1
|
Monory K, de Azua IR, Lutz B. Genetic Tools in Rodents to Study Cannabinoid Functions. Curr Top Behav Neurosci 2024. [PMID: 39680319 DOI: 10.1007/7854_2024_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During the past 30 years, the endocannabinoid system (ECS) has emerged as a major signalling system in the mammalian brain regulating neurotransmission in numerous brain regions and in various cell populations. Endocannabinoids are able to regulate specific physiological functions and thus modify their behavioural manifestations and allostatic alterations of the ECS linked to different pathological conditions. As discussed in detail in other chapters of this book, endocannabinoids are involved in learning and memory, stress, and anxiety, feeding, energy balance, development, and ageing. Likewise, many CNS disorders (e.g. schizophrenia, epilepsy, substance use disorders, and multiple sclerosis) are associated with dysregulation of the ECS. Discerning the physiological functions of the synthetic and degrading enzymes of endocannabinoids and their receptors is a challenging task because of their distinct and complex expression patterns. Techniques of genetic engineering have been able to shed light on a number of complex ECS-related tasks during the past years. In this chapter, first, we take a critical look at the toolbox available to researchers who would like to investigate cannabinoid effects using genetic engineering techniques, then we comprehensively discuss genetically modified rodent models in various neuronal and non-neuronal cell populations, both within and outside the nervous system.
Collapse
Affiliation(s)
- Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany.
| |
Collapse
|
2
|
Kupnicka P, Listos J, Tarnowski M, Kolasa A, Kapczuk P, Surówka A, Kwiatkowski J, Janawa K, Chlubek D, Baranowska-Bosiacka I. The Effect of Prenatal and Neonatal Fluoride Exposure to Morphine-Induced Neuroinflammation. Int J Mol Sci 2024; 25:826. [PMID: 38255899 PMCID: PMC10815549 DOI: 10.3390/ijms25020826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Physical dependence is associated with the formation of neuroadaptive changes in the central nervous system (CNS), both at the molecular and cellular levels. Various studies have demonstrated the immunomodulatory and proinflammatory properties of morphine. The resulting neuroinflammation in drug dependence exacerbates substance abuse-related behaviors and increases morphine tolerance. Studies prove that fluoride exposure may also contribute to the development of neuroinflammation and neurodegenerative changes. Morphine addiction is a major social problem. Neuroinflammation increases tolerance to morphine, and neurodegenerative effects caused by fluoride in structures related to the development of dependence may impair the functioning of neuronal pathways, change the concentration of neurotransmitters, and cause memory and learning disorders, which implies this element influences the development of dependence. Therefore, our study aimed to evaluate the inflammatory state of selected brain structures in morphine-dependent rats pre-exposed to fluoride, including changes in cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) expression as well as microglial and astroglial activity via the evaluation of Iba1 and GFAP expression. We provide evidence that both morphine administration and fluoride exposure have an impact on the inflammatory response by altering the expression of COX-1, COX-2, ionized calcium-binding adapter molecule (Iba1), and glial fibrillary acidic protein (GFAP) in brain structures involved in dependence development, such as the prefrontal cortex, striatum, hippocampus, and cerebellum. We observed that the expression of COX-1 and COX-2 in morphine-dependent rats is influenced by prior fluoride exposure, and these changes vary depending on the specific brain region. Additionally, we observed active astrogliosis, as indicated by increased GFAP expression, in all brain structures of morphine-dependent rats, regardless of fluoride exposure. Furthermore, the effect of morphine on Iba1 expression varied across different brain regions, and fluoride pre-exposure may influence microglial activation. However, it remains unclear whether these changes are a result of the direct or indirect actions of morphine and fluoride on the factors analyzed.
Collapse
Affiliation(s)
- Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Surówka
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland
| | - Jakub Kwiatkowski
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Kamil Janawa
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Jones MJ, Uzuneser TC, Clement T, Wang H, Ojima I, Rushlow WJ, Laviolette SR. Inhibition of fatty acid binding protein-5 in the basolateral amygdala induces anxiolytic effects and accelerates fear memory extinction. Psychopharmacology (Berl) 2024; 241:119-138. [PMID: 37747506 DOI: 10.1007/s00213-023-06468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
RATIONALE The endocannabinoid (eCB) system critically controls anxiety and fear-related behaviours. Anandamide (AEA), a prominent eCB ligand, is a hydrophobic lipid that requires chaperone proteins such as Fatty Acid Binding Proteins (FABPs) for intracellular transport. Intracellular AEA transport is necessary for degradation, so blocking FABP activity increases AEA neurotransmission. OBJECTIVE To investigate the effects of a novel FABP5 inhibitor (SBFI-103) in the basolateral amygdala (BLA) on anxiety and fear memory. METHODS We infused SBFI-103 (0.5 μg-5 μg) to the BLA of adult male Sprague Dawley rats and ran various anxiety and fear memory behavioural assays, neurophysiological recordings, and localized molecular signaling analyses. We also co-infused SBFI-103 with the AEA inhibitor, LEI-401 (3 μg and 10 μg) to investigate the potential role of AEA in these phenomena. RESULTS Acute intra-BLA administration of SBFI-103 produced strong anxiolytic effects across multiple behavioural tests. Furthermore, animals exhibited acute and long-term accelerated associative fear memory extinction following intra-BLA FABP5 inhibition. In addition, BLA FABP5 inhibition induced strong modulatory effects on putative PFC pyramidal neurons along with significantly increased gamma oscillation power. Finally, we observed local BLA changes in the phosphorylation activity of various anxiety- and fear memory-related molecular biomarkers in the PI3K/Akt and MAPK/Erk signaling pathways. At all three levels of analyses, we found the functional effects of SBFI-103 depend on availability of the AEA ligand. CONCLUSIONS These findings demonstrate a novel intra-BLA FABP5 signaling mechanism regulating anxiety and fear memory behaviours, neuronal activity states, local anxiety-related molecular pathways, and functional AEA modulation.
Collapse
Affiliation(s)
- Matthew J Jones
- Department of Neuroscience, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada
| | - Taygun C Uzuneser
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada
| | - Timothy Clement
- Institute of Chemical Biology and Drug Discoveries, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
| | - Hehe Wang
- Institute of Chemical Biology and Drug Discoveries, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discoveries, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada.
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada.
- Lawson Health Research Institute, 268 Grosvenor St, London, ON, Canada.
| |
Collapse
|
4
|
Raval NR, Wetherill RR, Wiers CE, Dubroff JG, Hillmer AT. Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies. Semin Nucl Med 2023; 53:213-229. [PMID: 36270830 PMCID: PMC11261531 DOI: 10.1053/j.semnuclmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The brain's immune system plays a critical role in responding to immune challenges and maintaining homeostasis. However, dysregulated neuroimmune function contributes to neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission tomography (PET) imaging of the neuroimmune system has facilitated a greater understanding of its physiology and the pathology of some neuropsychiatric conditions. This review presents an in-depth look at PET findings from human neuroimmune function studies, highlighting their importance in current neuropsychiatric research. Although the majority of human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO), this review also considers studies with other neuroimmune targets, including monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the purinergic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingosine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The significance of validating neuroimmune targets and understanding their function and expression is emphasized in this review to better identify and interpret PET results.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT
| | - Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT; Department of Psychiatry, Yale University, New Haven, CT.
| |
Collapse
|
5
|
Aretxabala X, García del Caño G, Barrondo S, López de Jesús M, González-Burguera I, Saumell-Esnaola M, Goicolea MA, Sallés J. Endocannabinoid 2-Arachidonoylglycerol Synthesis and Metabolism at Neuronal Nuclear Matrix Fractions Derived from Adult Rat Brain Cortex. Int J Mol Sci 2023; 24:ijms24043165. [PMID: 36834575 PMCID: PMC9965625 DOI: 10.3390/ijms24043165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
In this report, we describe the kinetics characteristics of the diacylglycerol lipase-α (DGLα) located at the nuclear matrix of nuclei derived from adult cortical neurons. Thus, using high-resolution fluorescence microscopy, classical biochemical subcellular fractionation, and Western blot techniques, we demonstrate that the DGLα enzyme is located in the matrix of neuronal nuclei. Furthermore, by quantifying the 2-arachidonoylglycerol (2-AG) level by liquid chromatography and mass spectrometry when 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) was exogenously added as substrate, we describe the presence of a mechanism for 2-AG production through DGLα dependent biosynthesis with an apparent Km (Kmapp) of 180 µM and a Vmax of 1.3 pmol min-1 µg-1 protein. We also examined the presence of enzymes with hydrolytic and oxygenase activities that are able to use 2-AG as substrate, and described the localization and compartmentalization of the major 2-AG degradation enzymes, namely monoacylglycerol lipase (MGL), fatty acid amide hydrolase (FAAH), α/β-hydrolase domain 12 protein (ABHD12) and cyclooxygenase-2 (COX2). Of these, only ABHD12 exhibited the same distribution with respect to chromatin, lamin B1, SC-35 and NeuN as that described for DGLα. When 2-AG was exogenously added, we observed the production of arachidonic acid (AA), which was prevented by inhibitors (but not specific MGL or ABHD6 inhibitors) of the ABHD family. Overall, our results expand knowledge about the subcellular distribution of neuronal DGLα, and provide biochemical and morphological evidence to ensure that 2-AG is produced in the neuronal nuclear matrix. Thus, this work paves the way for proposing a working hypothesis about the role of 2-AG produced in neuronal nuclei.
Collapse
Affiliation(s)
- Xabier Aretxabala
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Gontzal García del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain
| | - Sergio Barrondo
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| | - Maider López de Jesús
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Imanol González-Burguera
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain
| | - Miquel Saumell-Esnaola
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - María Aranzazu Goicolea
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-945-013114
| |
Collapse
|
6
|
Fan JF, Wang W, Tan X, Ye P, Li JK, Niu LY, Li WY, Wang WZ, Wang YK. Contribution of cyclooxygenase-2 overexpression to enhancement in tonically active glutamatergic inputs to the rostral ventrolateral medulla in hypertension. J Hypertens 2022; 40:2394-2405. [PMID: 36189462 DOI: 10.1097/hjh.0000000000003268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Cyclooxygenase (COX) is critical in regulating cardiovascular function, but its role involved in the central control of blood pressure (BP) is uncovered. The tonic glutamatergic inputs to the rostral ventrolateral medulla (RVLM) are enhanced in hypertension. Here, the present study was designed to investigate the effect and mechanism of central COX on tonic glutamatergic inputs to the RVLM and BP regulation. METHODS Wistar-Kyoto (WKY) rats and spontaneous hypertensive rats (SHRs) received RVLM microinjection of adeno-associated viral vectors to promote or inhibit the COX2 expression were subjected to subsequent experiments. Glutamate level and glutaminase expression were detected by ELISA and western blot, respectively. The function of tonic glutamatergic inputs was assessed by BP response to microinjection of the glutamate receptor antagonist into the RVLM. PC12 cells were used to detect the underlying signal pathway. RESULTS The RVLM COX2 expression and prostaglandin E2 level were significant higher in SHRs than in WKY rats. Overexpression of COX2 in the RVLM produced an increase in basal BP, RVLM glutamate level, and glutaminase expression in WKY rats, while they were significantly reduced by interfering with COX2 expression in SHRs. Microinjections of the glutamate receptor antagonist into the RVLM produced a significant BP decrease in WKY rats with COX2 overexpression pretreatment. Furthermore, the increased levels of BP, glutamate content, and glutaminase activity in the RVLM evoked by central infusion of angiotensin II were attenuated in COX2 knockout mice. It was also found that prostaglandin E2 increased supernatant glutamate level and phosphorylation of signal transducer and activator of transcription 3 in PC12 cells. CONCLUSION Our findings suggest that upregulated COX2 expression enhances the tonically active glutamatergic inputs to the RVLM, which is associated with cardiovascular regulation in hypertension.
Collapse
Affiliation(s)
- Jie-Fu Fan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ghazanfari N, van Waarde A, Dierckx RAJO, Doorduin J, de Vries EFJ. Is cyclooxygenase-1 involved in neuroinflammation? J Neurosci Res 2021; 99:2976-2998. [PMID: 34346520 PMCID: PMC9542093 DOI: 10.1002/jnr.24934] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/08/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Purpose: Reactive microglia are an important hallmark of neuroinflammation. Reactive microglia release various inflammatory mediators, such as cytokines, chemokines, and prostaglandins, which are produced by enzymes like cyclooxygenases (COX). The inducible COX‐2 subtype has been associated with inflammation, whereas the constitutively expressed COX‐1 subtype is generally considered as a housekeeping enzyme. However, recent evidence suggests that COX‐1 can also be upregulated and may play a prominent role in the brain during neuroinflammation. In this review, we summarize the evidence that supports this involvement of COX‐1. Methods: Five databases were used to retrieve relevant studies that addressed COX‐1 in the context of neuroinflammation. The search resulted in 32 articles, describing in vitro, in vivo, post mortem, and in vivo imaging studies that specifically investigated the COX‐1 isoform under such conditions. Results: Reviewed literature generally indicated that the overexpression of COX‐1 was induced by an inflammatory stimulus, which resulted in an increased production of prostaglandin E2. The pharmacological inhibition of COX‐1 was shown to suppress the induction of inflammatory mediators like prostaglandin E2. Positron emission tomography (PET) imaging studies in animal models confirmed the overexpression of COX‐1 during neuroinflammation. The same imaging method, however, could not detect any upregulation of COX‐1 in patients with Alzheimer's disease. Conclusion: Taken together, studies in cultured cells and living rodents suggest that COX‐1 is involved in neuroinflammation. Most postmortem studies on human brains indicate that the concentration of COX‐1‐expressing microglial cells is increased near sites of inflammation. However, evidence for the involvement of COX‐1 in neuroinflammation in the living human brain is still largely lacking.
Collapse
Affiliation(s)
- Nafiseh Ghazanfari
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Kaur N, Chugh H, Sakharkar MK, Dhawan U, Chidambaram SB, Chandra R. Neuroinflammation Mechanisms and Phytotherapeutic Intervention: A Systematic Review. ACS Chem Neurosci 2020; 11:3707-3731. [PMID: 33146995 DOI: 10.1021/acschemneuro.0c00427] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is indicated in the pathogenesis of several acute and chronic neurological disorders. Acute lesions in the brain parenchyma induce intense and highly complex neuroinflammatory reactions with similar mechanisms among various disease prototypes. Microglial cells in the CNS sense tissue damage and initiate inflammatory responses. The cellular and humoral constituents of the neuroinflammatory reaction to brain injury contribute significantly to secondary brain damage and neurodegeneration. Inflammatory cascades such as proinflammatory cytokines from invading leukocytes and direct cell-mediated cytotoxicity between lymphocytes and neurons are known to cause "collateral damage" in models of acute brain injury. In addition to degeneration and neuronal cell loss, there are secondary inflammatory mechanisms that modulate neuronal activity and affect neuroinflammation which can even be detected at the behavioral level. Hence, several of health conditions result from these pathogenetic conditions which are underlined by progressive neuronal function loss due to chronic inflammation and oxidative stress. In the first part of this Review, we discuss critical neuroinflammatory mediators and their pathways in detail. In the second part, we review the phytochemicals which are considered as potential therapeutic molecules for treating neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Navrinder Kaur
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| | - Heerak Chugh
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Meena K. Sakharkar
- College of Pharmacy and Nutrition, University of Sasketchwan, Saskatoon S7N 5E5, Canada
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), S.S. Nagar, Mysuru-570015, India
- Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research JSS AHER, Mysuru-570015, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| |
Collapse
|
9
|
Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020; 82:65-79. [PMID: 33011590 DOI: 10.1016/j.seizure.2020.09.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a brain disease associated with epileptic seizures as well as with neurobehavioral outcomes of this condition. In the last century, inflammation emerged as a crucial factor in epilepsy etiology. Various brain insults through activation of neuronal and non-neuronal brain cells initiate a series of inflammatory events. Growing observations strongly suggest that abnormal activation of critical inflammatory processes contributes to epileptogenesis, a gradual process by which a normal brain transforms into the epileptic brain. Increased knowledge of inflammatory pathways in epileptogenesis has unveiled mechanistic targets for novel antiepileptic therapies. Molecules specifically targeting the pivotal inflammatory pathways may serve as promising candidates to halt the development of epilepsy. The present paper reviews the pieces of evidence conceptually supporting the potential role of inflammatory mechanisms and the relevant blood-brain barrier (BBB) disruption in epileptogenesis. Also, it discusses the mechanisms underlying inflammation-induced neuronal-glial network impairment and highlights innovative neuroregulatory actions of typical inflammatory molecules. Finally, it presents a brief analysis of observations supporting the therapeutic role of inflammation-targeting tiny molecules in epileptic seizures.
Collapse
Affiliation(s)
- Iqra Mukhtar
- H.E.J Research Institute of Chemistry, International Center For Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
10
|
López DE, Ballaz SJ. The Role of Brain Cyclooxygenase-2 (Cox-2) Beyond Neuroinflammation: Neuronal Homeostasis in Memory and Anxiety. Mol Neurobiol 2020; 57:5167-5176. [PMID: 32860157 DOI: 10.1007/s12035-020-02087-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Cyclooxygenases are a group of heme-containing isozymes (namely Cox-1 and Cox-2) that catalyze the conversion of arachidonic acid to largely bioactive prostaglandins (PGs). Cox-1 is the ubiquitous housekeeping enzyme, and the mitogen-inducible Cox-2 is activated to cause inflammation. Interestingly, Cox-2 is constitutively expressed in the brain at the postsynaptic dendrites and excitatory terminals of the cortical and spinal cord neurons. Neuronal Cox-2 is activated in response to synaptic excitation to yield PGE2, the predominant Cox-2 metabolite in the brain, which in turn stimulates the release of glutamate and neuronal firing in a retrograde fashion. Cox-2 is also engaged in the metabolism of new endocannabinoids from 2-arachidonoyl-glycerol to modulate their actions at presynaptic terminals. In addition to these interactions, the induction of neuronal Cox-2 is coupled to the trans-synaptic activation of the dopaminergic mesolimbic system and some serotoninergic receptors, which might contribute to the development of emotional behavior. Although much of the focus regarding the induction of Cox-2 in the brain has been centered on neuroinflammation-related neurodegenerative and psychiatric disorders, some evidence also suggests that Cox-2 release during neuronal signaling may be pivotal for the fine tuning of cortical networks to regulate behavior. This review compiles the evidence supporting the homeostatic role of neuronal Cox-2 in synaptic transmission and plasticity, since neuroinflammation is originally triggered by the induction of glial Cox-2 expression. The goal is to provide perspective on the roles of Cox-2 beyond neuroinflammation, such as those played in memory and anxiety, and whose evidence is still scant.
Collapse
Affiliation(s)
- Diana E López
- Biomedical Sciences Graduate Program, Yachay Tech University, Urcuquí, Ecuador
| | - Santiago J Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, Ecuador.
| |
Collapse
|
11
|
Yu Y, Nguyen DT, Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog Neurobiol 2019; 183:101682. [PMID: 31454545 DOI: 10.1016/j.pneurobio.2019.101682] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
As the largest family of membrane proteins in the human genome, G protein-coupled receptors (GPCRs) constitute the targets of more than one-third of all modern medicinal drugs. In the central nervous system (CNS), widely distributed GPCRs in neuronal and nonneuronal cells mediate numerous essential physiological functions via regulating neurotransmission at the synapses. Whereas their abnormalities in expression and activity are involved in various neuropathological processes. CNS conditions thus remain highly represented among the indications of GPCR-targeted agents. Mounting evidence from a large number of animal studies suggests that GPCRs play important roles in the regulation of neuronal excitability associated with epilepsy, a common CNS disease afflicting approximately 1-2% of the population. Surprisingly, none of the US Food and Drug Administration (FDA)-approved (>30) antiepileptic drugs (AEDs) suppresses seizures through acting on GPCRs. This disparity raises concerns about the translatability of these preclinical findings and the druggability of GPCRs for seizure disorders. The currently available AEDs intervene seizures predominantly through targeting ion channels and have considerable limitations, as they often cause unbearable adverse effects, fail to control seizures in over 30% of patients, and merely provide symptomatic relief. Thus, identifying novel molecular targets for epilepsy is highly desired. Herein, we focus on recent progresses in understanding the comprehensive roles of several GPCR families in seizure generation and development of acquired epilepsy. We also dissect current hurdles hindering translational efforts in developing GPCRs as antiepileptic and/or antiepileptogenic targets and discuss the counteracting strategies that might lead to a potential cure for this debilitating CNS condition.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Davis T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
12
|
Endocannabinoids, stress signaling, and the locus coeruleus-norepinephrine system. Neurobiol Stress 2019; 11:100176. [PMID: 31236436 PMCID: PMC6582240 DOI: 10.1016/j.ynstr.2019.100176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/23/2019] [Accepted: 05/23/2019] [Indexed: 01/14/2023] Open
Abstract
The endocannabinoid (eCB) system has been implicated in a variety of physiological functions due to abundant expression of its receptors and endogenous ligands in the central nervous system. Substantial progress has been made in understanding how the eCB system influences the brain norepinephrine (NE) system, an important neurochemical target in the continued development of new therapies for stress-induced psychiatric disorders. We, and others, have characterized the neuroanatomical, biochemical and pharmacological effects of cannabinoid receptor modulation on brain noradrenergic circuitry and defined how molecular elements of the eCB system are positioned to directly impact the locus coeruleus (LC)-prefrontal cortex pathway, a neural circuit well recognized for contributing to symptoms of hyperarousal, a key pathophysiological feature of stress-related disorders. We also described molecular and electrophysiological properties of LC noradrenergic neurons and NE release in the medial prefrontal cortex under conditions of cannabinoid type 1 receptor deletion. Finally, we identified how stress influences cannabinoid modulation of the coeruleo-cortical pathway. A number of significant findings emerged from these studies that will be summarized in the present review and have important implications for clinical studies targeting the eCB system in the treatment of stress-induced psychiatric disorders.
Collapse
|
13
|
Ravizza T, Vezzani A. Pharmacological targeting of brain inflammation in epilepsy: Therapeutic perspectives from experimental and clinical studies. Epilepsia Open 2018; 3:133-142. [PMID: 30564772 PMCID: PMC6293065 DOI: 10.1002/epi4.12242] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2018] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence supports a pathogenic role of unabated neuroinflammation in various central nervous system (CNS) diseases, including epilepsy. Neuroinflammation is not a bystander phenomenon of the diseased brain tissue, but it may contribute to neuronal hyperexcitability underlying seizure generation, cell loss, and neurologic comorbidities. Several molecules, which constitute the inflammatory milieu in the epileptogenic area, activate signaling pathways in neurons and glia resulting in pathologic modifications of cell function, which ultimately lead to alterations in synaptic transmission and plasticity. Herein we report the up-to-date experimental and clinical evidence that supports the neuromodulatory role of inflammatory mediators, their related signaling pathways, and involvement in epilepsy. We discuss how these mechanisms can be harnessed to discover and validate targets for novel therapeutics, which may prevent or control pharmacoresistant epilepsies.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of NeuroscienceIRCCS – Mario Negri Institute for Pharmacological ResearchMilanoItaly
| | - Annamaria Vezzani
- Department of NeuroscienceIRCCS – Mario Negri Institute for Pharmacological ResearchMilanoItaly
| |
Collapse
|
14
|
Kulas JA, Hettwer JV, Sohrabi M, Melvin JE, Manocha GD, Puig KL, Gorr MW, Tanwar V, McDonald MP, Wold LE, Combs CK. In utero exposure to fine particulate matter results in an altered neuroimmune phenotype in adult mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:279-288. [PMID: 29843010 PMCID: PMC6082156 DOI: 10.1016/j.envpol.2018.05.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/17/2018] [Accepted: 05/15/2018] [Indexed: 05/06/2023]
Abstract
Environmental exposure to air pollution has been linked to a number of health problems including organ rejection, lung damage and inflammation. While the deleterious effects of air pollution in adult animals are well documented, the long-term consequences of particulate matter (PM) exposure during animal development are uncertain. In this study we tested the hypothesis that environmental exposure to PM 2.5 μm in diameter in utero promotes long term inflammation and neurodegeneration. We evaluated the behavior of PM exposed animals using several tests and observed deficits in spatial memory without robust changes in anxiety-like behavior. We then examined how this affects the brains of adult animals by examining proteins implicated in neurodegeneration, synapse formation and inflammation by western blot, ELISA and immunohistochemistry. These tests revealed significantly increased levels of COX2 protein in PM2.5 exposed animal brains in addition to changes in synaptophysin and Arg1 proteins. Exposure to PM2.5 also increased the immunoreactivity for GFAP, a marker of activated astrocytes. Cytokine concentrations in the brain and spleen were also altered by PM2.5 exposure. These findings indicate that in utero exposure to particulate matter has long term consequences which may affect the development of both the brain and the immune system in addition to promoting inflammatory change in adult animals.
Collapse
Affiliation(s)
- Joshua A Kulas
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Jordan V Hettwer
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Mona Sohrabi
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Justine E Melvin
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Gunjan D Manocha
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Kendra L Puig
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Matthew W Gorr
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Vineeta Tanwar
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Michael P McDonald
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415, Memphis, TN, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Colin K Combs
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA.
| |
Collapse
|
15
|
Sunada H, Watanabe T, Hatakeyama D, Lee S, Forest J, Sakakibara M, Ito E, Lukowiak K. Pharmacological effects of cannabinoids on learning and memory in Lymnaea. ACTA ACUST UNITED AC 2018; 220:3026-3038. [PMID: 28855319 DOI: 10.1242/jeb.159038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022]
Abstract
Cannabinoids are hypothesized to play an important role in modulating learning and memory formation. Here, we identified mRNAs expressed in Lymnaeastagnalis central nervous system that encode two G-protein-coupled receptors (Lymnaea CBr-like 1 and 2) that structurally resemble mammalian cannabinoid receptors (CBrs). We found that injection of a mammalian CBr agonist WIN 55,212-2 (WIN 55) into the snail before operant conditioning obstructed learning and memory formation. This effect of WIN 55 injection persisted for at least 4 days following its injection. A similar obstruction of learning and memory occurred when a severe traumatic stimulus was delivered to L. stagnalis In contrast, injection of a mammalian CBr antagonist AM 251 enhanced long-term memory formation in snails and reduced the duration of the effects of the severe traumatic stressor on learning and memory. Neither WIN 55 nor AM 251 altered normal homeostatic aerial respiratory behaviour elicited in hypoxic conditions. Our results suggest that putative cannabinoid receptors mediate stressful stimuli that alter learning and memory formation in Lymnaea This is also the first demonstration that putative CBrs are present in Lymnaea and play a key role in learning and memory formation.
Collapse
Affiliation(s)
- Hiroshi Sunada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1.,Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Takayuki Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 060-0811, Japan
| | - Dai Hatakeyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Sangmin Lee
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jeremy Forest
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Manabu Sakakibara
- School of High-Technology for Human Welfare, Tokai University, Numazu, Shizuoka 410-0321, Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan .,Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
16
|
Endocannabinoid-Specific Impairment in Synaptic Plasticity in Striatum of Huntington's Disease Mouse Model. J Neurosci 2017; 38:544-554. [PMID: 29192125 DOI: 10.1523/jneurosci.1739-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 01/12/2023] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease affecting predominantly striatum and cortex that results in motor and cognitive disorders. Before a motor phenotype, animal models of HD show aberrant cortical-striatal glutamate signaling. Here, we tested synaptic plasticity of cortical excitatory synapses onto striatal spiny projection neurons (SPNs) early in the YAC128 mouse model of HD. High-frequency stimulation-induced long-term depression, mediated by the endocannabinoid anandamide and cannabinoid receptor 1 (CB1), was significantly attenuated in male and female YAC128 SPNs. Indirect pathway SPNs, which are more vulnerable in HD, were most affected. Our experiments show metabotropic glutamate receptor and endocannabinoid 2-arachidonoylglycerol-dependent plasticity, as well as direct CB1 activation by agonists, was similar in YAC128 and FVB/N wild-type SPNs suggesting that presynaptic CB1 is functioning normally. These results are consistent with a specific impairment in postsynaptic anandamide synthesis in YAC128 SPN. Strikingly, although suppression of degradation of anandamide was not effective, elevating 2-arachidonoylglycerol levels restored long-term depression in YAC128 striatal neurons. Together, these results have potential implications for neuroprotection and ameliorating early cognitive and motor deficits in HD.SIGNIFICANCE STATEMENT Huntington's disease (HD) is an inherited neurodegenerative disease with no cure. Recent studies find impairment of the endocannabinoid system in animal models but the functional implication for synaptic plasticity in HD remains unclear. Sepers et al. show a selective deficit in synaptic plasticity mediated by the endocannabinoid anandamide, but not 2-arachidonoylglycerol in a mouse model of HD. The deficit is rescued by selectively elevating levels of 2-arachidonoylglycerol produced on-demand. This mechanism could be targeted in the development of future therapeutics for HD.
Collapse
|
17
|
Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev 2017; 76:56-66. [PMID: 28434588 PMCID: PMC5407316 DOI: 10.1016/j.neubiorev.2016.12.033] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022]
Abstract
The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential 'druggable' targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, USA; Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, USA
| | - Mathew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology & Neurogenetics, Munich, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
|
19
|
El-Sheikh AAK, Kamel MY. Ginsenoside-Rb1 ameliorates lithium-induced nephrotoxicity and neurotoxicity: Differential regulation of COX-2/PGE 2 pathway. Biomed Pharmacother 2016; 84:1873-1884. [PMID: 27847198 DOI: 10.1016/j.biopha.2016.10.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022] Open
Abstract
To investigate the effect of Ginsenoside-Rb1 (GRb1) on lithium (Li+)-induced toxicity, GRb1 was given to rats orally (100mg/kg) for 14days. In independent groups, lithium chloride (4meq/kg/day i.p.) was administered at day 4 of the experiment for 10days, with or without GRb1. Li+ caused significant deterioration of behavioral responses including righting reflex, spontaneous motor activity and catalepsy. Li+ also caused distortion in normal renal, cerebral and cerebellum architecture and significantly worsened all kidney functional parameters tested compared to control. In addition, Li caused oxidative stress in both kidney and brain, evident by significant increase in malondialdehyde and nitric oxide levels, with decrease in reduced glutathione and catalase activity. Administration of GRb1 prior to Li+ significantly improved behavioral responses, renal and brain histopathological picture, kidney function tests and oxidative stress markers compared to sole Li+-treated group. Concomitant administration of GRb1 decreased Li+ levels by about 50% in serum, urine and brain and by 35% in the kidney. Interestingly, Li+ had a differential effect on cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) pathway, as it significantly increased COX-2 expression and PGE2 level in the kidney, while decreasing them in the brain compared to control. On the other hand, administering GRb1 with Li+ suppressed COX-2/PGE2 pathway in both kidney and brain compared to Li+ alone. In conclusion, GRb1 can alter Li+ pharmacokinetics resulting in extensively decreasing its serum and tissue concentrations. Furthermore, COX-2/PGE2 pathway has a mechanistic role in the nephro- and neuro-protective effects of GRb1 against Li+-induced toxicity.
Collapse
Affiliation(s)
| | - Maha Y Kamel
- Pharmacology Department, Faculty of Medicine, Minia University, Egypt
| |
Collapse
|
20
|
Squintani G, Donato F, Turri M, Deotto L, Teatini F, Moretto G, Erro R. Cortical and spinal excitability in patients with multiple sclerosis and spasticity after oromucosal cannabinoid spray. J Neurol Sci 2016; 370:263-268. [PMID: 27772772 DOI: 10.1016/j.jns.2016.09.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Delta-9-tetrahydrocannabinol and cannabidiol (THC:CBD) oromucosal spray (Sativex®) has been recently approved for the management of treatment-resistant multiple sclerosis (MS) spasticity. Although the symptomatic relief of Sativex® on MS-spasticity has been consistently demonstrated, the pathogenetic implications remain unclear and the few electrophysiological studies performed to address this topic yielded controversial results. We therefore aimed to investigate the mechanisms underpinning the modulation of spastic hypertonia by Sativex®, at both central and spinal levels, through an extensive neurophysiological battery in patients with MS. METHODS Nineteen MS patients with treatment-resistant spasticity were recruited. Before and after 4weeks of treatment with Sativex® patients were clinically assessed with the Modified Ashworth Scale (MAS) and underwent a large neurophysiological protocol targeting measures of excitability and inhibition at both cortical [e.g., intracortical facilitation (ICF), short (SICI) and long (LICI) intracortical inhibition, cortical silent period (CSP)] and spinal level [e.g., H-reflex, H/M ratio and recovery curve of the H-reflex (HRC)]. A group of 19 healthy subjects served as controls. RESULTS A significant reduction of the MAS score after 4weeks of Sativex® treatment was detected. Before treatment, an increase in the late facilitatory phase of HRC was recorded in patients compared to the control group, that normalised post treatment. At central level, SICI and LICI were significantly higher in patients compared to healthy subjects. After therapy, a significant strengthening of inhibition (e.g. reduced LICI) and a non-significant facilitation (e.g. marginally increased ICF) occurred, suggesting a modulatory effect of Sativex® on different pathways, predominantly of inhibitory type. Sativex® treatment was well tolerated, with only 3 patients complaining about dizziness and bitter taste in their mouth. DISCUSSION Our results confirm the clinical benefit of Sativex® on spastic hypertonia and demonstrate that it might modulate both cortical and spinal circuits, arguably in terms of both excitation and inhibition. We suggest that the clinical benefit was likely related to a net increase of inhibition at cortical level that, in turn, might have influenced spinal excitability.
Collapse
Affiliation(s)
- Giovanna Squintani
- Neuroscience Department, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | - Francesco Donato
- Neuroscience Department, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Mara Turri
- Neurology Unit, Ospedale Centrale di Bolzano, Italy
| | - Luciano Deotto
- Neuroscience Department, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Giuseppe Moretto
- Neuroscience Department, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Roberto Erro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Kouvaros S, Papatheodoropoulos C. Major dorsoventral differences in the modulation of the local CA1 hippocampal network by NMDA, mGlu5, adenosine A2A and cannabinoid CB1 receptors. Neuroscience 2016; 317:47-64. [PMID: 26762803 DOI: 10.1016/j.neuroscience.2015.12.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022]
Abstract
Recent research points to diversification in the local neuronal circuitry between dorsal (DH) and ventral (VH) hippocampus that may be involved in the large-scale functional segregation along the long axis of the hippocampus. Here, using CA1 field recordings from rat hippocampal slices, we show that activation of N-methyl-d-aspartate receptors (NMDARs) reduced excitatory transmission more in VH than in DH, with an adenosine A1 receptor-independent mechanism, and reduced inhibition and enhanced postsynaptic excitability only in DH. Strikingly, co-activation of metabotropic glutamate receptor-5 (mGluR5) with NMDAR, by CHPG and NMDA respectively, strongly potentiated the effects of NMDAR in DH but had not any potentiating effect in VH. Furthermore, the synergistic actions in DH were occluded by blockade of adenosine A2A receptors (A2ARs) by their antagonist ZM 241385 demonstrating a tonic action of these receptors in DH. Exogenous activation of A2ARs by 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680) did not change the effects of mGluR5-NMDAR co-activation in either hippocampal pole. Importantly, blockade of cannabinoid CB1 receptors (CB1Rs) by their antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM 281) restricted the synergistic actions of mGluR5-NMDARs on excitatory synaptic transmission and postsynaptic excitability and abolished their effect on inhibition. Furthermore, AM 281 increased the excitatory transmission only in DH indicating that CB1Rs were tonically active in DH but not VH. Removing the magnesium ions from the perfusion medium neither stimulated the interaction between mGluR5 and NMDAR in VH nor augmented the synergy of the two receptors in DH. These findings show that the NMDAR-dependent modulation of fundamental parameters of the local neuronal network, by mGluR5, A2AR and CB1R, markedly differs between DH and VH. We propose that the higher modulatory role of A2AR and mGluR5, in combination with the role of CB1Rs, provide DH with higher functional flexibility of its NMDARs, compared with VH.
Collapse
Affiliation(s)
- S Kouvaros
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Patras, 26504 Rion, Greece
| | - C Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Patras, 26504 Rion, Greece.
| |
Collapse
|
22
|
COX-2-Derived Prostaglandin E2 Produced by Pyramidal Neurons Contributes to Neurovascular Coupling in the Rodent Cerebral Cortex. J Neurosci 2015; 35:11791-810. [PMID: 26311764 DOI: 10.1523/jneurosci.0651-15.2015] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.
Collapse
|
23
|
COX-2-Derived Prostaglandin E2 Produced by Pyramidal Neurons Contributes to Neurovascular Coupling in the Rodent Cerebral Cortex. J Neurosci 2015. [PMID: 26311764 DOI: 10.1523/jneurosci.0651‐15.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.
Collapse
|
24
|
Esain V, Kwan W, Carroll KJ, Cortes M, Liu SY, Frechette GM, Sheward LMV, Nissim S, Goessling W, North TE. Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via Prostaglandin E2 and P-Selectin Activity. Stem Cells 2015; 33:2596-612. [PMID: 25931248 DOI: 10.1002/stem.2044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 12/30/2022]
Abstract
Cannabinoids (CB) modulate adult hematopoietic stem and progenitor cell (HSPCs) function, however, impact on the production, expansion, or migration of embryonic HSCs is currently uncharacterized. Here, using chemical and genetic approaches targeting CB-signaling in zebrafish, we show that CB receptor (CNR) 2, but not CNR1, regulates embryonic HSC development. During HSC specification in the aorta-gonad-mesonephros (AGM) region, CNR2 stimulation by AM1241 increased runx1;cmyb(+) HSPCs, through heightened proliferation, whereas CNR2 antagonism decreased HSPC number; FACS analysis and absolute HSC counts confirmed and quantified these effects. Epistatic investigations showed AM1241 significantly upregulated PGE2 synthesis in a Ptgs2-dependent manner to increase AGM HSCs. During the phases of HSC production and colonization of secondary niches, AM1241 accelerated migration to the caudal hematopoietic tissue (CHT), the site of embryonic HSC expansion, and the thymus; however these effects occurred independently of PGE2. Using a candidate approach for HSC migration and retention factors, P-selectin was identified as the functional target of CNR2 regulation. Epistatic analyses confirmed migration of HSCs into the CHT and thymus was dependent on CNR2-regulated P-selectin activity. Together, these data suggest CNR2-signaling optimizes the production, expansion, and migration of embryonic HSCs by modulating multiple downstream signaling pathways.
Collapse
Affiliation(s)
- Virginie Esain
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Wanda Kwan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Kelli J Carroll
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Mauricio Cortes
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sarah Y Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Gregory M Frechette
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Lea M V Sheward
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sahar Nissim
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Trista E North
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
García del Caño G, Aretxabala X, González-Burguera I, Montaña M, López de Jesús M, Barrondo S, Barrio RJ, Sampedro C, Goicolea MA, Sallés J. Nuclear diacylglycerol lipase-α in rat brain cortical neurons: evidence of 2-arachidonoylglycerol production in concert with phospholipase C-β activity. J Neurochem 2014; 132:489-503. [PMID: 25308538 DOI: 10.1111/jnc.12963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/22/2014] [Accepted: 10/07/2014] [Indexed: 01/12/2023]
Abstract
In this report, we describe the localization of diacylglycerol lipase-α (DAGLα) in nuclei from adult cortical neurons, as assessed by double-immunofluorescence staining of rat brain cortical sections and purified intact nuclei and by western blot analysis of subnuclear fractions. Double-labeling assays using the anti-DAGLα antibody and NeuN combined with Hoechst staining showed that only nuclei of neuronal origin were DAGLα positive. At high resolution, DAGLα-signal displayed a punctate pattern in nuclear subdomains poor in Hoechst's chromatin and lamin B1 staining. In contrast, SC-35- and NeuN-signals (markers of the nuclear speckles) showed a high overlap with DAGLα within specific subdomains of the nuclear matrix. Among the members of the phospholipase C-β (PLCβ) family, PLCβ1, PLCβ2, and PLCβ4 exhibited the same distribution with respect to chromatin, lamin B1, SC-35, and NeuN as that described for DAGLα. Furthermore, by quantifying the basal levels of 2-arachidonoylglycerol (2-AG) by liquid chromatography and mass spectrometry (LC-MS), and by characterizing the pharmacology of its accumulation, we describe the presence of a mechanism for 2-AG production, and its PLCβ/DAGLα-dependent biosynthesis in isolated nuclei. These results extend our knowledge about subcellular distribution of neuronal DAGLα, providing biochemical grounds to hypothesize a role for 2-AG locally produced within the neuronal nucleus.
Collapse
Affiliation(s)
- Gontzal García del Caño
- Departamento de Neurociencias, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz (Araba), Spain
| | - Xabier Aretxabala
- Departamento de Neurociencias, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz (Araba), Spain
| | - Imanol González-Burguera
- Departamento de Farmacología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz (Araba), Spain
| | - Mario Montaña
- Departamento de Farmacología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz (Araba), Spain
| | - Maider López de Jesús
- Departamento de Farmacología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz (Araba), Spain
| | - Sergio Barrondo
- Departamento de Farmacología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz (Araba), Spain
| | - Ramón J Barrio
- Departamento de Química Analítica, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz (Araba), Spain
| | - Carmen Sampedro
- Servicio General de Análisis, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz (Araba), Spain
| | - M Arantzazu Goicolea
- Departamento de Química Analítica, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz (Araba), Spain
| | - Joan Sallés
- Departamento de Farmacología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz (Araba), Spain
| |
Collapse
|
26
|
Pinna G, Rasmusson AM. Ganaxolone improves behavioral deficits in a mouse model of post-traumatic stress disorder. Front Cell Neurosci 2014; 8:256. [PMID: 25309317 PMCID: PMC4161165 DOI: 10.3389/fncel.2014.00256] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/11/2014] [Indexed: 12/14/2022] Open
Abstract
Allopregnanolone and its equipotent stereoisomer, pregnanolone (together termed ALLO), are neuroactive steroids that positively and allosterically modulate the action of gamma-amino-butyric acid (GABA) at GABAA receptors. Levels of ALLO are reduced in the cerebrospinal fluid of female premenopausal patients with post-traumatic stress disorder (PTSD), a severe, neuropsychiatric condition that affects millions, yet is without a consistently effective therapy. This suggests that restoring downregulated brain ALLO levels in PTSD may be beneficial. ALLO biosynthesis is also decreased in association with the emergence of PTSD-like behaviors in socially isolated (SI) mice. Similar to PTSD patients, SI mice also exhibit changes in the frontocortical and hippocampal expression of GABAA receptor subunits, resulting in resistance to benzodiazepine-mediated sedation and anxiolysis. ALLO acts at a larger spectrum of GABAA receptor subunits than benzodiazepines, and increasing corticolimbic ALLO levels in SI mice by injecting ALLO or stimulating ALLO biosynthesis with a selective brain steroidogenic stimulant, such as S-norfluoxetine, at doses far below those that block serotonin reuptake, reduces PTSD-like behavior in these mice. This suggests that synthetic analogs of ALLO, such as ganaxolone, may also improve anxiety, aggression, and other PTSD-like behaviors in the SI mouse model. Consistent with this hypothesis, ganaxolone (3.75–30 mg/kg, s.c.) injected 60 min before testing of SI mice, induced a dose-dependent reduction in aggression toward a same-sex intruder and anxiety-like behavior in an elevated plus maze. The EC50 dose of ganaxolone used in these tests also normalized exaggerated contextual fear conditioning and, remarkably, enhanced fear extinction retention in SI mice. At these doses, ganaxolone failed to change locomotion in an open field test. Therefore, unlike benzodiazepines, ganaxolone at non-sedating concentrations appears to improve dysfunctional emotional behavior associated with deficits in ALLO in mice and may provide an alternative treatment for PTSD patients with deficits in the synthesis of ALLO. Selective serotonin reuptake inhibitors (SSRIs) are the only medications currently approved by the FDA for treatment of PTSD, although they are ineffective in a substantial proportion of PTSD patients. Hence, an ALLO analog such as ganaxolone may offer a therapeutic GABAergic alternative to SSRIs for the treatment of PTSD or other disorders in which ALLO biosynthesis may be impaired.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Ann M Rasmusson
- VA Boston Healthcare System, Women's Health Science Division of the VA National Center for PTSD, and Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
27
|
Hermanson DJ, Gamble-George JC, Marnett LJ, Patel S. Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. Trends Pharmacol Sci 2014; 35:358-67. [PMID: 24845457 PMCID: PMC4074568 DOI: 10.1016/j.tips.2014.04.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 12/20/2022]
Abstract
Pharmacologic augmentation of endogenous cannabinoid (eCB) signaling is an emerging therapeutic approach for the treatment of a broad range of pathophysiological conditions. Thus far, pharmacological approaches have focused on inhibition of the canonical eCB inactivation pathways - fatty acid amide hydrolase (FAAH) for anandamide and monoacylglycerol lipase (MAGL) for 2-arachidonoylglycerol. We review here the experimental evidence that cyclooxygenase-2 (COX-2)-mediated eCB oxygenation represents a third mechanism for terminating eCB action at cannabinoid receptors. We describe the development, molecular mechanisms, and in vivo validation of 'substrate-selective' COX-2 inhibitors (SSCIs) that prevent eCB inactivation by COX-2 without affecting prostaglandin (PG) generation from arachidonic acid (AA). Lastly, we review recent data on the potential therapeutic applications of SSCIs with a focus on neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel J Hermanson
- A.B. Hancock Jr Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology Center in Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joyonna C Gamble-George
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lawrence J Marnett
- A.B. Hancock Jr Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology Center in Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Sachin Patel
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
28
|
Hashimotodani Y, Ohno-Shosaku T, Tanimura A, Kita Y, Sano Y, Shimizu T, Di Marzo V, Kano M. Acute inhibition of diacylglycerol lipase blocks endocannabinoid-mediated retrograde signalling: evidence for on-demand biosynthesis of 2-arachidonoylglycerol. J Physiol 2013; 591:4765-76. [PMID: 23858009 DOI: 10.1113/jphysiol.2013.254474] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) produced by diacylglycerol lipase α (DGLα) is one of the best-characterized retrograde messengers at central synapses. It has been thought that 2-AG is produced 'on demand' upon activation of postsynaptic neurons. However, recent studies propose that 2-AG is pre-synthesized by DGLα and stored in neurons, and that 2-AG is released from such 'pre-formed pools' without the participation of DGLα. To address whether the 2-AG source for retrograde signalling is the on-demand biosynthesis by DGLα or the mobilization from pre-formed pools, we examined the effects of acute pharmacological inhibition of DGL by a novel potent DGL inhibitor, OMDM-188, on retrograde eCB signalling triggered by Ca(2+) elevation, Gq/11 protein-coupled receptor activation or synergy of these two stimuli in postsynaptic neurons. We found that pretreatment for 1 h with OMDM-188 effectively blocked depolarization-induced suppression of inhibition (DSI), a purely Ca(2+)-dependent form of eCB signalling, in slices from the hippocampus, striatum and cerebellum. We also found that at parallel fibre-Purkinje cell synapses in the cerebellum OMDM-188 abolished synaptically induced retrograde eCB signalling, which is known to be caused by the synergy of postsynaptic Ca(2+) elevation and group I metabotropic glutamate receptor (I-mGluR) activation. Moreover, brief OMDM-188 treatments for several minutes were sufficient to suppress both DSI and the I-mGluR-induced retrograde eCB signalling in cultured hippocampal neurons. These results are consistent with the hypothesis that 2-AG for synaptic retrograde signalling is supplied as a result of on-demand biosynthesis by DGLα rather than mobilization from presumptive pre-formed pools.
Collapse
Affiliation(s)
- Yuki Hashimotodani
- M. Kano: Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Vezzani A, Friedman A, Dingledine RJ. The role of inflammation in epileptogenesis. Neuropharmacology 2013; 69:16-24. [PMID: 22521336 PMCID: PMC3447120 DOI: 10.1016/j.neuropharm.2012.04.004] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/19/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022]
Abstract
One compelling challenge in the therapy of epilepsy is to develop anti-epileptogenic drugs with an impact on the disease progression. The search for novel targets has focused recently on brain inflammation since this phenomenon appears to be an integral part of the diseased hyperexcitable brain tissue from which spontaneous and recurrent seizures originate. Although the contribution of specific proinflammatory pathways to the mechanism of ictogenesis in epileptic tissue has been demonstrated in experimental models, the role of these pathways in epileptogenesis is still under evaluation. We review the evidence conceptually supporting the involvement of brain inflammation and the associated blood-brain barrier damage in epileptogenesis, and describe the available pharmacological evidence where post-injury intervention with anti-inflammatory drugs has been attempted. Our review will focus on three main inflammatory pathways, namely the IL-1 receptor/Toll-like receptor signaling, COX-2 and the TGF-β signaling. The mechanisms underlying neuronal-glia network dysfunctions induced by brain inflammation are also discussed, highlighting novel neuromodulatory effects of classical inflammatory mediators such as cytokines and prostaglandins. The increase in knowledge about a role of inflammation in disease progression, may prompt the use of specific anti-inflammatory drugs for developing disease-modifying treatments. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Laboratory Experimental Neurology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, 20156 Milano, Italy.
| | | | | |
Collapse
|
30
|
Steindel F, Lerner R, Häring M, Ruehle S, Marsicano G, Lutz B, Monory K. Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus. J Neurochem 2013; 124:795-807. [PMID: 23289830 DOI: 10.1111/jnc.12137] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/29/2012] [Accepted: 12/21/2012] [Indexed: 01/17/2023]
Abstract
Type 1 cannabinoid receptor (CB1) is expressed in different neuronal populations in the mammalian brain. In particular, CB1 on GABAergic or glutamatergic neurons exerts different functions and display different pharmacological properties in vivo. This suggests the existence of neuron-type specific signalling pathways activated by different subpopulations of CB1. In this study, we analysed CB1 expression, binding and signalling in the hippocampus of conditional mutant mice, bearing CB1 deletion in GABAergic (GABA-CB1-KO mice) or cortical glutamatergic neurons (Glu-CB1-KO mice). Compared to their wild-type littermates, Glu-CB1-KO displayed a small decrease of CB1 mRNA amount, immunoreactivity and [³H]CP55,940 binding. Conversely, GABA-CB1-KO mice showed a drastic reduction of these parameters, confirming that CB1 is present at much higher density on hippocampal GABAergic interneurons than glutamatergic neurons. Surprisingly, however, saturation analysis of HU210-stimulated [(35) S]GTPγS binding demonstrated that 'glutamatergic' CB1 is more efficiently coupled to G protein signalling than 'GABAergic' CB1. Thus, the minority of CB1 on glutamatergic neurons is paradoxically several fold more strongly coupled to G protein signalling than 'GABAergic' CB1. This selective signalling mechanism raises the possibility of designing novel cannabinoid ligands that differentially activate only a subset of physiological effects of CB1 stimulation, thereby optimizing therapeutic action.
Collapse
Affiliation(s)
- Frauke Steindel
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Becker A, Geisslinger G, Murín R, Grecksch G, Höllt V, Zimmer A, Schröder H. Cannabinoid-mediated diversity of antinociceptive efficacy of parecoxib in Wistar and Sprague Dawley rats in the chronic constriction injury model of neuropathic pain. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:369-82. [DOI: 10.1007/s00210-013-0839-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/17/2013] [Indexed: 02/06/2023]
|
32
|
Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron 2012; 76:70-81. [PMID: 23040807 DOI: 10.1016/j.neuron.2012.09.020] [Citation(s) in RCA: 767] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2012] [Indexed: 12/17/2022]
Abstract
Endocannabinoids are key modulators of synaptic function. By activating cannabinoid receptors expressed in the central nervous system, these lipid messengers can regulate several neural functions and behaviors. As experimental tools advance, the repertoire of known endocannabinoid-mediated effects at the synapse, and their underlying mechanism, continues to expand. Retrograde signaling is the principal mode by which endocannabinoids mediate short- and long-term forms of plasticity at both excitatory and inhibitory synapses. However, growing evidence suggests that endocannabinoids can also signal in a nonretrograde manner. In addition to mediating synaptic plasticity, the endocannabinoid system is itself subject to plastic changes. Multiple points of interaction with other neuromodulatory and signaling systems have now been identified. In this Review, we focus on new advances in synaptic endocannabinoid signaling in the mammalian brain. The emerging picture not only reinforces endocannabinoids as potent regulators of synaptic function but also reveals that endocannabinoid signaling is mechanistically more complex and diverse than originally thought.
Collapse
Affiliation(s)
- Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
33
|
Rey AA, Purrio M, Viveros MP, Lutz B. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology 2012; 37:2624-34. [PMID: 22850737 PMCID: PMC3473327 DOI: 10.1038/npp.2012.123] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biphasic effects of cannabinoids have been shown in processes such as feeding behavior, motor activity, motivational processes and anxiety responses. Using two different tests for the characterization of anxiety-related behavior (elevated plus-maze and holeboard), we first identified in wild-type C57BL/6N mice, two doses of the synthetic CB1 cannabinoid receptor agonist CP-55,940 with anxiolytic (1 μg/kg) and anxiogenic properties (50 μg/kg), respectively. To clarify the role of CB1 receptors in this biphasic effect, both doses were applied to two different conditional CB1 receptor knockout (KO) mouse lines, GABA-CB1-KO (CB1 receptor inactivation in forebrain GABAergic neurons) and Glu-CB1-KO (CB1 receptor inactivation in cortical glutamatergic neurons). We found that the anxiolytic-like effects of the low dose of cannabinoids are mediated via the CB1 receptor on cortical glutamatergic terminals, because this anxiolytic-like response was abrogated only in Glu-CB1-KO mice. On the contrary, the CB1 receptor on the GABAergic terminals is required to induce an anxiogenic-like effect under a high-dose treatment because of the fact that this effect was abolished specifically in GABA-CB1-KO mice. These experiments were carried out in both sexes, and no differences occurred with the doses tested in the mutant mice. Interestingly, the positive allosteric modulation of GABA(B) receptor with GS-39783 was found to largely abrogate the anxiogenic-like effect of the high dose of CP-55,940. Our results shed new light in further understanding the biphasic effects of cannabinoids at the molecular level and, importantly, pave the way for the development of novel anxiolytic cannabinoid drugs, which may have favorable effect profiles targeting the CB1 receptor on glutamatergic terminals.
Collapse
Affiliation(s)
- Alejandro Aparisi Rey
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Martin Purrio
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maria-Paz Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Jose Antonio Novais 2, Madrid, Spain,Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Jose Antonio Novais 2, 28040 Madrid, Spain, Tel: +34 91 3944993, Fax: +34 91 3944935, E-mail:
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany,Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany, Tel: +49 6131 39 25912, Fax: +49 6131 39 23536, E-mail:
| |
Collapse
|
34
|
Abstract
The endocannabinoid (eCB) system is involved in processes as diverse as control of appetite, perception of pain and the limitation of cancer cell growth and invasion. The enzymes responsible for eCB breakdown are attractive pharmacological targets, and fatty acid amide hydrolase inhibitors, which potentiate the levels of the eCB anandamide, are now undergoing pharmaceutical development. 'Drugable' selective inhibitors of monoacylglycerol lipase, a key enzyme regulating the levels of the other main eCB, 2-arachidonoylglycerol, were however not identified until very recently. Their availability has resulted in a large expansion of our knowledge concerning the pharmacological consequences of monoacylglycerol lipase inhibition and hence the role(s) played by the enzyme in the body. In this review, the pharmacology of monoacylglycerol lipase will be discussed, together with an analysis of the therapeutic potential of monoacylglycerol lipase inhibitors as analgesics and anticancer agents.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden.
| |
Collapse
|
35
|
Wang J, Shen RY, Haj-Dahmane S. Endocannabinoids mediate the glucocorticoid-induced inhibition of excitatory synaptic transmission to dorsal raphe serotonin neurons. J Physiol 2012; 590:5795-808. [PMID: 22946098 DOI: 10.1113/jphysiol.2012.238659] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids play a critical role in the modulation of stress responses by controlling the function of the serotonin (5-HT) system. However, the precise effects of glucocorticoids on the excitability of dorsal raphe (DR) 5-HT neurons remain unknown. In this study, we investigated the effects of glucocorticoids on excitatory synaptic transmission to putative DR 5-HT neurons. We found that corticosterone or the synthetic glucocorticoid agonist dexamethasone rapidly suppressed glutamatergic synaptic transmission to DR 5-HT neurons by inhibiting glutamate release in the DR. This inhibitory effect was mimicked by membrane-impermeable glucocorticoids, indicating the involvement of membrane-located corticosteroid receptors. The glucocorticoid-induced inhibition of glutamatergic transmission was mediated by the activation of postsynaptic G-protein-coupled receptors and signalled by retrograde endocannabinoid (eCB) messengers. Examination of the downstream mechanisms revealed that glucocorticoids enhance eCB signalling via an inhibition of cyclooxygenase-2. Together, these findings unravel a novel mechanism by which glucocorticoids control the excitability of DR 5-HT neurons and provide new insight into the rapid effects of stress hormones on the function of the 5-HT system.
Collapse
Affiliation(s)
- Jue Wang
- Research Institute on Addictions, University at Buffalo, 1021 Main Street, Buffalo, NY 14203, USA
| | | | | |
Collapse
|
36
|
Levin JR, Serrano G, Dingledine R. Reduction in delayed mortality and subtle improvement in retrograde memory performance in pilocarpine-treated mice with conditional neuronal deletion of cyclooxygenase-2 gene. Epilepsia 2012; 53:1411-20. [PMID: 22780884 DOI: 10.1111/j.1528-1167.2012.03584.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Pilocarpine induces prolonged status epilepticus (SE) in rodents that results in neurodegeneration and cognitive deficits, both commonly observed to be associated with human temporal lobe epilepsy. The multifunctional neuronal modulator, cyclooxygenase-2 (PTGS2 or COX-2), is rapidly induced after SE, mainly in principal neurons of the hippocampal formation and cortex. We used mice in which COX-2 is conditionally ablated in principal forebrain neurons to investigate the involvement of neuron-derived COX-2 in delayed mortality and performance in the Barnes maze. METHODS Using the COX-2 conditional knockout mouse (nCOX-2 cKO) and their littermate wild-type controls, we compared motor behavior and performance in the Barnes maze before and 3 weeks after the induction of SE by pilocarpine. Mortality rate was also measured during SE and in the week following SE. KEY FINDINGS nCOX-2 cKO mice showed less delayed mortality than wild-type mice in the week after SE. Although motor behavior and most cognitive measures were not different in the nCOX-2 cKO, upon reexposure to the maze 3 weeks after pilocarpine, the latency to find the previously learned target hole was significantly shorter in the nCOX-2 cKO than their wild-type littermate controls. By this measure pilocarpine-treated nCOX-2 cKO mice were identical to mice that had not experienced SE. SIGNIFICANCE Results point to a role for neuronal COX-2 in delayed mortality in mice during the week following SE and suggest that neuronal COX-2 contributes to selected cognitive deficits observed after SE. Taking into consideration our previous findings that neurodegeneration and neuroinflammation after SE are reduced in the nCOX-2 cKO, and opening of the blood-brain barrier after pilocarpine is prevented, we conclude that neuronal COX-2 induction is an early step in many of the deleterious consequences of SE.
Collapse
Affiliation(s)
- Jamie R Levin
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
37
|
Du H, Chen X, Zhang J, Chen C. Inhibition of COX-2 expression by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-γ. Br J Pharmacol 2012; 163:1533-49. [PMID: 21501147 DOI: 10.1111/j.1476-5381.2011.01444.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids have both anti-inflammatory and neuroprotective properties against harmful stimuli. We previously demonstrated that the endocannabinoid 2-arachidonoylglycerol (2-AG) protects hippocampal neurons by limiting the inflammatory response via a CB(1) receptor-dependent MAPK/NF-κB signalling pathway. The purpose of the present study was to determine whether PPARγ, an important nuclear receptor, mediates 2-AG-induced inhibition of NF-κB phosphorylation and COX-2 expression, and COX-2-enhanced miniature spontaneous excitatory postsynaptic currents (mEPSCs). EXPERIMENTAL APPROACH By using a whole-cell patch clamp electrophysiological recording technique and immunoblot analysis, we determined mEPSCs, expression of COX-2 and PPARγ, and phosphorylation of NF-kB in mouse hippocampal neurons in culture. KEY RESULTS Exogenous and endogenous 2-AG-produced suppressions of NF-κB-p65 phosphorylation, COX-2 expression and excitatory synaptic transmission in response to pro-inflammatory interleukin-1β (IL-1β) and LPS were inhibited by GW9662, a selective PPARγ antagonist, in hippocampal neurons in culture. PPARγ agonists 15-deoxy-Δ(12,14) -prostaglandin J(2) (15d-PGJ(2)) and rosiglitazone mimicked the effects of 2-AG on NF-κB-p65 phosphorylation, COX-2 expression and mEPSCs, and these effects were eliminated by antagonism of PPARγ. Moreover, exogenous application of 2-AG or elevation of endogenous 2-AG by inhibiting its hydrolysis with URB602 or JZL184, selective inhibitors of monoacylglycerol lipase (MAGL), prevented the IL-1β- and LPS-induced reduction of PPARγ expression. The 2-AG restoration of the reduced PPARγ expression was blocked or attenuated by pharmacological or genetic inhibition of the CB(1) receptor. CONCLUSIONS AND IMPLICATIONS Our results suggest that CB(1) receptor-dependent PPARγ expression is an important and novel signalling pathway in endocannabinoid 2-AG-produced resolution of neuroinflammation in response to pro-inflammatory insults.
Collapse
Affiliation(s)
- Huizhi Du
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
38
|
Howlett AC, Reggio PH, Childers SR, Hampson RE, Ulloa NM, Deutsch DG. Endocannabinoid tone versus constitutive activity of cannabinoid receptors. Br J Pharmacol 2012; 163:1329-43. [PMID: 21545414 DOI: 10.1111/j.1476-5381.2011.01364.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review evaluates the cellular mechanisms of constitutive activity of the cannabinoid (CB) receptors, its reversal by inverse agonists, and discusses the pitfalls and problems in the interpretation of the research data. The notion is presented that endogenously produced anandamide (AEA) and 2-arachidonoylglycerol (2-AG) serve as autocrine or paracrine stimulators of the CB receptors, giving the appearance of constitutive activity. It is proposed that one cannot interpret inverse agonist studies without inference to the receptors' environment vis-à-vis the endocannabinoid agonists which themselves are highly lipophilic compounds with a preference for membranes. The endocannabinoid tone is governed by a combination of synthetic pathways and inactivation involving transport and degradation. The synthesis and degradation of 2-AG is well characterized, and 2-AG has been strongly implicated in retrograde signalling in neurons. Data implicating endocannabinoids in paracrine regulation have been described. Endocannabinoid ligands can traverse the cell's interior and potentially be stored on fatty acid-binding proteins (FABPs). Molecular modelling predicts that the endocannabinoids derived from membrane phospholipids can laterally diffuse to enter the CB receptor from the lipid bilayer. Considering that endocannabinoid signalling to CB receptors is a much more likely scenario than is receptor activation in the absence of agonist ligands, researchers are advised to refrain from assuming constitutive activity except for experimental models known to be devoid of endocannabinoid ligands.
Collapse
Affiliation(s)
- Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Evidence for the involvement of the endocannabinoid system (ECS) in anxiety and fear has been accumulated, providing leads for novel therapeutic approaches. In anxiety, a bidirectional influence of the ECS has been reported, whereby anxiolytic and anxiogenic responses have been obtained after both increases and decreases of the endocannabinoid tone. The recently developed genetic tools have revealed different but complementary roles for the cannabinoid type 1 (CB1) receptor on GABAergic and glutamatergic neuronal populations. This dual functionality, together with the plasticity of CB1 receptor expression, particularly on GABAergic neurons, as induced by stressful and rewarding experiences, gives the ECS a unique regulatory capacity for maintaining emotional homeostasis. However, the promiscuity of the endogenous ligands of the CB1 receptor complicates the interpretation of experimental data concerning ECS and anxiety. In fear memory paradigms, the ECS is mostly involved in the two opposing processes of reconsolidation and extinction of the fear memory. Whereas ECS activation deteriorates reconsolidation, proper extinction depends on intact CB1 receptor signalling. Thus, both for anxiety and fear memory processing, endocannabinoid signalling may ensure an appropriate reaction to stressful events. Therefore, the ECS can be considered as a regulatory buffer system for emotional responses.
Collapse
Affiliation(s)
- S Ruehle
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy.
| | | | | |
Collapse
|
41
|
Ablation of cyclooxygenase-2 in forebrain neurons is neuroprotective and dampens brain inflammation after status epilepticus. J Neurosci 2011; 31:14850-60. [PMID: 22016518 DOI: 10.1523/jneurosci.3922-11.2011] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclooxygenase-2 (COX-2), a source of inflammatory mediators and a multifunctional neuronal modulator, is rapidly induced in select populations of cortical neurons after status epilepticus. The consequences of rapid activity-triggered induction of COX-2 in neurons have been the subject of much study and speculation. To address this issue directly, we created a mouse in which COX-2 is conditionally ablated in selected forebrain neurons. Results following pilocarpine-induced status epilepticus indicate that neuronal COX-2 promotes early neuroprotection and then delayed neurodegeneration of CA1 pyramidal neurons, promotes neurodegeneration of nearby somatostatin interneurons in the CA1 stratum oriens and dentate hilus (which themselves do not express COX-2), intensifies a broad inflammatory reaction involving numerous cytokines and other inflammatory mediators in the hippocampus, and is essential for development of a leaky blood-brain barrier after seizures. These findings point to a profound role of seizure-induced neuronal COX-2 expression in neuropathologies that accompany epileptogenesis.
Collapse
|
42
|
Straiker A, Wager-Miller J, Hu SS, Blankman JL, Cravatt BF, Mackie K. COX-2 and fatty acid amide hydrolase can regulate the time course of depolarization-induced suppression of excitation. Br J Pharmacol 2011; 164:1672-83. [PMID: 21564090 PMCID: PMC3230814 DOI: 10.1111/j.1476-5381.2011.01486.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 04/11/2011] [Accepted: 04/20/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Depolarization-induced suppression of inhibition (DSI) and excitation (DSE) are two forms of cannabinoid CB(1) receptor-mediated inhibition of synaptic transmission, whose durations are regulated by endocannabinoid (eCB) degradation. We have recently shown that in cultured hippocampal neurons monoacylglycerol lipase (MGL) controls the duration of DSE, while DSI duration is determined by both MGL and COX-2. This latter result suggests that DSE might be attenuated, and excitatory transmission enhanced, during inflammation and in other settings where COX-2 expression is up-regulated. EXPERIMENTAL APPROACH To investigate whether it is possible to control the duration of eCB-mediated synaptic plasticity by varied expression of eCB-degrading enzymes, we transfected excitatory autaptic hippocampal neurons with putative 2-AG metabolizing enzymes: COX-2, fatty acid amide hydrolase (FAAH), α/β hydrolase domain 6 (ABHD6), α/β hydrolase domain 12 (ABHD12) or MGL. KEY RESULTS We found that overexpression of either COX-2 or FAAH shortens the duration of DSE while ABHD6 or ABHD12 do not. In contrast, genetic deletion (MGL(-/-)) and overexpression of MGL both radically altered eCB-mediated synaptic plasticity. CONCLUSIONS AND IMPLICATIONS We conclude that both FAAH and COX-2 can be trafficked to neuronal sites where they are able to degrade eCBs to modulate DSE duration and, by extension, net endocannabinoid signalling at a given synapse. The results for COX-2, which is often up-regulated under pathological conditions, are of particular note in that they offer a mechanism by which up-regulated COX-2 may promote neuronal excitation by suppressing DSE while enhancing conversion of 2-AG to PGE(2) -glycerol ester under pathological conditions.
Collapse
Affiliation(s)
- A Straiker
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Rouzer CA, Marnett LJ. Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. Chem Rev 2011; 111:5899-921. [PMID: 21923193 PMCID: PMC3191732 DOI: 10.1021/cr2002799] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Carol A Rouzer
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
44
|
Pyramidal neurons are "neurogenic hubs" in the neurovascular coupling response to whisker stimulation. J Neurosci 2011; 31:9836-47. [PMID: 21734275 DOI: 10.1523/jneurosci.4943-10.2011] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The whisker-to-barrel cortex is widely used to study neurovascular coupling, but the cellular basis that underlies the perfusion changes is still largely unknown. Here, we identified neurons recruited by whisker stimulation in the rat somatosensory cortex using double immunohistochemistry for c-Fos and markers of glutamatergic and GABAergic neurons, and investigated in vivo their contribution along with that of astrocytes in the evoked perfusion response. Whisker stimulation elicited cerebral blood flow (CBF) increases concomitantly with c-Fos upregulation in pyramidal cells that coexpressed cyclooxygenase-2 (COX-2) and GABA interneurons that coexpressed vasoactive intestinal polypeptide and/or choline acetyltransferase, but not somatostatin or parvalbumin. The evoked CBF response was decreased by blockade of NMDA (MK-801, -37%), group I metabotropic glutamate (MPEP+LY367385, -40%), and GABA-A (picrotoxin, -31%) receptors, but not by GABA-B, VIP, or muscarinic receptor antagonism. Picrotoxin decreased stimulus-induced somatosensory evoked potentials and CBF responses. Combined blockade of GABA-A and NMDA receptors yielded an additive decreasing effect (-61%) of the evoked CBF compared with each antagonist alone, demonstrating cooperation of both excitatory and inhibitory systems in the hyperemic response. Blockade of prostanoid synthesis by inhibiting COX-2 (indomethacin, NS-398), expressed by ∼40% of pyramidal cells but not by astrocytes, impaired the CBF response (-50%). The hyperemic response was also reduced (-40%) after inhibition of astroglial oxidative metabolism or epoxyeicosatrienoic acids synthesis. These results demonstrate that changes in pyramidal cell activity, sculpted by specific types of inhibitory GABA interneurons, drive the CBF response to whisker stimulation and, further, that metabolically active astrocytes are also required.
Collapse
|
45
|
Straube A, Aicher B, Fiebich BL, Haag G. Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics? BMC Neurol 2011; 11:43. [PMID: 21453539 PMCID: PMC3080296 DOI: 10.1186/1471-2377-11-43] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/31/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. DISCUSSION In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect.As an example the fixed-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. SUMMARY Multitarget therapeutics like combined analgesics broaden the array of therapeutic options, enable the completeness of the therapeutic effect, and allow doctors (and, in self-medication with OTC medications, the patients themselves) to customize treatment to the patient's specific needs. There is substantial clinical evidence that such a multi-component therapy is more effective than mono-component therapies.
Collapse
Affiliation(s)
- Andreas Straube
- Department of Neurology, Klinikum Großhadern, Ludwig-Maximilians-University, D-81377 Munich, Germany
| | - Bernhard Aicher
- Boehringer Ingelheim Pharma GmbH&Co. KG, Binger-Str. 173, D-55216 Ingelheim am Rhein, Germany
| | - Bernd L Fiebich
- Dept. of Psychiatry and Psychotherapy, Universitätsklinikum Freiburg, Hauptstr. 5, D-79104 Freiburg, Germany
| | - Gunther Haag
- Michael-Balint Klinik, Hermann-Voland Str. 10, D-78126 Königsfeld im Schwarzwald, Germany
| |
Collapse
|
46
|
Abstract
Epilepsy is the third most common chronic brain disorder, and is characterized by an enduring predisposition to generate seizures. Despite progress in pharmacological and surgical treatments of epilepsy, relatively little is known about the processes leading to the generation of individual seizures, and about the mechanisms whereby a healthy brain is rendered epileptic. These gaps in our knowledge hamper the development of better preventive treatments and cures for the approximately 30% of epilepsy cases that prove resistant to current therapies. Here, we focus on the rapidly growing body of evidence that supports the involvement of inflammatory mediators-released by brain cells and peripheral immune cells-in both the origin of individual seizures and the epileptogenic process. We first describe aspects of brain inflammation and immunity, before exploring the evidence from clinical and experimental studies for a relationship between inflammation and epilepsy. Subsequently, we discuss how seizures cause inflammation, and whether such inflammation, in turn, influences the occurrence and severity of seizures, and seizure-related neuronal death. Further insight into the complex role of inflammation in the generation and exacerbation of epilepsy should yield new molecular targets for the design of antiepileptic drugs, which might not only inhibit the symptoms of this disorder, but also prevent or abrogate disease pathogenesis.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via Giuseppe La Masa 19, 20156 Milan, Italy.
| | | | | | | |
Collapse
|
47
|
Parecoxib and its metabolite valdecoxib directly interact with cannabinoid binding sites in CB1-expressing HEK 293 cells and rat brain tissue. Neurochem Int 2010; 58:9-13. [PMID: 21073910 DOI: 10.1016/j.neuint.2010.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 11/24/2022]
Abstract
Cyclooxygenase 2 inhibitors (COX 2) such as parecoxib (par) and valdecoxib (val) are used in the treatment of neuropathic pain. Using the radioligand binding assay it was demonstrated that both the prodrug par as well as its active metabolite val have a specific affinity to the cannabinoid (CB) receptor measured in CB1-expressing HEK 293 cells and rat brain tissue. Agonist activity was detected by GTPγS assays, cAMP formation experiments and ex vivo modulation of glutamate and GABA release of the rat brain tissue. In comparison to the specific cannabinoid agonist, WIN 55,212-2, the two COX 2 inhibitors are about 2 orders of magnitude less potent. The data suggest that the analgesic effects of par and its metabolite val in Wistar rats may be at least partially mediated by a direct interaction with the CB1 receptors. The COX 2 inhibitors appear to be a hypothetically useful tool for add-on therapy of neuropathic pain.
Collapse
|
48
|
Glaser ST, Kaczocha M. Cyclooxygenase-2 mediates anandamide metabolism in the mouse brain. J Pharmacol Exp Ther 2010; 335:380-8. [PMID: 20702753 PMCID: PMC2967403 DOI: 10.1124/jpet.110.168831] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/29/2010] [Indexed: 11/22/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) mediates inflammation and contributes to neurodegeneration. Best known for its pathological up-regulation, COX-2 is also constitutively expressed within the brain and mediates synaptic transmission through prostaglandin synthesis. Along with arachidonic acid, COX-2 oxygenates the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol in vitro. Inhibition of COX-2 enhances retrograde signaling in the hippocampus, suggesting COX-2 mediates endocannabinoid tone in healthy brain. The degree to which COX-2 may regulate endocannabinoid metabolism in vivo is currently unclear. Therefore, we explored the effect of COX-2 inhibition on [(3)H]AEA metabolism in mouse brain. Although AEA is hydrolyzed primarily by fatty acid amide hydrolase (FAAH), ex vivo autoradiography revealed that COX-2 inhibition by nimesulide redirected [(3)H]AEA substrate from COX-2 to FAAH in the cortex, hippocampus, thalamus, and periaqueductal gray. These data indicate that COX-2 possesses the capacity to metabolize AEA in vivo and can compete with FAAH for AEA in several brain regions. Temporal fluctuations in COX-2 expression were observed in the brain, with an increase in COX-2 protein and mRNA in the hippocampus at midnight compared with noon. COX-2 immunolocalization was robust in the hippocampus and several cortical regions. Although most regions exhibited no temporal changes in COX-2 immunolocalization, increased numbers of immunoreactive cells were detected at midnight in layers II and III of the somatosensory and visual cortices. These temporal variations in COX-2 distribution reduced the enzyme's contribution toward [(3)H]AEA metabolism in the somatosensory cortex at midnight. Taken together, our findings establish COX-2 as a mediator of regional AEA metabolism in mouse brain.
Collapse
Affiliation(s)
- Sherrye T Glaser
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA.
| | | |
Collapse
|
49
|
Staniaszek LE, Norris LM, Kendall DA, Barrett DA, Chapman V. Effects of COX-2 inhibition on spinal nociception: the role of endocannabinoids. Br J Pharmacol 2010; 160:669-76. [PMID: 20590570 DOI: 10.1111/j.1476-5381.2010.00703.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent studies suggest that the effects of cyclooxygenase-2 (COX-2) inhibition are mediated by cannabinoid receptor activation. However, some non-steroidal anti-inflammatory drugs inhibit the enzyme fatty acid amide hydrolase, which regulates levels of some endocannabinoids. Whether COX-2 directly regulates levels of endocannabinoids in vivo is unclear. Here, the effect of the COX-2 inhibitor nimesulide, which does not inhibit fatty acid amide hydrolase, on spinal nociceptive processing was determined. Effects of nimesulide on tissue levels of endocannabinoids and related compounds were measured and the role of cannabinoid 1 (CB(1)) receptors was determined. EXPERIMENTAL APPROACH Effects of spinal and peripheral administration of nimesulide (1-100 microg per 50 microL) on mechanically evoked responses of rat dorsal horn neurones were measured, and the contribution of the CB(1) receptor was determined with the antagonist AM251 (N-(piperidin-1-yl)-5-(-4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide), in anaesthetized rats. Effects of nimesulide on spinal levels of endocannabinoids and related compounds were quantified using liquid chromatography-tandem mass spectrometry. KEY RESULTS Spinal, but not peripheral, injection of nimesulide (1-100 microg per 50 microL) significantly reduced mechanically evoked responses of dorsal horn neurones. Inhibitory effects of spinal nimesulide were blocked by the CB(1) receptor antagonist AM251 (1 microg per 50 microL), but spinal levels of endocannabinoids were not elevated. Indeed, both anandamide and N-oleoylethanolamide (OEA) were significantly decreased by nimesulide. CONCLUSIONS AND IMPLICATIONS Although the inhibitory effects of COX-2 blockade on spinal neuronal responses by nimesulide were dependent on CB(1) receptors, we did not detect a concomitant elevation in anandamide or 2-AG. Further understanding of the complexities of endocannabinoid catabolism by multiple enzymes is essential to understand their contribution to COX-2-mediated analgesia.
Collapse
Affiliation(s)
- L E Staniaszek
- School of Biomedical Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK.
| | | | | | | | | |
Collapse
|
50
|
Aïd S, Bosetti F. Targeting cyclooxygenases-1 and -2 in neuroinflammation: Therapeutic implications. Biochimie 2010; 93:46-51. [PMID: 20868723 DOI: 10.1016/j.biochi.2010.09.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/14/2010] [Indexed: 12/21/2022]
Abstract
Neuroinflammation has been implicated in the pathogenesis or the progression of a variety of acute and chronic neurological and neurodegenerative disorders, including Alzheimer's disease. Prostaglandin H synthases or cyclooxygenases (COX -1 and COX-2) play a central role in the inflammatory cascade by converting arachidonic acid into bioactive prostanoids. In this review, we highlighted recent experimental data that challenge the classical view that the inducible isoform COX-2 is the most appropriate target to treat neuroinflammation. First, we discuss data showing that COX-2 activity is linked to anti-inflammatory and neuroprotective actions and is involved in the generation of novel lipid mediators with pro-resolution properties. Then, we review recent data demonstrating that COX-1, classically viewed as the homeostatic isoform, is actively involved in brain injury induced by pro-inflammatory stimuli including Aβ, lipopolysaccharide, IL-1β, and TNF-α. Overall, we suggest revisiting the traditional views on the roles of each COX during neuroinflammation and we propose COX-1 inhibition as a viable therapeutic approach to treat CNS diseases with a marked inflammatory component.
Collapse
Affiliation(s)
- Saba Aïd
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, NIH, 9 Memorial Drive, Bldg 9 Room 1S126, Bethesda, MD 20892, USA
| | | |
Collapse
|