1
|
Coomer CE, Naumova D, Talay M, Zolyomi B, Snell NJ, Sorkaç A, Chanchu JM, Cheng J, Roman I, Li J, Robson D, McLean DL, Barnea G, Halpern ME. Transsynaptic labeling and transcriptional control of zebrafish neural circuits. Nat Neurosci 2025; 28:189-200. [PMID: 39702668 DOI: 10.1038/s41593-024-01815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/30/2024] [Indexed: 12/21/2024]
Abstract
Deciphering the connectome, the ensemble of synaptic connections that underlie brain function, is a central goal of neuroscience research. Here we report the in vivo mapping of connections between presynaptic and postsynaptic partners in zebrafish, by adapting the trans-Tango genetic approach that was first developed for anterograde transsynaptic tracing in Drosophila. Neural connections were visualized between synaptic partners in larval retina, brain and spinal cord and followed over development. The specificity of labeling was corroborated by functional experiments in which optogenetic activation of presynaptic spinal cord interneurons elicited responses in known motor neuronal postsynaptic targets, as measured by trans-Tango-dependent expression of a genetically encoded calcium indicator or by electrophysiology. Transsynaptic signaling through trans-Tango reveals synaptic connections in the zebrafish nervous system, providing a valuable in vivo tool to monitor and interrogate neural circuits over time.
Collapse
Affiliation(s)
- Cagney E Coomer
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Daria Naumova
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Mustafa Talay
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Bence Zolyomi
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Nathaniel J Snell
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Altar Sorkaç
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Jean Michel Chanchu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Ji Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ivana Roman
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jennifer Li
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Drew Robson
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Baier H, Scott EK. The Visual Systems of Zebrafish. Annu Rev Neurosci 2024; 47:255-276. [PMID: 38663429 DOI: 10.1146/annurev-neuro-111020-104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The zebrafish visual system has become a paradigmatic preparation for behavioral and systems neuroscience. Around 40 types of retinal ganglion cells (RGCs) serve as matched filters for stimulus features, including light, optic flow, prey, and objects on a collision course. RGCs distribute their signals via axon collaterals to 12 retinorecipient areas in forebrain and midbrain. The major visuomotor hub, the optic tectum, harbors nine RGC input layers that combine information on multiple features. The retinotopic map in the tectum is locally adapted to visual scene statistics and visual subfield-specific behavioral demands. Tectal projections to premotor centers are topographically organized according to behavioral commands. The known connectivity in more than 20 processing streams allows us to dissect the cellular basis of elementary perceptual and cognitive functions. Visually evoked responses, such as prey capture or loom avoidance, are controlled by dedicated multistation pathways that-at least in the larva-resemble labeled lines. This architecture serves the neuronal code's purpose of driving adaptive behavior.
Collapse
Affiliation(s)
- Herwig Baier
- Department of Genes-Circuits-Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany;
| | - Ethan K Scott
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Wullimann MF, Mokayes N, Shainer I, Kuehn E, Baier H. Genoarchitectonics of the larval zebrafish diencephalon. J Comp Neurol 2024; 532:e25549. [PMID: 37983970 DOI: 10.1002/cne.25549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/15/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
The brain is spatially organized into subdivisions, nuclei and areas, which often correspond to functional and developmental units. A segmentation of brain regions in the form of a consensus atlas facilitates mechanistic studies and is a prerequisite for sharing information among neuroanatomists. Gene expression patterns objectively delineate boundaries between brain regions and provide information about their developmental and evolutionary histories. To generate a detailed molecular map of the larval zebrafish diencephalon, we took advantage of the Max Planck Zebrafish Brain (mapzebrain) atlas, which aligns hundreds of transcript and transgene expression patterns in a shared coordinate system. Inspection and co-visualization of close to 50 marker genes have allowed us to resolve the tripartite prosomeric scaffold of the diencephalon at unprecedented resolution. This approach clarified the genoarchitectonic partitioning of the alar diencephalon into pretectum (alar part of prosomere P1), thalamus (alar part of prosomere P2, with habenula and pineal complex), and prethalamus (alar part of prosomere P3). We further identified the region of the nucleus of the medial longitudinal fasciculus, as well as the posterior and anterior parts of the posterior tuberculum, as molecularly distinct basal parts of prosomeres 1, 2, and 3, respectively. Some of the markers examined allowed us to locate glutamatergic, GABAergic, dopaminergic, serotoninergic, and various neuropeptidergic domains in the larval zebrafish diencephalon. Our molecular neuroanatomical approach has thus (1) yielded an objective and internally consistent interpretation of the prosomere boundaries within the zebrafish forebrain; has (2) produced a list of markers, which in sparse combinations label the subdivisions of the diencephalon; and is (3) setting the stage for further functional and developmental studies in this vertebrate brain.
Collapse
Affiliation(s)
- Mario F Wullimann
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-University (LMU Munich), Martinsried, Germany
| | - Nouwar Mokayes
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Inbal Shainer
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Enrico Kuehn
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Herwig Baier
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| |
Collapse
|
4
|
Jia Q, Liu Y, Lv S, Wang Y, Jiao P, Xu W, Xu Z, Wang M, Cai X. Wireless closed-loop deep brain stimulation using microelectrode array probes. J Zhejiang Univ Sci B 2024; 25:803-823. [PMID: 39420519 PMCID: PMC11494161 DOI: 10.1631/jzus.b2300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/25/2023] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Jiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China. ,
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. ,
| |
Collapse
|
5
|
Ali MA, Lischka K, Preuss SJ, Trivedi CA, Bollmann JH. A synaptic corollary discharge signal suppresses midbrain visual processing during saccade-like locomotion. Nat Commun 2023; 14:7592. [PMID: 37996414 PMCID: PMC10667368 DOI: 10.1038/s41467-023-43255-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
In motor control, the brain not only sends motor commands to the periphery, but also generates concurrent internal signals known as corollary discharge (CD) that influence sensory information processing around the time of movement. CD signals are important for identifying sensory input arising from self-motion and to compensate for it, but the underlying mechanisms remain unclear. Using whole-cell patch clamp recordings from neurons in the zebrafish optic tectum, we discovered an inhibitory synaptic signal, temporally locked to spontaneous and visually driven locomotion. This motor-related inhibition was appropriately timed to counteract visually driven excitatory input arising from the fish's own motion, and transiently suppressed tectal spiking activity. High-resolution calcium imaging revealed localized motor-related signals in the tectal neuropil and the upstream torus longitudinalis, suggesting that CD enters the tectum via this pathway. Together, our results show how visual processing is suppressed during self-motion by motor-related phasic inhibition. This may help explain perceptual saccadic suppression observed in many species.
Collapse
Affiliation(s)
- Mir Ahsan Ali
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina Lischka
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Stephanie J Preuss
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Springer Nature Group, Heidelberg, Germany
| | - Chintan A Trivedi
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Dept Cell and Developmental Biology, University College London, London, UK
| | - Johann H Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
- Bernstein Center Freiburg, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
6
|
Sherman S, Arnold-Ammer I, Schneider MW, Kawakami K, Baier H. Retina-derived signals control pace of neurogenesis in visual brain areas but not circuit assembly. Nat Commun 2023; 14:6020. [PMID: 37758715 PMCID: PMC10533834 DOI: 10.1038/s41467-023-40749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Brain development is orchestrated by both innate and experience-dependent mechanisms, but their relative contributions are difficult to disentangle. Here we asked if and how central visual areas are altered in a vertebrate brain depleted of any and all signals from retinal ganglion cells throughout development. We transcriptionally profiled neurons in pretectum, thalamus and other retinorecipient areas of larval zebrafish and searched for changes in lakritz mutants that lack all retinal connections. Although individual genes are dysregulated, the complete set of 77 neuronal types develops in apparently normal proportions, at normal locations, and along normal differentiation trajectories. Strikingly, the cell-cycle exits of proliferating progenitors in these areas are delayed, and a greater fraction of early postmitotic precursors remain uncommitted or are diverted to a pre-glial fate. Optogenetic stimulation targeting groups of neurons normally involved in processing visual information evokes behaviors indistinguishable from wildtype. In conclusion, we show that signals emitted by retinal axons influence the pace of neurogenesis in visual brain areas, but do not detectably affect the specification or wiring of downstream neurons.
Collapse
Affiliation(s)
- Shachar Sherman
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Irene Arnold-Ammer
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Martin W Schneider
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
7
|
Whyland KL, Masterson SP, Slusarczyk AS, Bickford ME. Synaptic properties of mouse tecto-parabigeminal pathways. Front Syst Neurosci 2023; 17:1181052. [PMID: 37251004 PMCID: PMC10213440 DOI: 10.3389/fnsys.2023.1181052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
The superior colliculus (SC) is a critical hub for the generation of visually-evoked orienting and defensive behaviors. Among the SC's myriad downstream targets is the parabigeminal nucleus (PBG), the mammalian homolog of the nucleus isthmi, which has been implicated in motion processing and the production of defensive behaviors. The inputs to the PBG are thought to arise exclusively from the SC but little is known regarding the precise synaptic relationships linking the SC to the PBG. In the current study, we use optogenetics as well as viral tracing and electron microscopy in mice to better characterize the anatomical and functional properties of the SC-PBG circuit, as well as the morphological and ultrastructural characteristics of neurons residing in the PBG. We characterized GABAergic SC-PBG projections (that do not contain parvalbumin) and glutamatergic SC-PBG projections (which include neurons that contain parvalbumin). These two terminal populations were found to converge on different morphological populations of PBG neurons and elicit opposing postsynaptic effects. Additionally, we identified a population of non-tectal GABAergic terminals in the PBG that partially arise from neurons in the surrounding tegmentum, as well as several organizing principles that divide the nucleus into anatomically distinct regions and preserve a coarse retinotopy inherited from its SC-derived inputs. These studies provide an essential first step toward understanding how PBG circuits contribute to the initiation of behavior in response to visual signals.
Collapse
Affiliation(s)
| | | | | | - Martha E. Bickford
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
8
|
Coomer C, Naumova D, Talay M, Zolyomi B, Snell N, Sorkac A, Chanchu JM, Cheng J, Roman I, Li J, Robson D, Barnea G, Halpern ME. Transsynaptic labeling and transcriptional control of zebrafish neural circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535421. [PMID: 37066422 PMCID: PMC10103993 DOI: 10.1101/2023.04.03.535421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Deciphering the connectome, the ensemble of synaptic connections that underlie brain function is a central goal of neuroscience research. The trans-Tango genetic approach, initially developed for anterograde transsynaptic tracing in Drosophila, can be used to map connections between presynaptic and postsynaptic partners and to drive gene expression in target neurons. Here, we describe the successful adaptation of trans-Tango to visualize neural connections in a living vertebrate nervous system, that of the zebrafish. Connections were validated between synaptic partners in the larval retina and brain. Results were corroborated by functional experiments in which optogenetic activation of retinal ganglion cells elicited responses in neurons of the optic tectum, as measured by trans-Tango-dependent expression of a genetically encoded calcium indicator. Transsynaptic signaling through trans-Tango reveals predicted as well as previously undescribed synaptic connections, providing a valuable in vivo tool to monitor and interrogate neural circuits over time.
Collapse
|
9
|
Hasani H, Sun J, Zhu SI, Rong Q, Willomitzer F, Amor R, McConnell G, Cossairt O, Goodhill GJ. Whole-brain imaging of freely-moving zebrafish. Front Neurosci 2023; 17:1127574. [PMID: 37139528 PMCID: PMC10150962 DOI: 10.3389/fnins.2023.1127574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
One of the holy grails of neuroscience is to record the activity of every neuron in the brain while an animal moves freely and performs complex behavioral tasks. While important steps forward have been taken recently in large-scale neural recording in rodent models, single neuron resolution across the entire mammalian brain remains elusive. In contrast the larval zebrafish offers great promise in this regard. Zebrafish are a vertebrate model with substantial homology to the mammalian brain, but their transparency allows whole-brain recordings of genetically-encoded fluorescent indicators at single-neuron resolution using optical microscopy techniques. Furthermore zebrafish begin to show a complex repertoire of natural behavior from an early age, including hunting small, fast-moving prey using visual cues. Until recently work to address the neural bases of these behaviors mostly relied on assays where the fish was immobilized under the microscope objective, and stimuli such as prey were presented virtually. However significant progress has recently been made in developing brain imaging techniques for zebrafish which are not immobilized. Here we discuss recent advances, focusing particularly on techniques based on light-field microscopy. We also draw attention to several important outstanding issues which remain to be addressed to increase the ecological validity of the results obtained.
Collapse
Affiliation(s)
- Hamid Hasani
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States
| | - Jipeng Sun
- Department of Computer Science, Northwestern University, Evanston, IL, United States
| | - Shuyu I. Zhu
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Qiangzhou Rong
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Florian Willomitzer
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, United States
| | - Rumelo Amor
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gail McConnell
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Oliver Cossairt
- Department of Computer Science, Northwestern University, Evanston, IL, United States
| | - Geoffrey J. Goodhill
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
10
|
Fahimipour AK, Gil MA, Celis MR, Hein GF, Martin BT, Hein AM. Wild animals suppress the spread of socially transmitted misinformation. Proc Natl Acad Sci U S A 2023; 120:e2215428120. [PMID: 36976767 PMCID: PMC10083541 DOI: 10.1073/pnas.2215428120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Understanding the mechanisms by which information and misinformation spread through groups of individual actors is essential to the prediction of phenomena ranging from coordinated group behaviors to misinformation epidemics. Transmission of information through groups depends on the rules that individuals use to transform the perceived actions of others into their own behaviors. Because it is often not possible to directly infer decision-making strategies in situ, most studies of behavioral spread assume that individuals make decisions by pooling or averaging the actions or behavioral states of neighbors. However, whether individuals may instead adopt more sophisticated strategies that exploit socially transmitted information, while remaining robust to misinformation, is unknown. Here, we study the relationship between individual decision-making and misinformation spread in groups of wild coral reef fish, where misinformation occurs in the form of false alarms that can spread contagiously through groups. Using automated visual field reconstruction of wild animals, we infer the precise sequences of socially transmitted visual stimuli perceived by individuals during decision-making. Our analysis reveals a feature of decision-making essential for controlling misinformation spread: dynamic adjustments in sensitivity to socially transmitted cues. This form of dynamic gain control can be achieved by a simple and biologically widespread decision-making circuit, and it renders individual behavior robust to natural fluctuations in misinformation exposure.
Collapse
Affiliation(s)
- Ashkaan K. Fahimipour
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL33431
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA95060
| | - Michael A. Gil
- Department of Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, CO80309
| | - Maria Rosa Celis
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA95060
| | | | - Benjamin T. Martin
- Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Andrew M. Hein
- Department of Computational Biology, Cornell University, Ithaca, NY14850
| |
Collapse
|
11
|
Fenk LA, Riquelme JL, Laurent G. Interhemispheric competition during sleep. Nature 2023; 616:312-318. [PMID: 36949193 PMCID: PMC10097603 DOI: 10.1038/s41586-023-05827-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023]
Abstract
Our understanding of the functions and mechanisms of sleep remains incomplete, reflecting their increasingly evident complexity1-3. Likewise, studies of interhemispheric coordination during sleep4-6 are often hard to connect precisely to known sleep circuits and mechanisms. Here, by recording from the claustra of sleeping bearded dragons (Pogona vitticeps), we show that, although the onsets and offsets of Pogona rapid-eye-movement (REMP) and slow-wave sleep are coordinated bilaterally, these two sleep states differ markedly in their inter-claustral coordination. During slow-wave sleep, the claustra produce sharp-wave ripples independently of one another, showing no coordination. By contrast, during REMP sleep, the potentials produced by the two claustra are precisely coordinated in amplitude and time. These signals, however, are not synchronous: one side leads the other by about 20 ms, with the leading side switching typically once per REMP episode or in between successive episodes. The leading claustrum expresses the stronger activity, suggesting bilateral competition. This competition does not occur directly between the two claustra or telencephalic hemispheres. Rather, it occurs in the midbrain and depends on the integrity of a GABAergic (γ-aminobutyric-acid-producing) nucleus of the isthmic complex, which exists in all vertebrates and is known in birds to underlie bottom-up attention and gaze control. These results reveal that a winner-take-all-type competition exists between the two sides of the brain of Pogona, which originates in the midbrain and has precise consequences for claustrum activity and coordination during REMP sleep.
Collapse
Affiliation(s)
- Lorenz A Fenk
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| | - Juan Luis Riquelme
- Max Planck Institute for Brain Research, Frankfurt, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
12
|
Zhu SI, Goodhill GJ. From perception to behavior: The neural circuits underlying prey hunting in larval zebrafish. Front Neural Circuits 2023; 17:1087993. [PMID: 36817645 PMCID: PMC9928868 DOI: 10.3389/fncir.2023.1087993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
A key challenge for neural systems is to extract relevant information from the environment and make appropriate behavioral responses. The larval zebrafish offers an exciting opportunity for studying these sensing processes and sensory-motor transformations. Prey hunting is an instinctual behavior of zebrafish that requires the brain to extract and combine different attributes of the sensory input and form appropriate motor outputs. Due to its small size and transparency the larval zebrafish brain allows optical recording of whole-brain activity to reveal the neural mechanisms involved in prey hunting and capture. In this review we discuss how the larval zebrafish brain processes visual information to identify and locate prey, the neural circuits governing the generation of motor commands in response to prey, how hunting behavior can be modulated by internal states and experience, and some outstanding questions for the field.
Collapse
Affiliation(s)
- Shuyu I. Zhu
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | | |
Collapse
|
13
|
Blevins AS, Bassett DS, Scott EK, Vanwalleghem GC. From calcium imaging to graph topology. Netw Neurosci 2022; 6:1125-1147. [PMID: 38800465 PMCID: PMC11117109 DOI: 10.1162/netn_a_00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 05/29/2024] Open
Abstract
Systems neuroscience is facing an ever-growing mountain of data. Recent advances in protein engineering and microscopy have together led to a paradigm shift in neuroscience; using fluorescence, we can now image the activity of every neuron through the whole brain of behaving animals. Even in larger organisms, the number of neurons that we can record simultaneously is increasing exponentially with time. This increase in the dimensionality of the data is being met with an explosion of computational and mathematical methods, each using disparate terminology, distinct approaches, and diverse mathematical concepts. Here we collect, organize, and explain multiple data analysis techniques that have been, or could be, applied to whole-brain imaging, using larval zebrafish as an example model. We begin with methods such as linear regression that are designed to detect relations between two variables. Next, we progress through network science and applied topological methods, which focus on the patterns of relations among many variables. Finally, we highlight the potential of generative models that could provide testable hypotheses on wiring rules and network progression through time, or disease progression. While we use examples of imaging from larval zebrafish, these approaches are suitable for any population-scale neural network modeling, and indeed, to applications beyond systems neuroscience. Computational approaches from network science and applied topology are not limited to larval zebrafish, or even to systems neuroscience, and we therefore conclude with a discussion of how such methods can be applied to diverse problems across the biological sciences.
Collapse
Affiliation(s)
- Ann S. Blevins
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S. Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Ethan K. Scott
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, Australia
| | - Gilles C. Vanwalleghem
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Lancer BH, Evans BJE, Fabian JM, O'Carroll DC, Wiederman SD. Preattentive facilitation of target trajectories in a dragonfly visual neuron. Commun Biol 2022; 5:829. [PMID: 35982305 PMCID: PMC9388622 DOI: 10.1038/s42003-022-03798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
The ability to pursue targets in visually cluttered and distraction-rich environments is critical for predators such as dragonflies. Previously, we identified Centrifugal Small-Target Motion Detector 1 (CSTMD1), a dragonfly visual neuron likely involved in such target-tracking behaviour. CSTMD1 exhibits facilitated responses to targets moving along a continuous trajectory. Moreover, CSTMD1 competitively selects a single target out of a pair. Here, we conducted in vivo, intracellular recordings from CSTMD1 to examine the interplay between facilitation and selection, in response to the presentation of paired targets. We find that neuronal responses to both individual trajectories of simultaneous, paired targets are facilitated, rather than being constrained to the single, selected target. Additionally, switches in selection elicit suppression which is likely an important attribute underlying target pursuit. However, binocular experiments reveal these results are constrained to paired targets within the same visual hemifield, while selection of a target in one visual hemifield establishes ocular dominance that prevents facilitation or response to contralaterally presented targets. These results reveal that the dragonfly brain preattentively represents more than one target trajectory, to balance between attentional flexibility and resistance against distraction. A dragonfly visual neuron independently facilitates responses to rival targets within the same visual field, mediating selective attention.
Collapse
Affiliation(s)
- Benjamin H Lancer
- School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - Bernard J E Evans
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Joseph M Fabian
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | | | | |
Collapse
|
15
|
Kappel JM, Förster D, Slangewal K, Shainer I, Svara F, Donovan JC, Sherman S, Januszewski M, Baier H, Larsch J. Visual recognition of social signals by a tectothalamic neural circuit. Nature 2022; 608:146-152. [PMID: 35831500 PMCID: PMC9352588 DOI: 10.1038/s41586-022-04925-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/02/2022] [Indexed: 12/23/2022]
Abstract
Social affiliation emerges from individual-level behavioural rules that are driven by conspecific signals1-5. Long-distance attraction and short-distance repulsion, for example, are rules that jointly set a preferred interanimal distance in swarms6-8. However, little is known about their perceptual mechanisms and executive neural circuits3. Here we trace the neuronal response to self-like biological motion9,10, a visual trigger for affiliation in developing zebrafish2,11. Unbiased activity mapping and targeted volumetric two-photon calcium imaging revealed 21 activity hotspots distributed throughout the brain as well as clustered biological-motion-tuned neurons in a multimodal, socially activated nucleus of the dorsal thalamus. Individual dorsal thalamus neurons encode local acceleration of visual stimuli mimicking typical fish kinetics but are insensitive to global or continuous motion. Electron microscopic reconstruction of dorsal thalamus neurons revealed synaptic input from the optic tectum and projections into hypothalamic areas with conserved social function12-14. Ablation of the optic tectum or dorsal thalamus selectively disrupted social attraction without affecting short-distance repulsion. This tectothalamic pathway thus serves visual recognition of conspecifics, and dissociates neuronal control of attraction from repulsion during social affiliation, revealing a circuit underpinning collective behaviour.
Collapse
Affiliation(s)
- Johannes M Kappel
- Max Planck Institute for Biological Intelligence (formerly Max Planck Institute of Neurobiology), Planegg, Germany
| | - Dominique Förster
- Max Planck Institute for Biological Intelligence (formerly Max Planck Institute of Neurobiology), Planegg, Germany
| | - Katja Slangewal
- Max Planck Institute for Biological Intelligence (formerly Max Planck Institute of Neurobiology), Planegg, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Inbal Shainer
- Max Planck Institute for Biological Intelligence (formerly Max Planck Institute of Neurobiology), Planegg, Germany
| | - Fabian Svara
- Max Planck Institute for Biological Intelligence (formerly Max Planck Institute of Neurobiology), Planegg, Germany
- Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Joseph C Donovan
- Max Planck Institute for Biological Intelligence (formerly Max Planck Institute of Neurobiology), Planegg, Germany
| | - Shachar Sherman
- Max Planck Institute for Biological Intelligence (formerly Max Planck Institute of Neurobiology), Planegg, Germany
| | | | - Herwig Baier
- Max Planck Institute for Biological Intelligence (formerly Max Planck Institute of Neurobiology), Planegg, Germany.
| | - Johannes Larsch
- Max Planck Institute for Biological Intelligence (formerly Max Planck Institute of Neurobiology), Planegg, Germany.
| |
Collapse
|
16
|
Ecological decision-making: From circuit elements to emerging principles. Curr Opin Neurobiol 2022; 74:102551. [DOI: 10.1016/j.conb.2022.102551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023]
|
17
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
18
|
Tallafuss A, Stednitz SJ, Voeun M, Levichev A, Larsch J, Eisen J, Washbourne P. Egr1 Is Necessary for Forebrain Dopaminergic Signaling during Social Behavior. eNeuro 2022; 9:ENEURO.0035-22.2022. [PMID: 35346959 PMCID: PMC8994534 DOI: 10.1523/eneuro.0035-22.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/25/2022] Open
Abstract
Finding the link between behaviors and their regulatory molecular pathways is a major obstacle in treating neuropsychiatric disorders. The immediate early gene (IEG) EGR1 is implicated in the etiology of neuropsychiatric disorders, and is linked to gene pathways associated with social behavior. Despite extensive knowledge of EGR1 gene regulation at the molecular level, it remains unclear how EGR1 deficits might affect the social component of these disorders. Here, we examined the social behavior of zebrafish with a mutation in the homologous gene egr1 Mutant fish exhibited reduced social approach and orienting, whereas other sensorimotor behaviors were unaffected. On a molecular level, expression of the dopaminergic biosynthetic enzyme, tyrosine hydroxylase (TH), was strongly decreased in TH-positive neurons of the anterior parvocellular preoptic nucleus. These neurons are connected with basal forebrain (BF) neurons associated with social behavior. Chemogenetic ablation of around 30% of TH-positive neurons in this preoptic region reduced social attraction to a similar extent as the egr1 mutation. These results demonstrate the requirement of Egr1 and dopamine signaling during social interactions, and identify novel circuitry underlying this behavior.
Collapse
Affiliation(s)
| | | | - Mae Voeun
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | | - Johannes Larsch
- Max Planck Institut für Neurobiologie, Martinsried, D-82152, Munich Germany
| | - Judith Eisen
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | |
Collapse
|
19
|
Genetic and Neurological Deficiencies in the Visual System of mct8 Mutant Zebrafish. Int J Mol Sci 2022; 23:ijms23052464. [PMID: 35269606 PMCID: PMC8910067 DOI: 10.3390/ijms23052464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 01/27/2023] Open
Abstract
Thyroid hormones (THs; T3 and T4) enter cells using specific transporters and regulate development and metabolism. Mutation in the TH transporter monocarboxylate transporter 8 (MCT8, SLC16A2) is associated with brain hypothyroidism and neurological impairment. We established mct8 mutant (mct8-/-) zebrafish as a model for MCT8 deficiency, which causes endocrinological, neurological, and behavioral alterations. Here, we profiled the transcriptome of mct8-/- larvae. Among hundreds of differentially expressed genes, the expression of a cluster of vision-related genes was distinct. Specifically, the expression of the opsin 1 medium wave sensitive 2 (opn1mw2) decreased in two mct8 mutants: mct8-/- and mct8-25bp-/- larvae, and under pharmacological inhibition of TH production. Optokinetic reflex (OKR) assays showed a reduction in the number of conjugated eye movements, and live imaging of genetically encoded Ca2+ indicator revealed altered neuronal activity in the pretectum area of mct8-25bp-/- larvae. These results imply that MCT8 and THs regulate the development of the visual system and suggest a mechanism to the deficiencies observed in the visual system of MCT8-deficiency patients.
Collapse
|
20
|
Wang L, Herman JP, Krauzlis RJ. Neuronal modulation in the mouse superior colliculus during covert visual selective attention. Sci Rep 2022; 12:2482. [PMID: 35169189 PMCID: PMC8847498 DOI: 10.1038/s41598-022-06410-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Covert visual attention is accomplished by a cascade of mechanisms distributed across multiple brain regions. Visual cortex is associated with enhanced representations of relevant stimulus features, whereas the contributions of subcortical circuits are less well understood but have been associated with selection of relevant spatial locations and suppression of distracting stimuli. As a step toward understanding these subcortical circuits, here we identified how neuronal activity in the intermediate layers of the superior colliculus (SC) of head-fixed mice is modulated during covert visual attention. We found that spatial cues modulated both firing rate and spike-count correlations. Crucially, the cue-related modulation in firing rate was due to enhancement of activity at the cued spatial location rather than suppression at the uncued location, indicating that SC neurons in our task were modulated by an excitatory or disinhibitory circuit mechanism focused on the relevant location, rather than broad inhibition of irrelevant locations. This modulation improved the neuronal discriminability of visual-change-evoked activity, but only when assessed for neuronal activity between the contralateral and ipsilateral SC. Together, our findings indicate that neurons in the mouse SC can contribute to covert visual selective attention by biasing processing in favor of locations expected to contain task-relevant information.
Collapse
Affiliation(s)
- Lupeng Wang
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA.
| | - James P Herman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Cisek P. Evolution of behavioural control from chordates to primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200522. [PMID: 34957850 PMCID: PMC8710891 DOI: 10.1098/rstb.2020.0522] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
This article outlines a hypothetical sequence of evolutionary innovations, along the lineage that produced humans, which extended behavioural control from simple feedback loops to sophisticated control of diverse species-typical actions. I begin with basic feedback mechanisms of ancient mobile animals and follow the major niche transitions from aquatic to terrestrial life, the retreat into nocturnality in early mammals, the transition to arboreal life and the return to diurnality. Along the way, I propose a sequence of elaboration and diversification of the behavioural repertoire and associated neuroanatomical substrates. This includes midbrain control of approach versus escape actions, telencephalic control of local versus long-range foraging, detection of affordances by the dorsal pallium, diversified control of nocturnal foraging in the mammalian neocortex and expansion of primate frontal, temporal and parietal cortex to support a wide variety of primate-specific behavioural strategies. The result is a proposed functional architecture consisting of parallel control systems, each dedicated to specifying the affordances for guiding particular species-typical actions, which compete against each other through a hierarchy of selection mechanisms. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montreal CP 6123 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
22
|
Fölsz O, Lin CC, Task D, Riabinina O, Potter CJ. The Q-system: A Versatile Repressible Binary Expression System. Methods Mol Biol 2022; 2540:35-78. [PMID: 35980572 DOI: 10.1007/978-1-0716-2541-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Binary expression systems are useful genetic tools for experimentally labeling or manipulating the function of defined cells. The Q-system is a repressible binary expression system that consists of a transcription factor QF (and the recently improved QF2/QF2w), the inhibitor QS, a QUAS-geneX effector, and a drug that inhibits QS (quinic acid). The Q-system can be used alone or in combination with other binary expression systems, such as GAL4/UAS and LexA/LexAop. In this review chapter, we discuss the past, present, and future of the Q-system for applications in Drosophila and other organisms. We discuss the in vivo application of the Q-system for transgenic labeling, the modular nature of QF that allows chimeric or split transcriptional activators to be developed, its temporal control by quinic acid, new methods to generate QF2 reagents, intersectional expression labeling, and its recent adoption into many emerging experimental species.
Collapse
Affiliation(s)
- Orsolya Fölsz
- Department of Biosciences, Durham University, Durham, UK
| | - Chun-Chieh Lin
- Department of Pathology and Laboratory Medicine, Giesel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Darya Task
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Hageter J, Waalkes M, Starkey J, Copeland H, Price H, Bays L, Showman C, Laverty S, Bergeron SA, Horstick EJ. Environmental and Molecular Modulation of Motor Individuality in Larval Zebrafish. Front Behav Neurosci 2021; 15:777778. [PMID: 34938167 PMCID: PMC8685292 DOI: 10.3389/fnbeh.2021.777778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Innate behavioral biases such as human handedness are a ubiquitous form of inter-individual variation that are not strictly hardwired into the genome and are influenced by diverse internal and external cues. Yet, genetic and environmental factors modulating behavioral variation remain poorly understood, especially in vertebrates. To identify genetic and environmental factors that influence behavioral variation, we take advantage of larval zebrafish light-search behavior. During light-search, individuals preferentially turn in leftward or rightward loops, in which directional bias is sustained and non-heritable. Our previous work has shown that bias is maintained by a habenula-rostral PT circuit and genes associated with Notch signaling. Here we use a medium-throughput recording strategy and unbiased analysis to show that significant individual to individual variation exists in wildtype larval zebrafish turning preference. We classify stable left, right, and unbiased turning types, with most individuals exhibiting a directional preference. We show unbiased behavior is not due to a loss of photo-responsiveness but reduced persistence in same-direction turning. Raising larvae at elevated temperature selectively reduces the leftward turning type and impacts rostral PT neurons, specifically. Exposure to conspecifics, variable salinity, environmental enrichment, and physical disturbance does not significantly impact inter-individual turning bias. Pharmacological manipulation of Notch signaling disrupts habenula development and turn bias individuality in a dose dependent manner, establishing a direct role of Notch signaling. Last, a mutant allele of a known Notch pathway affecter gene, gsx2, disrupts turn bias individuality, implicating that brain regions independent of the previously established habenula-rostral PT likely contribute to inter-individual variation. These results establish that larval zebrafish is a powerful vertebrate model for inter-individual variation with established neural targets showing sensitivity to specific environmental and gene signaling disruptions. Our results provide new insight into how variation is generated in the vertebrate nervous system.
Collapse
Affiliation(s)
- John Hageter
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Matthew Waalkes
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Jacob Starkey
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Haylee Copeland
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Heather Price
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Logan Bays
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Casey Showman
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Sean Laverty
- Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, United States
| | - Sadie A. Bergeron
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Eric J. Horstick
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
24
|
Harpaz R, Nguyen MN, Bahl A, Engert F. Precise visuomotor transformations underlying collective behavior in larval zebrafish. Nat Commun 2021; 12:6578. [PMID: 34772934 PMCID: PMC8590009 DOI: 10.1038/s41467-021-26748-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Complex schooling behaviors result from local interactions among individuals. Yet, how sensory signals from neighbors are analyzed in the visuomotor stream of animals is poorly understood. Here, we studied aggregation behavior in larval zebrafish and found that over development larvae transition from overdispersed groups to tight shoals. Using a virtual reality assay, we characterized the algorithms fish use to transform visual inputs from neighbors into movement decisions. We found that young larvae turn away from virtual neighbors by integrating and averaging retina-wide visual occupancy within each eye, and by using a winner-take-all strategy for binocular integration. As fish mature, their responses expand to include attraction to virtual neighbors, which is based on similar algorithms of visual integration. Using model simulations, we show that the observed algorithms accurately predict group structure over development. These findings allow us to make testable predictions regarding the neuronal circuits underlying collective behavior in zebrafish.
Collapse
Affiliation(s)
- Roy Harpaz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
| | - Minh Nguyet Nguyen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Armin Bahl
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, 78464, Germany
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
25
|
Mancienne T, Marquez-Legorreta E, Wilde M, Piber M, Favre-Bulle I, Vanwalleghem G, Scott EK. Contributions of Luminance and Motion to Visual Escape and Habituation in Larval Zebrafish. Front Neural Circuits 2021; 15:748535. [PMID: 34744637 PMCID: PMC8568047 DOI: 10.3389/fncir.2021.748535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animals from insects to humans perform visual escape behavior in response to looming stimuli, and these responses habituate if looms are presented repeatedly without consequence. While the basic visual processing and motor pathways involved in this behavior have been described, many of the nuances of predator perception and sensorimotor gating have not. Here, we have performed both behavioral analyses and brain-wide cellular-resolution calcium imaging in larval zebrafish while presenting them with visual loom stimuli or stimuli that selectively deliver either the movement or the dimming properties of full loom stimuli. Behaviorally, we find that, while responses to repeated loom stimuli habituate, no such habituation occurs when repeated movement stimuli (in the absence of luminance changes) are presented. Dim stimuli seldom elicit escape responses, and therefore cannot habituate. Neither repeated movement stimuli nor repeated dimming stimuli habituate the responses to subsequent full loom stimuli, suggesting that full looms are required for habituation. Our calcium imaging reveals that motion-sensitive neurons are abundant in the brain, that dim-sensitive neurons are present but more rare, and that neurons responsive to both stimuli (and to full loom stimuli) are concentrated in the tectum. Neurons selective to full loom stimuli (but not to movement or dimming) were not evident. Finally, we explored whether movement- or dim-sensitive neurons have characteristic response profiles during habituation to full looms. Such functional links between baseline responsiveness and habituation rate could suggest a specific role in the brain-wide habituation network, but no such relationships were found in our data. Overall, our results suggest that, while both movement- and dim-sensitive neurons contribute to predator escape behavior, neither plays a specific role in brain-wide visual habituation networks or in behavioral habituation.
Collapse
Affiliation(s)
- Tessa Mancienne
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | | | - Maya Wilde
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | - Marielle Piber
- School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Itia Favre-Bulle
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
- School of Mathematics and Physics, The University of Queensland, Saint Lucia, QLD, Australia
| | - Gilles Vanwalleghem
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | - Ethan K. Scott
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
26
|
Martin BT, Gil MA, Fahimipour AK, Hein AM. Informational constraints on predator–prey interactions. OIKOS 2021. [DOI: 10.1111/oik.08143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin T. Martin
- Univ. of Amsterdam, Dept of Theoretical and Computational Ecology Amsterdam the Netherlands
| | - Michael A. Gil
- Univ. of Colorado Boulder, Dept of Ecology and Evolutionary Biology Boulder CO USA
- National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center Santa Cruz CA USA
- Inst. of Marine Sciences, Univ. of California Santa Cruz Santa Cruz CA USA
| | - Ashkaan K. Fahimipour
- National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center Santa Cruz CA USA
| | - Andrew M. Hein
- National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center Santa Cruz CA USA
- Inst. of Marine Sciences, Univ. of California Santa Cruz Santa Cruz CA USA
- Dept of Ecology and Evolutionary Biology, Univ. of California Santa Cruz Santa Cruz CA USA
| |
Collapse
|
27
|
Isa T, Marquez-Legorreta E, Grillner S, Scott EK. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr Biol 2021; 31:R741-R762. [PMID: 34102128 DOI: 10.1016/j.cub.2021.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The superior colliculus, or tectum in the case of non-mammalian vertebrates, is a part of the brain that registers events in the surrounding space, often through vision and hearing, but also through electrosensation, infrared detection, and other sensory modalities in diverse vertebrate lineages. This information is used to form maps of the surrounding space and the positions of different salient stimuli in relation to the individual. The sensory maps are arranged in layers with visual input in the uppermost layer, other senses in deeper positions, and a spatially aligned motor map in the deepest layer. Here, we will review the organization and intrinsic function of the tectum/superior colliculus and the information that is processed within tectal circuits. We will also discuss tectal/superior colliculus outputs that are conveyed directly to downstream motor circuits or via the thalamus to cortical areas to control various aspects of behavior. The tectum/superior colliculus is evolutionarily conserved among all vertebrates, but tailored to the sensory specialties of each lineage, and its roles have shifted with the emergence of the cerebral cortex in mammals. We will illustrate both the conserved and divergent properties of the tectum/superior colliculus through vertebrate evolution by comparing tectal processing in lampreys belonging to the oldest group of extant vertebrates, larval zebrafish, rodents, and other vertebrates including primates.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
28
|
Guilbeault NC, Guerguiev J, Martin M, Tate I, Thiele TR. BonZeb: open-source, modular software tools for high-resolution zebrafish tracking and analysis. Sci Rep 2021; 11:8148. [PMID: 33854104 PMCID: PMC8047029 DOI: 10.1038/s41598-021-85896-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/08/2021] [Indexed: 11/09/2022] Open
Abstract
We present BonZeb-a suite of modular Bonsai packages which allow high-resolution zebrafish tracking with dynamic visual feedback. Bonsai is an increasingly popular software platform that is accelerating the standardization of experimental protocols within the neurosciences due to its speed, flexibility, and minimal programming overhead. BonZeb can be implemented into novel and existing Bonsai workflows for online behavioral tracking and offline tracking with batch processing. We demonstrate that BonZeb can run a variety of experimental configurations used for gaining insights into the neural mechanisms of zebrafish behavior. BonZeb supports head-fixed closed-loop and free-swimming virtual open-loop assays as well as multi-animal tracking, optogenetic stimulation, and calcium imaging during behavior. The combined performance, ease of use and versatility of BonZeb opens new experimental avenues for researchers seeking high-resolution behavioral tracking of larval zebrafish.
Collapse
Affiliation(s)
- Nicholas C Guilbeault
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jordan Guerguiev
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Michael Martin
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Isabelle Tate
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Tod R Thiele
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada. .,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
29
|
Kölsch Y, Hahn J, Sappington A, Stemmer M, Fernandes AM, Helmbrecht TO, Lele S, Butrus S, Laurell E, Arnold-Ammer I, Shekhar K, Sanes JR, Baier H. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron 2021; 109:645-662.e9. [PMID: 33357413 PMCID: PMC7897282 DOI: 10.1016/j.neuron.2020.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Retinal ganglion cells (RGCs) form an array of feature detectors, which convey visual information to central brain regions. Characterizing RGC diversity is required to understand the logic of the underlying functional segregation. Using single-cell transcriptomics, we systematically classified RGCs in adult and larval zebrafish, thereby identifying marker genes for >30 mature types and several developmental intermediates. We used this dataset to engineer transgenic driver lines, enabling specific experimental access to a subset of RGC types. Expression of one or few transcription factors often predicts dendrite morphologies and axonal projections to specific tectal layers and extratectal targets. In vivo calcium imaging revealed that molecularly defined RGCs exhibit specific functional tuning. Finally, chemogenetic ablation of eomesa+ RGCs, which comprise melanopsin-expressing types with projections to a small subset of central targets, selectively impaired phototaxis. Together, our study establishes a framework for systematically studying the functional architecture of the visual system.
Collapse
Affiliation(s)
- Yvonne Kölsch
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University, 82152 Martinsried, Germany
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94720, USA
| | - Anna Sappington
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Manuel Stemmer
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - António M Fernandes
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Thomas O Helmbrecht
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Shriya Lele
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94720, USA
| | - Eva Laurell
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Irene Arnold-Ammer
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences, QB3, Center for Computational Biology, UC Berkeley, Berkeley, CA 94720, USA.
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cell Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany.
| |
Collapse
|