1
|
Zhang M, Xiang C, Niu R, He X, Luo W, Liu W, Gu R. Liposomes as versatile agents for the management of traumatic and nontraumatic central nervous system disorders: drug stability, targeting efficiency, and safety. Neural Regen Res 2025; 20:1883-1899. [PMID: 39254548 PMCID: PMC11691476 DOI: 10.4103/nrr.nrr-d-24-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 09/11/2024] Open
Abstract
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied. However, their inability to cross the blood-brain barrier hampers the clinical translation of these therapeutic strategies. Liposomes are nanoparticles composed of lipid bilayers, which can effectively encapsulate drugs and improve drug delivery across the blood-brain barrier and into brain tissue through their targeting and permeability. Therefore, they can potentially treat traumatic and nontraumatic central nervous system diseases. In this review, we outlined the common properties and preparation methods of liposomes, including thin-film hydration, reverse-phase evaporation, solvent injection techniques, detergent removal methods, and microfluidics techniques. Afterwards, we comprehensively discussed the current applications of liposomes in central nervous system diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, traumatic brain injury, spinal cord injury, and brain tumors. Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials. Additionally, their application as drug delivery systems in clinical practice faces challenges such as drug stability, targeting efficiency, and safety. Therefore, we proposed development strategies related to liposomes to further promote their development in neurological disease research.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chunyu Xiang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Renrui Niu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaodong He
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenqi Luo
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wanguo Liu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Gu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Tennakoon R, Bily TM, Hasan F, Syal S, Voigt A, Balci TB, Hoffman KS, O’Donoghue P. Glutamine missense suppressor transfer RNAs inhibit polyglutamine aggregation. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102442. [PMID: 39897579 PMCID: PMC11787650 DOI: 10.1016/j.omtn.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
Huntington's disease (HD) is caused by polyglutamine (polyQ) repeat expansions in the huntingtin gene. HD-causative polyQ alleles lead to protein aggregation, which is a prerequisite for disease. Translation fidelity modifies protein aggregation, and several studies suggest that mutating one or two glutamine (Gln) residues in polyQ reduces aggregation. Thus, we hypothesized that missense suppression of Gln codons with other amino acids will reduce polyQ aggregate formation in cells. In neuroblastoma cells, we assessed tRNA variants that misread Gln codons with serine (tRNASer C/UUG) or alanine (tRNAAla C/UUG). The tRNAs with the CUG anticodon were more effective at suppressing the CAG repeats in polyQ, and serine and alanine mis-incorporation had differential impacts on polyQ. The expression of tRNASer CUG reduced polyQ protein production as well as both soluble and insoluble aggregate formation. In contrast, cells expressing tRNAAla CUG selectively decreased insoluble polyQ aggregate formation by 2-fold. Mass spectrometry confirmed Ala mis-incorporation at an average level of ∼20% per Gln codon. Cells expressing the missense suppressor tRNAs showed no cytotoxic effects and no defects in growth or global protein synthesis levels. Our findings demonstrate that tRNA-dependent missense suppression of Gln codons is well tolerated in mammalian cells and significantly reduces polyQ levels and aggregates that cause HD.
Collapse
Affiliation(s)
- Rasangi Tennakoon
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Teija M.I. Bily
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sunidhi Syal
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen, 52062 Aachen, Germany
| | - Tugce B. Balci
- Department of Paediatrics, The University of Western Ontario, London, ON N6A 5C1, Canada
| | | | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
3
|
Zhou H, Xu J, Pan L. Functions of the Muscleblind-like protein family and their role in disease. Cell Commun Signal 2025; 23:97. [PMID: 39966885 DOI: 10.1186/s12964-025-02102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Conserved proteins are characterized by their functions remaining nearly constant throughout evolutionary history, both vertically through time and horizontally across species. In this review, we focus on a class of conserved proteins known as the Muscleblind-like (MBNL) family. As RNA-binding proteins, MBNL family members interact with pre-mRNAs through evolutionarily conserved tandem zinc finger domains and play critical roles in various RNA metabolic processes, including alternative splicing, mRNA stability, trafficking, regulation of subcellular localization, and alternative polyadenylation. Dysregulation of MBNL proteins can lead to severe consequences. Initially, research primarily associated MBNL proteins with myotonic dystrophy. However, recent studies have revealed their involvement in a broad spectrum of physiological and pathological processes, such as embryonic tissue differentiation and circulatory disorders. Furthermore, the emerging role of MBNL proteins in cancer sheds light on a novel aspect of these evolutionarily ancient proteins. This review provides a comprehensive overview of the MBNL family, emphasizing its structure, the mechanisms underlying its biological functions, and its roles in various diseases.Subject terms: Muscleblind-like-like protein, RNA-binding proteins, Alternative splicing, Tumor, Myotonic dystrophy.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiachi Xu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Liusheng Pan
- Department of anesthesiology, Yuexi Hospital of the Sixth Affiliated Hospital, Sun Yat-sen University, Xinyi, China.
| |
Collapse
|
4
|
Mei G, Pan H, Xu H, Chen K, Zheng W, Xu H, Chen Y, Lin W, Yang J, Lin Z, Liu Z, Zhang M. Optogenetics and Its Application in Nervous System Diseases. Adv Biol (Weinh) 2025:e2400416. [PMID: 39927470 DOI: 10.1002/adbi.202400416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/03/2025] [Indexed: 02/11/2025]
Abstract
Optogenetics is an emerging technology that uses the light-responsive effects of photosensitive proteins to regulate the function of specific cells. This technique combines genetics with optics, allowing for the precise inhibition or activation of cell functions through the introduction of photosensitive proteins into target cells and subsequent light stimulation to activate these proteins. In recent years, numerous basic and clinical studies have demonstrated the unique advantages of this approach in the research and treatment of neurological disorders. This review aims to introduce the fundamental principles and techniques of optogenetics, as well as its applications in the research and treatment of neurological diseases.
Collapse
Affiliation(s)
- Guocheng Mei
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huiqiong Pan
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kepei Chen
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Weihong Zheng
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Hualin Xu
- Department of Plastic Surgery, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Jie Yang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zhenlang Lin
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Zhiming Liu
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong, 266000, China
| | - Min Zhang
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
5
|
Handsaker RE, Kashin S, Reed NM, Tan S, Lee WS, McDonald TM, Morris K, Kamitaki N, Mullally CD, Morakabati NR, Goldman M, Lind G, Kohli R, Lawton E, Hogan M, Ichihara K, Berretta S, McCarroll SA. Long somatic DNA-repeat expansion drives neurodegeneration in Huntington's disease. Cell 2025; 188:623-639.e19. [PMID: 39824182 DOI: 10.1016/j.cell.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/15/2024] [Accepted: 11/29/2024] [Indexed: 01/20/2025]
Abstract
In Huntington's disease (HD), striatal projection neurons (SPNs) degenerate during midlife; the core biological question involves how the disease-causing DNA repeat (CAG)n in the huntingtin (HTT) gene leads to neurodegeneration after decades of biological latency. We developed a single-cell method for measuring this repeat's length alongside genome-wide RNA expression. We found that the HTT CAG repeat expands somatically from 40-45 to 100-500+ CAGs in SPNs. Somatic expansion from 40 to 150 CAGs had no apparent cell-autonomous effect, but SPNs with 150-500+ CAGs lost positive and then negative features of neuronal identity, de-repressed senescence/apoptosis genes, and were lost. Our results suggest that somatic repeat expansion beyond 150 CAGs causes SPNs to degenerate quickly and asynchronously. We conclude that in HD, at any one time, most neurons have an innocuous but unstable HTT gene and that HD pathogenesis is a DNA process for almost all of a neuron's life.
Collapse
Affiliation(s)
- Robert E Handsaker
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Seva Kashin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Nora M Reed
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Tan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Won-Seok Lee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tara M McDonald
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Nolan Kamitaki
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher D Mullally
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Melissa Goldman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel Lind
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rhea Kohli
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Marina Hogan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiku Ichihara
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sabina Berretta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| | - Steven A McCarroll
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Mukherjee A, Biswas S, Roy I. Exploring immunotherapeutic strategies for neurodegenerative diseases: a focus on Huntington's disease and Prion diseases. Acta Pharmacol Sin 2025:10.1038/s41401-024-01455-w. [PMID: 39890942 DOI: 10.1038/s41401-024-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/09/2024] [Indexed: 02/03/2025] Open
Abstract
Immunotherapy has emerged as a promising therapeutic approach for the treatment of neurodegenerative disorders, which are characterized by the progressive loss of neurons and impaired cognitive functions. In this review, active and passive immunotherapeutic strategies that help address the underlying pathophysiology of Huntington's disease (HD) and prion diseases by modulating the immune system are discussed. The current landscape of immunotherapeutic strategies, including monoclonal antibodies and vaccine-based approaches, to treat these diseases is highlighted, along with their potential benefits and mechanisms of action. Immunotherapy generally works by targeting disease-specific proteins, which serve as the pathological hallmarks of these diseases. Additionally, the review addresses the challenges and limitations associated with immunotherapy. For HD, immunotherapeutic approaches focus on neutralizing the toxic effects of mutant huntingtin and tau proteins, thereby reducing neurotoxicity. Immunotherapeutic approaches targeting flanking sequences, rather than the polyglutamine tract in the mutant huntingtin protein, have yielded promising outcomes for patients with HD. In prion diseases, therapies attempt to prevent or eliminate misfolded proteins that cause neurodegeneration. The major challenge in prion diseases is immune tolerance. Approaches to overcome the highly tolerogenic nature of the prion protein have been discussed. A common hurdle in delivering antibodies is the blood‒brain barrier, and strategies that can breach this barrier are being investigated. As protein aggregation and neurotoxicity are related, immunotherapeutic strategies being developed for other neurodegenerative diseases could be repurposed to target protein aggregation in HD and prion diseases. While significant advances in this field have been achieved, continued research and development are necessary to overcome the existing limitations, which will help in shaping the future of immunotherapy as a strategy for managing neurological disorders.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
7
|
Zhou L, Bi J, Chang S, Bai Z, Yu J, Wang R, Li Z, Zhang X, Chou JJ, Pan L. Self-Assembled Antibody-Oligonucleotide Conjugates for Targeted Delivery of Complementary Antisense Oligonucleotides. Angew Chem Int Ed Engl 2025; 64:e202415272. [PMID: 39325927 DOI: 10.1002/anie.202415272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Antibody-oligonucleotide conjugate (AOC) affords preferential cell targeting and enhanced cellular uptake of antisense oligonucleotide (ASO). Here, we have developed a modular AOC (MAOC) approach based on accurate self-assembly of separately prepared antibody and ASO modules. Homogeneous multimeric AOC with defined ASO-to-antibody ratio were generated by L-DNA scaffold mediated precise self-assembly of antibodies and ASOs. The MAOC approach has been implemented to deliver exon skipping ASOs via transferrin receptor (TfR1) mediated internalization. We discovered an anti-TfR1 sdAb that can greatly enhance nuclear delivery of ASOs. Cryo-EM structure of the sdAb-TfR1 complex showed a new epitope that does not overlap with the binding sites of endogenous TfR1 ligands. In vivo functional analyses of MAOCs with one ASO for single exon skipping and two ASOs for double exon skipping showed that both ASO concentration and exon skipping efficacy of MAOC in cardiac and skeletal muscles are dramatically higher than conventional ASOs in the transgenic human TfR1 mouse model. MAOC treatment was well tolerated in vivo and not associated with any toxicity-related morbidity or mortality. Collectively, our data suggest that the self-assembled MAOC is a viable option for broadening the therapeutic application of ASO via multi-specific targeting and delivery.
Collapse
Affiliation(s)
| | - Jie Bi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenghai Chang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | | | - Junqi Yu
- Assembly Medicine, LLC, Shanghai, 201203, China
| | - Ruru Wang
- Assembly Medicine, LLC, Shanghai, 201203, China
| | - Zhihang Li
- Assembly Medicine, LLC, Shanghai, 201203, China
| | - Xing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - James J Chou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, State Key Laboratory of Chemical Biology, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Liqiang Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Lin Y, Li C, Chen Y, Gao J, Li J, Huang C, Liu Z, Wang W, Zheng X, Song X, Wu J, Wu J, Luo OJ, Tu Z, Li S, Li XJ, Lai L, Yan S. RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models. Mol Neurodegener 2025; 20:4. [PMID: 39806441 PMCID: PMC11727607 DOI: 10.1186/s13024-024-00794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention. METHODS The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA. This therapeutic effect was substantiated in various models: HEK 293 T cell, the HD 140Q-KI mouse, and the HD-KI pig model. The efficiency of the knockdown was analyzed through Western blot and RT-qPCR. Additionally, neuropathological changes were examined using Western blot, immunostaining, and RNA sequencing. The impact on motor abilities was assessed via behavioral experiments, providing a comprehensive evaluation of the treatment's effectiveness. RESULTS CRISPR/CasRx system can significantly reduce HTT mRNA levels across various models, including HEK 293 T cells, HD 140Q-KI mice at various disease stages, and HD-KI pigs, and resulted in decreased expression of mHTT. Utilizing the CRISPR/CasRx system to knock down HTT RNA has shown to ameliorate gliosis in HD 140Q-KI mice and delay neurodegeneration in HD pigs. CONCLUSIONS These findings highlight the effectiveness of the RNA-targeting CRISPR/CasRx as a potential therapeutic strategy for HD. Furthermore, the success of this approach provides valuable insights and novel avenues for the treatment of other genetic disorders caused by gene mutations.
Collapse
Affiliation(s)
- Yingqi Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Yizhi Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiale Gao
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiawei Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Chunhui Huang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Zhaoming Liu
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, Institutes of Biomedicine and Health , Chinese Academy of Sciences, Guangzhou, China
| | - Wei Wang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jianhao Wu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiaxi Wu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, Institutes of Biomedicine and Health , Chinese Academy of Sciences, Guangzhou, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Department of Neurology, Faculty of Medical Science, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
9
|
Cattaneo E, Scalzo D, Zobel M, Iennaco R, Maffezzini C, Besusso D, Maestri S. When repetita no-longer iuvant: somatic instability of the CAG triplet in Huntington's disease. Nucleic Acids Res 2025; 53:gkae1204. [PMID: 39673793 PMCID: PMC11724284 DOI: 10.1093/nar/gkae1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
Trinucleotide repeats in DNA exhibit a dual nature due to their inherent instability. While their rapid expansion can diversify gene expression during evolution, exceeding a certain threshold can lead to diseases such as Huntington's disease (HD), a neurodegenerative condition, triggered by >36 C-A-G repeats in exon 1 of the Huntingtin gene. Notably, the discovery of somatic instability (SI) of the tract allows these mutations, inherited from an affected parent, to further expand throughout the patient's lifetime, resulting in a mosaic brain with specific neurons exhibiting variable and often extreme CAG lengths, ultimately leading to their death. Genome-wide association studies have identified genetic variants-both cis and trans, including mismatch repair modifiers-that modulate SI, as shown in blood cells, and influence HD's age of onset. This review will explore the evidence for SI in HD and its role in disease pathogenesis, as well as the therapeutic implications of these findings. We conclude by emphasizing the urgent need for reliable methods to quantify SI for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Elena Cattaneo
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, street Francesco Sforza, 35, 20122, Milan, Italy
| | - Davide Scalzo
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, street Francesco Sforza, 35, 20122, Milan, Italy
| | - Martina Zobel
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, street Francesco Sforza, 35, 20122, Milan, Italy
| | - Raffaele Iennaco
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, street Francesco Sforza, 35, 20122, Milan, Italy
| | - Camilla Maffezzini
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, street Francesco Sforza, 35, 20122, Milan, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, street Francesco Sforza, 35, 20122, Milan, Italy
| | - Simone Maestri
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, street Francesco Sforza, 35, 20122, Milan, Italy
| |
Collapse
|
10
|
Mousavi MA, Rezaei M, Pourhamzeh M, Salari M, Hossein-Khannazer N, Shpichka A, Nabavi SM, Timashev P, Vosough M. Translational Approach using Advanced Therapy Medicinal Products for Huntington's Disease. Curr Rev Clin Exp Pharmacol 2025; 20:14-31. [PMID: 38797903 DOI: 10.2174/0127724328300166240510071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Current therapeutic approaches for Huntington's disease (HD) focus on symptomatic treatment. Therefore, the unavailability of efficient disease-modifying medicines is a significant challenge. Regarding the molecular etiology, targeting the mutant gene or advanced translational steps could be considered promising strategies. The evidence in gene therapy suggests various molecular techniques, including knocking down mHTT expression using antisense oligonucleotides and small interfering RNAs and gene editing with zinc finger proteins and CRISPR-Cas9-based techniques. Several post-transcriptional and post-translational modifications have also been proposed. However, the efficacy and long-term side effects of these modalities have yet to be verified. Currently, cell therapy can be employed in combination with conventional treatment and could be used for HD in which the structural and functional restoration of degenerated neurons can occur. Several animal models have been established recently to develop cell-based therapies using renewable cell sources such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stromal cells, and neural stem cells. These models face numerous challenges in translation into clinics. Nevertheless, investigations in Advanced Therapy Medicinal Products (ATMPs) open a promising window for HD research and their clinical application. In this study, the ATMPs entry pathway in HD management was highlighted, and their advantages and disadvantages were discussed.
Collapse
Affiliation(s)
- Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maliheh Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Mehri Salari
- Department of Neurology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow, Russia
| | - Seyed Massood Nabavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden
| |
Collapse
|
11
|
Panda M, Markaki M, Tavernarakis N. Mitostasis in age-associated neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167547. [PMID: 39437856 DOI: 10.1016/j.bbadis.2024.167547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are essential organelles that play crucial roles in various metabolic and signalling pathways. Proper neuronal function is highly dependent on the health of these organelles. Of note, the intricate structure of neurons poses a critical challenge for the transport and distribution of mitochondria to specific energy-intensive domains, such as synapses and dendritic appendages. When faced with chronic metabolic challenges and bioenergetic deficits, neurons undergo degeneration. Unsurprisingly, disruption of mitostasis, the process of maintaining cellular mitochondrial content and function within physiological limits, has been implicated in the pathogenesis of several age-associated neurodegenerative disorders. Indeed, compromised integrity and metabolic activity of mitochondria is a principal hallmark of neurodegeneration. In this review, we survey recent findings elucidating the role of impaired mitochondrial homeostasis and metabolism in the onset and progression of age-related neurodegenerative disorders. We also discuss the importance of neuronal mitostasis, with an emphasis on the major mitochondrial homeostatic and metabolic pathways that contribute to the proper functioning of neurons. A comprehensive delineation of these pathways is crucial for the development of early diagnostic and intervention approaches against neurodegeneration.
Collapse
Affiliation(s)
- Mrutyunjaya Panda
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Department of Medicine, University of Verona, Verona 37134, Italy; Faculdade de Farmácia, University of Lisbon, Lisbon 1649-003, Portugal
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece.
| |
Collapse
|
12
|
Simón-Vicente L, Rivadeneyra J, Mariscal N, Aguado L, Miguel-Pérez I, Saiz-Rodríguez M, García-Bustillo Á, Muñoz-Siscart I, Díaz-Piñeiro D, Cubo E. Impact of Upper Limb Function on Activities of Daily Living and Quality of Life in Huntington's Disease. J Clin Med 2024; 14:168. [PMID: 39797251 PMCID: PMC11721929 DOI: 10.3390/jcm14010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Huntington's disease (HD) is a neurodegenerative movement disorder associated with significant disability and impairment of Activities of Daily Living (ADLs). The impact of upper limb disability on quality of life (QoL) and its influence on ADLs is not well known yet. The aim of this study was to describe the manipulative dexterity, strength, and manual eye coordination of patients with manifest and premanifest-HD compared to healthy individuals and to analyze its influence on ADLs and QoL. Methods: We performed an observational, cross-sectional study including 71 ambulatory participants (27 manifest-HD patients, 15 premanifest-HD, and 29 controls). We gathered sociodemographic data, as well as clinical data, including cognition (MMSE), HD motor severity (Unified HD rating scale, UHDRS-TMS), QoL (Neuro-QoL), and ADLs (HD-ADL). Hand dexterity and strength in the dominant and non-dominant hand were assessed with the Nine Hole Peg Test, Ten Neurotest, Nut and Bolt Test, dynamometry, and Late-Life FDI. Analysis of covariance (ANCOVA) models were performed to investigate differences in hand function between manifest-HD, premanifest-HD, and controls. Results: Manifest-HD patients had significantly worse performance in manual and finger dexterity, fine-motor coordination, and poorer handgrip strength than premanifest-HD and controls. Premanifest-HD required more time to complete the test than controls. Significant correlations were found between hand variables and Late-Life FDI, Neuro-QoL, HD-ADL, and UHDRS-TMS. Conclusions: HD affects manipulative dexterity and hand function in premanifest and manifest patients. Therefore, to prevent disability and decreased QoL, evaluating the progression of upper limb dysfunction in HD is important to offer the best possible therapeutic interventions.
Collapse
Affiliation(s)
- Lucía Simón-Vicente
- Faculty of Health Sciences, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Madrid, Spain
| | - Jéssica Rivadeneyra
- Research Unit, Burgos University Hospital, 09006 Burgos, Spain; (J.R.); (M.S.-R.)
| | - Natividad Mariscal
- Neurology Department, Burgos University Hospital, 09006 Burgos, Spain; (N.M.); (L.A.); (I.M.-P.); (E.C.)
| | - Laura Aguado
- Neurology Department, Burgos University Hospital, 09006 Burgos, Spain; (N.M.); (L.A.); (I.M.-P.); (E.C.)
| | - Irene Miguel-Pérez
- Neurology Department, Burgos University Hospital, 09006 Burgos, Spain; (N.M.); (L.A.); (I.M.-P.); (E.C.)
| | | | | | - Ignacio Muñoz-Siscart
- Psychiatry Department, Burgos University Hospital, 09006 Burgos, Spain; (I.M.-S.); (D.D.-P.)
| | - Dolores Díaz-Piñeiro
- Psychiatry Department, Burgos University Hospital, 09006 Burgos, Spain; (I.M.-S.); (D.D.-P.)
| | - Esther Cubo
- Neurology Department, Burgos University Hospital, 09006 Burgos, Spain; (N.M.); (L.A.); (I.M.-P.); (E.C.)
- Health Science Department, University of Burgos, 09006 Burgos, Spain;
| |
Collapse
|
13
|
Akkermans J, Miranda A, Verhaeghe J, Elvas F, Zajicek F, Bard J, Liu L, Khetarpal V, Doot R, Staelens S, Bertoglio D. Biodistribution and dosimetry of the PET radioligand [ 18F]CHDI-650 in mice for detection of mutant huntingtin aggregates. EJNMMI Res 2024; 14:126. [PMID: 39729164 DOI: 10.1186/s13550-024-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [18F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans. RESULTS Wild-type male and female CD-1 Swiss mice (n = 15/sex) were used to assess in vivo PET imaging-based and ex vivo biodistribution-based tracer distribution of [18F]CHDI-650 at 30-, 60-, 120-, 240- and 360-min post-injection. Three-dimensional volumes of interest of the organs were drawn on the co-registered PET/CT image and organs were collected after dissection. Organ radioactivity levels were determined using both modalities. The residence time was calculated and extrapolated to human phantoms. The absorbed and effective doses were computed with OLINDA/EXM 2.2 and IDAC-Dose2.1. Ex vivo and PET-imaging biodistribution of [18F]CHDI-650 showed rapid washout after 30 min in most of the organs with the highest uptake in the gallbladder and urine in mice. Extrapolation of the data to human phantoms with OLINDA showed a total mean in vivo based effective dose of 21.7 μSv/MBq with the highest equivalent organ dose in the urinary bladder wall (4.52 μSv/MBq). The total mean ex vivo based effective dose was calculated to be 20.6 μSv/MBq. The highest equivalent organ dose ex vivo in the urinary bladder wall was estimated to be 4.22 μSv/MBq. The predicted exposure in humans using IDAC-Dose correlated well to those obtained with OLINDA for both in vivo and ex vivo measurements (r = 0.9320 and r = 0.9368, respectively). CONCLUSIONS Dosimetry analysis indicated absorbed and effective doses of [18F]CHDI-650 are well below the recommended limits, suggesting that the radioligand is suitable for clinical assessment. Based on the highest effective dose estimates, an injection of 370 MBq in humans would result in a radiation dose of 8.03 mSv.
Collapse
Affiliation(s)
- Jordy Akkermans
- Molecular Imaging Center Antwerp (MICA), Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp (MICA), Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Franziska Zajicek
- Molecular Imaging Center Antwerp (MICA), Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Jonathan Bard
- CHDI Management, Inc. the Company That Manages the Scientific Activities for CHDI Foundation, Inc., 6080 Center Drive, Suite 700, Los Angeles, CA, USA
| | - Longbin Liu
- CHDI Management, Inc. the Company That Manages the Scientific Activities for CHDI Foundation, Inc., 6080 Center Drive, Suite 700, Los Angeles, CA, USA
| | - Vinod Khetarpal
- CHDI Management, Inc. the Company That Manages the Scientific Activities for CHDI Foundation, Inc., 6080 Center Drive, Suite 700, Los Angeles, CA, USA
| | - Robert Doot
- CHDI Management, Inc. the Company That Manages the Scientific Activities for CHDI Foundation, Inc., 6080 Center Drive, Suite 700, Los Angeles, CA, USA
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium.
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
14
|
De A, Bahal R. Double-stranded DNA invasion by anti-gene oligonucleotide clamps. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102385. [PMID: 39650286 PMCID: PMC11625202 DOI: 10.1016/j.omtn.2024.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Affiliation(s)
- Angana De
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
15
|
Sogorb-Gonzalez M, Landles C, Caron NS, Stam A, Osborne G, Hayden MR, Howland D, van Deventer S, Bates GP, Vallès A, Evers M. Exon 1-targeting miRNA reduces the pathogenic exon 1 HTT protein in Huntington's disease models. Brain 2024; 147:4043-4055. [PMID: 39155061 PMCID: PMC11629698 DOI: 10.1093/brain/awae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease caused by a trinucleotide repeat expansion in exon 1 of the huntingtin gene (HTT) that results in toxic gain of function and cell death. Despite its monogenic cause, the pathogenesis of HD is highly complex, and increasing evidence indicates that, in addition to the full-length (FL) mutant HTT protein, the expanded exon 1 HTT (HTTexon1) protein that is translated from the HTT1a transcript generated by aberrant splicing is prone to aggregate and might contribute to HD pathology. This finding suggests that reducing the expression of HTT1a might achieve a greater therapeutic benefit than targeting only FL mutant HTT. Conversely, strategies that exclusively target FL HTT might not completely prevent the pathogenesis of HD. We have developed an engineered microRNA targeting the HTT exon 1 sequence (miHTT), delivered via adeno-associated virus serotype 5 (AAV5). The target sequence of miHTT is present in both FL HTT and HTT1a transcripts. Preclinical studies with AAV5-miHTT have demonstrated efficacy in several rodent and large animal models by reducing FL HTT mRNA and protein and rescuing HD-like phenotypes and have been the rationale for phase I/II clinical studies now ongoing in the USA and Europe. In the present study, we evaluated the ability of AAV5-miHTT to reduce the levels of aberrantly spliced HTT1a mRNA and the HTTexon1 protein in the brain of two mouse models of HD (heterozygous zQ175 knock-in mice and humanized Hu128/21 mice). Polyadenylated HTT1a mRNA and HTTexon1 protein were detected in the striatum and cortex of heterozygous zQ175 knock-in mice, but not in wild-type littermate control mice. Intrastriatal administration of AAV5-miHTT resulted in dose-dependent expression of mature miHTT microRNA in cortical brain regions, accompanied by significant lowering of both FL HTT and HTT1a mRNA expression at 2 months postinjection. Mutant HTT and HTTexon1 protein levels were also significantly reduced in the striatum and cortex of heterozygous zQ175 knock-in mice at 2 months after AAV5-miHTT treatment and in humanized Hu128/21 mice 7 months post-treatment. The effects were confirmed in primary Hu128/21 neuronal cultures. These results demonstrate that AAV5-miHTT gene therapy is an effective approach to lower both FL HTT and the pathogenic HTTexon1 levels, which could potentially have an additive therapeutic benefit in comparison to other HTT-targeting modalities.
Collapse
Affiliation(s)
- Marina Sogorb-Gonzalez
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Christian Landles
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Anouk Stam
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| | - Georgina Osborne
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - David Howland
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Sander van Deventer
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Gillian P Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Astrid Vallès
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| | - Melvin Evers
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| |
Collapse
|
16
|
Zajicek F, Verhaeghe J, De Lombaerde S, Van Eetveldt A, Miranda A, Munoz-Sanjuan I, Dominguez C, Khetarpal V, Bard J, Liu L, Staelens S, Bertoglio D. Preclinical evaluation of the novel [ 18F]CHDI-650 PET ligand for non-invasive quantification of mutant huntingtin aggregates in Huntington's disease. Eur J Nucl Med Mol Imaging 2024; 52:122-133. [PMID: 39190197 PMCID: PMC11599348 DOI: 10.1007/s00259-024-06880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE Positron emission tomography (PET) imaging of mutant huntingtin (mHTT) aggregates is a potential tool to monitor disease progression as well as the efficacy of candidate therapeutic interventions for Huntington's disease (HD). To date, the focus has been mainly on the investigation of 11C radioligands; however, favourable 18F radiotracers will facilitate future clinical translation. This work aimed at characterising the novel [18F]CHDI-650 PET radiotracer using a combination of in vivo and in vitro approaches in a mouse model of HD. METHODS After characterising [18F]CHDI-650 using in vitro autoradiography, we assessed in vivo plasma and brain radiotracer stability as well as kinetics through dynamic PET imaging in the heterozygous (HET) zQ175DN mouse model of HD and wild-type (WT) littermates at 9 months of age. Additionally, we performed a head-to-head comparison study at 3 months with the previously published [11C]CHDI-180R radioligand. RESULTS Plasma and brain radiometabolite profiles indicated a suitable metabolic profile for in vivo imaging of [18F]CHDI-650. Both in vitro autoradiography and in vivo [18F]CHDI-650 PET imaging at 9 months of age demonstrated a significant genotype effect (p < 0.0001) despite the poor test-retest reliability. [18F]CHDI-650 PET imaging at 3 months of age displayed higher differentiation between genotypes when compared to [11C]CHDI-180R. CONCLUSION Overall, [18F]CHDI-650 allows for discrimination between HET and WT zQ175DN mice at 9 and 3 months of age. [18F]CHDI-650 represents the first suitable 18F radioligand to image mHTT aggregates in mice and its clinical evaluation is underway.
Collapse
Affiliation(s)
- Franziska Zajicek
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
- µNeuro Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
- µNeuro Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Stef De Lombaerde
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Annemie Van Eetveldt
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
- µNeuro Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
- µNeuro Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Ignacio Munoz-Sanjuan
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Los Angeles, CA, USA
| | - Celia Dominguez
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Los Angeles, CA, USA
| | - Vinod Khetarpal
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Los Angeles, CA, USA
| | - Jonathan Bard
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Los Angeles, CA, USA
| | - Longbin Liu
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Los Angeles, CA, USA
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
- µNeuro Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium.
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium.
- µNeuro Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
17
|
Huang C, Zheng X, Yan S, Zhang Z. Advances in Clinical Therapies for Huntington's Disease and the Promise of Multi-Targeted/Functional Drugs Based on Clinicaltrials.gov. Clin Pharmacol Ther 2024; 116:1452-1471. [PMID: 38863261 DOI: 10.1002/cpt.3341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder characterized by a triad of motor, cognitive, and psychiatric problems. Caused by CAG repeat expansion in the huntingtin gene (HTT), the disease involves a complex network of pathogenic mechanisms, including synaptic dysfunction, impaired autophagy, neuroinflammation, oxidative damage, mitochondrial dysfunction, and extrasynaptic excitotoxicity. Although current therapies targeting the pathogenesis of HD primarily aim to reduce mHTT levels by targeting HTT DNA, RNA, or proteins, these treatments only ameliorate downstream pathogenic effects. While gene therapies, such as antisense oligonucleotides, small interfering RNAs and gene editing, have emerged in the field of HD treatment, their safety and efficacy are still under debate. Therefore, pharmacological therapy remains the most promising breakthrough, especially multi-target/functional drugs, which have diverse pharmacological effects. This review summarizes the latest progress in HD drug development based on clinicaltrials.gov search results (Search strategy: key word "Huntington's disease" in HD clinical investigational drugs registered as of December 31, 2023), and highlights the key role of multi-target/functional drugs in HD treatment strategies.
Collapse
Affiliation(s)
- Chunhui Huang
- School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research and Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiao Zheng
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Sen Yan
- School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research and Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research and Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Zhu Z, Song M, Ren J, Liang L, Mao G, Chen M. Copper homeostasis and cuproptosis in central nervous system diseases. Cell Death Dis 2024; 15:850. [PMID: 39567497 PMCID: PMC11579297 DOI: 10.1038/s41419-024-07206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Copper (Cu), an indispensable micronutrient for the sustenance of living organisms, contributes significantly to a vast array of fundamental metabolic processes. The human body maintains a relatively low concentration of copper, which is mostly found in the bones, liver, and brain. Despite its low concentration, Cu plays a crucial role as an indispensable element in the progression and pathogenesis of central nervous system (CNS) diseases. Extensive studies have been conducted in recent years on copper homeostasis and copper-induced cell death in CNS disorders, including glioma, Alzheimer's disease, Amyotrophic lateral sclerosis, Huntington's disease, and stroke. Cuproptosis, a novel copper-induced cell death pathway distinct from apoptosis, necrosis, pyroptosis, and ferroptosis, has been identified as potentially intricately linked to the pathogenic mechanisms underlying various CNS diseases. Therefore, a systematic review of copper homeostasis and cuproptosis and their relationship with CNS disorders could deepen our understanding of the pathogenesis of these diseases. In addition, it may provide new insights and strategies for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurosurgery, Shangrao People's Hospital, Shangrao, China
| | - Min Song
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jianxun Ren
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Lirong Liang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Guohua Mao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Min Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
19
|
Liu H, McCollum A, Krishnaprakash A, Ouyang Y, Shi T, Ratovitski T, Jiang M, Duan W, Ross CA, Jin J. Roscovitine, a CDK Inhibitor, Reduced Neuronal Toxicity of mHTT by Targeting HTT Phosphorylation at S1181 and S1201 In Vitro. Int J Mol Sci 2024; 25:12315. [PMID: 39596381 PMCID: PMC11594617 DOI: 10.3390/ijms252212315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a single mutation in the huntingtin gene (HTT). Normal HTT has a CAG trinucleotide repeat at its N-terminal within the range of 36. However, once the CAG repeats exceed 37, the mutant gene (mHTT) will encode mutant HTT protein (mHTT), which results in neurodegeneration in the brain, specifically in the striatum and other brain regions. Since the mutation was discovered, there have been many research efforts to understand the mechanism and develop therapeutic strategies to treat HD. HTT is a large protein with many post-translational modification sites (PTMs) and can be modified by phosphorylation, acetylation, methylation, sumoylation, etc. Some modifications reduced mHTT toxicity both in cell and animal models of HD. We aimed to find the known kinase inhibitors that can modulate the toxicity of mHTT. We performed an in vitro kinase assay using HTT peptides, which bear different PTM sites identified by us previously. A total of 368 kinases were screened. Among those kinases, cyclin-dependent kinases (CDKs) affected the serine phosphorylation on the peptides that contain S1181 and S1201 of HTT. We explored the effect of CDK1 and CDK5 on the phosphorylation of these PTMs of HTT and found that CDK5 modified these two serine sites, while CDK5 knockdown reduced the phosphorylation of S1181 and S1201. Modifying these two serine sites altered the neuronal toxicity induced by mHTT. Roscovitine, a CDK inhibitor, reduced the p-S1181 and p-S1201 and had a protective effect against mHTT toxicity. We further investigated the feasibility of the use of roscovitine in HD mice. We confirmed that roscovitine penetrated the mouse brain by IP injection and inhibited CDK5 activity in the brains of HD mice. It is promising to move this study to in vivo for pre-clinical HD treatment.
Collapse
Affiliation(s)
- Hongshuai Liu
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Ainsley McCollum
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Asvini Krishnaprakash
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Yuxiao Ouyang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Tianze Shi
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
- Department of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jing Jin
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| |
Collapse
|
20
|
Ma R, You H, Liu H, Bao J, Zhang M. Hesperidin:a citrus plant component, plays a role in the central nervous system. Heliyon 2024; 10:e38937. [PMID: 39553629 PMCID: PMC11564962 DOI: 10.1016/j.heliyon.2024.e38937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 11/19/2024] Open
Abstract
Hesperidin is a kind of flavonoids, which has the biological activities of antioxidation, anti-inflammation, antibacterial, anti-virus, anti-allergy, anti-cancer, heart protection and neuroprotection. More and more studies have begun to pay attention to the therapeutic prospect of hesperidin in central nervous system (CNS) diseases. This paper describes its current role in the treatment of central nervous system diseases, especially stroke, and discusses its bioavailability, so as to provide a theoretical basis for the clinical application of hesperidin.
Collapse
Affiliation(s)
- Rui Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Hong You
- Sino-French Neurorehabilitation Department of Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hong Liu
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Juan Bao
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Min Zhang
- Sino-French Neurorehabilitation Department of Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
21
|
Mathews EW, Coffey SR, Gärtner A, Belgrad J, Bragg RM, O’Reilly D, Cantle JP, McHugh C, Summers A, Fentz J, Schwagarus T, Cornelius A, Lingos I, Burch Z, Kovalenko M, Andrew MA, Frank Bennett C, Kordasiewicz HB, Marchionini DM, Wilkinson H, Vogt TF, Pinto RM, Khvorova A, Howland D, Wheeler VC, Carroll JB. Suppression of Huntington's Disease Somatic Instability by Transcriptional Repression and Direct CAG Repeat Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.619693. [PMID: 39574582 PMCID: PMC11580907 DOI: 10.1101/2024.11.04.619693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Huntington's disease (HD) arises from a CAG expansion in the huntingtin (HTT) gene beyond a critical threshold. A major thrust of current HD therapeutic development is lowering levels of mutant HTT mRNA (mHTT) and protein (mHTT) with the aim of reducing the toxicity of these product(s). Human genetic data also support a key role for somatic instability (SI) in HTT's CAG repeat - whereby it lengthens with age in specific somatic cell types - as a key driver of age of motor dysfunction onset. Thus, an attractive HD therapy would address both mHTT toxicity and SI, but to date the relationship between SI and HTT lowering remains unexplored. Here, we investigated multiple therapeutically-relevant HTT-lowering modalities to establish the relationship between HTT lowering and SI in HD knock-in mice. We find that repressing transcription of mutant Htt (mHtt) provides robust protection from SI, using diverse genetic and pharmacological approaches (antisense oligonucleotides, CRISPR-Cas9 genome editing, the Lac repressor, and virally delivered zinc finger transcriptional repressor proteins, ZFPs). However, we find that small interfering RNA (siRNA), a potent HTT-lowering treatment, lowers HTT levels without influencing SI and that SI is also normal in mice lacking 50% of total HTT levels, suggesting HTT levels, per se, do not modulate SI in trans. Remarkably, modified ZFPs that bind the mHtt locus, but lack a repressive domain, robustly protect from SI, despite not reducing HTT mRNA or protein levels. These results have important therapeutic implications in HD, as they suggest that DNA-targeted HTT-lowering treatments may have significant advantages compared to other HTT-lowering approaches, and that interaction of a DNA-binding protein and HTT's CAG repeats may provide protection from SI while sparing HTT expression.
Collapse
Affiliation(s)
- Ella W. Mathews
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Sydney R. Coffey
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | | | - Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert M. Bragg
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Daniel O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeffrey P. Cantle
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Cassandra McHugh
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | | | | | | | - Zoe Burch
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marina Kovalenko
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marissa A Andrew
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Deanna M. Marchionini
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Hilary Wilkinson
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Thomas F. Vogt
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Ricardo M. Pinto
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David Howland
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Vanessa C. Wheeler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Jeffrey B. Carroll
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| |
Collapse
|
22
|
Ma W, Lu Y, Jin X, Lin N, Zhang L, Song Y. Targeting selective autophagy and beyond: From underlying mechanisms to potential therapies. J Adv Res 2024; 65:297-327. [PMID: 38750694 PMCID: PMC11518956 DOI: 10.1016/j.jare.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autophagy is an evolutionarily conserved turnover process for intracellular substances in eukaryotes, relying on lysosomal (in animals) or vacuolar (in yeast and plants) mechanisms. In the past two decades, emerging evidence suggests that, under specific conditions, autophagy can target particular macromolecules or organelles for degradation, a process termed selective autophagy. Recently, accumulating studies have demonstrated that the abnormality of selective autophagy is closely associated with the occurrence and progression of many human diseases, including neurodegenerative diseases, cancers, metabolic diseases, and cardiovascular diseases. AIM OF REVIEW This review aims at systematically and comprehensively introducing selective autophagy and its role in various diseases, while unravelling the molecular mechanisms of selective autophagy. By providing a theoretical basis for the development of related small-molecule drugs as well as treating related human diseases, this review seeks to contribute to the understanding of selective autophagy and its therapeutic potential. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we systematically introduce and dissect the major categories of selective autophagy that have been discovered. We also focus on recent advances in understanding the molecular mechanisms underlying both classical and non-classical selective autophagy. Moreover, the current situation of small-molecule drugs targeting different types of selective autophagy is further summarized, providing valuable insights into the discovery of more candidate small-molecule drugs targeting selective autophagy in the future. On the other hand, we also reveal clinically relevant implementations that are potentially related to selective autophagy, such as predictive approaches and treatments tailored to individual patients.
Collapse
Affiliation(s)
- Wei Ma
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Jin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Na Lin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yaowen Song
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
23
|
Yao JY, Liu T, Hu XR, Sheng H, Chen ZH, Zhao HY, Li XJ, Wang Y, Hao L. An insight into allele-selective approaches to lowering mutant huntingtin protein for Huntington's disease treatment. Biomed Pharmacother 2024; 180:117557. [PMID: 39405896 DOI: 10.1016/j.biopha.2024.117557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Huntington's disease (HD), a monogenic neurodegenerative disorder, stems from a CAG repeat expansion within the mutant huntingtin gene (HTT). This leads to a detrimental gain-of-function of the mutated huntingtin protein (mHTT). As of now, there exist no efficacious therapies to alter the disease progression. In view of the monogenetic mutation nature and an indispensable role of wild-type HTT in healthy neurodevelopment and cellular functions, the developing strategy of allele-selectively deleting/silencing mutant HTT as well as only inactivating mHTT without altering wild-type HTT or wild-type huntingtin protein (wtHTT) comes highly recommended, and may offer a promising treatment option for HD. Here, we reviewed the therapeutic approaches that allele-selective lowering mHTT expression by targeting only mutant HTT DNA, RNA and mHTT along with recent preclinical and clinical outcomes and challenges, in anticipation of some novel ideas to be introduced into HD therapeutic research.
Collapse
Affiliation(s)
- Jia-Yuan Yao
- The First Clinical College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Ting Liu
- The Queen's University of Belfast Joint College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xin-Ru Hu
- The First Clinical College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hui Sheng
- Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenhe Area, Shenyang 110016, PR China
| | - Zi-Hao Chen
- The Queen's University of Belfast Joint College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hai-Yang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xiao-Jia Li
- Teaching Center for Basic Medical Experiment, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Yang Wang
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|
24
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2024:10.1038/s41401-024-01398-2. [PMID: 39448859 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
25
|
Oyama S, Zhang H, Ferdous R, Tomochika Y, Chen B, Jiang S, Islam MS, Hasan MM, Zhai Q, Waliullah ASM, Ping Y, Yan J, Mimi MA, Zhang C, Aramaki S, Takanashi Y, Kahyo T, Hashizume Y, Kaneda D, Setou M. UBL3 Interacts with PolyQ-Expanded Huntingtin Fragments and Modifies Their Intracellular Sorting. Neurol Int 2024; 16:1175-1188. [PMID: 39449505 PMCID: PMC11503352 DOI: 10.3390/neurolint16060089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES UBL3 (Ubiquitin-like 3) is a protein that plays a crucial role in post-translational modifications, particularly in regulating protein transport within small extracellular vesicles. While previous research has predominantly focused on its interactions with α-synuclein, this study investigates UBL3's role in Huntington's disease (HD). HD is characterized by movement disorders and cognitive impairments, with its pathogenesis linked to toxic, polyglutamine (polyQ)-expanded mutant huntingtin fragments (mHTT). However, the mechanisms underlying the interaction between UBL3 and mHTT remain poorly understood. METHODS To elucidate this relationship, we performed hematoxylin and eosin (HE) staining and immunohistochemistry (IHC) on postmortem brain tissue from HD patients. Gaussia princeps-based split-luciferase complementation assay and co-immunoprecipitation were employed to confirm the interaction between UBL3 and mHTT. Additionally, we conducted a HiBiT lytic detection assay to assess the influence of UBL3 on the intracellular sorting of mHTT. Finally, immunocytochemical staining was utilized to validate the colocalization and distribution of these proteins. RESULTS Our findings revealed UBL3-positive inclusions in the cytoplasm and nuclei of neurons throughout the striatum of HD patients. We discovered that UBL3 colocalizes and interacts with mHTT and modulates its intracellular sorting. CONCLUSIONS These results suggest that UBL3 may play a significant role in the interaction and sorting of mHTT, contributing to the understanding of its potential implications in the pathophysiology of Huntington's disease.
Collapse
Affiliation(s)
- Soho Oyama
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Hengsen Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
- Department of Neurosurgery, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Rafia Ferdous
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Yuna Tomochika
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Bin Chen
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Shuyun Jiang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Md. Shoriful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Md. Mahmudul Hasan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Qing Zhai
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - A. S. M. Waliullah
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Yashuang Ping
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Jing Yan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Mst. Afsana Mimi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Chi Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Shuhei Aramaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
| | - Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
- Quantum Imaging Laboratory, Division of Research and Development in Photonics Technology, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Yoshio Hashizume
- Choju Medical Institute, Fukushimura Hospital, Yamanaka-19-14 Noyoricho, Toyohashi 441-8124, Aichi, Japan;
| | - Daita Kaneda
- Quantum Imaging Laboratory, Division of Research and Development in Photonics Technology, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan; (S.O.); (H.Z.); (R.F.); (Y.T.); (B.C.); (S.J.); (M.S.I.); (M.M.H.); (Q.Z.); (A.S.M.W.); (Y.P.); (J.Y.); (M.A.M.); (C.Z.); (S.A.); (T.K.)
- International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| |
Collapse
|
26
|
Kim J, Choi C. Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches. Curr Issues Mol Biol 2024; 46:11646-11664. [PMID: 39451571 PMCID: PMC11505999 DOI: 10.3390/cimb46100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Neurodegenerative disorders, particularly Alzheimer's and Parkinson's diseases, continue to challenge modern medicine despite therapeutic advances. Orphan G-protein-coupled receptors (GPCRs) have emerged as promising targets in the central nervous system, offering new avenues for drug development. This review focuses on the structural biology of orphan GPCRs implicated in these disorders, providing a comprehensive analysis of their molecular architecture and functional mechanisms. We examine recent breakthroughs in structural determination techniques, such as cryo-electron microscopy and X-ray crystallography, which have elucidated the intricate conformations of these receptors. The review highlights how structural insights inform our understanding of orphan GPCR activation, ligand binding and signaling pathways. By integrating structural data with molecular pharmacology, we explore the potential of structure-guided approaches in developing targeted therapeutics toward orphan GPCRs. This structural-biology-centered perspective aims to deepen our comprehension of orphan GPCRs and guide future drug discovery efforts in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | | |
Collapse
|
27
|
Singh K, Jain D, Sethi P, Gupta JK, Tripathi AK, Kumar S, Sarker SD, Nahar L, Guru A. Emerging pharmacological approaches for Huntington's disease. Eur J Pharmacol 2024; 980:176873. [PMID: 39117264 DOI: 10.1016/j.ejphar.2024.176873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by cognitive, motor, and psychiatric symptoms. Despite significant advances in understanding the underlying molecular mechanisms of HD, there is currently no cure or disease-modifying treatment available. Emerging pharmacological approaches offer promising strategies to alleviate symptoms and slow down disease progression. This comprehensive review aims to provide a critical appraisal of the latest developments in pharmacological interventions for HD. The review begins by discussing the pathogenesis of HD, focusing on the role of mutant huntingtin protein, mitochondrial dysfunction, excitotoxicity, and neuro-inflammation. It then explores emerging therapeutic targets, including the modulation of protein homeostasis, mitochondrial function, neuro-inflammation, and neurotransmitter systems. Pharmacological agents targeting these pathways are discussed, including small molecules, gene-based therapies, and neuroprotective agents. In recent years, several clinical trials have been conducted to evaluate the safety and efficiency of novel compounds for HD. This review presents an update on the outcomes of these trials, highlighting promising results and challenges encountered. Additionally, it discusses the potential of repurposing existing drugs approved for other indications as a cost-effective approach for HD treatment. The review concludes by summarizing the current state of pharmacological approaches for HD and outlining future directions in drug development. The integration of multiple therapeutic strategies, personalized medicine approaches, and combination therapies are highlighted as potential avenues to maximize treatment effectiveness.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Divya Jain
- Department of Microbiology, School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India.
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Arpan Kumar Tripathi
- Kamla Institute of Pharmaceutical Sciences, Shri Shankaracharya Professional University Bhilai Chhattisgarh, India
| | - Shivendra Kumar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
28
|
Herrero‐Lorenzo M, Pérez‐Pérez J, Escaramís G, Martínez‐Horta S, Pérez‐González R, Rivas‐Asensio E, Kulisevsky J, Gámez‐Valero A, Martí E. Small RNAs in plasma extracellular vesicles define biomarkers of premanifest changes in Huntington's disease. J Extracell Vesicles 2024; 13:e12522. [PMID: 39377487 PMCID: PMC11633361 DOI: 10.1002/jev2.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Despite the advances in the understanding of Huntington's disease (HD), there is a need for molecular biomarkers to categorize mutation carriers during the preclinical stage of the disease preceding functional decline. Small RNAs (sRNAs) are a promising source of biomarkers since their expression levels are highly sensitive to pathobiological processes. Here, using an optimized method for plasma extracellular vesicles (EVs) purification and an exhaustive analysis pipeline of sRNA sequencing data, we show that EV-sRNAs are downregulated early in mutation carriers and that this deregulation is associated with premanifest cognitive performance. Seven candidate sRNAs (tRF-Glu-CTC, tRF-Gly-GCC, miR-451a, miR-21-5p, miR-26a-5p, miR-27a-3p and let7a-5p) were validated in additional subjects, showing a significant diagnostic accuracy at premanifest stages. Of these, miR-21-5p was significantly decreased over time in a longitudinal study; and miR-21-5p and miR-26a-5p levels correlated with cognitive changes in the premanifest cohort. In summary, the present results suggest that deregulated plasma EV-sRNAs define an early biosignature in mutation carriers with specific species highlighting the progression and cognitive changes occurring at the premanifest stage.
Collapse
Affiliation(s)
- Marina Herrero‐Lorenzo
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
| | - Jesús Pérez‐Pérez
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Georgia Escaramís
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Spanish Ministry of Science and InnovationMadridSpain
| | - Saül Martínez‐Horta
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Rocío Pérez‐González
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
- Alicante Institute for Health and Biomedical Research (ISABIAL) and Neuroscience InstituteAlicanteSpain
| | - Elisa Rivas‐Asensio
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Jaime Kulisevsky
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ana Gámez‐Valero
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Spanish Ministry of Science and InnovationMadridSpain
| | - Eulàlia Martí
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Spanish Ministry of Science and InnovationMadridSpain
- August Pi i Sunyer Biomedical research Institute (IDIBAPS), BarcelonaCatalunyaSpain
| |
Collapse
|
29
|
Akyuz E, Aslan FS, Gokce E, Ilmaz O, Topcu F, Kakac S. Extracellular vesicle and CRISPR gene therapy: Current applications in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Eur J Neurosci 2024; 60:6057-6090. [PMID: 39297377 DOI: 10.1111/ejn.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 10/17/2024]
Abstract
Neurodegenerative diseases are characterized by progressive deterioration of the nervous system. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) are prominently life-threatening examples of neurodegenerative diseases. The complexity of the pathophysiology in neurodegenerative diseases causes difficulties in diagnosing. Although the drugs temporarily help to correct specific symptoms including memory loss and degeneration, a complete treatment has not been found yet. New therapeutic approaches have been developed to understand and treat the underlying pathogenesis of neurodegenerative diseases. With this purpose, clustered-regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) technology has recently suggested a new treatment option. Editing of the genome is carried out by insertion and deletion processes on DNA. Safe delivery of the CRISPR/Cas system to the targeted cells without affecting surrounding cells is frequently investigated. Extracellular vesicles (EVs), that is exosomes, have recently been used in CRISPR/Cas studies. In this review, CRISPR/Cas and EV approaches used for diagnosis and/or treatment in AD, PD, ALS, and HD are reviewed. CRISPR/Cas and EV technologies, which stand out as new therapeutic approaches, may offer a definitive treatment option in neurodegenerative diseases.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Türkiye
| | | | - Enise Gokce
- School of Medicine, Pamukkale University, Denizli, Türkiye
| | - Oguzkan Ilmaz
- School of Medicine, Giresun University, Giresun, Türkiye
| | | | - Seda Kakac
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Türkiye
| |
Collapse
|
30
|
Bhat AA, Moglad E, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Pant K, Singh TG, Dureja H, Singh SK, Dua K, Gupta G, Subramaniyan V. Therapeutic approaches targeting aging and cellular senescence in Huntington's disease. CNS Neurosci Ther 2024; 30:e70053. [PMID: 39428700 PMCID: PMC11491556 DOI: 10.1111/cns.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease that is manifested by a gradual loss of physical, cognitive, and mental abilities. As the disease advances, age has a major impact on the pathogenic signature of mutant huntingtin (mHTT) protein aggregation. This review aims to explore the intricate relationship between aging, mHTT toxicity, and cellular senescence in HD. Scientific data on the interplay between aging, mHTT, and cellular senescence in HD were collected from several academic databases, including PubMed, Google Scholar, Google, and ScienceDirect. The search terms employed were "AGING," "HUNTINGTON'S DISEASE," "MUTANT HUNTINGTIN," and "CELLULAR SENESCENCE." Additionally, to gather information on the molecular mechanisms and potential therapeutic targets, the search was extended to include relevant terms such as "DNA DAMAGE," "OXIDATIVE STRESS," and "AUTOPHAGY." According to research, aging leads to worsening HD pathophysiology through some processes. As a result of the mHTT accumulation, cellular senescence is promoted, which causes DNA damage, oxidative stress, decreased autophagy, and increased inflammatory responses. Pro-inflammatory cytokines and other substances are released by senescent cells, which may worsen the neuronal damage and the course of the disease. It has been shown that treatments directed at these pathways reduce some of the HD symptoms and enhance longevity in experimental animals, pointing to a new possibility of treating the condition. Through their amplification of the harmful effects of mHTT, aging and cellular senescence play crucial roles in the development of HD. Comprehending these interplays creates novel opportunities for therapeutic measures targeted at alleviating cellular aging and enhancing HD patients' quality of life.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, India
| | | | - Harish Dureja
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
- Centre of Medical and Bio‐Allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash UniversityBandar SunwaySelangor Darul EhsanMalaysia
- Department of Medical SciencesSchool of Medical and Life Sciences Sunway UniversityBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
31
|
Li R, Miao Z, Liu Y, Chen X, Wang H, Su J, Chen J. The Brain-Gut-Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307971. [PMID: 39120490 PMCID: PMC11481201 DOI: 10.1002/advs.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.
Collapse
Affiliation(s)
- Rong Li
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zong Miao
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Yu'e Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Chen
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Hongxiang Wang
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Jiacan Su
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Juxiang Chen
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
32
|
Gupta H, Sahi S. High-throughput virtual screening of potential inhibitors of GPR52 using docking and biased sampling method for Huntington's disease therapy. Mol Divers 2024; 28:3331-3347. [PMID: 38038795 DOI: 10.1007/s11030-023-10763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Huntington's disease (HD) is a rare and progressive neurodegenerative disorder caused by polyglutamine (poly-Q) mutations of the huntingtin (HTT) gene resulting in chorea, cognitive, and psychiatric dysfunctions. Being a monogenic condition, reducing the levels of the mutated huntingtin protein (mHTT) holds promise as an effective therapeutic approach. GPR52, an orphan G-protein coupled receptor (GPCR), enriched in the striatum, is a novel target for slowing down the progression of HD by lowering the mHTT levels. Therefore, the study focuses on identifying potent small-molecule inhibitors for GPR52 using a combination of robust high-throughput virtual screening (HTVS) and pharmacokinetics profiling followed by fast pulling of ligand (FPL) and umbrella sampling (US) simulations. Initially, screening a library of 2,36,545 compounds was done against the binding pocket of GPR52. Based on binding affinity, stereochemical and non-bonded interactions, and pharmacokinetic profiling, 50 compounds were shortlisted. Selected hit compounds 1, 2, and 3 were subjected to FPL simulations with applied external bias potential to investigate their unique dissociation pathways and intermolecular interactions over time. Subsequently, the US simulations were performed on the selected hit compounds to estimate their binding free energy (ΔG). The analysis of the trajectories obtained from simulations revealed that the residues TYR34, TYR185, GLY187, ASP188, ILE189, SER299, PHE300, and THR303 within the active site of GPR52 were significant for efficient ligand binding through the formation of various hydrogen bond interactions and hydrophobic contacts. Out of the three hit compounds, compound 3 had the lowest ΔG of - 20.82 ± 0.44 kcal/mol. The study identified compounds 1, 2, and 3 as potential molecules that can be developed as GPR52 inhibitors holding promise for lowering mHTT levels.
Collapse
Affiliation(s)
- Himanshi Gupta
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Shakti Sahi
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India.
| |
Collapse
|
33
|
Harding RJ, Xie Y, Caron NS, Findlay-Black H, Lyu C, Potluri N, Chandrasekaran R, Hayden MR, Leavitt BR, Langbehn DR, Southwell AL. Challenges and advances for huntingtin detection in cerebrospinal fluid: in support of relative quantification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614766. [PMID: 39386513 PMCID: PMC11463412 DOI: 10.1101/2024.09.25.614766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Huntington disease (HD) is a progressive and devastating neurodegenerative disease caused by expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene above a critical threshold of ~35 repeats resulting in expression of mutant HTT (mHTT). A promising treatment approach being tested in clinical trials is HTT lowering, which aims to reduce levels of the mHTT protein. Target engagement of these therapies in the brain are inferred using antibody-based assays to measure mHTT levels in the cerebrospinal fluid (CSF), which is frequently reported as absolute mHTT concentration based on a monomeric protein standard used to generate a standard curve. However, patient biofluids are a complex milieu of different mHTT protein species, suggesting that absolute quantitation is challenging, and a single, recombinant protein standard may not be sufficient to interpret assay signal as molar mHTT concentration. In this study, we used immunoprecipitation and flow cytometry (IP-FCM) to investigate different factors that influence mHTT detection assay signal. Our results show that HTT protein fragmentation, protein-protein interactions, affinity tag positioning, oligomerization and polyglutamine tract length affect assay signal intensity, indicating that absolute HTT quantitation in heterogeneous biological samples is not possible with current technologies using a single standard protein. We also explore the binding specificity of the MW1 anti-polyglutamine antibody, commonly used in these assays as a mHTT-selective reagent and demonstrate that mHTT binding is preferred but not specific. Furthermore, we find that MW1 depletion is not only incomplete, leaving residual mHTT, but also non-specific, resulting in pull down of some wildtype HTT protein. Based on these observations, we recommend that mHTT detection assays report only relative mHTT quantitation using normalized arbitrary units of assay signal intensity, rather than molar concentrations, in the assessment of central nervous system HTT lowering in ongoing clinical and preclinical studies, and that MW1-depletion not be used a method for quantifying wildtype HTT protein.
Collapse
Affiliation(s)
- Rachel J. Harding
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yuanyun Xie
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Nicholas S. Caron
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Hailey Findlay-Black
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Caroline Lyu
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Nalini Potluri
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Renu Chandrasekaran
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Blair R. Leavitt
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Douglas R. Langbehn
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amber L. Southwell
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
34
|
Bragg RM, Mathews EW, Grindeland A, Cantle JP, Howland D, Vogt T, Carroll JB. Global huntingtin knockout in adult mice leads to fatal neurodegeneration that spares the pancreas. Life Sci Alliance 2024; 7:e202402571. [PMID: 39054288 PMCID: PMC11272958 DOI: 10.26508/lsa.202402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG tract in the huntingtin (HTT) gene, leading to toxic gains of function. HTT-lowering treatments are in clinical trials, but the risks imposed are unclear. Recent studies have reported on the consequences of widespread HTT loss in mice, where one group described early HTT loss leading to fatal pancreatitis, but later loss as benign. Another group reported no pancreatitis but found widespread neurological phenotypes including subcortical calcification. To better understand the liabilities of widespread HTT loss, we knocked out Htt with two separate tamoxifen-inducible Cre lines. We find that loss of HTT at 2 mo of age leads to progressive tremors and severe subcortical calcification at examination at 14 mo of age but does not result in acute pancreatitis or histological changes in the pancreas. We, in addition, report that HTT loss is followed by sustained induction of circulating neurofilament light chain. These results confirm that global loss of HTT in mice is associated with pronounced risks, including progressive subcortical calcification and neurodegeneration.
Collapse
Affiliation(s)
- Robert M Bragg
- Department of Psychology, Western Washington University, Bellingham, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Ella W Mathews
- Department of Psychology, Western Washington University, Bellingham, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | | - Jeffrey P Cantle
- Department of Psychology, Western Washington University, Bellingham, WA, USA
| | | | - Tom Vogt
- CHDI Foundation, Princeton, NJ, USA
| | - Jeffrey B Carroll
- Department of Psychology, Western Washington University, Bellingham, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
35
|
Singh S, Raj D, Mathur A, Mani N, Kumar D. Current approaches in CRISPR-Cas systems for hereditary diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:205-229. [PMID: 39824581 DOI: 10.1016/bs.pmbts.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
CRISPR-Cas technologies have drastically revolutionized genetic engineering and also dramatically changed the potential for treating inherited disorders. The potential to correct genetic mutations responsible for numerous hereditary disorders from single-gene disorders to complex polygenic diseases through precise DNA editing is feasible. The tactic now employed in CRISPR-Cas systems for treating inherited disorders is the usage of particular guide RNAs to target and edit disease-causing mutations in the patient's genome. Several methods such as CRISPR-Cas9, CRISPR-Cas12, and CRISPR-Cas13 are being thoroughly researched and optimized to increase effectiveness, accuracy, and safety in gene editing. Additionally, it is predicted that CRISPR-based therapies will be able to treat complex genetic illnesses such as cancer predisposition syndromes, neurological disorders, and cardiovascular conditions in addition to single-gene disorders. The available editing tools and creation of base editing technology facilitate the simultaneous correction of many mutations or accurate nucleotide changes leading to further advances in the development of multiplex editing tools and base editing technology fiction. When combined with other paradigms such as gene therapy using stem cell treatment, CRISPR-Cas promises improved efficacy. Patient treatment and lowering side effects significantly in individual genetic profiles will guide CRISPR-based treatments. These procedures will undoubtedly lead to therapies that are both efficient and curative of a wide range of genetic diseases, ushering in a new era of precision medicine. This chapter discusses about CRISPR Cas9 mechanism and its significance in the treatment of Hereditary disorders.
Collapse
Affiliation(s)
- Swati Singh
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| | - Divakar Raj
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| | - Ashish Mathur
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| | - Neel Mani
- Dev Sanskriti Vishwavidyalaya, Haridwar
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India.
| |
Collapse
|
36
|
Zhao R, Huang S, Li J, Gu A, Fu M, Hua W, Mao Y, Lei QY, Lu B, Wen W. Excessive STAU1 condensate drives mTOR translation and autophagy dysfunction in neurodegeneration. J Cell Biol 2024; 223:e202311127. [PMID: 38913026 PMCID: PMC11194678 DOI: 10.1083/jcb.202311127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 06/25/2024] Open
Abstract
The double-stranded RNA-binding protein Staufen1 (STAU1) regulates a variety of physiological and pathological events via mediating RNA metabolism. STAU1 overabundance was observed in tissues from mouse models and fibroblasts from patients with neurodegenerative diseases, accompanied by enhanced mTOR signaling and impaired autophagic flux, while the underlying mechanism remains elusive. Here, we find that endogenous STAU1 forms dynamic cytoplasmic condensate in normal and tumor cell lines, as well as in mouse Huntington's disease knockin striatal cells. STAU1 condensate recruits target mRNA MTOR at its 5'UTR and promotes its translation both in vitro and in vivo, and thus enhanced formation of STAU1 condensate leads to mTOR hyperactivation and autophagy-lysosome dysfunction. Interference of STAU1 condensate normalizes mTOR levels, ameliorates autophagy-lysosome function, and reduces aggregation of pathological proteins in cellular models of neurodegenerative diseases. These findings highlight the importance of balanced phase separation in physiological processes, suggesting that modulating STAU1 condensate may be a strategy to mitigate the progression of neurodegenerative diseases with STAU1 overabundance.
Collapse
Affiliation(s)
- Ruiqian Zhao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shijing Huang
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingyu Li
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
38
|
Zhao A, Xu W, Han R, Wei J, Yu Q, Wang M, Li H, Li M, Chi G. Role of histone modifications in neurogenesis and neurodegenerative disease development. Ageing Res Rev 2024; 98:102324. [PMID: 38762100 DOI: 10.1016/j.arr.2024.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Progressive neuronal dysfunction and death are key features of neurodegenerative diseases; therefore, promoting neurogenesis in neurodegenerative diseases is crucial. With advancements in proteomics and high-throughput sequencing technology, it has been demonstrated that histone post-transcriptional modifications (PTMs) are often altered during neurogenesis when the brain is affected by disease or external stimuli and that the degree of histone modification is closely associated with the development of neurodegenerative diseases. This review aimed to show the regulatory role of histone modifications in neurogenesis and neurodegenerative diseases by discussing the changing patterns and functional significance of histone modifications, including histone methylation, acetylation, ubiquitination, phosphorylation, and lactylation. Finally, we explored the control of neurogenesis and the development of neurodegenerative diseases by artificially modulating histone modifications.
Collapse
Affiliation(s)
- Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
39
|
Martin-Solana E, Diaz-Lopez I, Mohamedi Y, Ventoso I, Fernandez JJ, Fernandez-Fernandez MR. Progressive alterations in polysomal architecture and activation of ribosome stalling relief factors in a mouse model of Huntington's disease. Neurobiol Dis 2024; 195:106488. [PMID: 38565397 PMCID: PMC7616275 DOI: 10.1016/j.nbd.2024.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Given their highly polarized morphology and functional singularity, neurons require precise spatial and temporal control of protein synthesis. Alterations in protein translation have been implicated in the development and progression of a wide range of neurological and neurodegenerative disorders, including Huntington's disease (HD). In this study we examined the architecture of polysomes in their native brain context in striatal tissue from the zQ175 knock-in mouse model of HD. We performed 3D electron tomography of high-pressure frozen and freeze-substituted striatal tissue from HD models and corresponding controls at different ages. Electron tomography results revealed progressive remodelling towards a more compacted polysomal architecture in the mouse model, an effect that coincided with the emergence and progression of HD related symptoms. The aberrant polysomal architecture is compatible with ribosome stalling phenomena. In fact, we also detected in the zQ175 model an increase in the striatal expression of the stalling relief factor EIF5A2 and an increase in the accumulation of eIF5A1, eIF5A2 and hypusinated eIF5A1, the active form of eIF5A1. Polysomal sedimentation gradients showed differences in the relative accumulation of 40S ribosomal subunits and in polysomal distribution in striatal samples of the zQ175 model. These findings indicate that changes in the architecture of the protein synthesis machinery may underlie translational alterations associated with HD, opening new avenues for understanding the progression of the disease.
Collapse
Affiliation(s)
- Eva Martin-Solana
- Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain
| | - Irene Diaz-Lopez
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Yamina Mohamedi
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Av. Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Ivan Ventoso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jose-Jesus Fernandez
- Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Av. Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain; Centro de Investigación en Nanomateriales y Nanotecnología (CINN-CSIC). Av. Vega 4-6, 33940 El Entrego, Asturias, Spain.
| | - Maria Rosario Fernandez-Fernandez
- Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Av. Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain; Centro de Investigación en Nanomateriales y Nanotecnología (CINN-CSIC). Av. Vega 4-6, 33940 El Entrego, Asturias, Spain.
| |
Collapse
|
40
|
Shafie A, Ashour AA, Anwar S, Anjum F, Hassan MI. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington's disease. Arch Pharm Res 2024; 47:571-595. [PMID: 38764004 DOI: 10.1007/s12272-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
Huntington's disease (HD) is a paradigm of a genetic neurodegenerative disorder characterized by the expansion of CAG repeats in the HTT gene. This extensive review investigates the molecular complexities of HD by highlighting the pathogenic mechanisms initiated by the mutant huntingtin protein. Adverse outcomes of HD include mitochondrial dysfunction, compromised protein clearance, and disruption of intracellular signaling, consequently contributing to the gradual deterioration of neurons. Numerous therapeutic strategies, particularly precision medicine, are currently used for HD management. Antisense oligonucleotides, such as Tominersen, play a leading role in targeting and modulating the expression of mutant huntingtin. Despite the promise of these therapies, challenges persist, particularly in improving delivery systems and the necessity for long-term safety assessments. Considering the future landscape, the review delineates promising directions for HD research and treatment. Innovations such as Clustered regularly interspaced short palindromic repeats associated system therapies (CRISPR)-based genome editing and emerging neuroprotective approaches present unprecedented opportunities for intervention. Collaborative interdisciplinary endeavors and a more insightful understanding of HD pathogenesis are on the verge of reshaping the therapeutic landscape. As we navigate the intricate landscape of HD, this review serves as a guide for unraveling the intricacies of this disease and progressing toward transformative treatments.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
41
|
Saadat M, Dahmardeh N, Sheikhbahaei F, Mokhtari T. Therapeutic potential of thymoquinone and its nanoformulations in neuropsychological disorders: a comprehensive review on molecular mechanisms in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3541-3564. [PMID: 38010395 DOI: 10.1007/s00210-023-02832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Thymoquinone (THQ) and its nanoformulation (NFs) have emerged as promising candidates for the treatment of neurological diseases due to their diverse pharmacological properties, which include anti-inflammatory, antioxidant, and neuroprotective effects. In this study, we conducted an extensive search across reputable scientific websites such as PubMed, ScienceDirect, Scopus, and Google Scholar to gather relevant information. The antioxidant and anti-inflammatory properties of THQ have been observed to enhance the survival of neurons in affected areas of the brain, leading to significant improvements in behavioral and motor dysfunctions. Moreover, THQ and its NFs have demonstrated the capacity to restore antioxidant enzymes and mitigate oxidative stress. The primary mechanism underlying THQ's antioxidant effects involves the regulation of the Nrf2/HO-1 signaling pathway. Furthermore, THQ has been found to modulate key components of inflammatory signaling pathways, including toll-like receptors (TLRs), nuclear factor-κB (NF-κB), interleukin 6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα), thereby exerting anti-inflammatory effects. This comprehensive review explores the various beneficial effects of THQ and its NFs on neurological disorders and provides insights into the underlying mechanisms involved.
Collapse
Affiliation(s)
- Maryam Saadat
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narjes Dahmardeh
- Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| |
Collapse
|
42
|
Owusu-Yaw BS, Zhang Y, Garrett L, Yao A, Shing K, Batista AR, Sena-Esteves M, Upadhyay J, Kegel-Gleason K, Todd N. Focused Ultrasound-Mediated Disruption of the Blood-Brain Barrier for AAV9 Delivery in a Mouse Model of Huntington's Disease. Pharmaceutics 2024; 16:710. [PMID: 38931834 PMCID: PMC11206648 DOI: 10.3390/pharmaceutics16060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Huntington's disease (HD) is a monogenic neurodegenerative disorder caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat expansion in the HTT gene. There are no cures for HD, but the genetic basis of this disorder makes gene therapy a viable approach. Adeno-associated virus (AAV)-miRNA-based therapies have been demonstrated to be effective in lowering HTT mRNA; however, the blood-brain barrier (BBB) poses a significant challenge for gene delivery to the brain. Delivery strategies include direct injections into the central nervous system, which are invasive and can result in poor diffusion of viral particles through the brain parenchyma. Focused ultrasound (FUS) is an alternative approach that can be used to non-invasively deliver AAVs by temporarily disrupting the BBB. Here, we investigate FUS-mediated delivery of a single-stranded AAV9 bearing a cDNA for GFP in 2-month-old wild-type mice and the zQ175 HD mouse model at 2-, 6-, and 12-months. FUS treatment improved AAV9 delivery for all mouse groups. The delivery efficacy was similar for all WT and HD groups, with the exception of the zQ175 12-month cohort, where we observed decreased GFP expression. Astrocytosis did not increase after FUS treatment, even within the zQ175 12-month group exhibiting higher baseline levels of GFAP expression. These findings demonstrate that FUS can be used to non-invasively deliver an AAV9-based gene therapy to targeted brain regions in a mouse model of Huntington's disease.
Collapse
Affiliation(s)
- Bernie S. Owusu-Yaw
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (N.T.)
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (N.T.)
| | - Lilyan Garrett
- College of Science, Northeastern University, Boston, MA 02115, USA;
| | - Alvin Yao
- Department of Engineering, Harvard University, Cambridge, MA 02138, USA;
| | - Kai Shing
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (K.S.); (K.K.-G.)
| | - Ana Rita Batista
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (A.R.B.); (M.S.-E.)
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (A.R.B.); (M.S.-E.)
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Kimberly Kegel-Gleason
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (K.S.); (K.K.-G.)
| | - Nick Todd
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (N.T.)
| |
Collapse
|
43
|
Chen L, Qin Y, Guo T, Zhu W, Lin J, Xing T, Duan X, Zhang Y, Ruan E, Li X, Yin P, Li S, Li XJ, Yang S. HAP40 modulates mutant Huntingtin aggregation and toxicity in Huntington's disease mice. Cell Death Dis 2024; 15:337. [PMID: 38744826 PMCID: PMC11094052 DOI: 10.1038/s41419-024-06716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Huntington's disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HTT conformation in vitro. However, the potential role of HAP40 in HD pathogenesis remains unknown. In this study, we found that the expression level of HAP40 is in parallel with HTT but inversely correlates with mutant HTT aggregates in mouse brains. Depletion of endogenous HAP40 in the striatum of HD140Q knock-in (KI) mice leads to enhanced mutant HTT aggregation and neuronal loss. Consistently, overexpression of HAP40 in the striatum of HD140Q KI mice reduced mutant HTT aggregation and ameliorated the behavioral deficits. Mechanistically, HAP40 preferentially binds to mutant HTT and promotes Lysine 48-linked ubiquitination of mutant HTT. Our results revealed that HAP40 is an important regulator of HTT protein homeostasis in vivo and hinted at HAP40 as a therapeutic target in HD treatment.
Collapse
Affiliation(s)
- Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yiyang Qin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Tingting Guo
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wenzhen Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jingpan Lin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Tingting Xing
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xuezhi Duan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yiran Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Eshu Ruan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiang Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| | - Su Yang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| |
Collapse
|
44
|
Sampaio C. Huntington disease - Update on ongoing therapeutic developments and a look toward the future. Parkinsonism Relat Disord 2024; 122:106049. [PMID: 38418319 DOI: 10.1016/j.parkreldis.2024.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Affiliation(s)
- Cristina Sampaio
- CHDI Management, Inc. Advisors to CHDI Foundation, Princeton, USA; Faculdade Medicina da Universidade de Lisboa (FMUL), Portugal.
| |
Collapse
|
45
|
Liu X, Liu Y, Liu J, Zhang H, Shan C, Guo Y, Gong X, Cui M, Li X, Tang M. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regen Res 2024; 19:833-845. [PMID: 37843219 PMCID: PMC10664138 DOI: 10.4103/1673-5374.382223] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 06/17/2023] [Indexed: 10/17/2023] Open
Abstract
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mengmeng Cui
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
46
|
Gijs M, Jorna N, Datson N, Beekman C, Dansokho C, Weiss A, Linden DEJ, Oosterloo M. High Levels of Mutant Huntingtin Protein in Tear Fluid From Huntington's Disease Gene Expansion Carriers. J Mov Disord 2024; 17:181-188. [PMID: 38379425 PMCID: PMC11082600 DOI: 10.14802/jmd.24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE Huntington's disease (HD) is an autosomal dominant, fully penetrant, neurodegenerative disease that most commonly affects middle-aged adults. HD is caused by a CAG repeat expansion in the HTT gene, resulting in the expression of mutant huntingtin (mHTT). Our aim was to detect and quantify mHTT in tear fluid, which, to our knowledge, has never been measured before. METHODS We recruited 20 manifest and 13 premanifest HD gene expansion carriers, and 20 age-matched controls. All patients underwent detailed assessments, including the Unified Huntington's Disease Rating Scale (UHDRS) total motor score (TMS) and total functional capacity (TFC) score. Tear fluid was collected using paper Schirmer's strips. The level of tear mHTT was determined using single-molecule counting SMCxPRO technology. RESULTS The average tear mHTT levels in manifest (67,223 ± 80,360 fM) and premanifest patients (55,561 ± 45,931 fM) were significantly higher than those in controls (1,622 ± 2,179 fM). We noted significant correlations between tear mHTT levels and CAG repeat length, "estimated years to diagnosis," disease burden score and UHDRS TMS and TFC. The receiver operating curve demonstrated an almost perfect score (area under the curve [AUC] = 0.9975) when comparing controls to manifest patients. Similarly, the AUC between controls and premanifest patients was 0.9846. The optimal cutoff value for distinguishing between controls and manifest patients was 4,544 fM, whereas it was 6,596 fM for distinguishing between controls and premanifest patients. CONCLUSION Tear mHTT has potential for early and noninvasive detection of alterations in HD patients and could be integrated into both clinical trials and clinical diagnostics.
Collapse
Affiliation(s)
- Marlies Gijs
- University Eye Clinic Maastricht, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Nynke Jorna
- Department of Neurology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | | | | | | | | | - David E. J. Linden
- Department of Neurology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Mayke Oosterloo
- Department of Neurology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
47
|
Jiang H, Tang M, Xu Z, Wang Y, Li M, Zheng S, Zhu J, Lin Z, Zhang M. CRISPR/Cas9 system and its applications in nervous system diseases. Genes Dis 2024; 11:675-686. [PMID: 37692518 PMCID: PMC10491921 DOI: 10.1016/j.gendis.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is an acquired immune system of many bacteria and archaea, comprising CRISPR loci, Cas genes, and its associated proteins. This system can recognize exogenous DNA and utilize the Cas9 protein's nuclease activity to break DNA double-strand and to achieve base insertion or deletion by subsequent DNA repair. In recent years, multiple laboratory and clinical studies have revealed the therapeutic role of the CRISPR/Cas9 system in neurological diseases. This article reviews the CRISPR/Cas9-mediated gene editing technology and its potential for clinical application against neurological diseases.
Collapse
Affiliation(s)
- Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengyan Tang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuyin Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
48
|
Jia X, He X, Huang C, Li J, Dong Z, Liu K. Protein translation: biological processes and therapeutic strategies for human diseases. Signal Transduct Target Ther 2024; 9:44. [PMID: 38388452 PMCID: PMC10884018 DOI: 10.1038/s41392-024-01749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Protein translation is a tightly regulated cellular process that is essential for gene expression and protein synthesis. The deregulation of this process is increasingly recognized as a critical factor in the pathogenesis of various human diseases. In this review, we discuss how deregulated translation can lead to aberrant protein synthesis, altered cellular functions, and disease progression. We explore the key mechanisms contributing to the deregulation of protein translation, including functional alterations in translation factors, tRNA, mRNA, and ribosome function. Deregulated translation leads to abnormal protein expression, disrupted cellular signaling, and perturbed cellular functions- all of which contribute to disease pathogenesis. The development of ribosome profiling techniques along with mass spectrometry-based proteomics, mRNA sequencing and single-cell approaches have opened new avenues for detecting diseases related to translation errors. Importantly, we highlight recent advances in therapies targeting translation-related disorders and their potential applications in neurodegenerative diseases, cancer, infectious diseases, and cardiovascular diseases. Moreover, the growing interest lies in targeted therapies aimed at restoring precise control over translation in diseased cells is discussed. In conclusion, this comprehensive review underscores the critical role of protein translation in disease and its potential as a therapeutic target. Advancements in understanding the molecular mechanisms of protein translation deregulation, coupled with the development of targeted therapies, offer promising avenues for improving disease outcomes in various human diseases. Additionally, it will unlock doors to the possibility of precision medicine by offering personalized therapies and a deeper understanding of the molecular underpinnings of diseases in the future.
Collapse
Affiliation(s)
- Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Xinyu He
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Chuntian Huang
- Department of Pathology and Pathophysiology, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, 450052, China.
- Research Center for Basic Medicine Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450000, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, 450052, China.
- Research Center for Basic Medicine Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
49
|
Bondulich MK, Phillips J, Cañibano-Pico M, Nita IM, Byrne LM, Wild EJ, Bates GP. Translatable plasma and CSF biomarkers for use in mouse models of Huntington's disease. Brain Commun 2024; 6:fcae030. [PMID: 38370446 PMCID: PMC10873584 DOI: 10.1093/braincomms/fcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Huntington's disease is an inherited neurodegenerative disorder for which a wide range of disease-modifying therapies are in development and the availability of biomarkers to monitor treatment response is essential for the success of clinical trials. Baseline levels of neurofilament light chain in CSF and plasma have been shown to be effective in predicting clinical disease status, subsequent clinical progression and brain atrophy. The identification of further sensitive prognostic fluid biomarkers is an active research area, and total-Tau and YKL-40 levels have been shown to be increased in CSF from Huntington's disease mutation carriers. The use of readouts with clinical utility in the preclinical assessment of potential therapeutics should aid in the translation of new treatments. Here, we set out to determine how the concentrations of these three proteins change in plasma and CSF with disease progression in representative, well-established mouse models of Huntington's disease. Plasma and CSF were collected throughout disease progression from R6/2 transgenic mice with CAG repeats of 200 or 90 codons (R6/2:Q200 and R6/2:Q90), zQ175 knock-in mice and YAC128 transgenic mice, along with their respective wild-type littermates. Neurofilament light chain and total-Tau concentrations were quantified in CSF and plasma using ultrasensitive single-molecule array (Quanterix) assays, and a novel Quanterix assay was developed for breast regression protein 39 (mouse homologue of YKL-40) and used to quantify breast regression protein 39 levels in plasma. CSF levels of neurofilament light chain and plasma levels of neurofilament light chain and breast regression protein 39 increased in wild-type biofluids with age, whereas total-Tau remained constant. Neurofilament light chain and breast regression protein 39 were elevated in the plasma and CSF from Huntington's disease mouse models, as compared with wild-type littermates, at presymptomatic stages, whereas total-Tau was only increased at the latest disease stages analysed. Levels of biomarkers that had been measured in the same CSF or plasma samples taken at the latest stages of disease were correlated. The demonstration that breast regression protein 39 constitutes a robust plasma biomarker in Huntington's disease mouse models supports the further investigation of YKL-40 as a CSF biomarker for Huntington's disease mutation carriers. Neurofilament light chain and Tau are considered markers of neuronal damage, and breast regression protein 39 is a marker of inflammation; the similarities and differences in the levels of these proteins between mouse models may provide future insights into their underlying pathology. These data will facilitate the use of fluid biomarkers in the preclinical assessment of therapeutic agents for Huntington's disease, providing readouts with direct relevance to clinical trials.
Collapse
Affiliation(s)
- Marie K Bondulich
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Jemima Phillips
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - María Cañibano-Pico
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Iulia M Nita
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Lauren M Byrne
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Edward J Wild
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Gillian P Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| |
Collapse
|
50
|
Zheng H, Liu Q, Zhou S, Luo H, Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol 2024; 15:1345625. [PMID: 38370420 PMCID: PMC10869479 DOI: 10.3389/fimmu.2024.1345625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
The P2X7 receptor (P2X7R), a non-selective cation channel modulated by adenosine triphosphate (ATP), localizes to microglia, astrocytes, oligodendrocytes, and neurons in the central nervous system, with the most incredible abundance in microglia. P2X7R partake in various signaling pathways, engaging in the immune response, the release of neurotransmitters, oxidative stress, cell division, and programmed cell death. When neurodegenerative diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R. This activation induces the release of biologically active molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen species, and excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation, which exacerbates neuronal involvement. The P2X7R is essential in the development of neurodegenerative diseases. This implies that it has potential as a drug target and could be treated using P2X7R antagonists that are able to cross the blood-brain barrier. This review will comprehensively and objectively discuss recent research breakthroughs on P2X7R genes, their structural features, functional properties, signaling pathways, and their roles in neurodegenerative diseases and possible therapies.
Collapse
Affiliation(s)
- Huiyong Zheng
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Liu
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siwei Zhou
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|