1
|
Prakash N, Abu Irqeba A, Corbin JG. Development and function of the medial amygdala. Trends Neurosci 2025; 48:22-32. [PMID: 39672784 DOI: 10.1016/j.tins.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Across studied vertebrates, the medial amygdala (MeA) is a central hub for relaying sensory information with social and/or survival relevance to downstream nuclei such as the bed nucleus of stria terminalis (BNST) and the hypothalamus. MeA-driven behaviors, such as mating, aggression, parenting, and predator avoidance are processed by different molecularly defined inhibitory and excitatory neuronal output populations. Work over the past two decades has deciphered how diverse MeA neurons arise from embryonic development, revealing contributions from multiple telencephalic and diencephalic progenitor domains. Here, we first provide a brief overview of current findings regarding the role of the MeA in social behaviors, followed by a deeper dive into current knowledge of how this complex structure is specified during development. We outline a conceptual model of MeA formation that has emerged based on these findings. We further postulate how embryonic developmental programming of the MeA may inform later emergence of stereotypical circuitry governing hardwired behaviors.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA 20010
| | - Ameair Abu Irqeba
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA 20010
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA 20010.
| |
Collapse
|
2
|
Wang J, Zhang L, Cavallini M, Pahlevan A, Sun J, Morshedian A, Fain GL, Sampath AP, Peng YR. Molecular characterization of the sea lamprey retina illuminates the evolutionary origin of retinal cell types. Nat Commun 2024; 15:10761. [PMID: 39737973 DOI: 10.1038/s41467-024-55019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
The lamprey, a primitive jawless vertebrate whose ancestors diverged from all other vertebrates over 500 million years ago, offers a unique window into the ancient formation of the retina. Using single-cell RNA-sequencing, we characterize retinal cell types in the lamprey and compare them to those in mouse, chicken, and zebrafish. We find six cell classes and 74 distinct cell types, many shared with other vertebrate species. The conservation of cell types indicates their emergence early in vertebrate evolution, highlighting primordial designs of retinal circuits for the rod pathway, ON-OFF discrimination, and direction selectivity. The diversification of amacrine and some ganglion cell types appears, however, to be distinct in the lamprey. We further infer genetic regulators in specifying retinal cell classes and identify ancestral regulatory elements across species, noting decreased conservation in specifying amacrine cells. Altogether, our characterization of the lamprey retina illuminates the evolutionary origin of visual processing in the retina.
Collapse
Affiliation(s)
- Junqiang Wang
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lin Zhang
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Martina Cavallini
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ali Pahlevan
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Junwei Sun
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ala Morshedian
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Gordon L Fain
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Yi-Rong Peng
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Lum MR, Patel SH, Graham HK, Zhao M, Yi Y, Li L, Yao M, La Torre A, Santina LD, Han Y, Hu Y, Welsbie DS, Duan X. Afadin Sorts Different Retinal Neuron Types into Accurate Cellular Layers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630272. [PMID: 39763956 PMCID: PMC11703203 DOI: 10.1101/2024.12.24.630272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Neurons use cell-adhesion molecules (CAMs) to interact with other neurons and the extracellular environment: the combination of CAMs specifies migration patterns, neuronal morphologies, and synaptic connections across diverse neuron types. Yet little is known regarding the intracellular signaling cascade mediating the CAM recognitions at the cell surface across different neuron types. In this study, we investigated the neural developmental role of Afadin1-4, a cytosolic adapter protein that connects multiple CAM families to intracellular F-actin. We introduced the conditional Afadin mutant5 to an embryonic retinal Cre, Six3-Cre6-8. We reported that the mutants lead to the scrambled retinal neuron distribution, including Bipolar Cells (BCs), Amacrine Cells (ACs), and retinal ganglion cells (RGCs), across three cellular layers of the retina. This scrambled pattern was first reported here at neuron-type resolution. Importantly, the mutants do not display deficits for BCs, ACs, or RGCs in terms of neural fate specifications or survival. Additionally, the displayed RGC types still maintain synaptic partners with putative AC types, indicating that other molecular determinants instruct synaptic choices independent of Afadin. Lastly, there is a significant decline in visual function and mis-targeting of RGC axons to incorrect zones of the superior colliculus, one of the major retinorecipient areas. Collectively, our study uncovers a unique cellular role of Afadin in sorting retinal neuron types into proper cellular layers as the structural basis for orderly visual processing.
Collapse
Affiliation(s)
- Matthew R. Lum
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sachin H. Patel
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hannah K. Graham
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mengya Zhao
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yujuan Yi
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Melissa Yao
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | | | - Ying Han
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Derek S. Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA 92037, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
4
|
Gomez-Frittelli J, Devienne G, Travis L, Kyloh MA, Duan X, Hibberd TJ, Spencer NJ, Huguenard JR, Kaltschmidt JA. Synaptic cell adhesion molecule Cdh6 identifies a class of sensory neurons with novel functions in colonic motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606748. [PMID: 39149241 PMCID: PMC11326146 DOI: 10.1101/2024.08.06.606748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here we investigated synaptic cell adhesion molecules as novel cell type markers in the ENS. Our work identifies two Type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and I H current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current I H disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons, and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.
Collapse
Affiliation(s)
- Julieta Gomez-Frittelli
- Department of Chemical Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Gabrielle Devienne
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University; Stanford, CA, USA
| | - Lee Travis
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - Melinda A. Kyloh
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - Xin Duan
- Department of Ophthalmology, School of Medicine, University of California San Francisco; San Francisco, CA, USA
| | - Tim J. Hibberd
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - John R. Huguenard
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University; Stanford, CA, USA
| | - Julia A. Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
5
|
Tsai NY, Nimkar K, Zhao M, Lum MR, Yi Y, Garrett TR, Wang Y, Toma K, Caval-Holme F, Reddy N, Ehrlich AT, Kriegstein AR, Do MTH, Sivyer B, Shekhar K, Duan X. Molecular and spatial analysis of ganglion cells on retinal flatmounts: diversity, topography, and perivascularity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.15.628587. [PMID: 39763751 PMCID: PMC11702564 DOI: 10.1101/2024.12.15.628587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Diverse retinal ganglion cells (RGCs) transmit distinct visual features from the eye to the brain. Recent studies have categorized RGCs into 45 types in mice based on transcriptomic profiles, showing strong alignment with morphological and electrophysiological properties. However, little is known about how these types are spatially arranged on the two-dimensional retinal surface-an organization that influences visual encoding-and how their local microenvironments impact development and neurodegenerative responses. To address this gap, we optimized a workflow combining imaging-based spatial transcriptomics (MERFISH) and immunohistochemical co-staining on thin flatmount retinal sections. We used computational methods to register en face somata distributions of all molecularly defined RGC types. More than 75% (34/45) of types exhibited non-uniform distributions, likely reflecting adaptations of the retina's anatomy to the animal's visual environment. By analyzing the local neighborhoods of each cell, we identified perivascular RGCs located near blood vessels. Seven RGC types are enriched in the perivascular niche, including members of intrinsically photosensitive RGC (ipRGC) and direction-selective RGC (DSGC) subclasses. Orthologous human RGC counterparts of perivascular types - Melanopsin-enriched ipRGCs and ON DSGCs - were also proximal to blood vessels, suggesting their perivascularity may be evolutionarily conserved. Following optic nerve crush in mice, the perivascular M1-ipRGCs and ON DSGCs showed preferential survival, suggesting that proximity to blood vessels may render cell-extrinsic neuroprotection to RGCs through an mTOR-independent mechanism. Overall, our work offers a resource characterizing the spatial profiles of RGC types, enabling future studies of retinal development, physiology, and neurodegeneration at individual neuron type resolution across the two-dimensional space.
Collapse
Affiliation(s)
- Nicole Y Tsai
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Kushal Nimkar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| | - Mengya Zhao
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Matthew R Lum
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yujuan Yi
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tavita R Garrett
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Yixiao Wang
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kenichi Toma
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Franklin Caval-Holme
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School. Boston, MA, USA
| | - Nikhil Reddy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Michael Tri H Do
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School. Boston, MA, USA
| | - Benjamin Sivyer
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; Center for Computational Biology; Biophysics Graduate Group, University of California, Berkeley, CA, USA
- These authors contributed equally
| | - Xin Duan
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
- Lead contact
| |
Collapse
|
6
|
Petersen M, Reyes-Vigil F, Campo M, Brusés JL. Classical cadherins evolutionary constraints in primates is associated with their expression in the central nervous system. PLoS One 2024; 19:e0313428. [PMID: 39570883 PMCID: PMC11581309 DOI: 10.1371/journal.pone.0313428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Classical cadherins (CDH) comprise a family of single-pass transmembrane glycoproteins that contribute to tissue morphogenesis by regulating cell-cell adhesion, cytoskeletal dynamics, and cell signaling. CDH are grouped into type I (CDH 1, 2, 3, 4 and 15) and type II (CDH 5, 6, 7, 8, 9, 10, 11, 12, 18, 20, 22 and 24), based on the folding of the cadherin binding domain involved in trans-dimer formation. CDH are exclusively found in metazoans, and the origin and expansion of the gene family coincide with the emergence of multicellularity and vertebrates respectively. This study examined the evolutionary changes of CDH orthologs in primates and the factors that influence selective pressure to investigate the varying constraints exerted among CDH. Pairwise comparisons of the number of amino acid substitutions and of the ratio of non-synonymous substitutions per non-synonymous sites (dN) over synonymous substitutions per synonymous sites (dS), show that CDH2, CDH4, and most type II CDH have been under significantly higher negative selective pressure as compared to CDH1, CDH3, CDH5 and CDH19. Evaluation of gene essentiality as determined by the effect of germline deletion on animal viability, morphogenic phenotype, and reproductive fitness, show no correlation with the with extent of negative selection observed on CDH. Spearman's correlation analysis shows a positive correlation between CDH expression levels (E) in mouse and human tissues and their rate of evolution (R), as observed in most proteins expressed on the cell surface. However, CDH expression in the CNS show a significant E-R negative correlation, indicating that the strong negative selection exerted on CDH2, CDH4, and most type II CDH is associated with their expression in the CNS. CDH participate in a variety of cellular processes in the CNS including neuronal migration and functional assembly of neural circuits, which could profoundly influence animal fitness. Therefore, our findings suggest that the unusually high negative selective pressure exerted on CDH2, CDH4 and most type II CDH is due to their role in CNS formation and function and may have contributed to shape the evolution of the CNS in primates.
Collapse
Affiliation(s)
- Max Petersen
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| | - Fredy Reyes-Vigil
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| | - Marc Campo
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| | - Juan L. Brusés
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| |
Collapse
|
7
|
James RE, Hamilton NR, Huffman LN, Brown MP, Neckles VN, Pasterkamp RJ, Goff LA, Kolodkin AL. Retinal ganglion cell-derived semaphorin 6A segregates starburst amacrine cell dendritic scaffolds to organize the mouse inner retina. Development 2024; 151:dev204293. [PMID: 39495936 PMCID: PMC11634039 DOI: 10.1242/dev.204293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024]
Abstract
To form functional circuits, neurons must settle in their appropriate cellular locations, and then project and elaborate neurites to contact their target synaptic neuropils. Laminar organization within the vertebrate retinal inner plexiform layer (IPL) facilitates pre- and postsynaptic neurite targeting, yet the precise mechanisms underlying establishment of functional IPL subdomains are not well understood. Here, we explore mechanisms defining the compartmentalization of OFF and ON neurites generally, and OFF and ON direction-selective neurites specifically, within the developing mouse IPL. We show that semaphorin 6A (Sema6A), a repulsive axon guidance cue, is required for delineation of OFF versus ON circuits within the IPL: in the Sema6a null IPL, the boundary between OFF and ON domains is blurred. Furthermore, Sema6A expressed by retinal ganglion cells (RGCs) directs laminar segregation of OFF and ON starburst amacrine cell dendritic scaffolds, which themselves serve as a substrate upon which other retinal neurites elaborate. These results demonstrate that RGCs, the first type of neuron born within the retina, play an active role in functional specialization of the IPL.
Collapse
Affiliation(s)
- Rebecca E. James
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Natalie R. Hamilton
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Lola Nicole Huffman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Matthew P. Brown
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Victoria N. Neckles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Loyal A. Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Cang J, Chen C, Li C, Liu Y. Genetically defined neuron types underlying visuomotor transformation in the superior colliculus. Nat Rev Neurosci 2024; 25:726-739. [PMID: 39333418 DOI: 10.1038/s41583-024-00856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
The superior colliculus (SC) is a conserved midbrain structure that is important for transforming visual and other sensory information into motor actions. Decades of investigations in numerous species have made the SC and its nonmammalian homologue, the optic tectum, one of the best studied structures in the brain, with rich information now available regarding its anatomical organization, its extensive inputs and outputs and its important functions in many reflexive and cognitive behaviours. Excitingly, recent studies using modern genomic and physiological approaches have begun to reveal the diverse neuronal subtypes in the SC, as well as their unique functions in visuomotor transformation. Studies have also started to uncover how subtypes of SC neurons form intricate circuits to mediate visual processing and visually guided behaviours. Here, we review these recent discoveries on the cell types and neuronal circuits underlying visuomotor transformations mediated by the SC. We also highlight the important future directions made possible by these new developments.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| | - Chen Chen
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Yuanming Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
9
|
Ing-Esteves S, Lefebvre JL. Gamma-protocadherins regulate dendrite self-recognition and dynamics to drive self-avoidance. Curr Biol 2024; 34:4224-4239.e4. [PMID: 39214087 DOI: 10.1016/j.cub.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron's territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.
Collapse
Affiliation(s)
- Samantha Ing-Esteves
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Julie L Lefebvre
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
10
|
Kozlowski C, Hadyniak SE, Kay JN. Retinal neurons establish mosaic patterning by excluding homotypic somata from their dendritic territories. Cell Rep 2024; 43:114615. [PMID: 39133615 PMCID: PMC11440617 DOI: 10.1016/j.celrep.2024.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/01/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
In vertebrate retina, individual neurons of the same type are distributed regularly across the tissue in a pattern known as a mosaic. Establishment of mosaics during development requires cell-cell repulsion among homotypic neurons, but the mechanisms underlying this repulsion remain unknown. Here, we show that two mouse retinal cell types, OFF and ON starburst amacrine cells, establish mosaic spacing by using their dendritic arbors to repel neighboring homotypic somata. Using transgenic tools and single-cell labeling, we identify a developmental period when starburst somata are contacted by neighboring starburst dendrites; these serve to exclude somata from settling within the neighbor's dendritic territory. Dendrite-soma exclusion is mediated by MEGF10, a cell-surface molecule required for starburst mosaic patterning. Our results implicate dendrite-soma exclusion as a key mechanism underlying starburst mosaic spacing and raise the possibility that this could be a general mechanism for mosaic patterning across many cell types and species.
Collapse
Affiliation(s)
- Christopher Kozlowski
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sarah E Hadyniak
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeremy N Kay
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Liu Y. The Molecular Logic of Synaptic Specificity in the Retinocollicular Pathway. J Neurosci 2024; 44:e0383242024. [PMID: 38897733 PMCID: PMC11209652 DOI: 10.1523/jneurosci.0383-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024] Open
Affiliation(s)
- Yuanming Liu
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
12
|
Harkin J, Peña KH, Gomes C, Hernandez M, Lavekar SS, So K, Lentsch K, Feder EM, Morrow S, Huang KC, Tutrow KD, Morris A, Zhang C, Meyer JS. A highly reproducible and efficient method for retinal organoid differentiation from human pluripotent stem cells. Proc Natl Acad Sci U S A 2024; 121:e2317285121. [PMID: 38870053 PMCID: PMC11194494 DOI: 10.1073/pnas.2317285121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Human pluripotent stem cell (hPSC)-derived retinal organoids are three-dimensional cellular aggregates that differentiate and self-organize to closely mimic the spatial and temporal patterning of the developing human retina. Retinal organoid models serve as reliable tools for studying human retinogenesis, yet limitations in the efficiency and reproducibility of current retinal organoid differentiation protocols have reduced the use of these models for more high-throughput applications such as disease modeling and drug screening. To address these shortcomings, the current study aimed to standardize prior differentiation protocols to yield a highly reproducible and efficient method for generating retinal organoids. Results demonstrated that through regulation of organoid size and shape using quick reaggregation methods, retinal organoids were highly reproducible compared to more traditional methods. Additionally, the timed activation of BMP signaling within developing cells generated pure populations of retinal organoids at 100% efficiency from multiple widely used cell lines, with the default forebrain fate resulting from the inhibition of BMP signaling. Furthermore, given the ability to direct retinal or forebrain fates at complete purity, mRNA-seq analyses were then utilized to identify some of the earliest transcriptional changes that occur during the specification of these two lineages from a common progenitor. These improved methods also yielded retinal organoids with expedited differentiation timelines when compared to traditional methods. Taken together, the results of this study demonstrate the development of a highly reproducible and minimally variable method for generating retinal organoids suitable for analyzing the earliest stages of human retinal cell fate specification.
Collapse
Affiliation(s)
- Jade Harkin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
| | - Kiersten H. Peña
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN46202
| | - Cátia Gomes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN46202
| | - Melody Hernandez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN46202
| | - Sailee S. Lavekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN46202
| | - Kaman So
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN46202
| | - Kelly Lentsch
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN46202
| | - Elyse M. Feder
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN46202
| | - Sarah Morrow
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
| | - Kang-Chieh Huang
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN46202
| | - Kaylee D. Tutrow
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN46202
| | - Ann Morris
- Department of Biology, University of Kentucky, Lexington, KY40506
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN46202
| | - Jason S. Meyer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN46202
| |
Collapse
|
13
|
Qiao M. Deciphering the genetic code of neuronal type connectivity through bilinear modeling. eLife 2024; 12:RP91532. [PMID: 38857169 PMCID: PMC11164534 DOI: 10.7554/elife.91532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Understanding how different neuronal types connect and communicate is critical to interpreting brain function and behavior. However, it has remained a formidable challenge to decipher the genetic underpinnings that dictate the specific connections formed between neuronal types. To address this, we propose a novel bilinear modeling approach that leverages the architecture similar to that of recommendation systems. Our model transforms the gene expressions of presynaptic and postsynaptic neuronal types, obtained from single-cell transcriptomics, into a covariance matrix. The objective is to construct this covariance matrix that closely mirrors a connectivity matrix, derived from connectomic data, reflecting the known anatomical connections between these neuronal types. When tested on a dataset of Caenorhabditis elegans, our model achieved a performance comparable to, if slightly better than, the previously proposed spatial connectome model (SCM) in reconstructing electrical synaptic connectivity based on gene expressions. Through a comparative analysis, our model not only captured all genetic interactions identified by the SCM but also inferred additional ones. Applied to a mouse retinal neuronal dataset, the bilinear model successfully recapitulated recognized connectivity motifs between bipolar cells and retinal ganglion cells, and provided interpretable insights into genetic interactions shaping the connectivity. Specifically, it identified unique genetic signatures associated with different connectivity motifs, including genes important to cell-cell adhesion and synapse formation, highlighting their role in orchestrating specific synaptic connections between these neurons. Our work establishes an innovative computational strategy for decoding the genetic programming of neuronal type connectivity. It not only sets a new benchmark for single-cell transcriptomic analysis of synaptic connections but also paves the way for mechanistic studies of neural circuit assembly and genetic manipulation of circuit wiring.
Collapse
Affiliation(s)
- Mu Qiao
- LinkedInMountain ViewUnited States
| |
Collapse
|
14
|
Toma K, Zhao M, Zhang S, Wang F, Graham HK, Zou J, Modgil S, Shang WH, Tsai NY, Cai Z, Liu L, Hong G, Kriegstein AR, Hu Y, Körbelin J, Zhang R, Liao YJ, Kim TN, Ye X, Duan X. Perivascular neurons instruct 3D vascular lattice formation via neurovascular contact. Cell 2024; 187:2767-2784.e23. [PMID: 38733989 PMCID: PMC11223890 DOI: 10.1016/j.cell.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.
Collapse
Affiliation(s)
- Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Mengya Zhao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Shaobo Zhang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Fei Wang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Hannah K Graham
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Zou
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Shweta Modgil
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wenhao H Shang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Y Tsai
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Zhishun Cai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Liping Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Guiying Hong
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruobing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tyson N Kim
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Xin Ye
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA.
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA; Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Tworig JM, Morrie RD, Bistrong K, Somaiya RD, Hsu S, Liang J, Cornejo KG, Feller MB. Differential Expression Analysis Identifies Candidate Synaptogenic Molecules for Wiring Direction-Selective Circuits in the Retina. J Neurosci 2024; 44:e1461232024. [PMID: 38514178 PMCID: PMC11063823 DOI: 10.1523/jneurosci.1461-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
An organizational feature of neural circuits is the specificity of synaptic connections. A striking example is the direction-selective (DS) circuit of the retina. There are multiple subtypes of DS retinal ganglion cells (DSGCs) that prefer motion along one of four preferred directions. This computation is mediated by selective wiring of a single inhibitory interneuron, the starburst amacrine cell (SAC), with each DSGC subtype preferentially receiving input from a subset of SAC processes. We hypothesize that the molecular basis of this wiring is mediated in part by unique expression profiles of DSGC subtypes. To test this, we first performed paired recordings from isolated mouse retinas of both sexes to determine that postnatal day 10 (P10) represents the age at which asymmetric synapses form. Second, we performed RNA sequencing and differential expression analysis on isolated P10 ON-OFF DSGCs tuned for either nasal or ventral motion and identified candidates which may promote direction-specific wiring. We then used a conditional knock-out strategy to test the role of one candidate, the secreted synaptic organizer cerebellin-4 (Cbln4), in the development of DS tuning. Using two-photon calcium imaging, we observed a small deficit in directional tuning among ventral-preferring DSGCs lacking Cbln4, though whole-cell voltage-clamp recordings did not identify a significant change in inhibitory inputs. This suggests that Cbln4 does not function primarily via a cell-autonomous mechanism to instruct wiring of DS circuits. Nevertheless, our transcriptomic analysis identified unique candidate factors for gaining insights into the molecular mechanisms that instruct wiring specificity in the DS circuit.
Collapse
Affiliation(s)
- Joshua M Tworig
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Ryan D Morrie
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Karina Bistrong
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Rachana D Somaiya
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Shaw Hsu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Jocelyn Liang
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Karen G Cornejo
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
16
|
Wolterhoff N, Hiesinger PR. Synaptic promiscuity in brain development. Curr Biol 2024; 34:R102-R116. [PMID: 38320473 PMCID: PMC10849093 DOI: 10.1016/j.cub.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Precise synaptic connectivity is a prerequisite for the function of neural circuits, yet individual neurons, taken out of their developmental context, readily form unspecific synapses. How does the genome encode brain wiring in light of this apparent contradiction? Synaptic specificity is the outcome of a long series of developmental processes and mechanisms before, during and after synapse formation. How much promiscuity is permissible or necessary at the moment of synaptic partner choice depends on the extent to which prior development restricts available partners or subsequent development corrects initially made synapses. Synaptic promiscuity at the moment of choice can thereby play important roles in the development of precise connectivity, but also facilitate developmental flexibility and robustness. In this review, we assess the experimental evidence for the prevalence and roles of promiscuous synapse formation during brain development. Many well-established experimental approaches are based on developmental genetic perturbation and an assessment of synaptic connectivity only in the adult; this can make it difficult to pinpoint when a given defect or mechanism occurred. In many cases, such studies reveal mechanisms that restrict partner availability already prior to synapse formation. Subsequently, at the moment of choice, factors including synaptic competency, interaction dynamics and molecular recognition further restrict synaptic partners. The discussion of the development of synaptic specificity through the lens of synaptic promiscuity suggests an algorithmic process based on neurons capable of promiscuous synapse formation that are continuously prevented from making the wrong choices, with no single mechanism or developmental time point sufficient to explain the outcome.
Collapse
Affiliation(s)
- Neele Wolterhoff
- Division of Neurobiology, Free University Berlin, 14195 Berlin, Germany
| | - P Robin Hiesinger
- Division of Neurobiology, Free University Berlin, 14195 Berlin, Germany.
| |
Collapse
|
17
|
Matcham AC, Toma K, Tsai NY, Sze CJ, Lin PY, Stewart IF, Duan X. Cadherin-13 Maintains Retinotectal Synapses via Transneuronal Interactions. J Neurosci 2024; 44:e1310232023. [PMID: 38123991 PMCID: PMC10860569 DOI: 10.1523/jneurosci.1310-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Maintaining precise synaptic contacts between neuronal partners is critical to ensure the proper functioning of the mammalian central nervous system (CNS). Diverse cell recognition molecules, such as classic cadherins (Cdhs), are part of the molecular machinery mediating synaptic choices during development and synaptic maintenance. Yet, the principles governing neuron-neuron wiring across diverse CNS neuron types remain largely unknown. The retinotectal synapses, connections from the retinal ganglion cells (RGCs) to the superior collicular (SC) neurons, offer an ideal experimental system to reveal molecular logic underlying synaptic choices and formation. This is due to the retina's unidirectional and laminar-restricted projections to the SC and the large databases of presynaptic RGC subtypes and postsynaptic SC neuronal types. Here, we focused on determining the role of Type II Cdhs in wiring the retinotectal synapses. We surveyed Cdhs expression patterns at neuronal resolution and revealed that Cdh13 is enriched in the wide-field neurons in the superficial SC (sSC). In either the Cdh13 null mutant or selective adult deletion within the wide-field neurons, there is a significant reduction of spine densities in the distal dendrites of these neurons in both sexes. Additionally, Cdh13 removal from presynaptic RGCs reduced dendritic spines in the postsynaptic wide-field neurons. Cdh13-expressing RGCs use differential mechanisms than αRGCs and On-Off Direction-Selective Ganglion Cells (ooDSGCs) to form specific retinotectal synapses. The results revealed a selective transneuronal interaction mediated by Cdh13 to maintain proper retinotectal synapses in vivo.
Collapse
Affiliation(s)
- Angela C Matcham
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Kenichi Toma
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Nicole Y Tsai
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Christina J Sze
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Pin-Yeh Lin
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Ilaria F Stewart
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Xin Duan
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| |
Collapse
|
18
|
James RE, Hamilton NR, Huffman LN, Pasterkamp J, Goff LA, Kolodkin AL. Semaphorin 6A in Retinal Ganglion Cells Regulates Functional Specialization of the Inner Retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567662. [PMID: 38014224 PMCID: PMC10680864 DOI: 10.1101/2023.11.18.567662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
To form functional circuits, neurons must settle in their appropriate cellular locations and then project and elaborate neurites to contact their target synaptic neuropils. Laminar organization within the vertebrate retinal inner plexiform layer (IPL) facilitates pre- and postsynaptic neurite targeting, yet, the precise mechanisms underlying establishment of functional IPL subdomains are not well understood. Here we explore mechanisms defining the compartmentalization of OFF and ON neurites generally, and OFF and ON direction-selective neurites specifically, within the developing IPL. We show that semaphorin 6A (Sema6A), a repulsive axon guidance cue, is required for delineation of OFF versus ON circuits within the IPL: in the Sema6a null IPL, the boundary between OFF and ON domains is blurred. Furthermore, Sema6A expressed by retinal ganglion cells (RGCs) directs laminar segregation of OFF and ON starburst amacrine cell (SAC) dendritic scaffolds, which themselves serve as a substrate upon which other retinal neurites elaborate. These results demonstrate for the first time that RGCs, the first neuron-type born within the retina, play an active role in functional specialization of the IPL. Retinal ganglion cell-dependent regulation of OFF and ON starburst amacrine cell dendritic scaffold segregation prevents blurring of OFF versus ON functional domains in the murine inner plexiform layer.
Collapse
|
19
|
Tan CX, Bindu DS, Hardin EJ, Sakers K, Baumert R, Ramirez JJ, Savage JT, Eroglu C. δ-Catenin controls astrocyte morphogenesis via layer-specific astrocyte-neuron cadherin interactions. J Cell Biol 2023; 222:e202303138. [PMID: 37707499 PMCID: PMC10501387 DOI: 10.1083/jcb.202303138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Astrocytes control the formation of specific synaptic circuits via cell adhesion and secreted molecules. Astrocyte synaptogenic functions are dependent on the establishment of their complex morphology. However, it is unknown if distinct neuronal cues differentially regulate astrocyte morphogenesis. δ-Catenin was previously thought to be a neuron-specific protein that regulates dendrite morphology. We found δ-catenin is also highly expressed by astrocytes and required both in astrocytes and neurons for astrocyte morphogenesis. δ-Catenin is hypothesized to mediate transcellular interactions through the cadherin family of cell adhesion proteins. We used structural modeling and biochemical analyses to reveal that δ-catenin interacts with the N-cadherin juxtamembrane domain to promote N-cadherin surface expression. An autism-linked δ-catenin point mutation impaired N-cadherin cell surface expression and reduced astrocyte complexity. In the developing mouse cortex, only lower-layer cortical neurons express N-cadherin. Remarkably, when we silenced astrocytic N-cadherin throughout the cortex, only lower-layer astrocyte morphology was disrupted. These findings show that δ-catenin controls astrocyte-neuron cadherin interactions that regulate layer-specific astrocyte morphogenesis.
Collapse
Affiliation(s)
- Christabel Xin Tan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Evelyn J. Hardin
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kristina Sakers
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan Baumert
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Juan J. Ramirez
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Justin T. Savage
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
20
|
Prigge CL, Dembla M, Sharma A, El-Quessny M, Kozlowski C, Paisley CE, Miltner AM, Johnson TM, Della Santina L, Feller MB, Kay JN. Rejection of inappropriate synaptic partners in mouse retina mediated by transcellular FLRT2-UNC5 signaling. Dev Cell 2023; 58:2080-2096.e7. [PMID: 37557174 PMCID: PMC10615732 DOI: 10.1016/j.devcel.2023.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/26/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
During nervous system development, neurons choose synaptic partners with remarkable specificity; however, the cell-cell recognition mechanisms governing rejection of inappropriate partners remain enigmatic. Here, we show that mouse retinal neurons avoid inappropriate partners by using the FLRT2-uncoordinated-5 (UNC5) receptor-ligand system. Within the inner plexiform layer (IPL), FLRT2 is expressed by direction-selective (DS) circuit neurons, whereas UNC5C/D are expressed by non-DS neurons projecting to adjacent IPL sublayers. In vivo gain- and loss-of-function experiments demonstrate that FLRT2-UNC5 binding eliminates growing DS dendrites that have strayed from the DS circuit IPL sublayers. Abrogation of FLRT2-UNC5 binding allows mistargeted arbors to persist, elaborate, and acquire synapses from inappropriate partners. Conversely, UNC5C misexpression within DS circuit sublayers inhibits dendrite growth and drives arbors into adjacent sublayers. Mechanistically, UNC5s promote dendrite elimination by interfering with FLRT2-mediated adhesion. Based on their broad expression, FLRT-UNC5 recognition is poised to exert widespread effects upon synaptic partner choices across the nervous system.
Collapse
Affiliation(s)
- Cameron L Prigge
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Box 3802, Durham, NC 27710, USA
| | - Mayur Dembla
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Box 3802, Durham, NC 27710, USA
| | - Arsha Sharma
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Box 3802, Durham, NC 27710, USA
| | - Malak El-Quessny
- Helen Wills Neuroscience Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher Kozlowski
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Box 3802, Durham, NC 27710, USA
| | - Caitlin E Paisley
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Box 3802, Durham, NC 27710, USA
| | - Adam M Miltner
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Box 3802, Durham, NC 27710, USA
| | - Tyler M Johnson
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Box 3802, Durham, NC 27710, USA
| | - Luca Della Santina
- Department of Vision Sciences, University of Houston College of Optometry, Houston, TX 77204, USA
| | - Marla B Feller
- Helen Wills Neuroscience Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeremy N Kay
- Departments of Neurobiology, Ophthalmology, and Cell Biology, Duke University School of Medicine, Box 3802, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Mesías RE, Zaki Y, Guevara CA, Friedman LG, Hussein A, Therrien K, Magee AR, Tzavaras N, Del Valle P, Baxter MG, Huntley GW, Benson DL. Development and cadherin-mediated control of prefrontal corticostriatal projections in mice. iScience 2023; 26:108002. [PMID: 37854688 PMCID: PMC10579443 DOI: 10.1016/j.isci.2023.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Action-outcome associations depend on prefrontal cortex (PFC) projections to the dorsal striatum. To assess how these projections form, we measured PFC axon patterning, synapse formation, and functional maturation in the postnatally developing mouse striatum. Using Hotspot analysis, we show that PFC axons form an adult-like pattern of clustered terminations in the first postnatal week that remains largely stable thereafter. PFC-striatal synaptic strength is adult-like by P21, while excitatory synapse density increases until adulthood. We then tested how the targeted deletion of a candidate adhesion/guidance protein, Cadherin-8 (Cdh8), from corticostriatal neurons regulates pathway development. Mutant mice showed diminished PFC axon targeting and reduced spontaneous glutamatergic synaptic activity in the dorsal striatum. They also exhibited impaired behavioral performance in action-outcome learning. The data show that PFC-striatal axons form striatal territories through an early, directed growth model and they highlight essential contributions of Cdh8 to the anatomical and functional features critical for the formation of action-outcome associations.
Collapse
Affiliation(s)
- Roxana E. Mesías
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yosif Zaki
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher A. Guevara
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lauren G. Friedman
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ayan Hussein
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karen Therrien
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandra R. Magee
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos Tzavaras
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pamela Del Valle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark G. Baxter
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - George W. Huntley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Zhao M, Toma K, Kinde B, Li L, Patel AK, Wu KY, Lum MR, Tan C, Hooper JE, Kriegstein AR, La Torre A, Liao YJ, Welsbie DS, Hu Y, Han Y, Duan X. Osteopontin drives retinal ganglion cell resiliency in glaucomatous optic neuropathy. Cell Rep 2023; 42:113038. [PMID: 37624696 PMCID: PMC10591811 DOI: 10.1016/j.celrep.2023.113038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic neurodegeneration and acute injuries lead to neuron losses via diverse processes. We compared retinal ganglion cell (RGC) responses between chronic glaucomatous conditions and the acute injury model. Among major RGC subclasses, αRGCs and intrinsically photosensitive RGCs (ipRGCs) preferentially survive glaucomatous conditions, similar to findings in the retina subject to axotomy. Focusing on an αRGC intrinsic factor, Osteopontin (secreted phosphoprotein 1 [Spp1]), we found an ectopic neuronal expression of Osteopontin (Spp1) in other RGCs subject to glaucomatous conditions. This contrasted with the Spp1 downregulation subject to axotomy. αRGC-specific Spp1 elimination led to significant αRGC loss, diminishing their resiliency. Spp1 overexpression led to robust neuroprotection of susceptible RGC subclasses under glaucomatous conditions. In contrast, Spp1 overexpression did not significantly protect RGCs subject to axotomy. Additionally, SPP1 marked adult human RGC subsets with large somata and SPP1 expression in the aqueous humor correlated with glaucoma severity. Our study reveals Spp1's role in mediating neuronal resiliency in glaucoma.
Collapse
Affiliation(s)
- Mengya Zhao
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kenichi Toma
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Benyam Kinde
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Amit K Patel
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA 92037, USA
| | - Kong-Yan Wu
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Matthew R Lum
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Chengxi Tan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jody E Hooper
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95616, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Derek S Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA 92037, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| | - Ying Han
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
23
|
Yoo J, Dombrovski M, Mirshahidi P, Nern A, LoCascio SA, Zipursky SL, Kurmangaliyev YZ. Brain wiring determinants uncovered by integrating connectomes and transcriptomes. Curr Biol 2023; 33:3998-4005.e6. [PMID: 37647901 DOI: 10.1016/j.cub.2023.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/12/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Advances in brain connectomics have demonstrated the extraordinary complexity of neural circuits.1,2,3,4,5 Developing neurons encounter the axons and dendrites of many different neuron types and form synapses with only a subset of them. During circuit assembly, neurons express cell-type-specific repertoires comprising many cell adhesion molecules (CAMs) that can mediate interactions between developing neurites.6,7,8 Many CAM families have been shown to contribute to brain wiring in different ways.9,10 It has been challenging, however, to identify receptor-ligand pairs directly matching neurons with their synaptic targets. Here, we integrated the synapse-level connectome of the neural circuit11,12 with the developmental expression patterns7 and binding specificities of CAMs6,13 on pre- and postsynaptic neurons in the Drosophila visual system. To overcome the complexity of neural circuits, we focus on pairs of genetically related neurons that make differential wiring choices. In the motion detection circuit,14 closely related subtypes of T4/T5 neurons choose between alternative synaptic targets in adjacent layers of neuropil.12 This choice correlates with the matching expression in synaptic partners of different receptor-ligand pairs of the Beat and Side families of CAMs. Genetic analysis demonstrated that presynaptic Side-II and postsynaptic Beat-VI restrict synaptic partners to the same layer. Removal of this receptor-ligand pair disrupts layers and leads to inappropriate targeting of presynaptic sites and postsynaptic dendrites. We propose that different Side/Beat receptor-ligand pairs collaborate with other recognition molecules to determine wiring specificities in the fly brain. Combining transcriptomes, connectomes, and protein interactome maps allow unbiased identification of determinants of brain wiring.
Collapse
Affiliation(s)
- Juyoun Yoo
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark Dombrovski
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Parmis Mirshahidi
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Samuel A LoCascio
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Fries M, Brown TW, Jolicoeur C, Boulan B, Boudreau-Pinsonneault C, Javed A, Abram P, Cayouette M. Pou3f1 orchestrates a gene regulatory network controlling contralateral retinogeniculate projections. Cell Rep 2023; 42:112985. [PMID: 37590135 DOI: 10.1016/j.celrep.2023.112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 05/26/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
The balance of contralateral and ipsilateral retinogeniculate projections is critical for binocular vision, but the transcriptional programs regulating this process remain ill defined. Here we show that the Pou class homeobox protein POU3F1 is expressed in nascent mouse contralateral retinal ganglion cells (cRGCs) but not ipsilateral RGCs (iRGCs). Upon Pou3f1 inactivation, the proportion of cRGCs is reduced in favor of iRGCs, leading to abnormal projection ratios at the optic chiasm. Conversely, misexpression of Pou3f1 in progenitors increases the production of cRGCs. Using CUT&RUN and RNA sequencing in gain- and loss-of-function assays, we demonstrate that POU3F1 regulates expression of several key members of the cRGC gene regulatory network. Finally, we report that POU3F1 is sufficient to induce RGC-like cell production, even in late-stage retinal progenitors of Atoh7 knockout mice. This work uncovers POU3F1 as a regulator of the cRGC transcriptional program, opening possibilities for optic nerve regenerative therapies.
Collapse
Affiliation(s)
- Michel Fries
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Thomas W Brown
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 1A1, Canada
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Benoit Boulan
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Camille Boudreau-Pinsonneault
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 1A1, Canada
| | - Awais Javed
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pénélope Abram
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, QC H3C 3J7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 1A1, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
25
|
Choi J, Li J, Ferdous S, Liang Q, Moffitt JR, Chen R. Spatial organization of the mouse retina at single cell resolution by MERFISH. Nat Commun 2023; 14:4929. [PMID: 37582959 PMCID: PMC10427710 DOI: 10.1038/s41467-023-40674-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
The visual signal processing in the retina requires the precise organization of diverse neuronal types working in concert. While single-cell omics studies have identified more than 120 different neuronal subtypes in the mouse retina, little is known about their spatial organization. Here, we generated the single-cell spatial atlas of the mouse retina using multiplexed error-robust fluorescence in situ hybridization (MERFISH). We profiled over 390,000 cells and identified all major cell types and nearly all subtypes through the integration with reference single-cell RNA sequencing (scRNA-seq) data. Our spatial atlas allowed simultaneous examination of nearly all cell subtypes in the retina, revealing 8 previously unknown displaced amacrine cell subtypes and establishing the connection between the molecular classification of many cell subtypes and their spatial arrangement. Furthermore, we identified spatially dependent differential gene expression between subtypes, suggesting the possibility of functional tuning of neuronal types based on location.
Collapse
Affiliation(s)
- Jongsu Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Salma Ferdous
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qingnan Liang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Rui Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Mesías RE, Zaki Y, Guevara CA, Friedman LG, Hussein A, Therrien K, Magee AR, Tzavaras N, Valle PD, Baxter MG, Huntley GW, Benson DL. Development of prefrontal corticostriatal connectivity in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532475. [PMID: 36993639 PMCID: PMC10054964 DOI: 10.1101/2023.03.14.532475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rational decision making is grounded in learning to associate actions with outcomes, a process that depends on projections from prefrontal cortex to dorsomedial striatum. Symptoms associated with a variety of human pathological conditions ranging from schizophrenia and autism to Huntington's and Parkinson's disease point toward functional deficits in this projection, but its development is not well understood, making it difficult to investigate how perturbations in development of this circuitry could contribute to pathophysiology. We applied a novel strategy based on Hotspot Analysis to assess the developmental progression of anatomical positioning of prefrontal cortex to striatal projections. Corticostriatal axonal territories established at P7 expand in concert with striatal growth but remain largely unchanged in positioning through adulthood, indicating they are generated by directed, targeted growth and not modified extensively by postnatal experience. Consistent with these findings, corticostriatal synaptogenesis increased steadily from P7 to P56, with no evidence for widescale pruning. As corticostriatal synapse density increased over late postnatal ages, the strength of evoked PFC input onto dorsomedial striatal projection neurons also increased, but spontaneous glutamatergic synaptic activity was stable. Based on its pattern of expression, we asked whether the adhesion protein, Cdh8, influenced this progression. In mice lacking Cdh8 in PFC corticostriatal projection neurons, axon terminal fields in dorsal striatum shifted ventrally. Corticostriatal synaptogenesis was unimpeded, but spontaneous EPSC frequency declined and mice failed to learn to associate an action with an outcome. Collectively these findings show that corticostriatal axons grow to their target zone and are restrained from an early age, do not undergo postnatal synapse pruning as the most dominant models predict, and that a relatively modest shift in terminal arbor positioning and synapse function has an outsized, negative impact on corticostriatal-dependent behavior.
Collapse
|
27
|
Vagnozzi AN, Moore MT, López de Boer R, Agarwal A, Zampieri N, Landmesser LT, Philippidou P. Catenin signaling controls phrenic motor neuron development and function during a narrow temporal window. Front Neural Circuits 2023; 17:1121049. [PMID: 36895798 PMCID: PMC9988953 DOI: 10.3389/fncir.2023.1121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Phrenic Motor Column (PMC) neurons are a specialized subset of motor neurons (MNs) that provide the only motor innervation to the diaphragm muscle and are therefore essential for survival. Despite their critical role, the mechanisms that control phrenic MN development and function are not well understood. Here, we show that catenin-mediated cadherin adhesive function is required for multiple aspects of phrenic MN development. Deletion of β- and γ-catenin from MN progenitors results in perinatal lethality and a severe reduction in phrenic MN bursting activity. In the absence of catenin signaling, phrenic MN topography is eroded, MN clustering is lost and phrenic axons and dendrites fail to grow appropriately. Despite the essential requirement for catenins in early phrenic MN development, they appear to be dispensable for phrenic MN maintenance, as catenin deletion from postmitotic MNs does not impact phrenic MN topography or function. Our data reveal a fundamental role for catenins in PMC development and suggest that distinct mechanisms are likely to control PMC maintenance.
Collapse
Affiliation(s)
- Alicia N. Vagnozzi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Matthew T. Moore
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Raquel López de Boer
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aambar Agarwal
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Niccolò Zampieri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lynn T. Landmesser
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
28
|
Catenin signaling controls phrenic motor neuron development and function during a narrow temporal window. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524559. [PMID: 36711833 PMCID: PMC9882252 DOI: 10.1101/2023.01.18.524559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phrenic Motor Column (PMC) neurons are a specialized subset of motor neurons (MNs) that provide the only motor innervation to the diaphragm muscle and are therefore essential for survival. Despite their critical role, the mechanisms that control phrenic MN development and function are not well understood. Here, we show that catenin-mediated cadherin adhesive function is required for multiple aspects of phrenic MN development. Deletion of β - and γ -catenin from MN progenitors results in perinatal lethality and a severe reduction in phrenic MN bursting activity. In the absence of catenin signaling, phrenic MN topography is eroded, MN clustering is lost and phrenic axons and dendrites fail to grow appropriately. Despite the essential requirement for catenins in early phrenic MN development, they appear to be dispensable for phrenic MN maintenance, as catenin deletion from postmitotic MNs does not impact phrenic MN topography or function. Our data reveal a fundamental role for catenins in PMC development and suggest that distinct mechanisms are likely to control PMC maintenance.
Collapse
|
29
|
Whitney IE, Butrus S, Dyer MA, Rieke F, Sanes JR, Shekhar K. Vision-Dependent and -Independent Molecular Maturation of Mouse Retinal Ganglion Cells. Neuroscience 2023; 508:153-173. [PMID: 35870562 PMCID: PMC10809145 DOI: 10.1016/j.neuroscience.2022.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 01/17/2023]
Abstract
The development and connectivity of retinal ganglion cells (RGCs), the retina's sole output neurons, are patterned by activity-independent transcriptional programs and activity-dependent remodeling. To inventory the molecular correlates of these influences, we applied high-throughput single-cell RNA sequencing (scRNA-seq) to mouse RGCs at six embryonic and postnatal ages. We identified temporally regulated modules of genes that correlate with, and likely regulate, multiple phases of RGC development, ranging from differentiation and axon guidance to synaptic recognition and refinement. Some of these genes are expressed broadly while others, including key transcription factors and recognition molecules, are selectively expressed by one or a few of the 45 transcriptomically distinct types defined previously in adult mice. Next, we used these results as a foundation to analyze the transcriptomes of RGCs in mice lacking visual experience due to dark rearing from birth or to mutations that ablate either bipolar or photoreceptor cells. 98.5% of visually deprived (VD) RGCs could be unequivocally assigned to a single RGC type based on their transcriptional profiles, demonstrating that visual activity is dispensable for acquisition and maintenance of RGC type identity. However, visual deprivation significantly reduced the transcriptomic distinctions among RGC types, implying that activity is required for complete RGC maturation or maintenance. Consistent with this notion, transcriptomic alternations in VD RGCs significantly overlapped with gene modules found in developing RGCs. Our results provide a resource for mechanistic analyses of RGC differentiation and maturation, and for investigating the role of activity in these processes.
Collapse
Affiliation(s)
- Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Karthik Shekhar
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences, QB3, Center for Computational Biology, University of California, Berkeley, CA 94720, USA; Biological Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Vagnozzi AN, Moore MT, Lin M, Brozost EM, KC R, Agarwal A, Schwarz LA, Duan X, Zampieri N, Landmesser LT, Philippidou P. Coordinated cadherin functions sculpt respiratory motor circuit connectivity. eLife 2022; 11:e82116. [PMID: 36583530 PMCID: PMC9910829 DOI: 10.7554/elife.82116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Breathing, and the motor circuits that control it, is essential for life. At the core of respiratory circuits are Dbx1-derived interneurons, which generate the rhythm and pattern of breathing, and phrenic motor neurons (MNs), which provide the final motor output that drives diaphragm muscle contractions during inspiration. Despite their critical function, the principles that dictate how respiratory circuits assemble are unknown. Here, we show that coordinated activity of a type I cadherin (N-cadherin) and type II cadherins (Cadherin-6, -9, and -10) is required in both MNs and Dbx1-derived neurons to generate robust respiratory motor output. Both MN- and Dbx1-specific cadherin inactivation in mice during a critical developmental window results in perinatal lethality due to respiratory failure and a striking reduction in phrenic MN bursting activity. This combinatorial cadherin code is required to establish phrenic MN cell body and dendritic topography; surprisingly, however, cell body position appears to be dispensable for the targeting of phrenic MNs by descending respiratory inputs. Our findings demonstrate that type I and II cadherins function cooperatively throughout the respiratory circuit to generate a robust breathing output and reveal novel strategies that drive the assembly of motor circuits.
Collapse
Affiliation(s)
- Alicia N Vagnozzi
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Matthew T Moore
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Minshan Lin
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Elyse M Brozost
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Ritesh KC
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Aambar Agarwal
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Lindsay A Schwarz
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Xin Duan
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
| | - Niccolò Zampieri
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Lynn T Landmesser
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
31
|
Kulesh B, Reese BE, Keeley PW. Contraction of axonal and dendritic fields in Sox5-deficient cone bipolar cells is accompanied by axonal sprouting and dendritic hyper-innervation of pedicles. Front Neuroanat 2022; 16:944706. [PMID: 36093292 PMCID: PMC9459848 DOI: 10.3389/fnana.2022.944706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Multiple factors regulate the differentiation of neuronal morphology during development, including interactions with afferents, targets, and homotypic neighbors, as well as cell-intrinsic transcriptional regulation. Retinal bipolar cells provide an exemplary model system for studying the control of these processes, as there are 15 transcriptionally and morphologically distinct types, each extending their dendritic and axonal arbors in respective strata within the synaptic layers of the retina. Here we have examined the role of the transcription factor Sox5 in the control of the morphological differentiation of one type of cone bipolar cell (CBC), the Type 7 cell. We confirm selective expression of SOX5 in this single bipolar cell type, emerging at the close of the first post-natal week, prior to morphological differentiation. Conditional knockout mice were generated by crossing a bipolar cell-specific cre-expressing line with mice carrying floxed Sox5 alleles, as well as the Gustducin-gfp reporter which labels Type 7 CBCs. Loss of SOX5 was confirmed in the bipolar cell stratum, in GFP+ Type 7 cells. Such SOX5-deficient Type 7 cells differentiate axonal and dendritic arbors that are each reduced in areal extent. The axonal arbors exhibit sprouting in the inner plexiform layer (IPL), thereby extending their overall radial extent, while the dendritic arbors connect with fewer cone pedicles in the outer plexiform layer, showing an increase in the average number of dendritic contacts at each pedicle. SOX5-deficient Type 7 CBCs should therefore exhibit smaller receptive fields derived from fewer if now hyper-innervated pedicles, transmitting their signals across a broader depth through the IPL.
Collapse
Affiliation(s)
- Bridget Kulesh
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Benjamin E. Reese
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick W. Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- *Correspondence: Patrick W. Keeley
| |
Collapse
|
32
|
Tapia ML, Nascimento-Dos-Santos G, Park KK. Subtype-specific survival and regeneration of retinal ganglion cells in response to injury. Front Cell Dev Biol 2022; 10:956279. [PMID: 36035999 PMCID: PMC9411869 DOI: 10.3389/fcell.2022.956279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Mary L Tapia
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
33
|
Ye B. The molecular mechanisms that underlie neural network assembly. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:244-250. [PMID: 37724189 PMCID: PMC10388759 DOI: 10.1515/mr-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/05/2022] [Indexed: 09/20/2023]
Abstract
Neural networks are groups of interconnected neurons, which collectively give rise to emergent neural activities and functions that cannot be explained by the activity of single neurons. How neural networks are assembled is poorly understood. While all aspects of neuronal development are essential for the assembly of a functional neural network, we know little about high-level principles that govern neural network assembly beyond the basic steps of neuronal development. In this review, I use vertebrate spinal motor columns, Drosophila larval motor circuit, and the lamination in the vertebrate inner retina to highlight the spatial codes, temporal codes, and cell adhesion codes for neural network assembly. Nevertheless, these examples only show preliminary connections between neural network development and their functions. Much needs to be done to understand the molecular mechanisms that underlie the assembly of functional neural networks.
Collapse
Affiliation(s)
- Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Tsai NY, Wang F, Toma K, Yin C, Takatoh J, Pai EL, Wu K, Matcham AC, Yin L, Dang EJ, Marciano DK, Rubenstein JL, Wang F, Ullian EM, Duan X. Trans-Seq maps a selective mammalian retinotectal synapse instructed by Nephronectin. Nat Neurosci 2022; 25:659-674. [PMID: 35524141 PMCID: PMC9172271 DOI: 10.1038/s41593-022-01068-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/30/2022] [Indexed: 12/21/2022]
Abstract
The mouse visual system serves as an accessible model to understand mammalian circuit wiring. Despite rich knowledge in retinal circuits, the long-range connectivity map from distinct retinal ganglion cell (RGC) types to diverse brain neuron types remains unknown. In this study, we developed an integrated approach, called Trans-Seq, to map RGCs to superior collicular (SC) circuits. Trans-Seq combines a fluorescent anterograde trans-synaptic tracer, consisting of codon-optimized wheat germ agglutinin fused to mCherry, with single-cell RNA sequencing. We used Trans-Seq to classify SC neuron types innervated by genetically defined RGC types and predicted a neuronal pair from αRGCs to Nephronectin-positive wide-field neurons (NPWFs). We validated this connection using genetic labeling, electrophysiology and retrograde tracing. We then used transcriptomic data from Trans-Seq to identify Nephronectin as a determinant for selective synaptic choice from αRGC to NPWFs via binding to Integrin α8β1. The Trans-Seq approach can be broadly applied for post-synaptic circuit discovery from genetically defined pre-synaptic neurons.
Collapse
Affiliation(s)
- Nicole Y Tsai
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program and Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Fei Wang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Chen Yin
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Takatoh
- McGovern Institute for Brain Research, MIT Brain and Cognitive Sciences, Cambridge, MA, USA
| | - Emily L Pai
- Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Kongyan Wu
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Angela C Matcham
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Luping Yin
- McGovern Institute for Brain Research, MIT Brain and Cognitive Sciences, Cambridge, MA, USA
| | - Eric J Dang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Denise K Marciano
- Departments of Cell Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John L Rubenstein
- Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Fan Wang
- McGovern Institute for Brain Research, MIT Brain and Cognitive Sciences, Cambridge, MA, USA
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
35
|
Moreland T, Poulain FE. To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly. Front Neurosci 2022; 16:889155. [PMID: 35573298 PMCID: PMC9096351 DOI: 10.3389/fnins.2022.889155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.
Collapse
|
36
|
Yusuf IH, Garrett A, MacLaren RE, Issa PC. Retinal cadherins and the retinal cadherinopathies: Current concepts and future directions. Prog Retin Eye Res 2022; 90:101038. [DOI: 10.1016/j.preteyeres.2021.101038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
|
37
|
Rochon PL, Theriault C, Rangel Olguin AG, Krishnaswamy A. The cell adhesion molecule Sdk1 shapes assembly of a retinal circuit that detects localized edges. eLife 2021; 10:e70870. [PMID: 34545809 PMCID: PMC8514235 DOI: 10.7554/elife.70870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 01/10/2023] Open
Abstract
Nearly 50 different mouse retinal ganglion cell (RGC) types sample the visual scene for distinct features. RGC feature selectivity arises from their synapses with a specific subset of amacrine (AC) and bipolar cell (BC) types, but how RGC dendrites arborize and collect input from these specific subsets remains poorly understood. Here we examine the hypothesis that RGCs employ molecular recognition systems to meet this challenge. By combining calcium imaging and type-specific histological stains, we define a family of circuits that express the recognition molecule Sidekick-1 (Sdk1), which include a novel RGC type (S1-RGC) that responds to local edges. Genetic and physiological studies revealed that Sdk1 loss selectively disrupts S1-RGC visual responses, which result from a loss of excitatory and inhibitory inputs and selective dendritic deficits on this neuron. We conclude that Sdk1 shapes dendrite growth and wiring to help S1-RGCs become feature selective.
Collapse
|
38
|
Abstract
The CNS vasculature tightly regulates the passage of circulating molecules and leukocytes into the CNS. In the neuroinflammatory disease multiple sclerosis (MS), these regulatory mechanisms fail, and autoreactive T cells invade the CNS via blood vessels, leading to neurological deficits depending on where the lesions are located. The region-specific mechanisms directing the development of such lesions are not well understood. In this study, we investigated whether pericytes regulate CNS endothelial cell permissiveness toward leukocyte trafficking into the brain parenchyma. By using a pericyte-deficient mouse model, we show that intrinsic changes in the brain vasculature due to absence of pericytes facilitate the neuroinflammatory cascade and can influence the localization of the neuroinflammatory lesions. Pericytes regulate the development of organ-specific characteristics of the brain vasculature such as the blood–brain barrier (BBB) and astrocytic end-feet. Whether pericytes are involved in the control of leukocyte trafficking in the adult central nervous system (CNS), a process tightly regulated by CNS vasculature, remains elusive. Using adult pericyte-deficient mice (Pdgfbret/ret), we show that pericytes limit leukocyte infiltration into the CNS during homeostasis and autoimmune neuroinflammation. The permissiveness of the vasculature toward leukocyte trafficking in Pdgfbret/ret mice inversely correlates with vessel pericyte coverage. Upon induction of experimental autoimmune encephalomyelitis (EAE), pericyte-deficient mice die of severe atypical EAE, which can be reversed with fingolimod, indicating that the mortality is due to the massive influx of immune cells into the brain. Additionally, administration of anti-VCAM-1 and anti–ICAM-1 antibodies reduces leukocyte infiltration and diminishes the severity of atypical EAE symptoms of Pdgfbret/ret mice, indicating that the proinflammatory endothelium due to absence of pericytes facilitates exaggerated neuroinflammation. Furthermore, we show that the presence of myelin peptide-specific peripheral T cells in Pdgfbret/ret;2D2tg mice leads to the development of spontaneous neurological symptoms paralleled by the massive influx of leukocytes into the brain. These findings indicate that intrinsic changes within brain vasculature can promote the development of a neuroinflammatory disorder.
Collapse
|
39
|
Epifanova E, Salina V, Lajkó D, Textoris-Taube K, Naumann T, Bormuth O, Bormuth I, Horan S, Schaub T, Borisova E, Ambrozkiewicz MC, Tarabykin V, Rosário M. Adhesion dynamics in the neocortex determine the start of migration and the post-migratory orientation of neurons. SCIENCE ADVANCES 2021; 7:eabf1973. [PMID: 34215578 PMCID: PMC11060048 DOI: 10.1126/sciadv.abf1973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The neocortex is stereotypically organized into layers of excitatory neurons arranged in a precise parallel orientation. Here we show that dynamic adhesion both preceding and following radial migration is essential for this organization. Neuronal adhesion is regulated by the Mowat-Wilson syndrome-associated transcription factor Zeb2 (Sip1/Zfhx1b) through direct repression of independent adhesion pathways controlled by Neuropilin-1 (Nrp1) and Cadherin-6 (Cdh6). We reveal that to initiate radial migration, neurons must first suppress adhesion to the extracellular matrix. Zeb2 regulates the multipolar stage by transcriptional repression of Nrp1 and thereby downstream inhibition of integrin signaling. Upon completion of migration, neurons undergo an orientation process that is independent of migration. The parallel organization of neurons within the neocortex is controlled by Cdh6 through atypical regulation of integrin signaling via its RGD motif. Our data shed light on the mechanisms that regulate initiation of radial migration and the postmigratory orientation of neurons during neocortical development.
Collapse
Affiliation(s)
- Ekaterina Epifanova
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Valentina Salina
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Denis Lajkó
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Kathrin Textoris-Taube
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Biochemistry, Core Facility High-Throughput Mass Spectrometry, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Naumann
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Functional Neuroanatomy, Charitéplatz 1, 10117 Berlin, Germany
| | - Olga Bormuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ingo Bormuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Stephen Horan
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Theres Schaub
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ekaterina Borisova
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Mateusz C Ambrozkiewicz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Victor Tarabykin
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Marta Rosário
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
40
|
Development of the vertebrate retinal direction-selective circuit. Dev Biol 2021; 477:273-283. [PMID: 34118273 DOI: 10.1016/j.ydbio.2021.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
The vertebrate retina contains an array of neural circuits that detect distinct features in visual space. Direction-selective (DS) circuits are an evolutionarily conserved retinal circuit motif - from zebrafish to rodents to primates - specialized for motion detection. During retinal development, neuronal subtypes that wire DS circuits form exquisitely precise connections with each other to shape the output of retinal ganglion cells tuned for specific speeds and directions of motion. In this review, we follow the chronology of DS circuit development in the vertebrate retina, including the cellular, molecular, and activity-dependent mechanisms that regulate the formation of DS circuits, from cell birth and migration to synapse formation and refinement. We highlight recent findings that identify genetic programs critical for specifying neuronal subtypes within DS circuits and molecular interactions essential for responses along the cardinal axes of motion. Finally, we discuss the roles of DS circuits in visual behavior and in certain human visual disease conditions. As one of the best-characterized circuits in the vertebrate retina, DS circuits represent an ideal model system for studying the development of neural connectivity at the level of individual genes, cells, and behavior.
Collapse
|
41
|
Sun YC, Chen X, Fischer S, Lu S, Zhan H, Gillis J, Zador AM. Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat Neurosci 2021; 24:873-885. [PMID: 33972801 PMCID: PMC8178227 DOI: 10.1038/s41593-021-00842-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Functional circuits consist of neurons with diverse axonal projections and gene expression. Understanding the molecular signature of projections requires high-throughput interrogation of both gene expression and projections to multiple targets in the same cells at cellular resolution, which is difficult to achieve using current technology. Here, we introduce BARseq2, a technique that simultaneously maps projections and detects multiplexed gene expression by in situ sequencing. We determined the expression of cadherins and cell-type markers in 29,933 cells and the projections of 3,164 cells in both the mouse motor cortex and auditory cortex. Associating gene expression and projections in 1,349 neurons revealed shared cadherin signatures of homologous projections across the two cortical areas. These cadherins were enriched across multiple branches of the transcriptomic taxonomy. By correlating multigene expression and projections to many targets in single neurons with high throughput, BARseq2 provides a potential path to uncovering the molecular logic underlying neuronal circuits.
Collapse
Affiliation(s)
- Yu-Chi Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xiaoyin Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | | | - Shaina Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Huiqing Zhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
42
|
Polanco J, Reyes-Vigil F, Weisberg SD, Dhimitruka I, Brusés JL. Differential Spatiotemporal Expression of Type I and Type II Cadherins Associated With the Segmentation of the Central Nervous System and Formation of Brain Nuclei in the Developing Mouse. Front Mol Neurosci 2021; 14:633719. [PMID: 33833667 PMCID: PMC8021962 DOI: 10.3389/fnmol.2021.633719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/10/2021] [Indexed: 11/20/2022] Open
Abstract
Type I and type II classical cadherins comprise a family of cell adhesion molecules that regulate cell sorting and tissue separation by forming specific homo and heterophilic bonds. Factors that affect cadherin-mediated cell-cell adhesion include cadherin binding affinity and expression level. This study examines the expression pattern of type I cadherins (Cdh1, Cdh2, Cdh3, and Cdh4), type II cadherins (Cdh6, Cdh7, Cdh8, Cdh9, Cdh10, Cdh11, Cdh12, Cdh18, Cdh20, and Cdh24), and the atypical cadherin 13 (Cdh13) during distinct morphogenetic events in the developing mouse central nervous system from embryonic day 11.5 to postnatal day 56. Cadherin mRNA expression levels obtained from in situ hybridization experiments carried out at the Allen Institute for Brain Science (https://alleninstitute.org/) were retrieved from the Allen Developing Mouse Brain Atlas. Cdh2 is the most abundantly expressed type I cadherin throughout development, while Cdh1, Cdh3, and Cdh4 are expressed at low levels. Type II cadherins show a dynamic pattern of expression that varies between neuroanatomical structures and developmental ages. Atypical Cdh13 expression pattern correlates with Cdh2 in abundancy and localization. Analyses of cadherin-mediated relative adhesion estimated from their expression level and binding affinity show substantial differences in adhesive properties between regions of the neural tube associated with the segmentation along the anterior–posterior axis. Differences in relative adhesion were also observed between brain nuclei in the developing subpallium (basal ganglia), suggesting that differential cell adhesion contributes to the segregation of neuronal pools. In the adult cerebral cortex, type II cadherins Cdh6, Cdh8, Cdh10, and Cdh12 are abundant in intermediate layers, while Cdh11 shows a gradated expression from the deeper layer 6 to the superficial layer 1, and Cdh9, Cdh18, and Cdh24 are more abundant in the deeper layers. Person’s correlation analyses of cadherins mRNA expression patterns between areas and layers of the cerebral cortex and the nuclei of the subpallium show significant correlations between certain cortical areas and the basal ganglia. The study shows that differential cadherin expression and cadherin-mediated adhesion are associated with a wide range of morphogenetic events in the developing central nervous system including the organization of neurons into layers, the segregation of neurons into nuclei, and the formation of neuronal circuits.
Collapse
Affiliation(s)
- Julie Polanco
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY, United States
| | - Fredy Reyes-Vigil
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY, United States
| | - Sarah D Weisberg
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY, United States
| | - Ilirian Dhimitruka
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY, United States
| | - Juan L Brusés
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY, United States
| |
Collapse
|
43
|
Sando R, Südhof TC. Latrophilin GPCR signaling mediates synapse formation. eLife 2021; 10:e65717. [PMID: 33646123 PMCID: PMC7954527 DOI: 10.7554/elife.65717] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Neural circuit assembly in the brain requires precise establishment of synaptic connections, but the mechanisms of synapse assembly remain incompletely understood. Latrophilins are postsynaptic adhesion-GPCRs that engage in trans-synaptic complexes with presynaptic teneurins and FLRTs. In mouse CA1-region neurons, Latrophilin-2 and Latrophilin-3 are essential for formation of entorhinal-cortex-derived and Schaffer-collateral-derived synapses, respectively. However, it is unknown whether latrophilins function as GPCRs in synapse formation. Here, we show that Latrophilin-2 and Latrophilin-3 exhibit constitutive GPCR activity that increases cAMP levels, which was blocked by a mutation interfering with G-protein and arrestin interactions of GPCRs. The same mutation impaired the ability of Latrophilin-2 and Latrophilin-3 to rescue the synapse-loss phenotype in Latrophilin-2 and Latrophilin-3 knockout neurons in vivo. Our results suggest that Latrophilin-2 and Latrophilin-3 require GPCR signaling in synapse formation, indicating that latrophilins promote synapse formation in the hippocampus by activating a classical GPCR-signaling pathway.
Collapse
Affiliation(s)
- Richard Sando
- Department of Molecular & Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of MedicineStanfordUnited States
| | - Thomas C Südhof
- Department of Molecular & Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
44
|
Kölsch Y, Hahn J, Sappington A, Stemmer M, Fernandes AM, Helmbrecht TO, Lele S, Butrus S, Laurell E, Arnold-Ammer I, Shekhar K, Sanes JR, Baier H. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron 2021; 109:645-662.e9. [PMID: 33357413 PMCID: PMC7897282 DOI: 10.1016/j.neuron.2020.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Retinal ganglion cells (RGCs) form an array of feature detectors, which convey visual information to central brain regions. Characterizing RGC diversity is required to understand the logic of the underlying functional segregation. Using single-cell transcriptomics, we systematically classified RGCs in adult and larval zebrafish, thereby identifying marker genes for >30 mature types and several developmental intermediates. We used this dataset to engineer transgenic driver lines, enabling specific experimental access to a subset of RGC types. Expression of one or few transcription factors often predicts dendrite morphologies and axonal projections to specific tectal layers and extratectal targets. In vivo calcium imaging revealed that molecularly defined RGCs exhibit specific functional tuning. Finally, chemogenetic ablation of eomesa+ RGCs, which comprise melanopsin-expressing types with projections to a small subset of central targets, selectively impaired phototaxis. Together, our study establishes a framework for systematically studying the functional architecture of the visual system.
Collapse
Affiliation(s)
- Yvonne Kölsch
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University, 82152 Martinsried, Germany
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94720, USA
| | - Anna Sappington
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Manuel Stemmer
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - António M Fernandes
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Thomas O Helmbrecht
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Shriya Lele
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94720, USA
| | - Eva Laurell
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Irene Arnold-Ammer
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences, QB3, Center for Computational Biology, UC Berkeley, Berkeley, CA 94720, USA.
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cell Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany.
| |
Collapse
|
45
|
Chowdhury D, Watters K, Biederer T. Synaptic recognition molecules in development and disease. Curr Top Dev Biol 2021; 142:319-370. [PMID: 33706921 DOI: 10.1016/bs.ctdb.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synaptic connectivity patterns underlie brain functions. How recognition molecules control where and when neurons form synapses with each other, therefore, is a fundamental question of cellular neuroscience. This chapter delineates adhesion and signaling complexes as well as secreted factors that contribute to synaptic partner recognition in the vertebrate brain. The sections follow a developmental perspective and discuss how recognition molecules (1) guide initial synaptic wiring, (2) provide for the rejection of incorrect partner choices, (3) contribute to synapse specification, and (4) support the removal of inappropriate synapses once formed. These processes involve a rich repertoire of molecular players and key protein families are described, notably the Cadherin and immunoglobulin superfamilies, Semaphorins/Plexins, Leucine-rich repeat containing proteins, and Neurexins and their binding partners. Molecular themes that diversify these recognition systems are defined and highlighted throughout the text, including the neuron-type specific expression and combinatorial action of recognition factors, alternative splicing, and post-translational modifications. Methodological innovations advancing the field such as proteomic approaches and single cell expression studies are additionally described. Further, the chapter highlights the importance of choosing an appropriate brain region to analyze synaptic recognition factors and the advantages offered by laminated structures like the hippocampus or retina. In a concluding section, the profound disease relevance of aberrant synaptic recognition for neurodevelopmental and psychiatric disorders is discussed. Based on the current progress, an outlook is presented on research goals that can further advance insights into how recognition molecules provide for the astounding precision and diversity of synaptic connections.
Collapse
Affiliation(s)
| | - Katherine Watters
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States; Neuroscience Graduate Program, Tufts University School of Medicine, Boston, MA, United States
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
46
|
Dorskind JM, Kolodkin AL. Revisiting and refining roles of neural guidance cues in circuit assembly. Curr Opin Neurobiol 2021; 66:10-21. [PMID: 32823181 PMCID: PMC10725571 DOI: 10.1016/j.conb.2020.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Neural guidance mechanisms ensure the precise targeting and synaptogenesis events essential for normal circuit function. Neuronal growth cones encounter numerous attractive and repulsive cues as they navigate toward their intermediate and final targets; temporal and spatial regulation of these responses are critical for circuit assembly. Recent work highlights the complexity of these events throughout neural development and the multifaceted functions of a wide range of guidance cues. Here, we discuss recent studies that leverage advances in genetics, single cell tracing, transcriptomics and proteomics to further our understanding of the molecular mechanisms underlying neural guidance and overall circuit organization.
Collapse
Affiliation(s)
- Joelle M Dorskind
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
47
|
Yamagata M, Yan W, Sanes JR. A cell atlas of the chick retina based on single-cell transcriptomics. eLife 2021; 10:e63907. [PMID: 33393903 PMCID: PMC7837701 DOI: 10.7554/elife.63907] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal structure and function have been studied in many vertebrate orders, but molecular characterization has been largely confined to mammals. We used single-cell RNA sequencing (scRNA-seq) to generate a cell atlas of the chick retina. We identified 136 cell types plus 14 positional or developmental intermediates distributed among the six classes conserved across vertebrates - photoreceptor, horizontal, bipolar, amacrine, retinal ganglion, and glial cells. To assess morphology of molecularly defined types, we adapted a method for CRISPR-based integration of reporters into selectively expressed genes. For Müller glia, we found that transcriptionally distinct cells were regionally localized along the anterior-posterior, dorsal-ventral, and central-peripheral retinal axes. We also identified immature photoreceptor, horizontal cell, and oligodendrocyte types that persist into late embryonic stages. Finally, we analyzed relationships among chick, mouse, and primate retinal cell classes and types. Our results provide a foundation for anatomical, physiological, evolutionary, and developmental studies of the avian visual system.
Collapse
Affiliation(s)
- Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
48
|
Abstract
Retinal ganglion cells (RGCs) serve as a crucial communication channel from the retina to the brain. In the adult, these cells receive input from defined sets of presynaptic partners and communicate with postsynaptic brain regions to convey features of the visual scene. However, in the developing visual system, RGC interactions extend beyond their synaptic partners such that they guide development before the onset of vision. In this Review, we summarize our current understanding of how interactions between RGCs and their environment influence cellular targeting, migration and circuit maturation during visual system development. We describe the roles of RGC subclasses in shaping unique developmental responses within the retina and at central targets. Finally, we highlight the utility of RNA sequencing and genetic tools in uncovering RGC type-specific roles during the development of the visual system.
Collapse
Affiliation(s)
- Shane D'Souza
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Richard A Lang
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
49
|
Hiesinger PR. Brain wiring with composite instructions. Bioessays 2020; 43:e2000166. [PMID: 33145823 DOI: 10.1002/bies.202000166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/12/2022]
Abstract
The quest for molecular mechanisms that guide axons or specify synaptic contacts has largely focused on molecules that intuitively relate to the idea of an "instruction." By contrast, "permissive" factors are traditionally considered background machinery without contribution to the information content of a molecularly executed instruction. In this essay, I recast this dichotomy as a continuum from permissive to instructive actions of single factors that provide relative contributions to a necessarily collaborative effort. Individual molecules or other factors do not constitute absolute instructions by themselves; they provide necessary context for each other, thereby creating a composite that defines the overall instruction. The idea of composite instructions leads to two main conclusions: first, a composite of many seemingly permissive factors can define a specific instruction even in the absence of a single dominant contributor; second, individual factors are not necessarily related intuitively to the overall instruction or phenotypic outcome.
Collapse
Affiliation(s)
- P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
50
|
Hiraga K, Inoue YU, Asami J, Hotta M, Morimoto Y, Tatsumoto S, Hoshino M, Go Y, Inoue T. Redundant type II cadherins define neuroepithelial cell states for cytoarchitectonic robustness. Commun Biol 2020; 3:574. [PMID: 33060832 PMCID: PMC7567090 DOI: 10.1038/s42003-020-01297-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Individual cell shape and integrity must precisely be orchestrated during morphogenesis. Here, we determine function of type II cadherins, Cdh6, Cdh8, and Cdh11, whose expression combinatorially demarcates the mouse neural plate/tube. While CRISPR/Cas9-based single type II cadherin mutants show no obvious phenotype, Cdh6/8 double knockout (DKO) mice develop intermingled forebrain/midbrain compartments as these two cadherins' expression opposes at the nascent boundary. Cdh6/8/11 triple, Cdh6/8 or Cdh8/11 DKO mice further cause exencephaly just within the cranial region where mutated cadherins' expression merges. In the Cdh8/11 DKO midbrain, we observe less-constricted apical actin meshwork, ventrally-directed spreading, and occasional hyperproliferation among dorsal neuroepithelial cells as origins for exencephaly. These results provide rigid evidence that, by conferring distinct adhesive codes to each cell, redundant type II cadherins serve essential and shared roles in compartmentalization and neurulation, both of which proceed under the robust control of the number, positioning, constriction, and fluidity of neuroepithelial cells.
Collapse
Affiliation(s)
- Kou Hiraga
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
| | - Junko Asami
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
| | - Mayuko Hotta
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Yuki Morimoto
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
| | - Shoji Tatsumoto
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Saigo-naka 38, Myoudaiji, Okazaki, Aichi, 444-8585, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan
| | - Yasuhiro Go
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Saigo-naka 38, Myoudaiji, Okazaki, Aichi, 444-8585, Japan
- Department of System Neuroscience, National Institute for Physiological Sciences, Saigo-naka 38, Myoudaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Saigo-naka 38, Myoudaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi 4-1-1, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|