatosensory system and its implications for pain research. Neuron 2022; 110:749-769. [PMID: 35016037 PMCID: PMC8897275 DOI: 10.1016/j.neuron.2021.12.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Somatosensory afferents are traditionally classified by soma size, myelination, and their response specificity to external and internal stimuli. Here, we propose the functional subdivision of the nociceptive somatosensory system into two branches. The exteroceptive branch detects external threats and drives reflexive-defensive reactions to prevent or limit injury. The interoceptive branch senses the disruption of body integrity, produces tonic pain with strong aversive emotional components, and drives self-caring responses toward to the injured region to reduce suffering. The central thesis behind this functional subdivision comes from a reflection on the dilemma faced by the pain research field, namely, the use of reflexive-defensive behaviors as surrogate assays for interoceptive tonic pain. The interpretation of these assays is now being challenged by the discovery of distinct but interwoven circuits that drive exteroceptive versus interoceptive types of behaviors, with the conflation of these two components contributing partially to the poor translation of therapies from preclinical studies.
Collapse
Affiliation(s)
- Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Fan W, Sullivan SJ, Sdrulla AD. Dorsal Column and Root Stimulation at Aβ-fiber Intensity Activate Superficial Dorsal Horn Glutamatergic and GABAergic Populations. Mol Pain 2022; 18:17448069221079559. [PMID: 35088625 PMCID: PMC8891844 DOI: 10.1177/17448069221079559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neurostimulation therapies are frequently used in patients with chronic pain conditions. They emerged from Gate Control Theory (GCT), which posits that Aβ-fiber activation recruits superficial dorsal horn (SDH) inhibitory networks to “close the gate” on nociceptive transmission, resulting in pain relief. However, the efficacy of current therapies is limited, and the underlying circuits remain poorly understood. For example, it remains unknown whether ongoing stimulation of Aβ-fibers is sufficient to drive activity in SDH neurons. We used multiphoton microscopy in spinal cords extracted from mice expressing the genetically encoded calcium indicator GCaMP6s in glutamatergic and GABAergic populations; activity levels were inferred from deconvolved calcium signals using CaImAn software. Sustained Aβ-fiber stimulation at the dorsal columns or dorsal roots drove robust yet transient activation of both SDH populations. Following the initial increase, activity levels decreased below baseline in glutamatergic neurons and were depressed after stimulation ceased in both populations. Surprisingly, only about half of GABAergic neurons responded to Aβ-fiber stimulation. This subset showed elevated activity for the entire duration of stimulation, while non-responders decreased with time. Our findings suggest that Aβ-fiber stimulation initially recruits both excitatory and inhibitory populations but has divergent effects on their activity, providing a foundation for understanding the analgesic effects of neurostimulation devices. Perspective: This article used microscopy to characterize the responses of mouse spinal cord cells to stimulation of non-painful nerve fibers. These findings deepen our understanding of how the spinal cord processes information and provide a foundation for improving pain-relieving therapies.
Collapse
Affiliation(s)
- Wei Fan
- Anesthesiology and Pain Management6684Oregon Health & Science University
| | - Steve J Sullivan
- Anesthesiology and Pain Management6684Oregon Health & Science University
| | - Andrei D Sdrulla
- Anesthesiology and Pain Management6684Oregon Health & Science University
| |
Collapse
|
25
|
TAFA4 relieves injury-induced mechanical hypersensitivity through LDL receptors and modulation of spinal A-type K + current. Cell Rep 2021; 37:109884. [PMID: 34706225 DOI: 10.1016/j.celrep.2021.109884] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 12/30/2022] Open
Abstract
Pain, whether acute or persistent, is a serious medical problem worldwide. However, its management remains unsatisfactory, and new analgesic molecules are required. We show here that TAFA4 reverses inflammatory, postoperative, and spared nerve injury (SNI)-induced mechanical hypersensitivity in male and female mice. TAFA4 requires functional low-density lipoprotein receptor-related proteins (LRPs) because their inhibition by RAP (receptor-associated protein) dose-dependently abolishes its antihypersensitive actions. SNI selectively decreases A-type K+ current (IA) in spinal lamina II outer excitatory interneurons (L-IIo ExINs) and induces a concomitant increase in IA and decrease in hyperpolarization-activated current (Ih) in lamina II inner inhibitory interneurons (L-IIi InhINs). Remarkably, SNI-induced ion current alterations in both IN subtypes were rescued by TAFA4 in an LRP-dependent manner. We provide insights into the mechanism by which TAFA4 reverses injury-induced mechanical hypersensitivity by restoring normal spinal neuron activity and highlight the considerable potential of TAFA4 as a treatment for injury-induced mechanical pain.
Collapse
|
26
|
Abstract
Itch is one of the most primal sensations, being both ubiquitous and important for the well-being of animals. For more than a century, a desire to understand how itch is encoded by the nervous system has prompted the advancement of many theories. Within the past 15 years, our understanding of the molecular and neural mechanisms of itch has undergone a major transformation, and this remarkable progress continues today without any sign of abating. Here I describe accumulating evidence that indicates that itch is distinguished from pain through the actions of itch-specific neuropeptides that relay itch information to the spinal cord. According to this model, classical neurotransmitters transmit, inhibit and modulate itch information in a context-, space- and time-dependent manner but do not encode itch specificity. Gastrin-releasing peptide (GRP) is proposed to be a key itch-specific neuropeptide, with spinal neurons expressing GRP receptor (GRPR) functioning as a key part of a convergent circuit for the conveyance of peripheral itch information to the brain.
Collapse
|
27
|
Wang C, Hao H, He K, An Y, Pu Z, Gamper N, Zhang H, Du X. Neuropathic Injury-Induced Plasticity of GABAergic System in Peripheral Sensory Ganglia. Front Pharmacol 2021; 12:702218. [PMID: 34385921 PMCID: PMC8354334 DOI: 10.3389/fphar.2021.702218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
GABA is a major inhibitory neurotransmitter in the mammalian central nervous system (CNS). Inhibitory GABAA channel circuits in the dorsal spinal cord are the gatekeepers of the nociceptive input from the periphery to the CNS. Weakening of these spinal inhibitory mechanisms is a hallmark of chronic pain. Yet, recent studies have suggested the existence of an earlier GABAergic “gate” within the peripheral sensory ganglia. In this study, we performed systematic investigation of plastic changes of the GABA-related proteins in the dorsal root ganglion (DRG) in the process of neuropathic pain development. We found that chronic constriction injury (CCI) induced general downregulation of most GABAA channel subunits and the GABA-producing enzyme, glutamate decarboxylase, consistent with the weakening of the GABAergic inhibition at the periphery. Strikingly, the α5 GABAA subunit was consistently upregulated. Knock-down of the α5 subunit in vivo moderately alleviated neuropathic hyperalgesia. Our findings suggest that while the development of neuropathic pain is generally accompanied by weakening of the peripheral GABAergic system, the α5 GABAA subunit may have a unique pro-algesic role and, hence, might represent a new therapeutic target.
Collapse
Affiliation(s)
- Caixue Wang
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Han Hao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Kaitong He
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yating An
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zeyao Pu
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hailin Zhang
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Xiaona Du
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
28
|
Harding EK, Fung SW, Bonin RP. Insights Into Spinal Dorsal Horn Circuit Function and Dysfunction Using Optical Approaches. Front Neural Circuits 2020; 14:31. [PMID: 32595458 PMCID: PMC7303281 DOI: 10.3389/fncir.2020.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Somatosensation encompasses a variety of essential modalities including touch, pressure, proprioception, temperature, pain, and itch. These peripheral sensations are crucial for all types of behaviors, ranging from social interaction to danger avoidance. Somatosensory information is transmitted from primary afferent fibers in the periphery into the central nervous system via the dorsal horn of the spinal cord. The dorsal horn functions as an intermediary processing center for this information, comprising a complex network of excitatory and inhibitory interneurons as well as projection neurons that transmit the processed somatosensory information from the spinal cord to the brain. It is now known that there can be dysfunction within this spinal cord circuitry in pathological pain conditions and that these perturbations contribute to the development and maintenance of pathological pain. However, the complex and heterogeneous network of the spinal dorsal horn has hampered efforts to further elucidate its role in somatosensory processing. Emerging optical techniques promise to illuminate the underlying organization and function of the dorsal horn and provide insights into the role of spinal cord sensory processing in shaping the behavioral response to somatosensory input that we ultimately observe. This review article will focus on recent advances in optogenetics and fluorescence imaging techniques in the spinal cord, encompassing findings from both in vivo and in vitro preparations. We will also discuss the current limitations and difficulties of employing these techniques to interrogate the spinal cord and current practices and approaches to overcome these challenges.
Collapse
Affiliation(s)
- Erika K Harding
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Samuel Wanchi Fung
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Pradier B, McCormick SJ, Tsuda AC, Chen RW, Atkinson AL, Westrick MR, Buckholtz CL, Kauer JA. Properties of neurons in the superficial laminae of trigeminal nucleus caudalis. Physiol Rep 2020; 7:e14112. [PMID: 31215180 PMCID: PMC6581829 DOI: 10.14814/phy2.14112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023] Open
Abstract
The trigeminal nucleus caudalis (TNc) receives extensive afferent innervation from peripheral sensory neurons of the trigeminal ganglion (TG), and is the first central relay in the circuitry underpinning orofacial pain. Despite the initial characterization of the neurons in the superficial laminae, many questions remain. Here we report on electrophysiological properties of 535 superficial lamina I/II TNc neurons. Based on their firing pattern, we assigned these cells to five main groups, including (1) tonic, (2) phasic, (3) delayed, (4) H‐current, and (5) tonic‐phasic neurons, groups that exhibit distinct intrinsic properties and share some similarity with groups identified in the spinal dorsal horn. Driving predominantly nociceptive TG primary afferents using optogenetic stimulation in TRPV1/ChR2 animals, we found that tonic and H‐current cells are most likely to receive pure monosynaptic input, whereas delayed neurons are more likely to exhibit inputs that appear polysynaptic. Finally, for the first time in TNc neurons, we used unsupervised clustering analysis methods and found that the kinetics of the action potentials and other intrinsic properties of these groups differ significantly from one another. Unsupervised spectral clustering based solely on a single voltage response to rheobase current was sufficient to group cells with shared properties independent of action potential discharge pattern, indicating that this approach can be effectively applied to identify functional neuronal subclasses. Together, our data illustrate that cells in the TNc with distinct patterns of TRPV1/ChR2 afferent innervation are physiologically diverse, but can be understood as a few major groups of cells having shared functional properties.
Collapse
Affiliation(s)
- Bruno Pradier
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Samuel J McCormick
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Ayumi C Tsuda
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Rudy W Chen
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Abigail L Atkinson
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Mollie R Westrick
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Caroline L Buckholtz
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Julie A Kauer
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| |
Collapse
|
30
|
Peirs C, Dallel R, Todd AJ. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia. J Neural Transm (Vienna) 2020; 127:505-525. [PMID: 32239353 PMCID: PMC7148279 DOI: 10.1007/s00702-020-02159-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The dorsal horns of the spinal cord and the trigeminal nuclei in the brainstem contain neuron populations that are critical to process sensory information. Neurons in these areas are highly heterogeneous in their morphology, molecular phenotype and intrinsic properties, making it difficult to identify functionally distinct cell populations, and to determine how these are engaged in pathophysiological conditions. There is a growing consensus concerning the classification of neuron populations, based on transcriptomic and transductomic analyses of the dorsal horn. These approaches have led to the discovery of several molecularly defined cell types that have been implicated in cutaneous mechanical allodynia, a highly prevalent and difficult-to-treat symptom of chronic pain, in which touch becomes painful. The main objective of this review is to provide a contemporary view of dorsal horn neuronal populations, and describe recent advances in our understanding of on how they participate in cutaneous mechanical allodynia.
Collapse
Affiliation(s)
- Cedric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
31
|
Calvo M, Davies AJ, Hébert HL, Weir GA, Chesler EJ, Finnerup NB, Levitt RC, Smith BH, Neely GG, Costigan M, Bennett DL. The Genetics of Neuropathic Pain from Model Organisms to Clinical Application. Neuron 2019; 104:637-653. [PMID: 31751545 PMCID: PMC6868508 DOI: 10.1016/j.neuron.2019.09.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Neuropathic pain (NeuP) arises due to injury of the somatosensory nervous system and is both common and disabling, rendering an urgent need for non-addictive, effective new therapies. Given the high evolutionary conservation of pain, investigative approaches from Drosophila mutagenesis to human Mendelian genetics have aided our understanding of the maladaptive plasticity underlying NeuP. Successes include the identification of ion channel variants causing hyper-excitability and the importance of neuro-immune signaling. Recent developments encompass improved sensory phenotyping in animal models and patients, brain imaging, and electrophysiology-based pain biomarkers, the collection of large well-phenotyped population cohorts, neurons derived from patient stem cells, and high-precision CRISPR generated genetic editing. We will discuss how to harness these resources to understand the pathophysiological drivers of NeuP, define its relationship with comorbidities such as anxiety, depression, and sleep disorders, and explore how to apply these findings to the prediction, diagnosis, and treatment of NeuP in the clinic.
Collapse
Affiliation(s)
- Margarita Calvo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexander J Davies
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Greg A Weir
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus 8000, Denmark
| | - Roy C Levitt
- Department of Anesthesiology, Perioperative Medicine and Pain Management, and John T. MacDonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Camperdown, University of Sydney, Sydney, NSW, Australia
| | - Michael Costigan
- Departments of Anesthesia and Neurobiology, Children's Hospital Boston and Harvard Medical School, Boston, MA, USA.
| | - David L Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Lee KY, Ratté S, Prescott SA. Excitatory neurons are more disinhibited than inhibitory neurons by chloride dysregulation in the spinal dorsal horn. eLife 2019; 8:e49753. [PMID: 31742556 PMCID: PMC6887484 DOI: 10.7554/elife.49753] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/18/2019] [Indexed: 01/22/2023] Open
Abstract
Neuropathic pain is a debilitating condition caused by the abnormal processing of somatosensory input. Synaptic inhibition in the spinal dorsal horn plays a key role in that processing. Mechanical allodynia - the misperception of light touch as painful - occurs when inhibition is compromised. Disinhibition is due primarily to chloride dysregulation caused by hypofunction of the potassium-chloride co-transporter KCC2. Here we show, in rats, that excitatory neurons are disproportionately affected. This is not because chloride is differentially dysregulated in excitatory and inhibitory neurons, but, rather, because excitatory neurons rely more heavily on inhibition to counterbalance strong excitation. Receptive fields in both cell types have a center-surround organization but disinhibition unmasks more excitatory input to excitatory neurons. Differences in intrinsic excitability also affect how chloride dysregulation affects spiking. These results deepen understanding of how excitation and inhibition are normally balanced in the spinal dorsal horn, and how their imbalance disrupts somatosensory processing.
Collapse
Affiliation(s)
- Kwan Yeop Lee
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Stéphanie Ratté
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Steven A Prescott
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| |
Collapse
|
33
|
Szczot M, Liljencrantz J, Ghitani N, Barik A, Lam R, Thompson JH, Bharucha-Goebel D, Saade D, Necaise A, Donkervoort S, Foley AR, Gordon T, Case L, Bushnell MC, Bönnemann CG, Chesler AT. PIEZO2 mediates injury-induced tactile pain in mice and humans. Sci Transl Med 2019; 10:10/462/eaat9892. [PMID: 30305456 DOI: 10.1126/scitranslmed.aat9892] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Tissue injury and inflammation markedly alter touch perception, making normally innocuous sensations become intensely painful. Although this sensory distortion, known as tactile allodynia, is one of the most common types of pain, the mechanism by which gentle mechanical stimulation becomes unpleasant remains enigmatic. The stretch-gated ion channel PIEZO2 has been shown to mediate light touch, vibration detection, and proprioception. However, the role of this ion channel in nociception and pain has not been resolved. Here, we examined the importance of Piezo2 in the cellular representation of mechanosensation using in vivo imaging in mice. Piezo2-knockout neurons were completely insensitive to gentle dynamic touch but still responded robustly to noxious pinch. During inflammation and after injury, Piezo2 remained essential for detection of gentle mechanical stimuli. We hypothesized that loss of PIEZO2 might eliminate tactile allodynia in humans. Our results show that individuals with loss-of-function mutations in PIEZO2 completely failed to develop sensitization and painful reactions to touch after skin inflammation. These findings provide insight into the basis for tactile allodynia, identify the PIEZO2 mechanoreceptor as an essential mediator of touch under inflammatory conditions, and suggest that this ion channel might be targeted for treating tactile allodynia.
Collapse
Affiliation(s)
- Marcin Szczot
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaquette Liljencrantz
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nima Ghitani
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arnab Barik
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruby Lam
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Thompson
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana Bharucha-Goebel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neurology, Children's National Medical Center, Washington, DC 20010, USA
| | - Dimah Saade
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aaron Necaise
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra Donkervoort
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Reghan Foley
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taylor Gordon
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Case
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Catherine Bushnell
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Torsney C. Inflammatory pain neural plasticity. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Identification of a Spinal Circuit for Mechanical and Persistent Spontaneous Itch. Neuron 2019; 103:1135-1149.e6. [PMID: 31324538 DOI: 10.1016/j.neuron.2019.06.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/17/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
Lightly stroking the lips or gently poking some skin regions can evoke mechanical itch in healthy human subjects. Sensitization of mechanical itch and persistent spontaneous itch are intractable symptoms in chronic itch patients. However, the underlying neural circuits are not well defined. We identified a subpopulation of excitatory interneurons expressing Urocortin 3::Cre (Ucn3+) in the dorsal spinal cord as a central node in the pathway that transmits acute mechanical itch and mechanical itch sensitization as well as persistent spontaneous itch under chronic itch conditions. This population receives peripheral inputs from Toll-like receptor 5-positive (TLR5+) Aβ low-threshold mechanoreceptors and is directly innervated by inhibitory interneurons expressing neuropeptide Y::Cre (NPY+) in the dorsal spinal cord. Reduced synaptic inhibition and increased intrinsic excitability of Ucn3+ neurons lead to chronic itch sensitization. Our study sheds new light on the neural basis of chronic itch and unveils novel avenues for developing mechanism-specific therapeutic advancements.
Collapse
|
36
|
Abstract
Recent studies have made significant progress in identifying distinct populations of peripheral neurons involved in itch transmission, whereas the cellular identity of spinal interneurons that contribute to itch processing is still a debate. Combining genetic and pharmacological ablation of spinal excitatory neuronal subtypes and behavioral assays, we demonstrate that spinal somatostatin-positive (SOM) excitatory interneurons transmit pruritic sensation. We found that the ablation of spinal SOM/Lbx1 (SOM) neurons caused significant attenuation of scratching responses evoked by various chemical pruritogens (chemical itch). In an attempt to identify substrates of spinal itch neural circuit, we observed that spinal SOM neurons partially overlapped with neurons expressing natriuretic peptide receptor A (Npra), the receptor of peripheral itch transmitter B-type natriuretic peptide. Spinal SOM neurons, however, did not show any overlap with itch transmission neurons expressing gastrin-releasing peptide receptor in the dorsal spinal cord, and the gastrin-releasing peptide-triggered scratching responses were intact after ablating spinal SOM neurons. Dual ablation of SOM and Npra neurons in the spinal cord reduced chemical itch responses to a greater extent than ablation of SOM or Npra neurons alone, suggesting the existence of parallel spinal pathways transmitting chemical itch. Furthermore, we showed that SOM peptide modulated itch processing through disinhibition of somatostatin receptor 2A-positive inhibitory interneuron. Together, our findings reveal a novel spinal mechanism for sensory encoding of itch perception.
Collapse
|
37
|
Abstract
Coordinated movement depends on constant interaction between neural circuits that produce motor output and those that report sensory consequences. Fundamental to this process are mechanisms for controlling the influence that sensory signals have on motor pathways - for example, reducing feedback gains when they are disruptive and increasing gains when advantageous. Sensory gain control comes in many forms and serves diverse purposes - in some cases sensory input is attenuated to maintain movement stability and filter out irrelevant or self-generated signals, or enhanced to facilitate salient signals for improved movement execution and adaptation. The ubiquitous presence of sensory gain control across species at multiple levels of the nervous system reflects the importance of tuning the impact that feedback information has on behavioral output.
Collapse
|
38
|
Urtado Silva J, Galhardoni R, Ciampi de Andrade D, Brito I. Effects of intranasal oxytocin on tactile perception. Neurosci Lett 2018; 698:64-68. [PMID: 30582971 DOI: 10.1016/j.neulet.2018.12.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
In addition to its role in childbirth labor and lactation, oxytocin is a well-known neurohormone, having several prosocial effects. Moreover, oxytocin seems to play a significant modulatory role in painful experiences, due to its participation in central and peripheral processing of nociceptive somatosensory information. Despite studies on oxytocin in pain modulation, there is a scarce literature investigating the role of oxytocin in tactile perception. Here we investigate the effects of 24 and 40 IU intranasal administration of oxytocin in the non-harmful mechanical tactile detection threshold in men. The data showed a significant increase in tactile perception in an experimental 40 IU oxytocin group. We suggest that this effect could be the basis for the oxytocin-bonding effect via touch.
Collapse
Affiliation(s)
- Jessica Urtado Silva
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Ricardo Galhardoni
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Ivana Brito
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|