1
|
Xu Q, Zheng Q, Cui X, Cleland A, Hincapie J, Raja SN, Dong X, Guan Y. Visualizing the modulation of neurokinin 1 receptor-positive neurons in the superficial dorsal horn by spinal cord stimulation in vivo. Pain 2025; 166:428-437. [PMID: 39140483 PMCID: PMC11723817 DOI: 10.1097/j.pain.0000000000003361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
ABSTRACT Spinal cord stimulation (SCS) is an effective modality for pain treatment, yet its underlying mechanisms remain elusive. Neurokinin 1 receptor-positive (NK1R + ) neurons in spinal lamina I play a pivotal role in pain transmission. To enhance our mechanistic understanding of SCS-induced analgesia, we investigated how different SCS paradigms modulate the activation of NK1R + neurons, by developing NK1R-Cre;GCaMP6s transgenic mice and using in vivo calcium imaging of superficial NK1R + neurons under anesthesia (1.5% isoflurane). Neurokinin 1 receptor-positive neurons in the lumbar spinal cord (L4-5) showed a greater activation by electrical test stimulation (TS, 3.0 mA, 1 Hz) at the hindpaw at 2 weeks after tibia-sparing nerve injury (SNI-t) than in naïve mice. Spinal cord stimulation was then delivered through a bipolar plate electrode placed epidurally at L1-2 level. The short-term 50-Hz high-intensity SCS (80% motor threshold [MoT], 10 minutes) induced robust and prolonged inhibition of NK1R + neuronal responses to TS in both naïve and SNI-t mice. The 30-minute 50-Hz and 900-Hz SCS applied at moderate intensity (50% MoT) also significantly inhibited neuronal responses in SNI-t mice. However, at low intensity (20% MoT), the 30-minute 900-Hz SCS only induced persistent neuronal inhibition in naïve mice, but not in SNI-t mice. In conclusion, both 10-minute high-intensity SCS and 30-minute SCS at moderate intensity inhibit the activation of superficial NK1R + neurons, potentially attenuating spinal nociceptive transmission. Furthermore, in vivo calcium imaging of NK1R + neurons provides a new approach for exploring the spinal neuronal mechanisms of pain inhibition by neuromodulation pain therapies.
Collapse
Affiliation(s)
- Qian Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qin Zheng
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | | | | | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
2
|
Ma Z, Wan Q, Qin W, Qin W, Yan J, Zhu Y, Wang Y, Ma Y, Wan M, Han X, Zhao H, Hou Y, Tay FR, Niu L, Jiao K. Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain. Int J Oral Sci 2025; 17:3. [PMID: 39762209 PMCID: PMC11704193 DOI: 10.1038/s41368-024-00336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain. We found that during the development of TMJ-OA, the increased innervation of sympathetic nerve of subchondral bone precedes that of sensory nerves. Furthermore, these two types of nerves are spatially closely associated. Additionally, it was discovered that activation of sympathetic neural signals promotes osteoarthritic pain in mice, whereas blocking these signals effectively alleviates pain. In vitro experiments also confirmed that norepinephrine released by sympathetic neurons promotes the activation and axonal growth of sensory neurons. Moreover, we also discovered that through releasing norepinephrine, regional sympathetic nerves of subchondral bone were found to regulate growth and activation of local sensory nerves synergistically with other pain regulators. This study identified the role of regional sympathetic nerves in mediating pain in TMJ-OA. It sheds light on a new mechanism of abnormal innervation at the osteochondral junction and the regional crosstalk between peripheral nerves, providing a potential target for treating TMJ-OA pain.
Collapse
Affiliation(s)
- Zhangyu Ma
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qianqian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wen Qin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Janfei Yan
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yina Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuzhu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuxuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Meichen Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Haoyan Zhao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuxuan Hou
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Lina Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Zhang C, Huang Q, Ford NC, Limjunyawong N, Lin Q, Yang F, Cui X, Uniyal A, Liu J, Mahabole M, He H, Wang X, Duff I, Wang Y, Wan J, Zhu G, Raja SN, Jia H, Yang D, Dong X, Cao X, Tseng SC, He S, Guan Y. Human birth tissue products as a non-opioid medicine to inhibit post-surgical pain. eLife 2024; 13:RP101269. [PMID: 39671234 PMCID: PMC11643635 DOI: 10.7554/elife.101269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3-induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive DRG neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying neuronal mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Neil C Ford
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Ankit Uniyal
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | | | - Hua He
- BioTissue, IncMiamiUnited States
| | - Xuewei Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Department of Orthopaedic Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Irina Duff
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Yiru Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Guangwu Zhu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Dazhi Yang
- Acrogenic Technologies IncRockvilleUnited States
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | | | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Department of Neurological Surgery, Johns Hopkins University, School of MedicineBaltimoreUnited States
| |
Collapse
|
4
|
Li YZ, Ji RR. Gene therapy for chronic pain management. Cell Rep Med 2024; 5:101756. [PMID: 39366385 PMCID: PMC11513853 DOI: 10.1016/j.xcrm.2024.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/20/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Despite significant advances in identifying molecular targets for chronic pain over the past two decades, many remain difficult to target with traditional methods. Gene therapies such as antisense oligonucleotides (ASOs), RNA interference (RNAi), CRISPR, and virus-based delivery systems have played crucial roles in discovering and validating new pain targets. While there has been a surge in gene therapy-based clinical trials, those focusing on pain as the primary outcome remain uncommon. This review examines various gene therapy strategies, including ASOs, small interfering RNA (siRNAs), optogenetics, chemogenetics, and CRISPR, and their delivery methods targeting primary sensory neurons and non-neuronal cells, including glia and chondrocytes. We also explore emerging gene therapy tools and highlight gene therapy's clinical potential in pain management, including trials targeting pain-related diseases. Advances in single-cell analysis of sensory neurons and non-neuronal cells, along with the development of new delivery tools, are poised to accelerate the application of gene therapy in pain medicine.
Collapse
Affiliation(s)
- Yi-Ze Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Tyus D, Leslie JL, Naz F, Uddin MJ, Thompson B, Petri WA. The sympathetic nervous system drives hyperinflammatory responses to Clostridioides difficile infection. Cell Rep Med 2024; 5:101771. [PMID: 39368481 PMCID: PMC11513855 DOI: 10.1016/j.xcrm.2024.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired infections in the United States, known for triggering severe disease by hyperactivation of the host response. In this study, we determine the impact of the sympathetic nervous system (SNS) on CDI disease severity. Mouse models of CDI are administered inhibitors of SNS activity prior to CDI. Chemical sympathectomy or pharmacological inhibition of norepinephrine synthesis greatly reduces mortality and disease severity in the CDI model. Pharmacological blockade or genetic ablation of the alpha 2 adrenergic receptor ameliorates intestinal inflammation, disease severity, and mortality rate. These results underscore the role of the SNS and the alpha 2 adrenergic receptor in CDI pathogenesis and suggest that targeting neural systems could be a promising approach to therapy in severe disease.
Collapse
Affiliation(s)
- David Tyus
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jhansi L Leslie
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Farha Naz
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Md Jashim Uddin
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brandon Thompson
- Departments of Medicine, Pathology, Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - William A Petri
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA 22908, USA; Departments of Medicine, Pathology, Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
6
|
Wang J, Wang Z, Zhang K, Cui Y, Zhou J, Liu J, Li H, Zhao M, Jiang J. The role of the ubiquitin system in the onset and reversal of neuropathic pain. Biomed Pharmacother 2024; 179:117127. [PMID: 39191026 DOI: 10.1016/j.biopha.2024.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024] Open
Abstract
Neuropathic pain (NP) remains one of the world's most difficult problems, and people suffering from NP have their quality of life affected to a great extent and constantly suffer from pain. Sensitization of injurious receptors, ectopic firing of afferent nerves after nerve injury, and coupling between sympathetic and sensory neurons are involved in the onset or development of NP, but the pathogenesis of NP is still not well understood. We found that the ubiquitin system is involved in the pathogenesis of NP and has a crucial role in it. The ubiquitin system can be involved in the onset or reversal of NP by affecting ion channels, cellular signal transduction, glial cells, and the regulation of non-coding RNAs. This provides new ideas for the treatment of NP. The ubiquitin system may be a new effective target for the treatment of NP. A continued, in-depth understanding of the mechanisms of the ubiquitin system involved in NP could further refine the study of analgesic targets and improve pharmacological studies.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kexin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanping Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingruo Zhou
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiazhou Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huanyi Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingxia Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Zhang C, Huang Q, Ford NC, Limjunyawong N, Lin Q, Yang F, Cui X, Uniyal A, Liu J, Mahabole M, He H, Wang XW, Duff I, Wang Y, Wan J, Zhu G, Raja SN, Jia H, Yang D, Dong X, Cao X, Tseng SC, He SQ, Guan Y. Human birth tissue products as a non-opioid medicine to inhibit post-surgical pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594874. [PMID: 38826432 PMCID: PMC11142121 DOI: 10.1101/2024.05.19.594874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3 induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ankit Uniyal
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | | | - Hua He
- BioTissue, Inc., Miami, Florida, USA
| | - Xue-Wei Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Orthopaedic Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Irina Duff
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yiru Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Guangwu Zhu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Dazhi Yang
- Acrogenic Technologies Inc., Rockville, Maryland, 20847, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | | | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
8
|
Xing C, Ji G, Zhang D, Qin X, Zhang L, Yan C. Construction of nomogram prediction model using heart rate and pulse perfusion variability index as predictors for hypotension in cervical cancer patients with spinal epidural anesthesia. Am J Cancer Res 2024; 14:4398-4410. [PMID: 39417174 PMCID: PMC11477840 DOI: 10.62347/wppp9827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
The prevention and treatment strategies for cervical cancer patients undergoing spinal epidural anesthesia have increasingly focused on early screening for high-risk factors associated with potential hypotension. We analyze the general conditions and preoperative examination results of 312 cervical cancer patients who received spinal epidural anesthesia, in order to identify independent risk factors for hypotension, assess their predictive efficacy, and construct a nomogram. 312 patients with cervical cancer received spinal epidural anesthesia were included in this study. Among them, 164 patients with hypotension after hysterectomy with spinal epidural anesthesia were in a hypotension group. Important risk predictors of hypotension after hysterectomy with spinal epidural anesthesia were identified using univariate and multivariate analyses, then a clinical nomogram was constructed. The predictive accuracy was assessed by unadjusted concordance index (C-index) and calibration plot. Univariate and multivariate regression analysis identified basal HR (≥95) (95% CI 0.831-0.900; P = 0.000) and basal PVI (95% CI 0.679-0.877; P = 0.000) were the independent risk factors for hypotension in cervical cancer patients with spinal epidural anesthesia. Those risk factors were used to construct a clinical predictive nomogram. The regression equation model based on the above factors was logit (P) = -6.820 + 0.216 * basal HR + basic PVI * 0.312. The calibration curves for hypotension risk revealed excellent accuracy of the predictive nomogram model. Decision curve analysis showed that the predictive model could be applied clinically when the threshold probability was 20 to 75%. We surmised that the basal HR values and PVI values are the independent risk factors for hypotension in cervical cancer patients with spinal epidural anesthesia. The construction of nomograms is beneficial in predicting the risk of hypotension in these patients.
Collapse
Affiliation(s)
- Chunping Xing
- Department of Anesthesiology, General Hospital of Taiyuan Iron and Steel (Group) Co., Ltd.Taiyuan 030008, Shanxi, China
| | - Gaolin Ji
- Department of Anesthesiology, General Hospital of Taiyuan Iron and Steel (Group) Co., Ltd.Taiyuan 030008, Shanxi, China
| | - Dongbo Zhang
- Department of Anesthesiology, General Hospital of Taiyuan Iron and Steel (Group) Co., Ltd.Taiyuan 030008, Shanxi, China
| | - Xiao Qin
- Department of Anesthesiology, General Hospital of Taiyuan Iron and Steel (Group) Co., Ltd.Taiyuan 030008, Shanxi, China
| | - Li Zhang
- Department of Anesthesiology, General Hospital of Taiyuan Iron and Steel (Group) Co., Ltd.Taiyuan 030008, Shanxi, China
| | - Cuiyun Yan
- Department of Gynecology and Obstetrics, General Hospital of Taiyuan Iron and Steel (Group) Co., Ltd.Taiyuan 030008, Shanxi, China
| |
Collapse
|
9
|
Ma L, Yue L, Liu S, Xu S, Tong J, Sun X, Su L, Cui S, Liu FY, Wan Y, Yi M. A distinct neuronal ensemble of prelimbic cortex mediates spontaneous pain in rats with peripheral inflammation. Nat Commun 2024; 15:7922. [PMID: 39256428 PMCID: PMC11387830 DOI: 10.1038/s41467-024-52243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
The absence of a comprehensive understanding of the neural basis of spontaneous pain limits the development of therapeutic strategies targeting this primary complaint of patients with chronic pain. Here we report a distinct neuronal ensemble within the prelimbic cortex which processes signals related to spontaneous pain in rats with chronic inflammatory pain. This neuronal ensemble specifically encodes spontaneous pain-related behaviors, independently of other locomotive and evoked behaviors. Activation of this neuronal ensemble elicits marked spontaneous pain-like behaviors and enhances nociceptive responses, whereas prolonged silencing of its activities alleviates spontaneous pain and promotes overall recovery from inflammatory pain. Notably, afferents from the primary somatosensory cortex and infralimbic cortex bidirectionally modulate the activities of the spontaneous pain-responsive prelimbic cortex neuronal ensemble and pain behaviors. These findings reveal the cortical basis of spontaneous pain at the neuronal level, highlighting a distinct neuronal ensemble within the prelimbic cortex and its associated pain-regulatory brain networks.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Science, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shi Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China.
- Medical Innovation Center (Taizhou) of Peking University, Taizhou, China.
| |
Collapse
|
10
|
Palmiter RD. Parabrachial neurons promote nociplastic pain. Trends Neurosci 2024; 47:722-735. [PMID: 39147688 DOI: 10.1016/j.tins.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The parabrachial nucleus (PBN) in the dorsal pons responds to bodily threats and transmits alarm signals to the forebrain. Parabrachial neuron activity is enhanced during chronic pain, and inactivation of PBN neurons in mice prevents the establishment of neuropathic, chronic pain symptoms. Chemogenetic or optogenetic activation of all glutamatergic neurons in the PBN, or just the subpopulation that expresses the Calca gene, is sufficient to establish pain phenotypes, including long-lasting tactile allodynia, that scale with the extent of stimulation, thereby promoting nociplastic pain, defined as diffuse pain without tissue inflammation or nerve injury. This review focuses on the role(s) of molecularly defined PBN neurons and the downstream nodes in the brain that contribute to establishing nociplastic pain.
Collapse
Affiliation(s)
- Richard D Palmiter
- Departments of Biochemistry and Genome Sciences, Investigator of the Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
LeBlang CJ, Pazyra-Murphy MF, Silagi ES, Dasgupta S, Tsolias M, Miller T, Petrova V, Zhen S, Jovanovic V, Castellano D, Gerrish K, Ormanoglu P, Tristan C, Singeç I, Woolf CJ, Tasdemir-Yilmaz O, Segal RA. Satellite glial contact enhances differentiation and maturation of human iPSC-derived sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604966. [PMID: 39211268 PMCID: PMC11361066 DOI: 10.1101/2024.07.24.604966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sensory neurons generated from induced pluripotent stem cells (iSNs) are used to model human peripheral neuropathies, however current differentiation protocols produce sensory neurons with an embryonic phenotype. Peripheral glial cells contact sensory neurons early in development and contribute to formation of the canonical pseudounipolar morphology, but these signals are not encompassed in current iSN differentiation protocols. Here, we show that terminal differentiation of iSNs in co-culture with rodent Dorsal Root Ganglion satellite glia (rSG) advances their differentiation and maturation. Co-cultured iSNs develop a pseudounipolar morphology through contact with rSGs. This transition depends on semaphorin-plexin guidance cues and on glial gap junction signaling. In addition to morphological changes, iSNs terminally differentiated in co-culture exhibit enhanced spontaneous action potential firing, more mature gene expression, and increased susceptibility to paclitaxel induced axonal degeneration. Thus, iSNs differentiated in coculture with rSGs provide a better model for investigating human peripheral neuropathies.
Collapse
|
12
|
Ruiz-Cantero MC, Entrena JM, Artacho-Cordón A, Huerta MÁ, Portillo-Salido E, Nieto FR, Baeyens JM, Costigan M, González-Cano R, Cobos EJ. Sigma-1 Receptors Control Neuropathic Pain and Peripheral Neuroinflammation After Nerve Injury in Female Mice: A Transcriptomic Study. J Neuroimmune Pharmacol 2024; 19:46. [PMID: 39162886 DOI: 10.1007/s11481-024-10144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The mechanisms for neuropathic pain amelioration by sigma-1 receptor inhibition are not fully understood. We studied genome-wide transcriptomic changes (RNAseq) in the dorsal root ganglia (DRG) from wild-type and sigma-1 receptor knockout mice prior to and following Spared Nerve Injury (SNI). In wildtype mice, most of the transcriptomic changes following SNI are related to the immune function or neurotransmission. Immune function transcripts contain cytokines and markers for immune cells, including macrophages/monocytes and CD4 + T cells. Many of these immune transcripts were attenuated by sigma-1 knockout in response to SNI. Consistent with this we found, using flow cytometry, that sigma-1 knockout mice showed a reduction in macrophage/monocyte recruitment as well as an absence of CD4 + T cell recruitment in the DRG after nerve injury. Sigma-1 knockout mice showed a reduction of neuropathic (mechanical and cold) allodynia and spontaneous pain-like responses (licking of the injured paw) which accompany the decreased peripheral neuroinflammatory response after nerve injury. Treatment with maraviroc (a CCR5 antagonist which preferentially inhibits CD4 + T cells in the periphery) of neuropathic wild-type mice only partially replicated the sigma-1 knockout phenotype, as it did not alter cold allodynia but attenuated spontaneous pain-like responses and mechanical hypersensitivity. Therefore, modulation of peripheral CD4 + T cell activity might contribute to the amelioration of spontaneous pain and neuropathic tactile allodynia seen in the sigma-1 receptor knockout mice, but not to the effect on cold allodynia. We conclude that sigma-1 receptor inhibition decreases DRG neuroinflammation which might partially explain its anti-neuropathic effect.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - José M Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
- Animal Behavior Research Unit, Scientific Instrumentation Center, Parque Tecnológico de Ciencias de la Salud, University of Granada, Armilla, Granada, 18100, Spain
| | - Antonia Artacho-Cordón
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - Enrique Portillo-Salido
- Faculty of Health Sciences, International University of La Rioja (UNIR), Logroño, La Rioja, 26004, Spain
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - Michael Costigan
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Anaesthesia, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain.
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain.
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain.
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain.
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain.
- Teófilo Hernando Institute for Drug Discovery, Madrid, 28029, Spain.
| |
Collapse
|
13
|
Huerta MÁ, Cisneros E, Alique M, Roza C. Strategies for measuring non-evoked pain in preclinical models of neuropathic pain: Systematic review. Neurosci Biobehav Rev 2024; 163:105761. [PMID: 38852847 DOI: 10.1016/j.neubiorev.2024.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The development of new analgesics for neuropathic pain treatment is crucial. The failure of promising drugs in clinical trials may be related to the over-reliance on reflex-based responses (evoked pain) in preclinical drug testing, which may not fully represent clinical neuropathic pain, characterized by spontaneous non-evoked pain (NEP). Hence, strategies for assessing NEP in preclinical studies emerged. This systematic review identified 443 articles evaluating NEP in neuropathic pain models (mainly traumatic nerve injuries in male rodents). An exponential growth in NEP evaluation was observed, which was assessed using 48 different tests classified in 12 NEP-related outcomes: anxiety, exploration/locomotion, paw lifting, depression, conditioned place preference, gait, autotomy, wellbeing, facial grooming, cognitive impairment, facial pain expressions and vocalizations. Although most of these outcomes showed clear limitations, our analysis suggests that conditioning-associated outcomes, pain-related comorbidities, and gait evaluation may be the most effective strategies. Moreover, a minimal part of the studies evaluated standard analgesics. The greater emphasis on evaluating NEP aligning with clinical pain symptoms may enhance analgesic drug development, improving clinical translation.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain
| | - Elsa Cisneros
- Health Sciences School, Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain; Health Sciences School, Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Matilde Alique
- Department of System's Biology, Medical School, University of Alcala de Henares, Alcalá de Henares, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala de Henares, Alcalá de Henares, Spain.
| |
Collapse
|
14
|
Jain A, Hakim S, Woolf CJ. Immune drivers of physiological and pathological pain. J Exp Med 2024; 221:e20221687. [PMID: 38607420 PMCID: PMC11010323 DOI: 10.1084/jem.20221687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Physiological pain serves as a warning of exposure to danger and prompts us to withdraw from noxious stimuli to prevent tissue damage. Pain can also alert us of an infection or organ dysfunction and aids in locating such malfunction. However, there are instances where pain is purely pathological, such as unresolved pain following an inflammation or injury to the nervous system, and this can be debilitating and persistent. We now appreciate that immune cells are integral to both physiological and pathological pain, and that pain, in consequence, is not strictly a neuronal phenomenon. Here, we discuss recent findings on how immune cells in the skin, nerve, dorsal root ganglia, and spinal cord interact with somatosensory neurons to mediate pain. We also discuss how both innate and adaptive immune cells, by releasing various ligands and mediators, contribute to the initiation, modulation, persistence, or resolution of various modalities of pain. Finally, we propose that the neuroimmune axis is an attractive target for pain treatment, but the challenges in objectively quantifying pain preclinically, variable sex differences in pain presentation, as well as adverse outcomes associated with immune system modulation, all need to be considered in the development of immunotherapies against pain.
Collapse
Affiliation(s)
- Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Sara Hakim
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Alexandre C, Miracca G, Holanda VD, Sharma A, Kourbanova K, Ferreira A, Bicca MA, Zeng X, Nassar VA, Lee S, Kaur S, Sarma SV, Sacré P, Scammell TE, Woolf CJ, Latremoliere A. Nociceptor spontaneous activity is responsible for fragmenting non-rapid eye movement sleep in mouse models of neuropathic pain. Sci Transl Med 2024; 16:eadg3036. [PMID: 38630850 PMCID: PMC11106840 DOI: 10.1126/scitranslmed.adg3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Spontaneous pain, a major complaint of patients with neuropathic pain, has eluded study because there is no reliable marker in either preclinical models or clinical studies. Here, we performed a comprehensive electroencephalogram/electromyogram analysis of sleep in several mouse models of chronic pain: neuropathic (spared nerve injury and chronic constriction injury), inflammatory (Freund's complete adjuvant and carrageenan, plantar incision) and chemical pain (capsaicin). We find that peripheral axonal injury drives fragmentation of sleep by increasing brief arousals from non-rapid eye movement sleep (NREMS) without changing total sleep amount. In contrast to neuropathic pain, inflammatory or chemical pain did not increase brief arousals. NREMS fragmentation was reduced by the analgesics gabapentin and carbamazepine, and it resolved when pain sensitivity returned to normal in a transient neuropathic pain model (sciatic nerve crush). Genetic silencing of peripheral sensory neurons or ablation of CGRP+ neurons in the parabrachial nucleus prevented sleep fragmentation, whereas pharmacological blockade of skin sensory fibers was ineffective, indicating that the neural activity driving the arousals originates ectopically in primary nociceptor neurons and is relayed through the lateral parabrachial nucleus. These findings identify NREMS fragmentation by brief arousals as an effective proxy to measure spontaneous neuropathic pain in mice.
Collapse
Affiliation(s)
- Chloe Alexandre
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Giulia Miracca
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Victor Duarte Holanda
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Sharma
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kamila Kourbanova
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Ferreira
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maíra A. Bicca
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Xiangsunze Zeng
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria A. Nassar
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Seungkyu Lee
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Satvinder Kaur
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sridevi V. Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre Sacré
- Department of Electrical Engineering and Computer Science, School of Engineering, University of Liège, Liège, Belgium
| | - Thomas E. Scammell
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Jeon SM, Pradeep A, Chang D, McDonough L, Chen Y, Latremoliere A, Crawford LK, Caterina MJ. Skin Reinnervation by Collateral Sprouting Following Spared Nerve Injury in Mice. J Neurosci 2024; 44:e1494232024. [PMID: 38471780 PMCID: PMC11007315 DOI: 10.1523/jneurosci.1494-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Following peripheral nerve injury, denervated tissues can be reinnervated via regeneration of injured neurons or collateral sprouting of neighboring uninjured afferents into denervated territory. While there has been substantial focus on mechanisms underlying regeneration, collateral sprouting has received less attention. Here, we used immunohistochemistry and genetic neuronal labeling to define the subtype specificity of sprouting-mediated reinnervation of plantar hindpaw skin in the mouse spared nerve injury (SNI) model, in which productive regeneration cannot occur. Following initial loss of cutaneous afferents in the tibial nerve territory, we observed progressive centripetal reinnervation by multiple subtypes of neighboring uninjured fibers into denervated glabrous and hairy plantar skin of male mice. In addition to dermal reinnervation, CGRP-expressing peptidergic fibers slowly but continuously repopulated denervated epidermis, Interestingly, GFRα2-expressing nonpeptidergic fibers exhibited a transient burst of epidermal reinnervation, followed by a trend towards regression. Presumptive sympathetic nerve fibers also sprouted into denervated territory, as did a population of myelinated TrkC lineage fibers, though the latter did so inefficiently. Conversely, rapidly adapting Aβ fiber and C fiber low threshold mechanoreceptor (LTMR) subtypes failed to exhibit convincing sprouting up to 8 weeks after nerve injury in males or females. Optogenetics and behavioral assays in male mice further demonstrated the functionality of collaterally sprouted fibers in hairy plantar skin with restoration of punctate mechanosensation without hypersensitivity. Our findings advance understanding of differential collateral sprouting among sensory neuron subpopulations and may guide strategies to promote the progression of sensory recovery or limit maladaptive sensory phenomena after peripheral nerve injury.
Collapse
Affiliation(s)
- Sang-Min Jeon
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Aishwarya Pradeep
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dennis Chang
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Leah McDonough
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Yijia Chen
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - LaTasha K Crawford
- Department of Pathological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin 53706
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
17
|
Di Cesare Mannelli L, Ghelardini C. Commentary on "Synchronized activity of sensory neurons initiates cortical synchrony in a model of neuropathic pain". Neural Regen Res 2024; 19:728. [PMID: 37843205 PMCID: PMC10664135 DOI: 10.4103/1673-5374.382219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health – Neurofarba – Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health – Neurofarba – Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
18
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu IM, Ginty DD, Sharma N. A mouse DRG genetic toolkit reveals morphological and physiological diversity of somatosensory neuron subtypes. Cell 2024; 187:1508-1526.e16. [PMID: 38442711 PMCID: PMC10947841 DOI: 10.1016/j.cell.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/12/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Pawlak
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
19
|
Tian T, Moore AM, Ghareeb PA, Boulis NM, Ward PJ. A Perspective on Electrical Stimulation and Sympathetic Regeneration in Peripheral Nerve Injuries. Neurotrauma Rep 2024; 5:172-180. [PMID: 38463421 PMCID: PMC10924057 DOI: 10.1089/neur.2023.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Peripheral nerve injuries (PNIs) are common and devastating. The current standard of care relies on the slow and inefficient process of nerve regeneration after surgical intervention. Electrical stimulation (ES) has been shown to both experimentally and clinically result in improved regeneration and functional recovery after PNI for motor and sensory neurons; however, its effects on sympathetic regeneration have never been studied. Sympathetic neurons are responsible for a myriad of homeostatic processes that include, but are not limited to, blood pressure, immune response, sweating, and the structural integrity of the neuromuscular junction. Almost one quarter of the axons in the sciatic nerve are from sympathetic neurons, and their importance in bodily homeostasis and the pathogenesis of neuropathic pain should not be underestimated. Therefore, as ES continues to make its way into patient care, it is not only important to understand its impact on all neuron subtypes, but also to ensure that potential adverse effects are minimized. This piece gives an overview of the effects of ES in animals models and in humans while offering a perspective on the potential effects of ES on sympathetic axon regeneration.
Collapse
Affiliation(s)
- Tina Tian
- Medical Scientist Training Program, Emory University, Atlanta, Georgia, USA
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Amy M Moore
- Department of Plastic Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Paul A Ghareeb
- Division of Plastic Surgery, Department of Surgery, Emory University, Atlanta, Georgia, USA
| | | | - Patricia J Ward
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
He L, Ma S, Ding Z, Huang Z, Zhang Y, Xi C, Zou K, Deng Q, Huang WJM, Guo Q, Huang C. Inhibition of NFAT5-Dependent Astrocyte Swelling Alleviates Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302916. [PMID: 38195869 PMCID: PMC10953562 DOI: 10.1002/advs.202302916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Astrocyte swelling is implicated in various neurological disorders. However, whether astrocyte swelling contributes to neuropathic pain remains elusive. This study elucidates the pivotal role of the nuclear factor of activated T-cells 5 (NFAT5) emerges as a master regulator of astrocyte swelling in the spinal dorsal horn (SDH) during neuropathic pain. Despite the ubiquitous expression of NFAT5 protein in SDH cell types, it selectively induces swelling specifically in astrocytes, not in microglia. Mechanistically, NFAT5 directly controls the expression of the water channel aquaporin-4 (AQP4), a key regulator exclusive to astrocytes. Additionally, aurora kinase B (AURKB) orchestrates NFAT5 phosphorylation, enhancing its protein stability and nuclear translocation, thereby regulating AQP4 expression. The findings establish NFAT5 as a crucial regulator for neuropathic pain through the modulation of astrocyte swelling. The AURKB-NFAT5-AQP4 pathway in astrocytes emerges as a potential therapeutic target to combat neuropathic pain.
Collapse
Affiliation(s)
- Liqiong He
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Shengyun Ma
- Department of Cellular and Molecular MedicineUniversity of California San DiegoSan DiegoCA92093USA
| | - Zijin Ding
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhifeng Huang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Yu Zhang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Caiyun Xi
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Kailu Zou
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Qingwei Deng
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular MedicineUniversity of California San DiegoSan DiegoCA92093USA
| | - Qulian Guo
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Changsheng Huang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
21
|
Silveira Prudente A, Hoon Lee S, Roh J, Luckemeyer DD, Cohen CF, Pertin M, Park CK, Suter MR, Decosterd I, Zhang JM, Ji RR, Berta T. Microglial STING activation alleviates nerve injury-induced neuropathic pain in male but not female mice. Brain Behav Immun 2024; 117:51-65. [PMID: 38190983 PMCID: PMC11034751 DOI: 10.1016/j.bbi.2024.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
Microglia, resident immune cells in the central nervous system, play a role in neuroinflammation and the development of neuropathic pain. We found that the stimulator of interferon genes (STING) is predominantly expressed in spinal microglia and upregulated after peripheral nerve injury. However, mechanical allodynia, as a marker of neuropathic pain following peripheral nerve injury, did not require microglial STING expression. In contrast, STING activation by specific agonists (ADU-S100, 35 nmol) significantly alleviated neuropathic pain in male mice, but not female mice. STING activation in female mice leads to increase in proinflammatory cytokines that may counteract the analgesic effect of ADU-S100. Microglial STING expression and type I interferon-ß (IFN-ß) signaling were required for the analgesic effects of STING agonists in male mice. Mechanistically, downstream activation of TANK-binding kinase 1 (TBK1) and the production of IFN-ß, may partly account for the analgesic effect observed. These findings suggest that STING activation in spinal microglia could be a potential therapeutic intervention for neuropathic pain, particularly in males.
Collapse
Affiliation(s)
- Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA; Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| | - Debora D Luckemeyer
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Cinder F Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Marie Pertin
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland; Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| | - Marc R Suter
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland; Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland; Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
22
|
Wang Y, Ye L. The Afferent Function of Adipose Innervation. Diabetes 2024; 73:348-354. [PMID: 38377447 PMCID: PMC10882147 DOI: 10.2337/dbi23-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/18/2023] [Indexed: 02/22/2024]
Abstract
Adipose tissue innervation is critical for regulating metabolic and energy homeostasis. While the sympathetic efferent innervation of fat is well characterized, the role of sensory or afferent innervation remains less explored. This article reviews previous work on adipose innervation and recent advances in the study of sensory innervation of adipose tissues. We discuss key open questions, including the physiological implications of adipose afferents in homeostasis as well as potential cross talk with sympathetic neurons, the immune system, and hormonal pathways. We also outline the general technical challenges of studying dorsal root ganglia innervating fat, along with emerging technologies that may overcome these barriers. Finally, we highlight areas for further research to deepen our understanding of the afferent function of adipose innervation.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
23
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
24
|
Chen HH, Mohsin M, Ge JY, Feng YT, Wang JG, Ou YS, Jiang ZJ, Hu BY, Liu XJ. Optogenetic Activation of Peripheral Somatosensory Neurons in Transgenic Mice as a Neuropathic Pain Model for Assessing the Therapeutic Efficacy of Analgesics. ACS Pharmacol Transl Sci 2024; 7:236-248. [PMID: 38230281 PMCID: PMC10789130 DOI: 10.1021/acsptsci.3c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Optogenetics is a novel biotechnology widely used to precisely manipulate a specific peripheral sensory neuron or neural circuit. However, the use of optogenetics to assess the therapeutic efficacy of analgesics is elusive. In this study, we generated a transgenic mouse stain in which all primary somatosensory neurons can be optogenetically activated to mimic neuronal hyperactivation in the neuropathic pain state for the assessment of analgesic effects of drugs. A transgenic mouse was generated using the advillin-Cre line mated with the Ai32 strain, in which channelrhodopsin-2 fused to enhanced yellow fluorescence protein (ChR2-EYFP) was conditionally expressed in all types of primary somatosensory neurons (advillincre/ChR2+/+). Immunofluorescence and transdermal photostimulation on the hindpaws were used to verify the transgenic mice. Optical stimulation to evoke pain-like paw withdrawal latency was used to assess the analgesic effects of a series of drugs. Injury- and pain-related molecular biomarkers were investigated with immunohistofluorescence. We found that the expression of ChR2-EYFP was observed in many primary afferents of paw skin and sciatic nerves and in primary sensory neurons and laminae I and II of the spinal dorsal horns in advillincre/ChR2+/+ mice. Transdermal blue light stimulation of the transgenic mouse hindpaw evoked nocifensive paw withdrawal behavior. Treatment with gabapentin, some channel blockers, and local anesthetics, but not opioids or COX-1/2 inhibitors, prolonged the paw withdrawal latency in the transgenic mice. The analgesic effect of gabapentin was also verified by the decreased expression of injury- and pain-related molecular biomarkers. These optogenetic mice provide a promising model for assessing the therapeutic efficacy of analgesics in neuropathic pain.
Collapse
Affiliation(s)
- Hao-Hao Chen
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Muhammad Mohsin
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Jia-Yi Ge
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu-Ting Feng
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jing-Ge Wang
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu-Sen Ou
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Zuo-Jie Jiang
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Bo-Ya Hu
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Xing-Jun Liu
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| |
Collapse
|
25
|
Tran H, Feng Y, Chao D, Liu QS, Hogan QH, Pan B. Descending mechanism by which medial prefrontal cortex endocannabinoid signaling controls the development of neuropathic pain and neuronal activity of dorsal root ganglion. Pain 2024; 165:102-114. [PMID: 37463226 PMCID: PMC10787817 DOI: 10.1097/j.pain.0000000000002992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/05/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT Although regulation of nociceptive processes in the dorsal horn by deep brain structures has long been established, the role of cortical networks in pain regulation is minimally explored. The medial prefrontal cortex (mPFC) is a key brain area in pain processing that receives ascending nociceptive input and exerts top-down control of pain sensation. We have shown critical changes in mPFC synaptic function during neuropathic pain, controlled by endocannabinoid (eCB) signaling. This study tests whether mPFC eCB signaling modulates neuropathic pain through descending control. Intra-mPFC injection of cannabinoid receptor type 1 (CB1R) agonist WIN-55,212-2 (WIN) in the chronic phase transiently alleviates the pain-like behaviors in spared nerve injury (SNI) rats. By contrast, intra-mPFC injection of CB1R antagonist AM4113 in the early phase of neuropathic pain reduces the development of pain-like behaviors in the chronic phase. Spared nerve injury reduced the mechanical threshold to induce action potential firing of dorsal horn wide-dynamic-range neurons, but this was reversed in rats by WIN in the chronic phase of SNI and by mPFC injection of AM4113 in the early phase of SNI. Elevated dorsal root ganglion neuronal activity after injury was also diminished in rats by mPFC injection of AM4113, potentially by reducing antidromic activity and subsequent neuronal inflammation. These findings suggest that depending on the phase of the pain condition, both blocking and activating CB1 receptors in the mPFC can regulate descending control of pain and affect both dorsal horn neurons and peripheral sensory neurons, contributing to changes in pain sensitivity.
Collapse
Affiliation(s)
- Hai Tran
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Yin Feng
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Qing-song Liu
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| |
Collapse
|
26
|
Lei M, Wang W, Zhang H, Gong J, Wang Z, Cai H, Yang X, Wang S, Ma C. Cell-cell and cell-matrix adhesion regulated by Piezo1 is critical for stiffness-dependent DRG neuron aggregation. Cell Rep 2023; 42:113522. [PMID: 38048221 DOI: 10.1016/j.celrep.2023.113522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/01/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
The dorsal root ganglion (DRG) is characterized by the dense clustering of primary sensory neuron bodies, with their axons extending to target tissues for sensory perception. The close physical proximity of DRG neurons facilitates the integration and amplification of somatosensation, ensuring normal physiological functioning. However, the mechanism underlying DRG neuron aggregation was unclear. In our study, we culture DRG neurons from newborn rats on substrates with varying stiffness and observe that the aggregation of DRG neurons is influenced by mechanical signals arising from substrate stiffness. Moreover, we identify Piezo1 as the mechanosensor responsible for DRG neurons' ability to sense different substrate stiffness. We further demonstrate that the Piezo1-calpain-integrin-β1/E-cadherin signaling cascade regulates the aggregation of DRG neurons. These findings deepen our understanding of the mechanisms involved in histogenesis and potential disease development, as mechanical signals arising from substrate stiffness play a crucial role in these processes.
Collapse
Affiliation(s)
- Mengshi Lei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weiyou Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jihong Gong
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Zhili Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanmian Cai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
27
|
Xian H, Guo H, Liu YY, Zhang JL, Hu WC, Yu MJ, Zhao R, Xie RG, Zhang H, Cong R. Peripheral BDNF Regulates Somatosensory-Sympathetic Coupling in Brachial Plexus Avulsion-Induced Neuropathic Pain. Neurosci Bull 2023; 39:1789-1806. [PMID: 37335428 PMCID: PMC10661543 DOI: 10.1007/s12264-023-01075-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/19/2023] [Indexed: 06/21/2023] Open
Abstract
Brachial plexus avulsion (BPA) is a combined injury involving the central and peripheral nervous systems. Patients with BPA often experience severe neuropathic pain (NP) in the affected limb. NP is insensitive to the existing treatments, which makes it a challenge to researchers and clinicians. Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction, which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP. However, the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear. In this study, through using a novel BPA C7 root avulsion mouse model, we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased, and the markers of sympathetic nervous system activity including α1 and α2 adrenergic receptors (α1-AR and α2-AR) also increased after BPA. The phenomenon of superexcitation of the sympathetic nervous system, including hypothermia and edema of the affected extremity, was also observed in BPA mice by using CatWalk gait analysis, an infrared thermometer, and an edema evaluation. Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice. Further, intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice. In another branch experiment, we also found the elevated expression of BDNF, TrκB, TH, α1-AR, and α2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry. Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP. This study also opens a novel analgesic target (BDNF) in the treatment of this pain with fewer complications, which has great potential for clinical transformation.
Collapse
Affiliation(s)
- Hang Xian
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Huan Guo
- Pain and Related Diseases Research Laboratory, Medical College of Shantou University, Shantou, 515041, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- School of Life Science and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Jian-Lei Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
- The Sixth Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Ming-Jun Yu
- The Tenth Squadron of the Third Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Rui Zhao
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China.
| | - Hang Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Rui Cong
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
28
|
Walters ET. Exaptation and Evolutionary Adaptation in Nociceptor Mechanisms Driving Persistent Pain. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:314-330. [PMID: 38035556 PMCID: PMC10922759 DOI: 10.1159/000535552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Several evolutionary explanations have been proposed for why chronic pain is a major clinical problem. One is that some mechanisms important for driving chronic pain, while maladaptive for modern humans, were adaptive because they enhanced survival. Evidence is reviewed for persistent nociceptor hyperactivity (PNH), known to promote chronic pain in rodents and humans, being an evolutionarily adaptive response to significant bodily injury, and primitive molecular mechanisms related to cellular injury and stress being exapted (co-opted or repurposed) to drive PNH and consequent pain. SUMMARY PNH in a snail (Aplysia californica), squid (Doryteuthis pealeii), fruit fly (Drosophila melanogaster), mice, rats, and humans has been documented as long-lasting enhancement of action potential discharge evoked by peripheral stimuli, and in some of these species as persistent extrinsically driven ongoing activity and/or intrinsic spontaneous activity (OA and SA, respectively). In mammals, OA and SA are often initiated within the protected nociceptor soma long after an inducing injury. Generation of OA or SA in nociceptor somata may be very rare in invertebrates, but prolonged afterdischarge in nociceptor somata readily occurs in sensitized Aplysia. Evidence for the adaptiveness of injury-induced PNH has come from observations of decreased survival of injured squid exposed to predators when PNH is blocked, from plausible survival benefits of chronic sensitization after severe injuries such as amputation, and from the functional coherence and intricacy of mammalian PNH mechanisms. Major contributions of cAMP-PKA signaling (with associated calcium signaling) to the maintenance of PNH both in mammals and molluscs suggest that this ancient stress signaling system was exapted early during the evolution of nociceptors to drive hyperactivity following bodily injury. Vertebrates have retained core cAMP-PKA signaling modules for PNH while adding new extracellular modulators (e.g., opioids) and cAMP-regulated ion channels (e.g., TRPV1 and Nav1.8 channels). KEY MESSAGES Evidence from multiple phyla indicates that PNH is a physiological adaptation that decreases the risk of attacks on injured animals. Core cAMP-PKA signaling modules make major contributions to the maintenance of PNH in molluscs and mammals. This conserved signaling has been linked to ancient cellular responses to stress, which may have been exapted in early nociceptors to drive protective hyperactivity that can persist while bodily functions recover after significant injury.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
29
|
Chen Q, Zhang XY, Wang YP, Fu YJ, Cao F, Xu YN, Kong JG, Tian NX, Xu Y, Wang Y. Unveiling adcyap1 as a protective factor linking pain and nerve regeneration through single-cell RNA sequencing of rat dorsal root ganglion neurons. BMC Biol 2023; 21:235. [PMID: 37880634 PMCID: PMC10601282 DOI: 10.1186/s12915-023-01742-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Severe peripheral nerve injury (PNI) often leads to significant movement disorders and intractable pain. Therefore, promoting nerve regeneration while avoiding neuropathic pain is crucial for the clinical treatment of PNI patients. However, established animal models for peripheral neuropathy fail to accurately recapitulate the clinical features of PNI. Additionally, researchers usually investigate neuropathic pain and axonal regeneration separately, leaving the intrinsic relationship between the development of neuropathic pain and nerve regeneration after PNI unclear. To explore the underlying connections between pain and regeneration after PNI and provide potential molecular targets, we performed single-cell RNA sequencing and functional verification in an established rat model, allowing simultaneous study of the neuropathic pain and axonal regeneration after PNI. RESULTS First, a novel rat model named spared nerve crush (SNC) was created. In this model, two branches of the sciatic nerve were crushed, but the epineurium remained unsevered. This model successfully recapitulated both neuropathic pain and axonal regeneration after PNI, allowing for the study of the intrinsic link between these two crucial biological processes. Dorsal root ganglions (DRGs) from SNC and naïve rats at various time points after SNC were collected for single-cell RNA sequencing (scRNA-seq). After matching all scRNA-seq data to the 7 known DRG types, we discovered that the PEP1 and PEP3 DRG neuron subtypes increased in crushed and uncrushed DRG separately after SNC. Using experimental design scRNA-seq processing (EDSSP), we identified Adcyap1 as a potential gene contributing to both pain and nerve regeneration. Indeed, repeated intrathecal administration of PACAP38 mitigated pain and facilitated axonal regeneration, while Adcyap1 siRNA or PACAP6-38, an antagonist of PAC1R (a receptor of PACAP38) led to both mechanical hyperalgesia and delayed DRG axon regeneration in SNC rats. Moreover, these effects can be reversed by repeated intrathecal administration of PACAP38 in the acute phase but not the late phase after PNI, resulting in alleviated pain and promoted axonal regeneration. CONCLUSIONS Our study reveals that Adcyap1 is an intrinsic protective factor linking neuropathic pain and axonal regeneration following PNI. This finding provides new potential targets and strategies for early therapeutic intervention of PNI.
Collapse
Affiliation(s)
- Qi Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Xi-Yin Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Yu-Pu Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Yun-Jie Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Feng Cao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Yi-Nuo Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Jin-Ge Kong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Na-Xi Tian
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Yu Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Zhang WJ, Liu SC, Ming LG, Yu JW, Zuo C, Hu DX, Luo HL, Zhang Q. Potential role of Schwann cells in neuropathic pain. Eur J Pharmacol 2023; 956:175955. [PMID: 37541365 DOI: 10.1016/j.ejphar.2023.175955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Neuropathic pain (NPP) is a common syndrome associated with most forms of disease, which poses a serious threat to human health. NPP may persist even after the nociceptive stimulation is eliminated, and treatment is extremely challenging in such cases. Schwann cells (SCs) form the myelin sheaths around neuronal axons and play a crucial role in neural information transmission. SCs can secrete trophic factors to nourish and protect axons, and can further secrete pain-related factors to induce pain. SCs may be activated by peripheral nerve injury, triggering the transformation of myelinated and non-myelinated SCs into cell phenotypes that specifically promote repair. These differentiated SCs provide necessary signals and spatial clues for survival, axonal regeneration, and nerve regeneration of damaged neurons. They can further change the microenvironment around the regions of nerve injury, and relieve the pain by repairing the injured nerve. Herein, we provide a comprehensive overview of the biological characteristics of SCs, discuss the relationship between SCs and nerve injury, and explore the potential mechanism of SCs and the occurrence of NPP. Moreover, we summarize the feasible strategies of SCs in the treatment of NPP, and attempt to elucidate the deficiencies and defects of SCs in the treatment of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Li-Guo Ming
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jian-Wen Yu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Hong-Liang Luo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
31
|
Jeon SM, Pradeep A, Chang D, McDonough L, Chen Y, Latremoliere A, Crawford LK, Caterina MJ. SKIN REINNERVATION BY COLLATERAL SPROUTING FOLLOWING SPARED NERVE INJURY IN MICE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557420. [PMID: 37745384 PMCID: PMC10515828 DOI: 10.1101/2023.09.12.557420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Following peripheral nerve injury, denervated tissues can be reinnervated via regeneration of injured neurons or via collateral sprouting of neighboring uninjured afferents into the denervated territory. While there has been substantial focus on mechanisms underlying regeneration, collateral sprouting has received relatively less attention. In this study, we used immunohistochemistry and genetic neuronal labeling to define the subtype specificity of sprouting-mediated reinnervation of plantar hind paw skin in the mouse spared nerve injury (SNI) model, in which productive regeneration cannot occur. Following an initial loss of cutaneous afferents in the tibial nerve territory, we observed progressive centripetal reinnervation by multiple subtypes of neighboring uninjured fibers into denervated glabrous and hairy plantar skin. In addition to dermal reinnervation, CGRP-expressing peptidergic fibers slowly but continuously repopulated the denervated epidermis, Interestingly, GFRα2-expressing nonpeptidergic fibers exhibited a transient burst of epidermal reinnervation, followed by trend towards regression. Presumptive sympathetic nerve fibers also sprouted into the denervated territory, as did a population of myelinated TrkC lineage fibers, though the latter did so less efficiently. Conversely, rapidly adapting Aβ fiber and C fiber low threshold mechanoreceptor (LTMR) subtypes failed to exhibit convincing collateral sprouting up to 8 weeks after nerve injury. Optogenetics and behavioral assays further demonstrated the functionality of collaterally sprouted fibers in hairy plantar skin with restoration of punctate mechanosensation without hypersensitivity. Our findings advance understanding of differential collateral sprouting among sensory neuron subpopulations and may guide strategies to promote the progression of sensory recovery or limit maladaptive sensory phenomena after peripheral nerve injury. Significance Statement Following nerve injury, whereas one mechanism for tissue reinnervation is regeneration of injured neurons, another, less well studied mechanism is collateral sprouting of nearby uninjured neurons. In this study, we examined collateral sprouting in denervated mouse skin and showed that it involves some, but not all neuronal subtypes. Despite such heterogeneity, a significant degree of restoration of punctate mechanical sensitivity is achieved. These findings highlight the diversity of collateral sprouting among peripheral neuron subtypes and reveal important differences between pre- and post-denervation skin that might be appealing targets for therapeutic correction to enhance functional recovery from denervation and prevent unwanted sensory phenomena such as pain or numbness.
Collapse
|
32
|
Liu XD, Jin T, Tao Y, Zhang M, Zheng HL, Liu QQ, Yang KH, Wei RN, Li SY, Huang Y, Xue ZY, Hao LY, Wang QH, Yang L, Lin FQ, Shen W, Tao YX, Wang HJ, Cao JL, Pan ZQ. DHX9/DNA-tandem repeat-dependent downregulation of ciRNA-Fmn1 in the dorsal horn is required for neuropathic pain. Acta Pharmacol Sin 2023; 44:1748-1767. [PMID: 37095197 PMCID: PMC10462628 DOI: 10.1038/s41401-023-01082-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 04/26/2023] Open
Abstract
Circular RNAs (ciRNAs) are emerging as new players in the regulation of gene expression. However, how ciRNAs are involved in neuropathic pain is poorly understood. Here, we identify the nervous-tissue-specific ciRNA-Fmn1 and report that changes in ciRNA-Fmn1 expression in spinal cord dorsal horn neurons play a key role in neuropathic pain after nerve injury. ciRNA-Fmn1 was significantly downregulated in ipsilateral dorsal horn neurons after peripheral nerve injury, at least in part because of a decrease in DNA helicase 9 (DHX9), which regulates production of ciRNA-Fmn1 by binding to DNA-tandem repeats. Blocking ciRNA-Fmn1 downregulation reversed nerve-injury-induced reductions in both the binding of ciRNA-Fmn1 to the ubiquitin ligase UBR5 and the level of ubiquitination of albumin (ALB), thereby abrogating the nerve-injury-induced increase of ALB expression in the dorsal horn and attenuating the associated pain hypersensitivities. Conversely, mimicking downregulation of ciRNA-Fmn1 in naïve mice reduced the UBR5-controlled ubiquitination of ALB, leading to increased expression of ALB in the dorsal horn and induction of neuropathic-pain-like behaviors in naïve mice. Thus, ciRNA-Fmn1 downregulation caused by changes in binding of DHX9 to DNA-tandem repeats contributes to the genesis of neuropathic pain by negatively modulating UBR5-controlled ALB expression in the dorsal horn.
Collapse
Affiliation(s)
- Xiao-Dan Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Tong Jin
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hong-Li Zheng
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Qiao-Qiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ke-Hui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ru-Na Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Si-Yuan Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yue Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhou-Ya Xue
- Department of Anesthesiology, Yancheng Affiliated Hospital of Xuzhou Medical University, Yancheng, 224001, China
| | - Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Fu-Qing Lin
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Wen Shen
- Department of Pain, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Hong-Jun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Zhi-Qiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
33
|
Liu X, Tang SJ. Pathogenic mechanisms of human immunodeficiency virus (HIV)-associated pain. Mol Psychiatry 2023; 28:3613-3624. [PMID: 37857809 DOI: 10.1038/s41380-023-02294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Chronic pain is a prevalent neurological complication among individuals living with human immunodeficiency virus (PLHIV) in the post-combination antiretroviral therapy (cART) era. These individuals experience malfunction in various cellular and molecular pathways involved in pain transmission and modulation, including the neuropathology of the peripheral sensory neurons and neurodegeneration and neuroinflammation in the spinal dorsal horn. However, the underlying etiologies and mechanisms leading to pain pathogenesis are complex and not fully understood. In this review, we aim to summarize recent progress in this field. Specifically, we will begin by examining neuropathology in the pain pathways identified in PLHIV and discussing potential causes, including those directly related to HIV-1 infection and comorbidities, such as antiretroviral drug use. We will also explore findings from animal models that may provide insights into the molecular and cellular processes contributing to neuropathology and chronic pain associated with HIV infection. Emerging evidence suggests that viral proteins and/or antiretroviral drugs trigger a complex pathological cascade involving neurons, glia, and potentially non-neural cells, and that interactions between these cells play a critical role in the pathogenesis of HIV-associated pain.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA.
| |
Collapse
|
34
|
Cui X, Zhang Z, Xi H, Liu K, Zhu B, Gao X. Sympathetic-Sensory Coupling as a Potential Mechanism for Acupoints Sensitization. J Pain Res 2023; 16:2997-3004. [PMID: 37667684 PMCID: PMC10475306 DOI: 10.2147/jpr.s424841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
A series of studies have demonstrated acupoint sensitization, in which acupoints can be activated in combination with sensory hypersensitivity and functional plasticity during visceral disorders. However, the mechanisms of acupoint sensitization remain unclear. Neuroanatomy evidence showed nociceptors innervated in acupoints contribute to the mechanism of acupoint sensitization. Increasing studies suggested sympathetic nerve plays a key role in modulating sensory transmission by sprouting or coupling with sensory neuron/nociceptor in the peripheral, forming the functional structure of the sympathetic-sensory coupling. Notably, the sensory inputs of the disease-induced sensitized acupoint contribute to the homeostatic regulation and also involve in delivering therapeutic information under acupuncture, hence, the role of sprouted sympathetic in acupoint function should be given attention. We herein reviewed the current knowledge of sympathetic and its sprouting in pain modulation, then discussed and highlighted the potential value of sympathetic-sensory coupling in acupoint functional plasticity.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Ziyi Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, People’s Republic of China
| | - Hanqing Xi
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| |
Collapse
|
35
|
Berta T, Strong JA, Zhang JM, Ji RR. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain: an update. Expert Opin Ther Targets 2023; 27:665-678. [PMID: 37574713 PMCID: PMC10530032 DOI: 10.1080/14728222.2023.2247563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Current treatments for chronic pain are inadequate. Here, we provide an update on the new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. AREAS COVERED Despite the complex nature of chronic pain and its underlying mechanisms, we do know that changes in the plasticity and modality of neurons in DRGs play a pivotal role. DRG neurons are heterogenous and offer potential pain targets for different therapeutic interventions. We discuss the last advancements of these interventions, which include the use of systemic and local administrations, selective nerve drug delivery, and gene therapy. In particular, we provide updates and further details on the molecular characterization of primary sensory neurons, new analgesics entering the market, and future gene therapy approaches. EXPERT OPINION DRGs and primary sensory neurons are promising targets for chronic pain treatment due to their key role in pain signaling, unique anatomical location, and the potential for different targeted therapeutic interventions.
Collapse
Affiliation(s)
- Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
36
|
Ding W, Yang L, Chen Q, Hu K, Liu Y, Bao E, Wang C, Mao J, Shen S. Foramen lacerum impingement of trigeminal nerve root as a rodent model for trigeminal neuralgia. JCI Insight 2023; 8:e168046. [PMID: 37159265 PMCID: PMC10393239 DOI: 10.1172/jci.insight.168046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
Trigeminal neuralgia (TN) is a classic neuralgic pain condition with distinct clinical characteristics. Modeling TN in rodents is challenging. Recently, we found that a foramen in the rodent skull base, the foramen lacerum, provides direct access to the trigeminal nerve root. Using this access, we developed a foramen lacerum impingement of trigeminal nerve root (FLIT) model and observed distinct pain-like behaviors in rodents, including paroxysmal asymmetric facial grimaces, head tilt when eating, avoidance of solid chow, and lack of wood chewing. The FLIT model recapitulated key clinical features of TN, including lancinating pain-like behavior and dental pain-like behavior. Importantly, when compared with a trigeminal neuropathic pain model (infraorbital nerve chronic constriction injury [IoN-CCI]), the FLIT model was associated with significantly higher numbers of c-Fos-positive cells in the primary somatosensory cortex (S1), unraveling robust cortical activation in the FLIT model. On intravital 2-photon calcium imaging, synchronized S1 neural dynamics were present in the FLIT but not the IoN-CCI model, revealing differential implication of cortical activation in different pain models. Taken together, our results indicate that FLIT is a clinically relevant rodent model of TN that could facilitate pain research and therapeutics development.
Collapse
Affiliation(s)
- Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Chen
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kun Hu
- Department of Pathology, Tuft University School of Medicine, Boston, Massachusetts, USA
| | - Yan Liu
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric Bao
- Brooks School, North Andover, Massachusetts, USA
| | - Changning Wang
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jianren Mao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu I, Ginty DD, Sharma N. A DRG genetic toolkit reveals molecular, morphological, and functional diversity of somatosensory neuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537932. [PMID: 37131664 PMCID: PMC10153270 DOI: 10.1101/2023.04.22.537932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mechanical and thermal stimuli acting on the skin are detected by morphologically and physiologically distinct sensory neurons of the dorsal root ganglia (DRG). Achieving a holistic view of how this diverse neuronal population relays sensory information from the skin to the central nervous system (CNS) has been challenging with existing tools. Here, we used transcriptomic datasets of the mouse DRG to guide development and curation of a genetic toolkit to interrogate transcriptionally defined DRG neuron subtypes. Morphological analysis revealed unique cutaneous axon arborization areas and branching patterns of each subtype. Physiological analysis showed that subtypes exhibit distinct thresholds and ranges of responses to mechanical and/or thermal stimuli. The somatosensory neuron toolbox thus enables comprehensive phenotyping of most principal sensory neuron subtypes. Moreover, our findings support a population coding scheme in which the activation thresholds of morphologically and physiologically distinct cutaneous DRG neuron subtypes tile multiple dimensions of stimulus space.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| |
Collapse
|
38
|
Ming LG, Hu DX, Zuo C, Zhang WJ. G protein-coupled P2Y12 receptor is involved in the progression of neuropathic pain. Biomed Pharmacother 2023; 162:114713. [PMID: 37084563 DOI: 10.1016/j.biopha.2023.114713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
The pathological mechanism of neuropathic pain is complex, which seriously affects the physical and mental health of patients, and its treatment is also difficult. The role of G protein-coupled P2Y12 receptor in pain has been widely recognized and affirmed. After nerve injury, stimulated cells can release large amounts of nucleotides into the extracellular matrix, act on P2Y12 receptor. Activated P2Y12 receptor activates intracellular signal transduction and is involved in the development of pain. P2Y12 receptor activation can sensitize primary sensory neurons and receive sensory information. By transmitting the integrated information through the dorsal root of the spinal cord to the secondary neurons of the posterior horn of the spinal cord. The integrated information is then transmitted to the higher center through the ascending conduction tract to produce pain. Moreover, activation of P2Y12 receptor can mediate immune cells to release pro-inflammatory factors, increase damage to nerve cells, and aggravate pain. While inhibits the activation of P2Y12 receptor can effectively relieve pain. Therefore, in this article, we described P2Y12 receptor antagonists and their pharmacological properties. In addition, we explored the potential link between P2Y12 receptor and the nervous system, discussed the intrinsic link of P2Y12 receptor and neuropathic pain and as a potential pharmacological target for pain suppression.
Collapse
Affiliation(s)
- Li-Guo Ming
- Department of Gastrointestinal surgery, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
39
|
Walters ET, Crook RJ, Neely GG, Price TJ, Smith ESJ. Persistent nociceptor hyperactivity as a painful evolutionary adaptation. Trends Neurosci 2023; 46:211-227. [PMID: 36610893 PMCID: PMC9974896 DOI: 10.1016/j.tins.2022.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Chronic pain caused by injury or disease of the nervous system (neuropathic pain) has been linked to persistent electrical hyperactivity of the sensory neurons (nociceptors) specialized to detect damaging stimuli and/or inflammation. This pain and hyperactivity are considered maladaptive because both can persist long after injured tissues have healed and inflammation has resolved. While the assumption of maladaptiveness is appropriate in many diseases, accumulating evidence from diverse species, including humans, challenges the assumption that neuropathic pain and persistent nociceptor hyperactivity are always maladaptive. We review studies indicating that persistent nociceptor hyperactivity has undergone evolutionary selection in widespread, albeit selected, animal groups as a physiological response that can increase survival long after bodily injury, using both highly conserved and divergent underlying mechanisms.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - G Gregory Neely
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
40
|
Ding W, Fischer L, Chen Q, Li Z, Yang L, You Z, Hu K, Wu X, Zhou X, Chao W, Hu P, Dagnew TM, Dubreuil DM, Wang S, Xia S, Bao C, Zhu S, Chen L, Wang C, Wainger B, Jin P, Mao J, Feng G, Harnett MT, Shen S. Highly synchronized cortical circuit dynamics mediate spontaneous pain in mice. J Clin Invest 2023; 133:e166408. [PMID: 36602876 PMCID: PMC9974100 DOI: 10.1172/jci166408] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cortical neural dynamics mediate information processing for the cerebral cortex, which is implicated in fundamental biological processes such as vision and olfaction, in addition to neurological and psychiatric diseases. Spontaneous pain is a key feature of human neuropathic pain. Whether spontaneous pain pushes the cortical network into an aberrant state and, if so, whether it can be brought back to a "normal" operating range to ameliorate pain are unknown. Using a clinically relevant mouse model of neuropathic pain with spontaneous pain-like behavior, we report that orofacial spontaneous pain activated a specific area within the primary somatosensory cortex (S1), displaying synchronized neural dynamics revealed by intravital two-photon calcium imaging. This synchronization was underpinned by local GABAergic interneuron hypoactivity. Pain-induced cortical synchronization could be attenuated by manipulating local S1 networks or clinically effective pain therapies. Specifically, both chemogenetic inhibition of pain-related c-Fos-expressing neurons and selective activation of GABAergic interneurons significantly attenuated S1 synchronization. Clinically effective pain therapies including carbamazepine and nerve root decompression could also dampen S1 synchronization. More important, restoring a "normal" range of neural dynamics through attenuation of pain-induced S1 synchronization alleviated pain-like behavior. These results suggest that spontaneous pain pushed the S1 regional network into a synchronized state, whereas reversal of this synchronization alleviated pain.
Collapse
Affiliation(s)
- Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Lukas Fischer
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Qian Chen
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Zerong You
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Kun Hu
- Department of Pathology, Tufts University School of Medicine, Medford, Massachusetts, USA
| | - Xinbo Wu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Xue Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Wei Chao
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Peter Hu
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tewodros Mulugeta Dagnew
- MGH/HST Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel M. Dubreuil
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Shiyu Wang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Suyun Xia
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Bao
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shengmei Zhu
- Department of Anesthesiology, the First Affiliate Hospital of Zhejiang University, Hangzhou, China
| | - Lucy Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Changning Wang
- MGH/HST Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Wainger
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Jianren Mao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Guoping Feng
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark T. Harnett
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Chen C, Sun L, Adler A, Zhou H, Zhang L, Zhang L, Deng J, Bai Y, Zhang J, Yang G, Gan WB, Tang P. Synchronized activity of sensory neurons initiates cortical synchrony in a model of neuropathic pain. Nat Commun 2023; 14:689. [PMID: 36755026 PMCID: PMC9908980 DOI: 10.1038/s41467-023-36093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Increased low frequency cortical oscillations are observed in people with neuropathic pain, but the cause of such elevated cortical oscillations and their impact on pain development remain unclear. By imaging neuronal activity in a spared nerve injury (SNI) mouse model of neuropathic pain, we show that neurons in dorsal root ganglia (DRG) and somatosensory cortex (S1) exhibit synchronized activity after peripheral nerve injury. Notably, synchronized activity of DRG neurons occurs within hours after injury and 1-2 days before increased cortical oscillations. This DRG synchrony is initiated by axotomized neurons and mediated by local purinergic signaling at the site of nerve injury. We further show that synchronized DRG activity after SNI is responsible for increasing low frequency cortical oscillations and synaptic remodeling in S1, as well as for inducing animals' pain-like behaviors. In naive mice, enhancing the synchrony, not the level, of DRG neuronal activity causes synaptic changes in S1 and pain-like behaviors similar to SNI mice. Taken together, these results reveal the critical role of synchronized DRG neuronal activity in increasing cortical plasticity and oscillations in a neuropathic pain model. These findings also suggest the potential importance of detection and suppression of elevated cortical oscillations in neuropathic pain states.
Collapse
Affiliation(s)
- Chao Chen
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China
- Department of Hand Surgery, Shenzhen People's Hospital, Second Clinical Medicine College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Linlin Sun
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Neuroscience Research Institute, Peking University, Beijing, China
| | - Avital Adler
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Hang Zhou
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Licheng Zhang
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China
| | - Lihai Zhang
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China
| | - Junhao Deng
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China
| | - Yang Bai
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Jinhui Zhang
- Department of Orthopaedics, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 175 Hospital, Zhangzhou, Fujian, China
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| | - Wen-Biao Gan
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Peifu Tang
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China.
| |
Collapse
|
42
|
Xing J, Wang Η, Chen L, Wang H, Huang H, Huang J, Xu C. Blocking Cx43 alleviates neuropathic pain in rats with chronic constriction injury via the P2X4 and P38/ERK-P65 pathways. Int Immunopharmacol 2023; 114:109506. [PMID: 36442284 DOI: 10.1016/j.intimp.2022.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Neuropathic pain is a growing concern in the medical community, and studies on new analgesic targets for neuropathic pain have become a new hot spot. Whether Connexin43 (Cx43) has a key role in neuropathic pain mediated by the purinergic 2X4 (P2X4) receptor in rats with chronic constriction injury (CCI) was explored in this study. Our experimental results show that blockade of Cx43 could attenuate neuropathic pain in rats suffering from CCI via the P2X4, p38, ERK, and NF-kB signalling pathways. These results suggest that Cx43 may be a promising therapeutic target for the development of novel pharmacological agents in the management of neuropathic pain.
Collapse
Affiliation(s)
- Juping Xing
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, Jiangxi, PR China
| | - Ηongji Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Lisha Chen
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Hanxi Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Huan Huang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Jiabao Huang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, Jiangxi, PR China; The Clinical Medical School, Jiangxi Medical College, Shangrao 334000, Jiangxi, PR China; The First Affiliated Hospital, Jiangxi Medical College, Shangrao 334000, Jiangxi, PR China.
| |
Collapse
|
43
|
Noble DJ, Dongmo R, Parvin S, Martin KK, Garraway SM. C-low threshold mechanoreceptor activation becomes sufficient to trigger affective pain in spinal cord-injured mice in association with increased respiratory rates. Front Integr Neurosci 2022; 16:1081172. [PMID: 36619238 PMCID: PMC9811591 DOI: 10.3389/fnint.2022.1081172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
The mechanisms of neuropathic pain after spinal cord injury (SCI) are not fully understood. In addition to the plasticity that occurs within the injured spinal cord, peripheral processes, such as hyperactivity of primary nociceptors, are critical to the expression of pain after SCI. In adult rats, truncal stimulation within the tuning range of C-low threshold mechanoreceptors (C-LTMRs) contributes to pain hypersensitivity and elevates respiratory rates (RRs) after SCI. This suggests that C-LTMRs, which normally encode pleasant, affiliative touch, undergo plasticity to transmit pain sensation following injury. Because tyrosine hydroxylase (TH) expression is a specific marker of C-LTMRs, in the periphery, here we used TH-Cre adult mice to investigate more specifically the involvement of C-LTMRs in at-level pain after thoracic contusion SCI. Using a modified light-dark chamber conditioned place aversion (CPA) paradigm, we assessed chamber preferences and transitions between chambers at baseline, and in response to mechanical and optogenetic stimulation of C-LTMRs. In parallel, at baseline and select post-surgical timepoints, mice underwent non-contact RR recordings and von Frey assessment of mechanical hypersensitivity. The results showed that SCI mice avoided the chamber associated with C-LTMR stimulation, an effect that was more pronounced with optical stimulation. They also displayed elevated RRs at rest and during CPA training sessions. Importantly, these changes were restricted to chronic post-surgery timepoints, when hindpaw mechanical hypersensitivity was also evident. Together, these results suggest that C-LTMR afferent plasticity, coexisting with potentially facilitatory changes in breathing, drives at-level affective pain following SCI in adult mice.
Collapse
|
44
|
Jin Y, Mao Y, Chen D, Tai Y, Hu R, Yang CL, Zhou J, Chen L, Liu X, Gu E, Jia C, Zhang Z, Tao W. Thalamocortical circuits drive remifentanil-induced postoperative hyperalgesia. J Clin Invest 2022; 132:158742. [PMID: 36519547 PMCID: PMC9754001 DOI: 10.1172/jci158742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022] Open
Abstract
Remifentanil-induced hyperalgesia (RIH) is a severe but common postoperative clinical problem with elusive underlying neural mechanisms. Here, we discovered that glutamatergic neurons in the thalamic ventral posterolateral nucleus (VPLGlu) exhibited significantly elevated burst firing accompanied by upregulation of Cav3.1 T-type calcium channel expression and function in RIH model mice. In addition, we identified a glutamatergic neuronal thalamocortical circuit in the VPL projecting to hindlimb primary somatosensory cortex glutamatergic neurons (S1HLGlu) that mediated RIH. In vivo calcium imaging and multi-tetrode recordings revealed heightened S1HLGlu neuronal activity during RIH. Moreover, preoperative suppression of Cav3.1-dependent burst firing in VPLGlu neurons or chemogenetic inhibition of VPLGlu neuronal terminals in the S1HL abolished the increased S1HLGlu neuronal excitability while alleviating RIH. Our findings suggest that remifentanil induces postoperative hyperalgesia by upregulating T-type calcium channel-dependent burst firing in VPLGlu neurons to activate S1HLGlu neurons, thus revealing an ion channel-mediated neural circuit basis for RIH that can guide analgesic development.
Collapse
Affiliation(s)
- Yan Jin
- Stroke Center and Department of Neurology and,Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Yu Mao
- Stroke Center and Department of Neurology and,Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Danyang Chen
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Yingju Tai
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Rui Hu
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen-Ling Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing Zhou
- Department of head, neck, and breast Surgery, Western district of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erwei Gu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunhui Jia
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Zhi Zhang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Wenjuan Tao
- Stroke Center and Department of Neurology and,Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
45
|
Mai L, Jia S, Liu Q, Chu Y, Liu J, Yang S, Huang F, Fan W. Sympathectomy Ameliorates CFA-Induced Mechanical Allodynia via Modulating Phenotype of Macrophages in Sensory Ganglion in Mice. J Inflamm Res 2022; 15:6263-6274. [DOI: 10.2147/jir.s388322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
|
46
|
Ma X, Chen W, Yang NN, Wang L, Hao XW, Tan CX, Li HP, Liu CZ. Potential mechanisms of acupuncture for neuropathic pain based on somatosensory system. Front Neurosci 2022; 16:940343. [PMID: 36203799 PMCID: PMC9530146 DOI: 10.3389/fnins.2022.940343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Neuropathic pain, caused by a lesion or disease of the somatosensory system, is common and distressing. In view of the high human and economic burden, more effective treatment strategies were urgently needed. Acupuncture has been increasingly used as an adjuvant or complementary therapy for neuropathic pain. Although the therapeutic effects of acupuncture have been demonstrated in various high-quality randomized controlled trials, there is significant heterogeneity in the underlying mechanisms. This review aimed to summarize the potential mechanisms of acupuncture on neuropathic pain based on the somatosensory system, and guided for future both foundational and clinical studies. Here, we argued that acupuncture may have the potential to inhibit neuronal activity caused by neuropathic pain, through reducing the activation of pain-related ion channels and suppressing glial cells (including microglia and astrocytes) to release inflammatory cytokines, chemokines, amongst others. Meanwhile, acupuncture as a non-pharmacologic treatment, may have potential to activate descending pain control system via increasing the level of spinal or brain 5-hydroxytryptamine (5-HT), norepinephrine (NE), and opioid peptides. And the types of endogenously opioid peptides was influenced by electroacupuncture-frequency. The cumulative evidence demonstrated that acupuncture provided an alternative or adjunctive therapy for neuropathic pain.
Collapse
Affiliation(s)
- Xin Ma
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Chen
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Na-Na Yang
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Wan Hao
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Xia Tan
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Ping Li
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
- Hong-Ping Li,
| | - Cun-Zhi Liu
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Cun-Zhi Liu,
| |
Collapse
|
47
|
Zheng Q, Dong X, Green DP, Dong X. Peripheral mechanisms of chronic pain. MEDICAL REVIEW 2022; 2:251-270. [PMID: 36067122 PMCID: PMC9381002 DOI: 10.1515/mr-2022-0013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Acutely, pain serves to protect us from potentially harmful stimuli, however damage to the somatosensory system can cause maladaptive changes in neurons leading to chronic pain. Although acute pain is fairly well controlled, chronic pain remains difficult to treat. Chronic pain is primarily a neuropathic condition, but studies examining the mechanisms underlying chronic pain are now looking beyond afferent nerve lesions and exploring new receptor targets, immune cells, and the role of the autonomic nervous system in contributing chronic pain conditions. The studies outlined in this review reveal how chronic pain is not only confined to alterations in the nervous system and presents findings on new treatment targets and for this debilitating disease.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dustin P. Green
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
48
|
Ma L, Liu S, Yi M, Wan Y. Spontaneous pain as a challenge of research and management in chronic pain. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:308-319. [PMID: 37724190 PMCID: PMC10388751 DOI: 10.1515/mr-2022-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 09/20/2023]
Abstract
Spontaneous pain occurring without apparent external stimuli, is a significant complaint of individuals with chronic pain whose mechanisms, somewhat surprisingly, remain poorly understood. Over the past decades, neuroimaging studies start to reveal brain activities accompanying spontaneous pain. Meanwhile, a variety of animal models and behavioral tests have been established, including non-reflexive tests and free-choice tests, which have been shown to be effective in assessing spontaneous pain. For the spontaneous pain mechanisms, multiple lines of research mainly focus on three aspects: (1) sensitization of peripheral nociceptor receptors and ion channels, (2) spontaneous neuronal firing and abnormal activity patterns at the dorsal root ganglion and spinal cord level, (3) functional and structural alterations in the brain, particularly the limbic system and the medial pain pathway. Despite accumulating evidence revealing distinct neuronal mechanisms from evoked pain, we are still far from full understanding of spontaneous pain, leaving a big gap between bench and bedside for chronic pain treatment. A better understanding of the neural processes in chronic pain, with specific linkage as to which anatomical structures and molecules related to spontaneous pain perception and comorbidities, will greatly improve our ability to develop novel therapeutics.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
49
|
Luo Q, Wen S, Tan X, Yi X, Cao S. Stellate ganglion intervention for chronic pain: A review. IBRAIN 2022; 8:210-218. [PMID: 37786891 PMCID: PMC10529017 DOI: 10.1002/ibra.12047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 10/04/2023]
Abstract
Stellate ganglion (SG) intervention is currently widely being studied in many kinds of chronic pain. As one of the convenient ways to treat the sympathetic nervous system, the indications for stellate ganglion intervention (SGI) include complex regional pain syndrome, postherpetic neuralgia, cancer pain of different origins, orofacial pain, and so forth. SGI refers to the reversible or irreversible blocking of the cervical sympathetic trunk, cervical sympathetic ganglion, and their innervation range through noninvasive or minimally invasive treatment. Current treatment options include stellate ganglion block (SGB), SG pulsed radiofrequency, continuous radiofrequency treatment, and noninvasive SGB. In particular, SGB continues to be one of the most studied methods in chronic pain management. However, a single SGB usually provides only short-term effects; repeated SGB may result in complications such as hoarseness, light-headedness, and vessel or nerve injury. Meanwhile, the mechanism of SGI is still unclear. This review discusses the research progress of SGI methods, effectiveness, complications, and possible mechanisms in the management of chronic pain.
Collapse
Affiliation(s)
- Qingyang Luo
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Song Wen
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xinran Tan
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xi Yi
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Song Cao
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
50
|
Xie YK, Luo H, Zhang SX, Chen XY, Guo R, Qiu XY, Liu S, Wu H, Chen WB, Zhen XH, Ma Q, Tian JL, Li S, Chen X, Han Q, Duan S, Shen C, Yang F, Xu ZZ. GPR177 in A-fiber sensory neurons drives diabetic neuropathic pain via WNT-mediated TRPV1 activation. Sci Transl Med 2022; 14:eabh2557. [PMID: 35385340 DOI: 10.1126/scitranslmed.abh2557] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetic neuropathic pain (DNP) is a common and devastating complication in patients with diabetes. The mechanisms mediating DNP are not completely elucidated, and effective treatments are lacking. A-fiber sensory neurons have been shown to mediate the development of mechanical allodynia in neuropathic pain, yet the molecular basis underlying the contribution of A-fiber neurons is still unclear. Here, we report that the orphan G protein-coupled receptor 177 (GPR177) in A-fiber neurons drives DNP via WNT5a-mediated activation of transient receptor potential vanilloid receptor-1 (TRPV1) ion channel. GPR177 is mainly expressed in large-diameter A-fiber dorsal root ganglion (DRG) neurons and required for the development of DNP in mice. Mechanistically, we found that GPR177 mediated the secretion of WNT5a from A-fiber DRG neurons into cerebrospinal fluid (CSF), which was necessary for the maintenance of DNP. Extracellular perfusion of WNT5a induced rapid currents in both TRPV1-expressing heterologous cells and nociceptive DRG neurons. Computer simulations revealed that WNT5a has the potential to bind the residues at the extracellular S5-S6 loop of TRPV1. Using a peptide able to disrupt the predicted WNT5a/TRPV1 interaction suppressed DNP- and WNT5a-induced neuropathic pain symptoms in rodents. We confirmed GPR177/WNT5A coexpression in human DRG neurons and WNT5A secretion in CSF from patients with DNP. Thus, our results reveal a role for WNT5a as an endogenous and potent TRPV1 agonist, and the GPR177-WNT5a-TRPV1 axis as a driver of DNP pathogenesis in rodents. Our findings identified a potential analgesic target that might relieve neuropathic pain in patients with diabetes.
Collapse
Affiliation(s)
- Ya-Kai Xie
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Luo
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shan-Xin Zhang
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Ying Chen
- Department of Biophysics, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ran Guo
- Department of Pain, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiao-Yun Qiu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuai Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wen-Bo Chen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xing-Hua Zhen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiang Ma
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin-Lan Tian
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shun Li
- Department of Pain, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Shumin Duan
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chengyong Shen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fan Yang
- Department of Biophysics, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhen-Zhong Xu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|