1
|
Aukema RJ, Petrie GN, Matarasso AK, Baglot SL, Molina LA, Füzesi T, Kadhim S, Nastase AS, Rodriguez Reyes I, Bains JS, Morena M, Bruchas MR, Hill MN. Identification of a stress-responsive subregion of the basolateral amygdala in male rats. Neuropsychopharmacology 2024; 49:1989-1999. [PMID: 39117904 PMCID: PMC11480132 DOI: 10.1038/s41386-024-01927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
The basolateral amygdala (BLA) is reliably activated by psychological stress and hyperactive in conditions of pathological stress or trauma; however, subsets of BLA neurons are also readily activated by rewarding stimuli and can suppress fear and avoidance behaviours. The BLA is highly heterogeneous anatomically, exhibiting continuous molecular and connectivity gradients throughout the entire structure. A critical gap remains in understanding the anatomical specificity of amygdala subregions, circuits, and cell types explicitly activated by acute stress and how they are dynamically activated throughout stimulus exposure. Using a combination of topographical mapping for the activity-responsive protein FOS and fiber photometry to measure calcium transients in real-time, we sought to characterize the spatial and temporal patterns of BLA activation in response to a range of novel stressors (shock, swim, restraint, predator odour) and non-aversive, but novel stimuli (crackers, citral odour). We report four main findings: (1) the BLA exhibits clear spatial activation gradients in response to novel stimuli throughout the medial-lateral and dorsal-ventral axes, with aversive stimuli strongly biasing activation towards medial aspects of the BLA; (2) novel stimuli elicit distinct temporal activation patterns, with stressful stimuli exhibiting particularly enhanced or prolonged temporal activation patterns; (3) changes in BLA activity are associated with changes in behavioural state; and (4) norepinephrine enhances stress-induced activation of BLA neurons via the ß-noradrenergic receptor. Moving forward, it will be imperative to combine our understanding of activation gradients with molecular and circuit-specificity.
Collapse
Affiliation(s)
- Robert J Aukema
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Avi K Matarasso
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Samantha L Baglot
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sandra Kadhim
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Itzel Rodriguez Reyes
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, 00185, Italy
- Neuropsychopharmacology Unit, European Center for Brain Research, Santa Lucia Foundation, Rome, 00143, Italy
| | - Michael R Bruchas
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
2
|
Baranykova S, Gupta RK, Kajdasz A, Wasilewska I, Macias M, Szybinska A, Węgierski T, Nahia KA, Mondal SS, Winata CL, Kuźnicki J, Majewski L. Loss of Stim2 in zebrafish induces glaucoma-like phenotype. Sci Rep 2024; 14:24442. [PMID: 39424970 PMCID: PMC11489432 DOI: 10.1038/s41598-024-74909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Calcium is involved in vision processes in the retina and implicated in various pathologies, including glaucoma. Rod cells rely on store-operated calcium entry (SOCE) to safeguard against the prolonged lowering of intracellular calcium ion concentrations. Zebrafish that lacked the endoplasmic reticulum Ca2+ sensor Stim2 (stim2 knockout [KO]) exhibited impaired vision and lower light perception-related gene expression. We sought to understand mechanisms that are responsible for vision impairment in stim2 KO zebrafish. The single-cell RNA (scRNA) sequencing of neuronal cells from brains of 5 days postfertilization larvae distinguished 27 cell clusters, 10 of which exhibited distinct gene expression patterns, including amacrine and γ-aminobutyric acid (GABA)ergic retinal interneurons and GABAergic optic tectum cells. Five clusters exhibited significant changes in cell proportions between stim2 KO and controls, including GABAergic diencephalon and optic tectum cells. Transmission electron microscopy of stim2 KO zebrafish revealed decreases in width of the inner plexiform layer, ganglion cells, and their dendrites numbers (a hallmark of glaucoma). GABAergic neuron densities in the inner nuclear layer, including amacrine cells, as well as photoreceptors significantly decreased in stim2 KO zebrafish. Our study suggests a novel role for Stim2 in the regulation of neuronal insulin expression and GABAergic-dependent vision causing glaucoma-like retinal pathology.
Collapse
Affiliation(s)
- Sofiia Baranykova
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Rishikesh Kumar Gupta
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, 201313, India
| | - Arkadiusz Kajdasz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704, Poznan, Poland
- Xenstats sp. z o.o., Otwarta 1, 60-008, Poznan, Poland
| | - Iga Wasilewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106, Warsaw, Poland
| | - Matylda Macias
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109, WarsawWarsaw, Poland
| | - Aleksandra Szybinska
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109, WarsawWarsaw, Poland
| | - Tomasz Węgierski
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109, WarsawWarsaw, Poland
| | - Karim Abu Nahia
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Shamba S Mondal
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Cecilia L Winata
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Jacek Kuźnicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Lukasz Majewski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland.
| |
Collapse
|
3
|
Muir J, Anguiano M, Kim CK. Neuromodulator and neuropeptide sensors and probes for precise circuit interrogation in vivo. Science 2024; 385:eadn6671. [PMID: 39325905 PMCID: PMC11488521 DOI: 10.1126/science.adn6671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 09/28/2024]
Abstract
To determine how neuronal circuits encode and drive behavior, it is often necessary to measure and manipulate different aspects of neurochemical signaling in awake animals. Optogenetics and calcium sensors have paved the way for these types of studies, allowing for the perturbation and readout of spiking activity within genetically defined cell types. However, these methods lack the ability to further disentangle the roles of individual neuromodulator and neuropeptides on circuits and behavior. We review recent advances in chemical biology tools that enable precise spatiotemporal monitoring and control over individual neuroeffectors and their receptors in vivo. We also highlight discoveries enabled by such tools, revealing how these molecules signal across different timescales to drive learning, orchestrate behavioral changes, and modulate circuit activity.
Collapse
Affiliation(s)
- J. Muir
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - M. Anguiano
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - C. K. Kim
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Hu S, Xie Z, Wang B, Chen Y, Jing Z, Hao Y, Yao J, Wu X, Huo J, Wei A, Qin Y, Dong N, Zheng C, Song Q, Long J, Kang X, Wang C, Xu H. STED Imaging of Vesicular Endocytosis in the Synapse. Neurosci Bull 2024; 40:1379-1395. [PMID: 38976218 PMCID: PMC11365914 DOI: 10.1007/s12264-024-01254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 07/09/2024] Open
Abstract
Endocytosis is a fundamental biological process that couples exocytosis to maintain the homeostasis of the plasma membrane and sustained neurotransmission. Super-resolution microscopy enables optical imaging of exocytosis and endocytosis in live cells and makes an essential contribution to understanding molecular mechanisms of endocytosis in neuronal somata and other types of cells. However, visualization of exo-endocytic events at the single vesicular level in a synapse with optical imaging remains a great challenge to reveal mechanisms governing the synaptic exo-endocytotic coupling. In this protocol, we describe the technical details of stimulated emission depletion (STED) imaging of synaptic endocytosis at the single-vesicle level, from sample preparation and microscopy calibration to data acquisition and analysis.
Collapse
Affiliation(s)
- Shaoqin Hu
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenli Xie
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bianbian Wang
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Chen
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zexin Jing
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Hao
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingyu Yao
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xuanang Wu
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingxiao Huo
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Anqi Wei
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhao Qin
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Nan Dong
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chaowen Zheng
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qian Song
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiangang Long
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinjiang Kang
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Changhe Wang
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Huadong Xu
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
5
|
Bremshey S, Groß J, Renken K, Masseck OA. The role of serotonin in depression-A historical roundup and future directions. J Neurochem 2024; 168:1751-1779. [PMID: 38477031 DOI: 10.1111/jnc.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Depression is one of the most common psychiatric disorders worldwide, affecting approximately 280 million people, with probably much higher unrecorded cases. Depression is associated with symptoms such as anhedonia, feelings of hopelessness, sleep disturbances, and even suicidal thoughts. Tragically, more than 700 000 people commit suicide each year. Although depression has been studied for many decades, the exact mechanisms that lead to depression are still unknown, and available treatments only help a fraction of patients. In the late 1960s, the serotonin hypothesis was published, suggesting that serotonin is the key player in depressive disorders. However, this hypothesis is being increasingly doubted as there is evidence for the influence of other neurotransmitters, such as noradrenaline, glutamate, and dopamine, as well as larger systemic causes such as altered activity in the limbic network or inflammatory processes. In this narrative review, we aim to contribute to the ongoing debate on the involvement of serotonin in depression. We will review the evolution of antidepressant treatments, systemic research on depression over the years, and future research applications that will help to bridge the gap between systemic research and neurotransmitter dynamics using biosensors. These new tools in combination with systemic applications, will in the future provide a deeper understanding of the serotonergic dynamics in depression.
Collapse
Affiliation(s)
- Svenja Bremshey
- Synthetic Biology, University of Bremen, Bremen, Germany
- Neuropharmacology, University of Bremen, Bremen, Germany
| | - Juliana Groß
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
6
|
Karpova A, Aly AAA, Marosi EL, Mikulovic S. Fiber-based in vivo imaging: unveiling avenues for exploring mechanisms of synaptic plasticity and neuronal adaptations underlying behavior. NEUROPHOTONICS 2024; 11:S11507. [PMID: 38390518 PMCID: PMC10883581 DOI: 10.1117/1.nph.11.s1.s11507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
In recent decades, various subfields within neuroscience, spanning molecular, cellular, and systemic dimensions, have significantly advanced our understanding of the elaborate molecular and cellular mechanisms that underpin learning, memory, and adaptive behaviors. There have been notable advancements in imaging techniques, particularly in reaching superficial brain structures. This progress has led to their widespread adoption in numerous laboratories. However, essential physiological and cognitive processes, including sensory integration, emotional modulation of motivated behavior, motor regulation, learning, and memory consolidation, are intricately encoded within deeper brain structures. Hence, visualization techniques such as calcium imaging using miniscopes have gained popularity for studying brain activity in unrestrained animals. Despite its utility, miniscope technology is associated with substantial brain tissue damage caused by gradient refractive index lens implantation. Furthermore, its imaging capabilities are primarily confined to the neuronal somata level, thus constraining a comprehensive exploration of subcellular processes underlying adaptive behaviors. Consequently, the trajectory of neuroscience's future hinges on the development of minimally invasive optical fiber-based endo-microscopes optimized for cellular, subcellular, and molecular imaging within the intricate depths of the brain. In pursuit of this goal, select research groups have invested significant efforts in advancing this technology. In this review, we present a perspective on the potential impact of this innovation on various aspects of neuroscience, enabling the functional exploration of in vivo cellular and subcellular processes that underlie synaptic plasticity and the neuronal adaptations that govern behavior.
Collapse
Affiliation(s)
- Anna Karpova
- Leibniz Institute for Neurobiology, RG Neuroplasticity, Magdeburg, Germany
- Otto von Guericke University, Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Ahmed A. A. Aly
- Leibniz Institute for Neurobiology, RG Neuroplasticity, Magdeburg, Germany
| | - Endre Levente Marosi
- Leibniz Institute for Neurobiology, RG Cognition and Emotion, Magdeburg, Germany
| | - Sanja Mikulovic
- Otto von Guericke University, Center for Behavioral Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology, RG Cognition and Emotion, Magdeburg, Germany
- German Centre for Mental Health (DZPG), Magdeburg, Germany
| |
Collapse
|
7
|
Tao Y, Li X, Dong Q, Kong L, Petersen AJ, Yan Y, Xu K, Zima S, Li Y, Schmidt DK, Ayala M, Mathivanan S, Sousa AMM, Chang Q, Zhang SC. Generation of locus coeruleus norepinephrine neurons from human pluripotent stem cells. Nat Biotechnol 2024; 42:1404-1416. [PMID: 37974010 PMCID: PMC11392812 DOI: 10.1038/s41587-023-01977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/30/2023] [Indexed: 11/19/2023]
Abstract
Central norepinephrine (NE) neurons, located mainly in the locus coeruleus (LC), are implicated in diverse psychiatric and neurodegenerative diseases and are an emerging target for drug discovery. To facilitate their study, we developed a method to generate 40-60% human LC-NE neurons from human pluripotent stem cells. The approach depends on our identification of ACTIVIN A in regulating LC-NE transcription factors in dorsal rhombomere 1 (r1) progenitors. In vitro generated human LC-NE neurons display extensive axonal arborization; release and uptake NE; and exhibit pacemaker activity, calcium oscillation and chemoreceptor activity in response to CO2. Single-nucleus RNA sequencing (snRNA-seq) analysis at multiple timepoints confirmed NE cell identity and revealed the differentiation trajectory from hindbrain progenitors to NE neurons via an ASCL1-expressing precursor stage. LC-NE neurons engineered with an NE sensor reliably reported extracellular levels of NE. The availability of functional human LC-NE neurons enables investigation of their roles in psychiatric and neurodegenerative diseases and provides a tool for therapeutics development.
Collapse
Affiliation(s)
- Yunlong Tao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Xueyan Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiping Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Linghai Kong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Yuanwei Yan
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ke Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Seth Zima
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yanru Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Melvin Ayala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Andre M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Neuroscience, Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA.
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
8
|
Zhao Y, Wan J, Li Y. Genetically encoded sensors for in vivo detection of neurochemicals relevant to depression. J Neurochem 2024; 168:1721-1737. [PMID: 38468468 DOI: 10.1111/jnc.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 03/13/2024]
Abstract
Depressive disorders are a common and debilitating form of mental illness with significant impacts on individuals and society. Despite the high prevalence, the underlying causes and mechanisms of depressive disorders are still poorly understood. Neurochemical systems, including serotonin, norepinephrine, and dopamine, have been implicated in the development and perpetuation of depressive symptoms. Current treatments for depression target these neuromodulator systems, but there is a need for a better understanding of their role in order to develop more effective treatments. Monitoring neurochemical dynamics during depressive symptoms is crucial for gaining a better a understanding of their involvement in depressive disorders. Genetically encoded sensors have emerged recently that offer high spatial-temporal resolution and the ability to monitor neurochemical dynamics in real time. This review explores the neurochemical systems involved in depression and discusses the applications and limitations of current monitoring tools for neurochemical dynamics. It also highlights the potential of genetically encoded sensors for better characterizing neurochemical dynamics in depression-related behaviors. Furthermore, potential improvements to current sensors are discussed in order to meet the requirements of depression research.
Collapse
Affiliation(s)
- Yulin Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
9
|
Basu A, Yang JH, Yu A, Glaeser-Khan S, Rondeau JA, Feng J, Krystal JH, Li Y, Kaye AP. Frontal Norepinephrine Represents a Threat Prediction Error Under Uncertainty. Biol Psychiatry 2024; 96:256-267. [PMID: 38316333 PMCID: PMC11269024 DOI: 10.1016/j.biopsych.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND To adapt to threats in the environment, animals must predict them and engage in defensive behavior. While the representation of a prediction error signal for reward has been linked to dopamine, a neuromodulatory prediction error for aversive learning has not been identified. METHODS We measured and manipulated norepinephrine release during threat learning using optogenetics and a novel fluorescent norepinephrine sensor. RESULTS We found that norepinephrine response to conditioned stimuli reflects aversive memory strength. When delays between auditory stimuli and footshock are introduced, norepinephrine acts as a prediction error signal. However, temporal difference prediction errors do not fully explain norepinephrine dynamics. To explain noradrenergic signaling, we used an updated reinforcement learning model with uncertainty about time and found that it explained norepinephrine dynamics across learning and variations in temporal and auditory task structure. CONCLUSIONS Norepinephrine thus combines cognitive and affective information into a predictive signal and links time with the anticipation of danger.
Collapse
Affiliation(s)
- Aakash Basu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut
| | - Jen-Hau Yang
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Abigail Yu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | | | - Jocelyne A Rondeau
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Clinical Neuroscience Division, Veterans Administration National Center for PTSD, West Haven, Connecticut
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; Peking University-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Clinical Neuroscience Division, Veterans Administration National Center for PTSD, West Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
10
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
11
|
España JC, Yasoda-Mohan A, Vanneste S. The Locus Coeruleus in Chronic Pain. Int J Mol Sci 2024; 25:8636. [PMID: 39201323 PMCID: PMC11354431 DOI: 10.3390/ijms25168636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Pain perception is the consequence of a complex interplay between activation and inhibition. Noradrenergic pain modulation inhibits nociceptive transmission and pain perception. The main source of norepinephrine (NE) in the central nervous system is the Locus Coeruleus (LC), a small but complex cluster of cells in the pons. The aim of this study is to review the literature on the LC-NE inhibitory system, its influence on chronic pain pathways and its frequent comorbidities. The literature research showed that pain perception is the consequence of nociceptive and environmental processing and is modulated by the LC-NE system. If perpetuated in time, nociceptive inputs can generate neuroplastic changes in the central nervous system that reduce the inhibitory effects of the LC-NE complex and facilitate the development of chronic pain and frequent comorbidities, such as anxiety, depression or sleeping disturbances. The exact mechanisms involved in the LC functional shift remain unknown, but there is some evidence that they occur through plastic changes in the medial and lateral pathways and their brain projections. Additionally, there are other influencing factors, like developmental issues, neuroinflammatory glial changes, NE receptor affinity and changes in LC neuronal firing rates.
Collapse
Affiliation(s)
- Jorge Castejón España
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Compass Physio, A83 YW96 Enfield, Ireland
| | - Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Brain Research Centre for Advanced, International, Innovative and Interdisciplinary Neuromodulation, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Puglisi R, Cavallaro A, Pappalardo A, Petroselli M, Santonocito R, Trusso Sfrazzetto G. A New BODIPY-Based Receptor for the Fluorescent Sensing of Catecholamines. Molecules 2024; 29:3714. [PMID: 39125116 PMCID: PMC11314322 DOI: 10.3390/molecules29153714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The human body synthesizes catecholamine neurotransmitters, such as dopamine and noradrenaline. Monitoring the levels of these molecules is crucial for the prevention of important diseases, such as Alzheimer's, schizophrenia, Parkinson's, Huntington's, attention-deficit hyperactivity disorder, and paragangliomas. Here, we have synthesized, characterized, and functionalized the BODIPY core with picolylamine (BDPy-pico) in order to create a sensor capable of detecting these biomarkers. The sensing properties of the BDPy-pico probe in solution were studied using fluorescence titrations and supported by DFT studies. Catecholamine sensing was also performed in the solid state by a simple strip test, using an optical fiber as the detector of emissions. In addition, the selectivity and recovery of the sensor were assessed, suggesting the possibility of using this receptor to detect dopamine and norepinephrine in human saliva.
Collapse
Affiliation(s)
- Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
- Research Unit of Catania, National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Viale Andrea Doria 6, 95125 Catania, Italy
| | - Manuel Petroselli
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain;
| | - Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
- Research Unit of Catania, National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
13
|
Mukherjee S, Klarenbeek J, El Oualid F, van den Broek B, Jalink K. "Radical" differences between two FLIM microscopes affect interpretation of cell signaling dynamics. iScience 2024; 27:110268. [PMID: 39036041 PMCID: PMC11257777 DOI: 10.1016/j.isci.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/12/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
The outcome of cell signaling depends not only on signal strength but also on temporal progression. We use Fluorescence Lifetime Imaging of Resonance Energy Transfer (FLIM/FRET) biosensors to investigate intracellular signaling dynamics. We examined the β1 receptor-Gαs-cAMP signaling axis using both widefield frequency domain FLIM (fdFLIM) and fast confocal time-correlated single photon counting (TCSPC) setups. Unexpectedly, we observed that fdFLIM revealed transient cAMP responses in HeLa and Cos7 cells, contrasting with sustained responses as detected with TCSPC. Investigation revealed no light-induced effects on cAMP generation or breakdown. Rather, folic acid present in the imaging medium appeared to be the culprit, as its excitation with blue light sensitized degradation of β1 agonists. Our findings highlight the impact of subtle phototoxicity on experimental outcomes, advocating confocal TCSPC for reliable analysis of response kinetics and stressing the need for full disclosure of chemical formulations by scientific vendors.
Collapse
Affiliation(s)
- Sravasti Mukherjee
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
- Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| | - Jeffrey Klarenbeek
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Farid El Oualid
- UbiQ Bio B.V., Science Park 301, Amsterdam 1098 XH, the Netherlands
| | - Bram van den Broek
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
- BioImaging Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Kees Jalink
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
- Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| |
Collapse
|
14
|
Sima J, Zhang Y, Farriday D, Ahn AYE, Lopez ER, Jin C, Harrell J, Darmohray D, Silverman D, Dan Y. Restoration of locus coeruleus noradrenergic transmission during sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601820. [PMID: 39005471 PMCID: PMC11244971 DOI: 10.1101/2024.07.03.601820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Sleep is indispensable for health and wellbeing, but its basic function remains elusive. The locus coeruleus (LC) powerfully promotes arousal by releasing noradrenaline. We found that noradrenaline transmission is reduced by prolonged wakefulness and restored during sleep. Fiber-photometry imaging of noradrenaline using its biosensor showed that its release evoked by optogenetic LC neuron activation was strongly attenuated by three hours of sleep deprivation and restored during subsequent sleep. This is accompanied by the reduction and recovery of the wake-promoting effect of the LC neurons. The reduction of both LC evoked noradrenaline release and wake-inducing potency is activity dependent, and the rate of noradrenaline transmission recovery depends on mammalian target of rapamycin (mTOR) signaling. The decline and recovery of noradrenaline transmission also occur in spontaneous sleep-wake cycles on a timescale of minutes. Together, these results reveal an essential role of sleep in restoring transmission of a key arousal-promoting neuromodulator.
Collapse
Affiliation(s)
- Jiao Sima
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Yuchen Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Declan Farriday
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Andy Young-Eon Ahn
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Eduardo Ramirez Lopez
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Chennan Jin
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Jade Harrell
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Dana Darmohray
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Daniel Silverman
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Dong Z, Feng Y, Diego K, Baggetta AM, Sweis BM, Pennington ZT, Lamsifer SI, Zaki Y, Sangiuliano F, Philipsberg PA, Morales-Rodriguez D, Kircher D, Slesinger P, Shuman T, Aharoni D, Cai DJ. Simultaneous dual-color calcium imaging in freely-behaving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601770. [PMID: 39005306 PMCID: PMC11244962 DOI: 10.1101/2024.07.03.601770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Miniaturized fluorescence microscopes (miniscopes) enable imaging of calcium events from a large population of neurons in freely behaving animals. Traditionally, miniscopes have only been able to record from a single fluorescence wavelength. Here, we present a new open-source dual-channel Miniscope that simultaneously records two wavelengths in freely behaving animals. To enable simultaneous acquisition of two fluorescent wavelengths, we incorporated two CMOS sensors into a single Miniscope. To validate our dual-channel Miniscope, we imaged hippocampal CA1 region that co-expressed a dynamic calcium indicator (GCaMP) and a static nuclear signal (tdTomato) while mice ran on a linear track. Our results suggest that, even when neurons were registered across days using tdTomato signals, hippocampal spatial coding changes over time. In conclusion, our novel dual-channel Miniscope enables imaging of two fluorescence wavelengths with minimal crosstalk between the two channels, opening the doors to a multitude of new experimental possibilities. Teaser Novel open-source dual-channel Miniscope that simultaneously records two wavelengths with minimal crosstalk in freely behaving animals.
Collapse
|
16
|
Mao R, Cavelli ML, Findlay G, Driessen K, Peterson MJ, Marshall W, Tononi G, Cirelli C. Behavioral and cortical arousal from sleep, muscimol-induced coma, and anesthesia by direct optogenetic stimulation of cortical neurons. iScience 2024; 27:109919. [PMID: 38812551 PMCID: PMC11134913 DOI: 10.1016/j.isci.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/28/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
The cerebral cortex is widely considered part of the neural substrate of consciousness, but direct causal evidence is missing. Here, we tested in mice whether optogenetic activation of cortical neurons in posterior parietal cortex (PtA) or medial prefrontal cortex (mPFC) is sufficient for arousal from three behavioral states characterized by progressively deeper unresponsiveness: sleep, a coma-like state induced by muscimol injection in the midbrain, and deep sevoflurane-dexmedetomidine anesthesia. We find that cortical stimulation always awakens the mice from both NREM sleep and REM sleep, with PtA requiring weaker/shorter light pulses than mPFC. Moreover, in most cases light pulses produce both cortical activation (decrease in low frequencies) and behavioral arousal (recovery of the righting reflex) from brainstem coma, as well as cortical activation from anesthesia. These findings provide evidence that direct activation of cortical neurons is sufficient for behavioral and/or cortical arousal from sleep, brainstem coma, and anesthesia.
Collapse
Affiliation(s)
- Rong Mao
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Matias Lorenzo Cavelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Graham Findlay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Kort Driessen
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Michael J. Peterson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - William Marshall
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| |
Collapse
|
17
|
Feng J, Dong H, Lischinsky JE, Zhou J, Deng F, Zhuang C, Miao X, Wang H, Li G, Cai R, Xie H, Cui G, Lin D, Li Y. Monitoring norepinephrine release in vivo using next-generation GRAB NE sensors. Neuron 2024; 112:1930-1942.e6. [PMID: 38547869 PMCID: PMC11364517 DOI: 10.1016/j.neuron.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/21/2024] [Accepted: 03/01/2024] [Indexed: 06/22/2024]
Abstract
Norepinephrine (NE) is an essential biogenic monoamine neurotransmitter. The first-generation NE sensor makes in vivo, real-time, cell-type-specific and region-specific NE detection possible, but its low NE sensitivity limits its utility. Here, we developed the second-generation GPCR-activation-based NE sensors (GRABNE2m and GRABNE2h) with a superior response and high sensitivity and selectivity to NE both in vitro and in vivo. Notably, these sensors can detect NE release triggered by either optogenetic or behavioral stimuli in freely moving mice, producing robust signals in the locus coeruleus and hypothalamus. With the development of a novel transgenic mouse line, we recorded both NE release and calcium dynamics with dual-color fiber photometry throughout the sleep-wake cycle; moreover, dual-color mesoscopic imaging revealed cell-type-specific spatiotemporal dynamics of NE and calcium during sensory processing and locomotion. Thus, these new GRABNE sensors are valuable tools for monitoring the precise spatiotemporal release of NE in vivo, providing new insights into the physiological and pathophysiological roles of NE.
Collapse
Affiliation(s)
- Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Hui Dong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jingheng Zhou
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Umpierre AD, Li B, Ayasoufi K, Simon WL, Zhao S, Xie M, Thyen G, Hur B, Zheng J, Liang Y, Bosco DB, Maynes MA, Wu Z, Yu X, Sung J, Johnson AJ, Li Y, Wu LJ. Microglial P2Y 6 calcium signaling promotes phagocytosis and shapes neuroimmune responses in epileptogenesis. Neuron 2024; 112:1959-1977.e10. [PMID: 38614103 PMCID: PMC11189754 DOI: 10.1016/j.neuron.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/09/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Microglial calcium signaling is rare in a baseline state but strongly engaged during early epilepsy development. The mechanism(s) governing microglial calcium signaling are not known. By developing an in vivo uridine diphosphate (UDP) fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP can signal through the microglial-enriched P2Y6 receptor to increase calcium activity during epileptogenesis. P2Y6 calcium activity is associated with lysosome biogenesis and enhanced production of NF-κB-related cytokines. In the hippocampus, knockout of the P2Y6 receptor prevents microglia from fully engulfing neurons. Attenuating microglial calcium signaling through calcium extruder ("CalEx") expression recapitulates multiple features of P2Y6 knockout, including reduced lysosome biogenesis and phagocytic interactions. Ultimately, P2Y6 knockout mice retain more CA3 neurons and better cognitive task performance during epileptogenesis. Our results demonstrate that P2Y6 signaling impacts multiple aspects of myeloid cell immune function during epileptogenesis.
Collapse
Affiliation(s)
| | - Bohan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | | | - Whitney L Simon
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Grace Thyen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Hur
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Liang
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A Maynes
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jaeyun Sung
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Aaron J Johnson
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Ding S, Aziz T, Meng A, Jia S. Aagab is required for zebrafish larval development by regulating neural activity. J Genet Genomics 2024; 51:630-641. [PMID: 38253235 DOI: 10.1016/j.jgg.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Clathrin-mediated endocytosis has been implicated in various physiological processes, including nutrient uptake, signal transduction, synaptic vesicle recycling, maintenance of cell polarity, and antigen presentation. Despite prior knowledge of its importance as a key regulator in promoting clathrin-mediated endocytosis, the physiological function of α- and γ-adaptin binding protein (aagab) remains elusive. In this study, we investigate the biological function of aagab during zebrafish development. We establish a loss-of-function mutant of aagab in zebrafish, revealing impaired swimming and early larval mortality. Given the high expression level of aagab in the brain, we probe into its physiological role in the nervous system. aagab mutants display subdued calcium responses and local field potential in the optic tectal neurons, aligning with reduced neurotransmitter release (e.g., norepinephrine) in the tectal neuropil of aagab mutants. Overexpressing aagab mRNA or nervous stimulant treatment in mutants restores neurotransmitter release, calcium responses, swimming ability, and survival. Furthermore, our observations show delayed release of FM 1-43 in AAGAB knockdown differentiated neuroblastoma cells, pointing towards a probable link to defective clathrin-mediated synaptic vesicle recycling. In conclusion, our study underscores the significance of Aagab in neurobiology and suggests its potential impacts on neurological disorders.
Collapse
Affiliation(s)
- Shihui Ding
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tursunjan Aziz
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Guangzhou Laboratory, Guangzhou, Guangdong 510320, China
| | - Shunji Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
Mi X, Chen ABY, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim JX, Ruetten VMS, Zheng W, Wang M, Reitman ME, Wang Y, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G. Fast, Accurate, and Versatile Data Analysis Platform for the Quantification of Molecular Spatiotemporal Signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592259. [PMID: 38766026 PMCID: PMC11100599 DOI: 10.1101/2024.05.02.592259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce Activity Quantification and Analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine learning techniques. It decomposes complex live imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, and imaging modalities. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, and distinct sensorimotor signal propagation patterns in the mouse spinal cord.
Collapse
Affiliation(s)
- Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
- These authors contributed equally
| | - Alex Bo-Yuan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally
| | - Daniela Duarte
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Erin Carey
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Charlotte R. Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Philipp N. Braaker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Mark Bright
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Jing-Xuan Lim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Virginia M. S. Ruetten
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, USA
| | - Wei Zheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Mengfan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Michael E. Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Kira E. Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Lead contact
| |
Collapse
|
21
|
Özçete ÖD, Banerjee A, Kaeser PS. Mechanisms of neuromodulatory volume transmission. Mol Psychiatry 2024:10.1038/s41380-024-02608-3. [PMID: 38789677 DOI: 10.1038/s41380-024-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
A wealth of neuromodulatory transmitters regulate synaptic circuits in the brain. Their mode of signaling, often called volume transmission, differs from classical synaptic transmission in important ways. In synaptic transmission, vesicles rapidly fuse in response to action potentials and release their transmitter content. The transmitters are then sensed by nearby receptors on select target cells with minimal delay. Signal transmission is restricted to synaptic contacts and typically occurs within ~1 ms. Volume transmission doesn't rely on synaptic contact sites and is the main mode of monoamines and neuropeptides, important neuromodulators in the brain. It is less precise than synaptic transmission, and the underlying molecular mechanisms and spatiotemporal scales are often not well understood. Here, we review literature on mechanisms of volume transmission and raise scientific questions that should be addressed in the years ahead. We define five domains by which volume transmission systems can differ from synaptic transmission and from one another. These domains are (1) innervation patterns and firing properties, (2) transmitter synthesis and loading into different types of vesicles, (3) architecture and distribution of release sites, (4) transmitter diffusion, degradation, and reuptake, and (5) receptor types and their positioning on target cells. We discuss these five domains for dopamine, a well-studied monoamine, and then compare the literature on dopamine with that on norepinephrine and serotonin. We include assessments of neuropeptide signaling and of central acetylcholine transmission. Through this review, we provide a molecular and cellular framework for volume transmission. This mechanistic knowledge is essential to define how neuromodulatory systems control behavior in health and disease and to understand how they are modulated by medical treatments and by drugs of abuse.
Collapse
Affiliation(s)
- Özge D Özçete
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Xia X, Li Y. A new GRAB sensor reveals differences in the dynamics and molecular regulation between neuropeptide and neurotransmitter release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595424. [PMID: 38826473 PMCID: PMC11142204 DOI: 10.1101/2024.05.22.595424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The co-existence and co-transmission of neuropeptides and small molecule neurotransmitters in the same neuron is a fundamental aspect of almost all neurons across various species. However, the differences regarding their in vivo spatiotemporal dynamics and underlying molecular regulation remain poorly understood. Here, we developed a GPCR-activation-based (GRAB) sensor for detecting short neuropeptide F (sNPF) with high sensitivity and spatiotemporal resolution. Furthermore, we explore the differences of in vivo dynamics and molecular regulation between sNPF and acetylcholine (ACh) from the same neurons. Interestingly, the release of sNPF and ACh shows different spatiotemporal dynamics. Notably, we found that distinct synaptotagmins (Syt) are involved in these two processes, as Syt7 and Sytα for sNPF release, while Syt1 for ACh release. Thus, this new GRAB sensor provides a powerful tool for studying neuropeptide release and providing new insights into the distinct release dynamics and molecular regulation between neuropeptides and small molecule neurotransmitters.
Collapse
Affiliation(s)
- Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
23
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2024. [PMID: 38778747 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Piantadosi SC, Lee MK, Wu M, Huynh H, Avila R, Pizzano C, Zamorano CA, Wu Y, Xavier R, Stanslaski M, Kang J, Thai S, Kim Y, Zhang J, Huang Y, Kozorovitskiy Y, Good CH, Banks AR, Rogers JA, Bruchas MR. An integrated microfluidic and fluorescence platform for probing in vivo neuropharmacology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594203. [PMID: 38798493 PMCID: PMC11118345 DOI: 10.1101/2024.05.14.594203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neurotechnologies and genetic tools for dissecting neural circuit functions have advanced rapidly over the past decade, although the development of complementary pharmacological method-ologies has comparatively lagged. Understanding the precise pharmacological mechanisms of neuroactive compounds is critical for advancing basic neurobiology and neuropharmacology, as well as for developing more effective treatments for neurological and neuropsychiatric disorders. However, integrating modern tools for assessing neural activity in large-scale neural networks with spatially localized drug delivery remains a major challenge. Here, we present a dual microfluidic-photometry platform that enables simultaneous intracranial drug delivery with neural dynamics monitoring in the rodent brain. The integrated platform combines a wireless, battery-free, miniaturized fluidic microsystem with optical probes, allowing for spatially and temporally specific drug delivery while recording activity-dependent fluorescence using genetically encoded calcium indicators (GECIs), neurotransmitter sensors GRAB NE and GRAB DA , and neuropeptide sensors. We demonstrate the performance this platform for investigating neuropharmacological mechanisms in vivo and characterize its efficacy in probing precise mechanistic actions of neuroactive compounds across several rapidly evolving neuroscience domains.
Collapse
|
25
|
Lv M, Cai R, Zhang R, Xia X, Li X, Wang Y, Wang H, Zeng J, Xue Y, Mao L, Li Y. An octopamine-specific GRAB sensor reveals a monoamine relay circuitry that boosts aversive learning. Natl Sci Rev 2024; 11:nwae112. [PMID: 38798960 PMCID: PMC11126161 DOI: 10.1093/nsr/nwae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
Octopamine (OA), analogous to norepinephrine in vertebrates, is an essential monoamine neurotransmitter in invertebrates that plays a significant role in various biological functions, including olfactory associative learning. However, the spatial and temporal dynamics of OA in vivo remain poorly understood due to limitations associated with the currently available methods used to detect it. To overcome these limitations, we developed a genetically encoded GPCR activation-based (GRAB) OA sensor called GRABOA1.0. This sensor is highly selective for OA and exhibits a robust and rapid increase in fluorescence in response to extracellular OA. Using GRABOA1.0, we monitored OA release in the Drosophila mushroom body (MB), the fly's learning center, and found that OA is released in response to both odor and shock stimuli in an aversive learning model. This OA release requires acetylcholine (ACh) released from Kenyon cells, signaling via nicotinic ACh receptors. Finally, we discovered that OA amplifies aversive learning behavior by augmenting dopamine-mediated punishment signals via Octβ1R in dopaminergic neurons, leading to alterations in synaptic plasticity within the MB. Thus, our new GRABOA1.0 sensor can be used to monitor OA release in real time under physiological conditions, providing valuable insights into the cellular and circuit mechanisms that underlie OA signaling.
Collapse
Affiliation(s)
- Mingyue Lv
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Renzimo Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
26
|
Glaeser-Khan S, Savalia NK, Cressy J, Feng J, Li Y, Kwan AC, Kaye AP. Spatiotemporal Organization of Prefrontal Norepinephrine Influences Neuronal Activity. eNeuro 2024; 11:ENEURO.0252-23.2024. [PMID: 38702188 PMCID: PMC11134306 DOI: 10.1523/eneuro.0252-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 05/06/2024] Open
Abstract
Norepinephrine (NE), a neuromodulator released by locus ceruleus (LC) neurons throughout the cortex, influences arousal and learning through extrasynaptic vesicle exocytosis. While NE within cortical regions has been viewed as a homogenous field, recent studies have demonstrated heterogeneous axonal dynamics and advances in GPCR-based fluorescent sensors permit direct observation of the local dynamics of NE at cellular scale. To investigate how the spatiotemporal dynamics of NE release in the prefrontal cortex (PFC) affect neuronal firing, we employed in vivo two-photon imaging of layer 2/3 of the PFC in order to observe fine-scale neuronal calcium and NE dynamics concurrently. In this proof of principle study, we found that local and global NE fields can decouple from one another, providing a substrate for local NE spatiotemporal activity patterns. Optic flow analysis revealed putative release and reuptake events which can occur at the same location, albeit at different times, indicating the potential to create a heterogeneous NE field. Utilizing generalized linear models, we demonstrated that cellular Ca2+ fluctuations are influenced by both the local and global NE field. However, during periods of local/global NE field decoupling, the local field drives cell firing dynamics rather than the global field. These findings underscore the significance of localized, phasic NE fluctuations for structuring cell firing, which may provide local neuromodulatory control of cortical activity.
Collapse
Affiliation(s)
| | - Neil K Savalia
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06510
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut 06511
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Jianna Cressy
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
- Clinical Neuroscience Division, VA National Center for PTSD, West Haven, Connecticut 06515
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Alfred P Kaye
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
- Clinical Neuroscience Division, VA National Center for PTSD, West Haven, Connecticut 06515
| |
Collapse
|
27
|
Kroning K, Gannot N, Li X, Putansu A, Zhou G, Sescil J, Shen J, Wilson A, Fiel H, Li P, Wang W. Single-chain fluorescent integrators for mapping G-protein-coupled receptor agonists. Proc Natl Acad Sci U S A 2024; 121:e2307090121. [PMID: 38648487 PMCID: PMC11067452 DOI: 10.1073/pnas.2307090121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors that are highly modular and could potentially be used to determine GPCR agonist localization across the brain. We previously engineered integrator sensors for the mu- and kappa-opioid receptor agonists called M- and K-Single-chain Protein-based Opioid Transmission Indicator Tool (SPOTIT), respectively. Here, we engineered red versions of the SPOTIT sensors for multiplexed imaging of GPCR agonists. We also modified SPOTIT to create an integrator sensor design platform called SPOTIT for all GPCRs (SPOTall). We used the SPOTall platform to engineer sensors for the beta 2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. Finally, we demonstrated the application of M-SPOTIT and B2AR-SPOTall in detecting exogenously administered morphine, isoproterenol, and epinephrine in the mouse brain via locally injected viruses. The SPOTIT and SPOTall sensor design platform has the potential for unbiased agonist detection of many synthetic and endogenous neuromodulators across the brain.
Collapse
MESH Headings
- Animals
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Humans
- Mice
- HEK293 Cells
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/metabolism
- Isoproterenol/pharmacology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Morphine/pharmacology
- Brain/metabolism
- Brain/drug effects
- Brain/diagnostic imaging
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Biosensing Techniques/methods
Collapse
Affiliation(s)
- Kayla Kroning
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Noam Gannot
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI48109
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Aubrey Putansu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Guanwei Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Jennifer Sescil
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Jiaqi Shen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Avery Wilson
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Hailey Fiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
28
|
Wang W. Protein-Based Tools for Studying Neuromodulation. ACS Chem Biol 2024; 19:788-797. [PMID: 38581649 PMCID: PMC11129172 DOI: 10.1021/acschembio.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Neuromodulators play crucial roles in regulating neuronal activity and affecting various aspects of brain functions, including learning, memory, cognitive functions, emotional states, and pain modulation. In this Account, we describe our group's efforts in designing sensors and tools for studying neuromodulation. Our lab focuses on developing new classes of integrators that can detect neuromodulators across the whole brain while leaving a mark for further imaging analysis at high spatial resolution. Our lab also designed chemical- and light-dependent protein switches for controlling peptide activity to potentially modulate the endogenous receptors of the neuromodulatory system in order to study the causal effects of selective neuronal pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
29
|
Kalogriopoulos NA, Tei R, Yan Y, Ravalin M, Li Y, Ting A. Synthetic G protein-coupled receptors for programmable sensing and control of cell behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589622. [PMID: 38659921 PMCID: PMC11042292 DOI: 10.1101/2024.04.15.589622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery, and basic research. However, established technologies such as chimeric antigen receptors (CARs) can only detect immobilized antigens, have limited output scope, and lack built-in drug control. Here, we engineer synthetic G protein-coupled receptors (GPCRs) capable of driving a wide range of native or nonnative cellular processes in response to user-defined antigen. We achieve modular antigen gating by engineering and fusing a conditional auto-inhibitory domain onto GPCR scaffolds. Antigen binding to a fused nanobody relieves auto-inhibition and enables receptor activation by drug, thus generating Programmable Antigen-gated G protein-coupled Engineered Receptors (PAGERs). We create PAGERs responsive to more than a dozen biologically and therapeutically important soluble and cell surface antigens, in a single step, from corresponding nanobody binders. Different PAGER scaffolds permit antigen binding to drive transgene expression, real-time fluorescence, or endogenous G protein activation, enabling control of cytosolic Ca 2+ , lipid signaling, cAMP, and neuronal activity. Due to its modular design and generalizability, we expect PAGER to have broad utility in discovery and translational science.
Collapse
|
30
|
Jamalzadeh M, Cuniberto E, Huang Z, Feeley RM, Patel JC, Rice ME, Uichanco J, Shahrjerdi D. Toward robust quantification of dopamine and serotonin in mixtures using nano-graphitic carbon sensors. Analyst 2024; 149:2351-2362. [PMID: 38375597 DOI: 10.1039/d3an02086j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Monitoring the coordinated signaling of dopamine (DA) and serotonin (5-HT) is important for advancing our understanding of the brain. However, the co-detection and robust quantification of these signals at low concentrations is yet to be demonstrated. Here, we present the quantification of DA and 5-HT using nano-graphitic (NG) sensors together with fast-scan cyclic voltammetry (FSCV) employing an engineered N-shape potential waveform. Our method yields 6% error in quantifying DA and 5-HT analytes present in in vitro mixtures at concentrations below 100 nM. This advance is due to the electrochemical properties of NG sensors which, in combination with the engineered FSCV waveform, provided distinguishable cyclic voltammograms (CVs) for DA and 5-HT. We also demonstrate the generalizability of the prediction model across different NG sensors, which arises from the consistent voltammetric fingerprints produced by our NG sensors. Curiously, the proposed engineered waveform also improves the distinguishability of DA and 5-HT CVs obtained from traditional carbon fiber (CF) microelectrodes. Nevertheless, this improved distinguishability of CVs obtained from CF is inferior to that of NG sensors, arising from differences in the electrochemical properties of the sensor materials. Our findings demonstrate the potential of NG sensors and our proposed FSCV waveform for future brain studies.
Collapse
Affiliation(s)
- Moeid Jamalzadeh
- Electrical and Computer Engineering Department, New York University, Brooklyn, NY 11201, USA.
| | - Edoardo Cuniberto
- Electrical and Computer Engineering Department, New York University, Brooklyn, NY 11201, USA.
| | - Zhujun Huang
- Electrical and Computer Engineering Department, New York University, Brooklyn, NY 11201, USA.
| | - Ryan M Feeley
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jyoti C Patel
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joline Uichanco
- Ross School of Business, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Davood Shahrjerdi
- Electrical and Computer Engineering Department, New York University, Brooklyn, NY 11201, USA.
| |
Collapse
|
31
|
Wilmot JH, Diniz CRAF, Crestani AP, Puhger KR, Roshgadol J, Tian L, Wiltgen BJ. Phasic locus coeruleus activity enhances trace fear conditioning by increasing dopamine release in the hippocampus. eLife 2024; 12:RP91465. [PMID: 38592773 PMCID: PMC11003744 DOI: 10.7554/elife.91465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Locus coeruleus (LC) projections to the hippocampus play a critical role in learning and memory. However, the precise timing of LC-hippocampus communication during learning and which LC-derived neurotransmitters are important for memory formation in the hippocampus are currently unknown. Although the LC is typically thought to modulate neural activity via the release of norepinephrine, several recent studies have suggested that it may also release dopamine into the hippocampus and other cortical regions. In some cases, it appears that dopamine release from LC into the hippocampus may be more important for memory than norepinephrine. Here, we extend these data by characterizing the phasic responses of the LC and its projections to the dorsal hippocampus during trace fear conditioning in mice. We find that the LC and its projections to the hippocampus respond to task-relevant stimuli and that amplifying these responses with optogenetic stimulation can enhance long-term memory formation. We also demonstrate that LC activity increases both norepinephrine and dopamine content in the dorsal hippocampus and that the timing of hippocampal dopamine release during trace fear conditioning is similar to the timing of LC activity. Finally, we show that hippocampal dopamine is important for trace fear memory formation, while norepinephrine is not.
Collapse
Affiliation(s)
- Jacob H Wilmot
- Department of Psychology, University of California, DavisDavisUnited States
- Center for Neuroscience, University of California, DavisDavisUnited States
| | - Cassiano RAF Diniz
- Center for Neuroscience, University of California, DavisDavisUnited States
| | - Ana P Crestani
- Center for Neuroscience, University of California, DavisDavisUnited States
| | - Kyle R Puhger
- Department of Psychology, University of California, DavisDavisUnited States
- Center for Neuroscience, University of California, DavisDavisUnited States
| | - Jacob Roshgadol
- Center for Neuroscience, University of California, DavisDavisUnited States
- Department of Biomedical Engineering, University of California, DavisDavisUnited States
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, DavisDavisUnited States
| | - Brian Joseph Wiltgen
- Department of Psychology, University of California, DavisDavisUnited States
- Center for Neuroscience, University of California, DavisDavisUnited States
| |
Collapse
|
32
|
Harada M, Capdevila LS, Wilhelm M, Burdakov D, Patriarchi T. Stimulation of VTA dopamine inputs to LH upregulates orexin neuronal activity in a DRD2-dependent manner. eLife 2024; 12:RP90158. [PMID: 38567902 PMCID: PMC10990487 DOI: 10.7554/elife.90158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Dopamine and orexins (hypocretins) play important roles in regulating reward-seeking behaviors. It is known that hypothalamic orexinergic neurons project to dopamine neurons in the ventral tegmental area (VTA), where they can stimulate dopaminergic neuronal activity. Although there are reciprocal connections between dopaminergic and orexinergic systems, whether and how dopamine regulates the activity of orexin neurons is currently not known. Here we implemented an opto-Pavlovian task in which mice learn to associate a sensory cue with optogenetic dopamine neuron stimulation to investigate the relationship between dopamine release and orexin neuron activity in the lateral hypothalamus (LH). We found that dopamine release can be evoked in LH upon optogenetic stimulation of VTA dopamine neurons and is also naturally evoked by cue presentation after opto-Pavlovian learning. Furthermore, orexin neuron activity could also be upregulated by local stimulation of dopaminergic terminals in the LH in a way that is partially dependent on dopamine D2 receptors (DRD2). Our results reveal previously unknown orexinergic coding of reward expectation and unveil an orexin-regulatory axis mediated by local dopamine inputs in the LH.
Collapse
Affiliation(s)
- Masaya Harada
- Institute of Pharmacology and Toxicology, University of ZürichZürichSwitzerland
| | | | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of ZürichZürichSwitzerland
| | - Denis Burdakov
- Neuroscience Center Zürich, University and ETH ZürichZürichSwitzerland
- Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of ZürichZürichSwitzerland
- Neuroscience Center Zürich, University and ETH ZürichZürichSwitzerland
| |
Collapse
|
33
|
Deng F, Wan J, Li G, Dong H, Xia X, Wang Y, Li X, Zhuang C, Zheng Y, Liu L, Yan Y, Feng J, Zhao Y, Xie H, Li Y. Improved green and red GRAB sensors for monitoring spatiotemporal serotonin release in vivo. Nat Methods 2024; 21:692-702. [PMID: 38443508 PMCID: PMC11377854 DOI: 10.1038/s41592-024-02188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024]
Abstract
The serotonergic system plays important roles in both physiological and pathological processes, and is a therapeutic target for many psychiatric disorders. Although several genetically encoded GFP-based serotonin (5-HT) sensors were recently developed, their sensitivities and spectral profiles are relatively limited. To overcome these limitations, we optimized green fluorescent G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensors and developed a red fluorescent GRAB5-HT sensor. These sensors exhibit excellent cell surface trafficking and high specificity, sensitivity and spatiotemporal resolution, making them suitable for monitoring 5-HT dynamics in vivo. Besides recording subcortical 5-HT release in freely moving mice, we observed both uniform and gradient 5-HT release in the mouse dorsal cortex with mesoscopic imaging. Finally, we performed dual-color imaging and observed seizure-induced waves of 5-HT release throughout the cortex following calcium and endocannabinoid waves. In summary, these 5-HT sensors can offer valuable insights regarding the serotonergic system in both health and disease.
Collapse
Affiliation(s)
- Fei Deng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Hui Dong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing, China
| | - Yu Zheng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Laixin Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuqi Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulin Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
34
|
Braun D, Rosenberg AM, Rabaniam E, Haruvi R, Malamud D, Barbara R, Aiznkot T, Levavi-Sivan B, Kawashima T. High-resolution tracking of unconfined zebrafish behavior reveals stimulatory and anxiolytic effects of psilocybin. Mol Psychiatry 2024; 29:1046-1062. [PMID: 38233467 PMCID: PMC11176078 DOI: 10.1038/s41380-023-02391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Serotonergic psychedelics are emerging therapeutics for psychiatric disorders, yet their underlying mechanisms of action in the brain remain largely elusive. Here, we developed a wide-field behavioral tracking system for larval zebrafish and investigated the effects of psilocybin, a psychedelic serotonin receptor agonist. Machine learning analyses of precise body kinematics identified latent behavioral states reflecting spontaneous exploration, visually-driven rapid swimming, and irregular swim patterns following stress exposure. Using this method, we found that acute psilocybin treatment has two behavioral effects: [i] facilitation of spontaneous exploration ("stimulatory") and [ii] prevention of irregular swim patterns following stress exposure ("anxiolytic"). These effects differed from the effect of acute SSRI treatment and were rather similar to the effect of ketamine treatment. Neural activity imaging in the dorsal raphe nucleus suggested that psilocybin inhibits serotonergic neurons by activating local GABAergic neurons, consistent with psychedelic-induced suppression of serotonergic neurons in mammals. These findings pave the way for using larval zebrafish to elucidate neural mechanisms underlying the behavioral effects of serotonergic psychedelics.
Collapse
Affiliation(s)
- Dotan Braun
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
- The Jerusalem Mental Health Center, Jerusalem, Israel
| | - Ayelet M Rosenberg
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Elad Rabaniam
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Ravid Haruvi
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Dorel Malamud
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Rani Barbara
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Tomer Aiznkot
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, Israel
| | - Takashi Kawashima
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel.
| |
Collapse
|
35
|
Kim B, Ding W, Yang L, Chen Q, Mao J, Feng G, Choi JH, Shen S. Simultaneous two-photon imaging and wireless EEG recording in mice. Heliyon 2024; 10:e25910. [PMID: 38449613 PMCID: PMC10915345 DOI: 10.1016/j.heliyon.2024.e25910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background In vivo two-photon imaging is a reliable method with high spatial resolution that allows observation of individual neuron and dendritic activity longitudinally. Neurons in local brain regions can be influenced by global brain states such as levels of arousal and attention that change over relatively short time scales, such as minutes. As such, the scientific rigor of investigating regional neuronal activities could be enhanced by considering the global brain state. New method In order to assess the global brain state during in vivo two-photon imaging, CBRAIN (collective brain research platform aided by illuminating neural activity), a wireless EEG collecting and labeling device, was controlled by the same computer of two-photon microscope. In an experiment to explore neuronal responses to isoflurane anesthesia through two-photon imaging, we investigated whether the response of individual cells correlated with concurrent EEG changes induced by anesthesia. Results In two-photon imaging, calcium activities of the excitatory neurons in the primary somatosensory cortex disappeared in about 30s after to the initiation of isoflurane anesthesia. The simultaneously recorded EEG showed various transitional activity for about 7 min from the initiation of anesthesia and continued with burst and suppression alternating pattern thereafter. As such, there was a dissociation between excitatory neuron activity of the primary somatosensory cortex and the global brain activity under anesthesia. Comparison with existing methods Existing methods to combine two-photon and EEG recording used wired EEG recording. In this study, wireless EEG was used in conjunction with two-photon imaging, facilitated by CBRAIN. More importantly, built-in algorithms of the CBRAIN can automatically detect brain state such as sleep. The codes used for EEG classification are easy to use, with no prior experience required. Conclusion Simultaneous recording of wireless EEG and two-photon imaging provides a practical way to capture individual neuronal activities with respect to global brain state in an experimental set-up.
Collapse
Affiliation(s)
- Bowon Kim
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Weihua Ding
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Liuyue Yang
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA, USA
- Current address: Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianren Mao
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Shiqian Shen
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Privitera M, von Ziegler LM, Floriou-Servou A, Duss SN, Zhang R, Waag R, Leimbacher S, Sturman O, Roessler FK, Heylen A, Vermeiren Y, Van Dam D, De Deyn PP, Germain PL, Bohacek J. Noradrenaline release from the locus coeruleus shapes stress-induced hippocampal gene expression. eLife 2024; 12:RP88559. [PMID: 38477670 DOI: 10.7554/elife.88559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Exposure to an acute stressor triggers a complex cascade of neurochemical events in the brain. However, deciphering their individual impact on stress-induced molecular changes remains a major challenge. Here, we combine RNA sequencing with selective pharmacological, chemogenetic, and optogenetic manipulations to isolate the contribution of the locus coeruleus-noradrenaline (LC-NA) system to the acute stress response in mice. We reveal that NA release during stress exposure regulates a large and reproducible set of genes in the dorsal and ventral hippocampus via β-adrenergic receptors. For a smaller subset of these genes, we show that NA release triggered by LC stimulation is sufficient to mimic the stress-induced transcriptional response. We observe these effects in both sexes, and independent of the pattern and frequency of LC activation. Using a retrograde optogenetic approach, we demonstrate that hippocampus-projecting LC neurons directly regulate hippocampal gene expression. Overall, a highly selective set of astrocyte-enriched genes emerges as key targets of LC-NA activation, most prominently several subunits of protein phosphatase 1 (Ppp1r3c, Ppp1r3d, Ppp1r3g) and type II iodothyronine deiodinase (Dio2). These results highlight the importance of astrocytic energy metabolism and thyroid hormone signaling in LC-mediated hippocampal function and offer new molecular targets for understanding how NA impacts brain function in health and disease.
Collapse
Affiliation(s)
- Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Lukas M von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Sian N Duss
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Runzhong Zhang
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Sebastian Leimbacher
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Fabienne K Roessler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Annelies Heylen
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yannick Vermeiren
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
- Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Pierre-Luc Germain
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
- Laboratory of Statistical Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| |
Collapse
|
37
|
Doran PR, Fomin-Thunemann N, Tang RP, Balog D, Zimmerman B, Kilic K, Martin EA, Kura S, Fisher HP, Chabbott G, Herbert J, Rauscher BC, Jiang JX, Sakadzic S, Boas DA, Devor A, Chen IA, Thunemann M. Widefield in vivo imaging system with two fluorescence and two reflectance channels, a single sCMOS detector, and shielded illumination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566086. [PMID: 37986755 PMCID: PMC10659277 DOI: 10.1101/2023.11.07.566086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
SIGNIFICANCE Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale (mesoscopic) imaging of neuronal activity with fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. AIM Develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. APPROACH Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625nm LEDs positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. RESULTS We demonstrate performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake head-fixed mice with a curved crystal skull window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor GRABACh3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. CONCLUSIONS Our widefield microscope design with single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.
Collapse
|
38
|
Lv M, Cai R, Zhang R, Xia X, Li X, Wang Y, Wang H, Zeng J, Xue Y, Mao L, Li Y. An octopamine-specific GRAB sensor reveals a monoamine relay circuitry that boosts aversive learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584200. [PMID: 38559104 PMCID: PMC10979849 DOI: 10.1101/2024.03.09.584200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Octopamine (OA), analogous to norepinephrine in vertebrates, is an essential monoamine neurotransmitter in invertebrates that plays a significant role in various biological functions, including olfactory associative learning. However, the spatial and temporal dynamics of OA in vivo remain poorly understood due to limitations associated with the currently available methods used to detect it. To overcome these limitations, we developed a genetically encoded GPCR activation-based (GRAB) OA sensor called GRABOA1.0. This sensor is highly selective for OA and exhibits a robust and rapid increase in fluorescence in response to extracellular OA. Using GRABOA1.0, we monitored OA release in the Drosophila mushroom body (MB), the fly's learning center, and found that OA is released in response to both odor and shock stimuli in an aversive learning model. This OA release requires acetylcholine (ACh) released from Kenyon cells, signaling via nicotinic ACh receptors. Finally, we discovered that OA amplifies aversive learning behavior by augmenting dopamine-mediated punishment signals via Octβ1R in dopaminergic neurons, leading to alterations in synaptic plasticity within the MB. Thus, our new GRABOA1.0 sensor can be used to monitor OA release in real-time under physiological conditions, providing valuable insights into the cellular and circuit mechanisms that underlie OA signaling.
Collapse
Affiliation(s)
- Mingyue Lv
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Renzimo Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
39
|
Doszyn O, Dulski T, Zmorzynska J. Diving into the zebrafish brain: exploring neuroscience frontiers with genetic tools, imaging techniques, and behavioral insights. Front Mol Neurosci 2024; 17:1358844. [PMID: 38533456 PMCID: PMC10963419 DOI: 10.3389/fnmol.2024.1358844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
The zebrafish (Danio rerio) is increasingly used in neuroscience research. Zebrafish are relatively easy to maintain, and their high fecundity makes them suitable for high-throughput experiments. Their small, transparent embryos and larvae allow for easy microscopic imaging of the developing brain. Zebrafish also share a high degree of genetic similarity with humans, and are amenable to genetic manipulation techniques, such as gene knockdown, knockout, or knock-in, which allows researchers to study the role of specific genes relevant to human brain development, function, and disease. Zebrafish can also serve as a model for behavioral studies, including locomotion, learning, and social interactions. In this review, we present state-of-the-art methods to study the brain function in zebrafish, including genetic tools for labeling single neurons and neuronal circuits, live imaging of neural activity, synaptic dynamics and protein interactions in the zebrafish brain, optogenetic manipulation, and the use of virtual reality technology for behavioral testing. We highlight the potential of zebrafish for neuroscience research, especially regarding brain development, neuronal circuits, and genetic-based disorders and discuss its certain limitations as a model.
Collapse
Affiliation(s)
| | | | - J. Zmorzynska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Warsaw, Poland
| |
Collapse
|
40
|
Otanuly M, Kubitschke M, Masseck OA. A Bright Future? A Perspective on Class C GPCR Based Genetically Encoded Biosensors. ACS Chem Neurosci 2024; 15:889-897. [PMID: 38380648 PMCID: PMC10921406 DOI: 10.1021/acschemneuro.3c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
One of the major challenges in molecular neuroscience today is to accurately monitor neurotransmitters, neuromodulators, peptides, and various other biomolecules in the brain with high temporal and spatial resolution. Only a comprehensive understanding of neuromodulator dynamics, their release probability, and spatial distribution will unravel their ultimate role in cognition and behavior. This Perspective offers an overview of potential design strategies for class C GPCR-based biosensors. It briefly highlights current applications of GPCR-based biosensors, with a primary focus on class C GPCRs and their unique structural characteristics compared with other GPCR subfamilies. The discussion offers insights into plausible future design approaches for biosensor development targeting members of this specific GPCR subfamily. It is important to note that, at this stage, we are contemplating possibilities rather than presenting a concrete guide, as the pipeline is still under development.
Collapse
Affiliation(s)
- Margulan Otanuly
- Synthetische Biologie, Universität Bremen, Bremen 28359, Germany
| | | | | |
Collapse
|
41
|
Simpson EH, Akam T, Patriarchi T, Blanco-Pozo M, Burgeno LM, Mohebi A, Cragg SJ, Walton ME. Lights, fiber, action! A primer on in vivo fiber photometry. Neuron 2024; 112:718-739. [PMID: 38103545 PMCID: PMC10939905 DOI: 10.1016/j.neuron.2023.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Fiber photometry is a key technique for characterizing brain-behavior relationships in vivo. Initially, it was primarily used to report calcium dynamics as a proxy for neural activity via genetically encoded indicators. This generated new insights into brain functions including movement, memory, and motivation at the level of defined circuits and cell types. Recently, the opportunity for discovery with fiber photometry has exploded with the development of an extensive range of fluorescent sensors for biomolecules including neuromodulators and peptides that were previously inaccessible in vivo. This critical advance, combined with the new availability of affordable "plug-and-play" recording systems, has made monitoring molecules with high spatiotemporal precision during behavior highly accessible. However, while opening exciting new avenues for research, the rapid expansion in fiber photometry applications has occurred without coordination or consensus on best practices. Here, we provide a comprehensive guide to help end-users execute, analyze, and suitably interpret fiber photometry studies.
Collapse
Affiliation(s)
- Eleanor H Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, University and ETH Zürich, Zürich, Switzerland.
| | - Marta Blanco-Pozo
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lauren M Burgeno
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Li B, Cao Y, Yuan H, Yu Z, Miao S, Yang C, Gong Z, Xie W, Li C, Bai W, Tang W, Zhao D, Yu S. The crucial role of locus coeruleus noradrenergic neurons in the interaction between acute sleep disturbance and headache. J Headache Pain 2024; 25:31. [PMID: 38443795 PMCID: PMC10913606 DOI: 10.1186/s10194-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/07/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Both epidemiological and clinical studies have indicated that headache and sleep disturbances share a complex relationship. Although headache and sleep share common neurophysiological and anatomical foundations, the mechanism underlying their interaction remains poorly understood. The structures of the diencephalon and brainstem, particularly the locus coeruleus (LC), are the primary sites where the sleep and headache pathways intersect. To better understand the intricate nature of the relationship between headache and sleep, our study focused on investigating the role and function of noradrenergic neurons in the LC during acute headache and acute sleep disturbance. METHOD To explore the relationship between acute headache and acute sleep disturbance, we primarily employed nitroglycerin (NTG)-induced migraine-like headache and acute sleep deprivation (ASD) models. Initially, we conducted experiments to confirm that ASD enhances headache and that acute headache can lead to acute sleep disturbance. Subsequently, we examined the separate roles of the LC in sleep and headache. We observed the effects of drug-induced activation and inhibition and chemogenetic manipulation of LC noradrenergic neurons on ASD-induced headache facilitation and acute headache-related sleep disturbance. This approach enabled us to demonstrate the bidirectional function of LC noradrenergic neurons. RESULTS Our findings indicate that ASD facilitated the development of NTG-induced migraine-like headache, while acute headache affected sleep quality. Furthermore, activating the LC reduced the headache threshold and increased sleep latency, whereas inhibiting the LC had the opposite effect. Additional investigations demonstrated that activating LC noradrenergic neurons further intensified pain facilitation from ASD, while inhibiting these neurons reduced this pain facilitation. Moreover, activating LC noradrenergic neurons exacerbated the impact of acute headache on sleep quality, while inhibiting them alleviated this influence. CONCLUSION The LC serves as a significant anatomical and functional region in the interaction between acute sleep disturbance and acute headache. The involvement of LC noradrenergic neurons is pivotal in facilitating headache triggered by ASD and influencing the effects of headache on sleep quality.
Collapse
Affiliation(s)
- Bozhi Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Ya Cao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Huijuan Yuan
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhe Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Shuai Miao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Chunxiao Yang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- School of Medicine, Nankai University, Tianjin, China
| | - Zihua Gong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Wei Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Chenhao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Wenhao Bai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Wenjing Tang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Dengfa Zhao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China.
| |
Collapse
|
43
|
Silverman D, Chen C, Chang S, Bui L, Zhang Y, Raghavan R, Jiang A, Darmohray D, Sima J, Ding X, Li B, Ma C, Dan Y. Activation of locus coeruleus noradrenergic neurons rapidly drives homeostatic sleep pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582852. [PMID: 38496507 PMCID: PMC10942400 DOI: 10.1101/2024.02.29.582852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep, but the underlying mechanism remains unclear. Optogenetic activation of locus coeruleus noradrenergic neurons immediately increased sleep propensity following transient wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused rapid declines of locus coeruleus calcium activity and noradrenaline release. This suggests that functional fatigue of noradrenergic neurons, which reduces their wake-promoting capacity, contributes to sleep pressure.
Collapse
|
44
|
Qi H, Duan S, Xu Y, Zhang H. Frontiers and future perspectives of neuroimmunology. FUNDAMENTAL RESEARCH 2024; 4:206-217. [PMID: 38933499 PMCID: PMC11197808 DOI: 10.1016/j.fmre.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Neuroimmunology is an interdisciplinary branch of biomedical science that emerges from the intersection of studies on the nervous system and the immune system. The complex interplay between the two systems has long been recognized. Research efforts directed at the underlying functional interface and associated pathophysiology, however, have garnered attention only in recent decades. In this narrative review, we highlight significant advances in research on neuroimmune interplay and modulation. A particular focus is on early- and middle-career neuroimmunologists in China and their achievements in frontier areas of "neuroimmune interface", "neuro-endocrine-immune network and modulation", "neuroimmune interactions in diseases", "meningeal lymphatic and glymphatic systems in health and disease", and "tools and methodologies in neuroimmunology research". Key scientific questions and future directions for potential breakthroughs in neuroimmunology research are proposed.
Collapse
Affiliation(s)
- Hai Qi
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shumin Duan
- Faculty of Medicine and Pharmaceutical Sciences, Zhejiang University, Hangzhou 310014, China
| | - Yanying Xu
- Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China
| | - Hongliang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China
| |
Collapse
|
45
|
AbdEl-Raouf K, Farrag HSH, Rashed R, Ismail MA, El-Ganzuri MA, El-Sayed WM. New bithiophene derivative attenuated Alzheimer's disease induced by aluminum in a rat model via antioxidant activity and restoration of neuronal and synaptic transmission. J Trace Elem Med Biol 2024; 82:127352. [PMID: 38070385 DOI: 10.1016/j.jtemb.2023.127352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND One of the hypotheses that leads to an increased incidence of Alzheimer's disease (AD) is the accumulation of aluminum in the brain's frontal cortex. The present study aimed to evaluate the therapeutic role of a novel bithiophene derivative at two doses against AlCl3-induced AD in a rat model. METHODOLOGY Adult male rats were divided into six groups, 18 rats each. Group 1: naïve animals, group 2: animals received a daily oral administration of bithiophene dissolved in DMSO (1 mg/kg) for 30 days every other day, groups 3-6: animals received a daily oral administration of AlCl3 (100 mg/kg/day) for 45 consecutive days. Groups 4 and 5 received an oral administration of low or high dose of the bithiophene (0.5 or 1 mg/kg, respectively). Group 6; Animals were treated with a daily oral dose of memantine (20 mg/kg) for 30 consecutive days. MAIN FINDINGS Al disturbed the antioxidant milieu, elevated the lipid peroxidation, and depleted the antioxidants. It also disturbed the synaptic neurotransmission by elevating the activities of acetylcholine esterase and monoamine oxidase resulting in the depletion of dopamine and serotonin and accumulation of glutamate and norepinephrine. Al also deteriorated the expression of genes involved in apoptosis and the production of amyloid-β plaques as well as phosphorylation of tau. The new bithiophene at the low dose reversed most of the previous deleterious effects of aluminum in the cerebral cortex and was in many instances superior to the reference drug; memantine. CONCLUSION Taking together, the bithiophene modulated the AD etiology through antioxidant activity, prevention of neuronal and synaptic loss, and probably mitigating the formation of amyloid-β plaques and phosphorylation of tau.
Collapse
Affiliation(s)
- Kholoud AbdEl-Raouf
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | | | - Rashed Rashed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | - Mohamed A Ismail
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Monir A El-Ganzuri
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt.
| |
Collapse
|
46
|
Wait SJ, Expòsit M, Lin S, Rappleye M, Lee JD, Colby SA, Torp L, Asencio A, Smith A, Regnier M, Moussavi-Harami F, Baker D, Kim CK, Berndt A. Machine learning-guided engineering of genetically encoded fluorescent calcium indicators. NATURE COMPUTATIONAL SCIENCE 2024; 4:224-236. [PMID: 38532137 DOI: 10.1038/s43588-024-00611-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
Here we used machine learning to engineer genetically encoded fluorescent indicators, protein-based sensors critical for real-time monitoring of biological activity. We used machine learning to predict the outcomes of sensor mutagenesis by analyzing established libraries that link sensor sequences to functions. Using the GCaMP calcium indicator as a scaffold, we developed an ensemble of three regression models trained on experimentally derived GCaMP mutation libraries. The trained ensemble performed an in silico functional screen on 1,423 novel, uncharacterized GCaMP variants. As a result, we identified the ensemble-derived GCaMP (eGCaMP) variants, eGCaMP and eGCaMP+, which achieve both faster kinetics and larger ∆F/F0 responses upon stimulation than previously published fast variants. Furthermore, we identified a combinatorial mutation with extraordinary dynamic range, eGCaMP2+, which outperforms the tested sixth-, seventh- and eighth-generation GCaMPs. These findings demonstrate the value of machine learning as a tool to facilitate the efficient engineering of proteins for desired biophysical characteristics.
Collapse
Affiliation(s)
- Sarah J Wait
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Marc Expòsit
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sophia Lin
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Michael Rappleye
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Justin Daho Lee
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Samuel A Colby
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Lily Torp
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Anthony Asencio
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Annette Smith
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Michael Regnier
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Farid Moussavi-Harami
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Christina K Kim
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Andre Berndt
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA.
| |
Collapse
|
47
|
Haruwaka K, Ying Y, Liang Y, Umpierre AD, Yi MH, Kremen V, Chen T, Xie T, Qi F, Zhao S, Zheng J, Liu YU, Dong H, Worrell GA, Wu LJ. Microglia enhance post-anesthesia neuronal activity by shielding inhibitory synapses. Nat Neurosci 2024; 27:449-461. [PMID: 38177340 PMCID: PMC10960525 DOI: 10.1038/s41593-023-01537-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Microglia are resident immune cells of the central nervous system and play key roles in brain homeostasis. During anesthesia, microglia increase their dynamic process surveillance and interact more closely with neurons. However, the functional significance of microglial process dynamics and neuronal interaction under anesthesia is largely unknown. Using in vivo two-photon imaging in mice, we show that microglia enhance neuronal activity after the cessation of isoflurane anesthesia. Hyperactive neuron somata are contacted directly by microglial processes, which specifically colocalize with GABAergic boutons. Electron-microscopy-based synaptic reconstruction after two-photon imaging reveals that, during anesthesia, microglial processes enter into the synaptic cleft to shield GABAergic inputs. Microglial ablation or loss of microglial β2-adrenergic receptors prevents post-anesthesia neuronal hyperactivity. Our study demonstrates a previously unappreciated function of microglial process dynamics, which enable microglia to transiently boost post-anesthesia neuronal activity by physically shielding inhibitory inputs.
Collapse
Affiliation(s)
| | - Yanlu Ying
- Department of Anesthesiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
| | - Yue Liang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tao Xie
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Fangfang Qi
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Yong U Liu
- Department of Anesthesiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
48
|
Rohner VL, Lamothe-Molina PJ, Patriarchi T. Engineering, applications, and future perspectives of GPCR-based genetically encoded fluorescent indicators for neuromodulators. J Neurochem 2024; 168:163-184. [PMID: 38288673 DOI: 10.1111/jnc.16045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024]
Abstract
This review explores the evolving landscape of G-protein-coupled receptor (GPCR)-based genetically encoded fluorescent indicators (GEFIs), with a focus on their development, structural components, engineering strategies, and applications. We highlight the unique features of this indicator class, emphasizing the importance of both the sensing domain (GPCR structure and activation mechanism) and the reporting domain (circularly permuted fluorescent protein (cpFP) structure and fluorescence modulation). Further, we discuss indicator engineering approaches, including the selection of suitable cpFPs and expression systems. Additionally, we showcase the diversity and flexibility of their application by presenting a summary of studies where such indicators were used. Along with all the advantages, we also focus on the current limitations as well as common misconceptions that arise when using these indicators. Finally, we discuss future directions in indicator engineering, including strategies for screening with increased throughput, optimization of the ligand-binding properties, structural insights, and spectral diversity.
Collapse
Affiliation(s)
- Valentin Lu Rohner
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Majewska A, Le L, Feidler A, Li H, Kara-Pabani K, Lamantia C, O'Banion MK. Noradrenergic signaling controls Alzheimer's disease pathology via activation of microglial β2 adrenergic receptors. RESEARCH SQUARE 2024:rs.3.rs-3976896. [PMID: 38464247 PMCID: PMC10925421 DOI: 10.21203/rs.3.rs-3976896/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Norepinephrine (NE) is a potent anti-inflammatory agent in the brain. In Alzheimer's disease (AD), the loss of NE signaling heightens neuroinflammation and exacerbates amyloid pathology. NE inhibits surveillance activity of microglia, the brain's resident immune cells, via their β2 adrenergic receptors (β2ARs). Here, we investigate the role of microglial β2AR signaling in AD pathology in the 5xFAD mouse model of AD. We found that loss of cortical NE projections preceded the degeneration of NE-producing neurons and that microglia in 5xFAD mice, especially those microglia that were associated with plaques, significantly downregulated β2AR gene expression early in amyloid pathology. Importantly, dampening microglial β2AR signaling worsened plaque load and the associated neuritic damage, while stimulating microglial β2AR signaling attenuated amyloid pathology. Our results suggest that microglial β2AR could be explored as a potential therapeutic target to modify AD pathology.
Collapse
Affiliation(s)
| | | | | | - Herman Li
- University of Rochester Medical Center
| | | | | | | |
Collapse
|
50
|
Liu Q, Luo X, Liang Z, Qin D, Xu M, Wang M, Guo W. Coordination between circadian neural circuit and intracellular molecular clock ensures rhythmic activation of adult neural stem cells. Proc Natl Acad Sci U S A 2024; 121:e2318030121. [PMID: 38346182 PMCID: PMC10895264 DOI: 10.1073/pnas.2318030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The circadian clock throughout the day organizes the activity of neural stem cells (NSCs) in the dentate gyrus (DG) of adult hippocampus temporally. However, it is still unclear whether and how circadian signals from the niches contribute to daily rhythmic variation of NSC activation. Here, we show that norepinephrinergic (NEergic) projections from the locus coeruleus (LC), a brain arousal system, innervate into adult DG, where daily rhythmic release of norepinephrine (NE) from the LC NEergic neurons controlled circadian variation of NSC activation through β3-adrenoceptors. Disrupted circadian rhythmicity by acute sleep deprivation leads to transient NSC overactivation and NSC pool exhaustion over time, which is effectively ameliorated by the inhibition of the LC NEergic neuronal activity or β3-adrenoceptors-mediated signaling. Finally, we demonstrate that NE/β3-adrenoceptors-mediated signaling regulates NSC activation through molecular clock BMAL1. Therefore, our study unravels that adult NSCs precisely coordinate circadian neural circuit and intrinsic molecular circadian clock to adapt their cellular behavior across the day.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Dezhe Qin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| |
Collapse
|