1
|
Zald DH. The influence of dopamine autoreceptors on temperament and addiction risk. Neurosci Biobehav Rev 2023; 155:105456. [PMID: 37926241 PMCID: PMC11330662 DOI: 10.1016/j.neubiorev.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As a major regulator of dopamine (DA), DA autoreceptors (DAARs) exert substantial influence over DA-mediated behaviors. This paper reviews the physiological and behavioral impact of DAARs. Individual differences in DAAR functioning influences temperamental traits such as novelty responsivity and impulsivity, both of which are associated with vulnerability to addictive behavior in animal models and a broad array of externalizing behaviors in humans. DAARs additionally impact the response to psychostimulants and other drugs of abuse. Human PET studies of D2-like receptors in the midbrain provide evidence for parallels to the animal literature. These data lead to the proposal that weak DAAR regulation is a risk factor for addiction and externalizing problems. The review highlights the potential to build translational models of the functional role of DAARs in behavior. It also draws attention to key limitations in the current literature that would need to be addressed to further advance a weak DAAR regulation model of addiction and externalizing risk.
Collapse
Affiliation(s)
- David H Zald
- Center for Advanced Human Brain Imaging and Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Ringuet MT, Furness JB, Furness SGB. G protein-coupled receptor interactions and modification of signalling involving the ghrelin receptor, GHSR1a. J Neuroendocrinol 2022; 34:e13077. [PMID: 34931385 DOI: 10.1111/jne.13077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/05/2021] [Indexed: 12/28/2022]
Abstract
The growth hormone secretagogue receptor 1a (GHSR1a) is intriguing because of its potential as a therapeutic target and its diverse molecular interactions. Initial studies of the receptor focused on the potential therapeutic ability for growth hormone (GH) release to reduce wasting in aging individuals, as well as food intake regulation for treatment of cachexia. Known roles of GHSR1a now extend to regulation of neurogenesis, learning and memory, gastrointestinal motility, glucose/lipid metabolism, the cardiovascular system, neuronal protection, motivational salience, and hedonic feeding. Ghrelin, the endogenous agonist of GHSR1a, is primarily located in the stomach and is absent from the central nervous system (CNS), including the spinal cord. However, ghrelin in the circulation does have access to a small number of CNS sites, including the arcuate nucleus, which is important in feeding control. At some sites, such as at somatotrophs, GHSR1a has high constitutive activity. Typically, ghrelin-dependent and constitutive GHSR1a activation occurs via Gαq/11 pathways. In vitro and in vivo data suggest that GHSR1a heterodimerises with multiple G protein-coupled receptors (GPCRs), including dopamine D1 and D2, serotonin 2C, orexin, oxytocin and melanocortin 3 receptors (MCR3), as well as the MCR3 accessory protein, MRAP2, providing possible mechanisms for its many physiological effects. In all cases, the receptor interaction changes downstream signalling and the responses to receptor agonists. This review discusses the signalling mechanisms of GHSR1a alone and in combination with other GPCRs, and explores the physiological consequences of GHSR1a coupling with other GPCRs.
Collapse
Affiliation(s)
- Mitchell Ty Ringuet
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - John Barton Furness
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | |
Collapse
|
3
|
Kawahata I, Fukunaga K. Impact of fatty acid-binding proteins and dopamine receptors on α-synucleinopathy. J Pharmacol Sci 2022; 148:248-254. [DOI: 10.1016/j.jphs.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
|
4
|
Allosteric modulation of dopamine D 2L receptor in complex with G i1 and G i2 proteins: the effect of subtle structural and stereochemical ligand modifications. Pharmacol Rep 2022; 74:406-424. [PMID: 35064921 PMCID: PMC8964653 DOI: 10.1007/s43440-021-00352-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/28/2022]
Abstract
Background Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays one of the hot topics in drug discovery. In particular, allosteric modulators of D2 receptor have been proposed as potential modern therapeutics to treat schizophrenia and Parkinson’s disease. Methods To address some subtle structural and stereochemical aspects of allosteric modulation of D2 receptor, we performed extensive in silico studies of both enantiomers of two compounds (compound 1 and compound 2), and one of them (compound 2) was synthesized as a racemate in-house and studied in vitro. Results Our molecular dynamics simulations confirmed literature reports that the R enantiomer of compound 1 is a positive allosteric modulator of the D2L receptor, while its S enantiomer is a negative allosteric modulator. Moreover, based on the principal component analysis (PCA), we hypothesized that both enantiomers of compound 2 behave as silent allosteric modulators, in line with our in vitro studies. PCA calculations suggest that the most pronounced modulator-induced receptor rearrangements occur at the transmembrane helix 7 (TM7). In particular, TM7 bending at the conserved P7.50 and G7.42 was observed. The latter resides next to the Y7.43, which is a significant part of the orthosteric binding site. Moreover, the W7.40 conformation seems to be affected by the presence of the positive allosteric modulator. Conclusions Our work reveals that allosteric modulation of the D2L receptor can be affected by subtle ligand modifications. A change in configuration of a chiral carbon and/or minor structural modulator modifications are solely responsible for the functional outcome of the allosteric modulator. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00352-x.
Collapse
|
5
|
Ågren R, Sahlholm K. G protein-coupled receptor kinase-2 confers isoform-specific calcium sensitivity to dopamine D 2 receptor desensitization. FASEB J 2021; 35:e22013. [PMID: 34699610 DOI: 10.1096/fj.202100704rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
The dopamine D2 receptor (D2 R) functions as an autoreceptor on dopaminergic cell bodies and terminals and as a postsynaptic receptor on a variety of neurons in the central nervous system. As a result of alternative splicing, the D2 R is expressed as two isoforms: long (D2L R) and short (D2S R) differing by a stretch of 29 residues in the third intracellular loop, with D2S R being the predominant presynaptic isoform. Recent reports described a Ca2+ sensitivity of the desensitization time course of potassium currents elicited via D2S R, but not via D2L R, when either isoform was selectively expressed in dopaminergic neurons. Here, we aimed to study the mechanism behind this subtype-specific Ca2+ sensitivity. Thus, we measured the desensitization of potassium channel responses evoked by D2L R and D2S R using two-electrode voltage clamp in Xenopus oocytes in the absence and presence of different amounts of β-arrestin2 and G protein-coupled receptor kinase-2 (GRK2), both of which are known to play important roles in D2 R desensitization in native cells. We found that co-expression of both GRK2 and β-arrestin2 was necessary for reconstitution of the Ca2+ sensitivity of D2S R desensitization, while D2L R did not display Ca2+ sensitivity under these conditions. The effect of Ca2+ chelation by BAPTA-AM to slow the rate of D2S R desensitization was mimicked by the GRK2 inhibitor, Cmpd101, and by the kinase-inactivating GRK2 mutation, K220R, but not by the PKC inhibitor, Gö6976, nor by the calmodulin antagonist, KN-93. Thus, Ca2+ -sensitive desensitization of D2S R appears to be mediated via a GRK2 phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
7
|
Kotarska A, Fernandes L, Kleene R, Schachner M. Cell adhesion molecule close homolog of L1 binds to the dopamine receptor D2 and inhibits the internalization of its short isoform. FASEB J 2020; 34:4832-4851. [PMID: 32052901 DOI: 10.1096/fj.201900577rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023]
Abstract
Cell adhesion molecule close homolog of L1 (CHL1) and the dopamine receptor D2 (DRD2) are associated with psychiatric and mental disorders. We here show that DRD2 interacts with CHL1 in mouse brain, as evidenced by co-immunostaining, proximity ligation assay, co-immunoprecipitation, and pull-down assay with recombinant extracellular CHL1 domain fused to Fc (CHL1-Fc). Direct binding of CHL1-Fc to the first extracellular loop of DRD2 was shown by ELISA. Using HEK cells transfected to co-express CHL1 and the short (DRD2-S) or long (DRD2-L) DRD2 isoforms, co-localization of CHL1 and both isoforms was observed by immunostaining and proximity ligation assay. Moreover, CHL1 inhibited agonist-triggered internalization of DRD2-S. Proximity ligation assay showed close interaction between CHL1 and DRD2 in neurons expressing dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP32) or tyrosine hydroxylase (TH) in tissue sections of adult mouse striatum. In cultures of striatum or ventral midbrain, CHL1 was also closely associated with DRD2 in DARPP32- or TH-immunopositive cells, respectively. In the dorsal striatum of CHL1-deficient mice, lower levels of DRD2 and phosphorylated TH were observed, when compared to wild-type littermates. In the ventral striatum of CHL1-deficient mice, levels of phosphorylated DARPP32 were reduced. We propose that CHL1 regulates DRD2-dependent presynaptic and postsynaptic functions.
Collapse
Affiliation(s)
- Agnieszka Kotarska
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
8
|
Robinson BG, Condon AF, Radl D, Borrelli E, Williams JT, Neve KA. Cocaine-induced adaptation of dopamine D2S, but not D2L autoreceptors. eLife 2017; 6. [PMID: 29154756 PMCID: PMC5695907 DOI: 10.7554/elife.31924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
The dopamine D2 receptor has two splice variants, D2S (Short) and D2L (Long). In dopamine neurons, both variants can act as autoreceptors to regulate neuronal excitability and dopamine release, but the roles of each variant are incompletely characterized. In a previous study we used viral receptor expression in D2 receptor knockout mice to show distinct effects of calcium signaling on D2S and D2L autoreceptor function (Gantz et al., 2015). However, the cocaine-induced plasticity of D2 receptor desensitization observed in wild type mice was not recapitulated with this method of receptor expression. Here we use mice with genetic knockouts of either the D2S or D2L variant to investigate cocaine-induced plasticity in D2 receptor signaling. Following a single in vivo cocaine exposure, the desensitization of D2 receptors from neurons expressing only the D2S variant was reduced. This did not occur in D2L-expressing neurons, indicating differential drug-induced plasticity between the variants.
Collapse
Affiliation(s)
- Brooks G Robinson
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Alec F Condon
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Daniela Radl
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, United States
| | - Emiliana Borrelli
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, United States
| | - John T Williams
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Kim A Neve
- Research Service, VA Portland Health Care System, Portland, United States.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, United States
| |
Collapse
|
9
|
Dobbs LK, Lemos JC, Alvarez VA. Restructuring of basal ganglia circuitry and associated behaviors triggered by low striatal D2 receptor expression: implications for substance use disorders. GENES BRAIN AND BEHAVIOR 2017; 16:56-70. [PMID: 27860248 PMCID: PMC5243158 DOI: 10.1111/gbb.12361] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/11/2023]
Abstract
Dopamine D2 receptors (D2Rs) consistently emerge as a critical substrate for the etiology of some major psychiatric disorders. Indeed, a central theory of substance use disorders (SUDs) postulates that a reduction in D2R levels in the striatum is a determining factor that confers vulnerability to abuse substances. A large number of clinical and preclinical studies strongly support this link between SUDs and D2Rs; however, identifying the mechanism by which low D2Rs facilitate SUDs has been hindered by the complexity of circuit connectivity, the heterogeneity of D2R expression and the multifaceted constellation of phenotypes observed in SUD patient. Animal models are well‐suited for understanding the mechanisms because they allow access to the circuitry and the genetic tools that enable a dissection of the D2R heterogeneity. This review discusses recent findings on the functional role of D2Rs and highlights the distinctive contributions of D2Rs expressed on specific neuronal subpopulations to the behavioral responses to stimulant drugs. A circuit‐wide restructuring of local and long‐range inhibitory connectivity within the basal ganglia is observed in response to manipulation of striatal D2R levels and is accompanied by multiple alterations in dopamine‐dependent behaviors. Collectively, these new findings provide compelling evidence for a critical role of striatal D2Rs in shaping basal ganglia connectivity; even among neurons that do not express D2Rs. These findings from animal models have deep clinical implications for SUD patients with low levels D2R availability where a similar restructuring of basal ganglia circuitry is expected to take place.
Collapse
Affiliation(s)
- L K Dobbs
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - J C Lemos
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - V A Alvarez
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Toll L, Bruchas MR, Calo' G, Cox BM, Zaveri NT. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems. Pharmacol Rev 2016; 68:419-57. [PMID: 26956246 PMCID: PMC4813427 DOI: 10.1124/pr.114.009209] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor.
Collapse
Affiliation(s)
- Lawrence Toll
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Michael R Bruchas
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Girolamo Calo'
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Brian M Cox
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Nurulain T Zaveri
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| |
Collapse
|
11
|
Gantz SC, Robinson BG, Buck DC, Bunzow JR, Neve RL, Williams JT, Neve KA. Distinct regulation of dopamine D2S and D2L autoreceptor signaling by calcium. eLife 2015; 4. [PMID: 26308580 PMCID: PMC4575989 DOI: 10.7554/elife.09358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022] Open
Abstract
D2 autoreceptors regulate dopamine release throughout the brain. Two isoforms of the D2 receptor, D2S and D2L, are expressed in midbrain dopamine neurons. Differential roles of these isoforms as autoreceptors are poorly understood. By virally expressing the isoforms in dopamine neurons of D2 receptor knockout mice, this study assessed the calcium-dependence and drug-induced plasticity of D2S and D2L receptor-dependent G protein-coupled inwardly rectifying potassium (GIRK) currents. The results reveal that D2S, but not D2L receptors, exhibited calcium-dependent desensitization similar to that exhibited by endogenous autoreceptors. Two pathways of calcium signaling that regulated D2 autoreceptor-dependent GIRK signaling were identified, which distinctly affected desensitization and the magnitude of D2S and D2L receptor-dependent GIRK currents. Previous in vivo cocaine exposure removed calcium-dependent D2 autoreceptor desensitization in wild type, but not D2S-only mice. Thus, expression of D2S as the exclusive autoreceptor was insufficient for cocaine-induced plasticity, implying a functional role for the co-expression of D2S and D2L autoreceptors. DOI:http://dx.doi.org/10.7554/eLife.09358.001 Dopamine is an important component of the brain's reward system and is commonly referred to as a ‘feel-good’ chemical. It is mainly released from neurons in the brain in response to natural rewards, such as food or sex, and following exposure to, or in anticipation of, certain drugs of abuse (including cocaine). Dopamine-releasing neurons also sense dopamine, and just like someone can change the volume of their voice by hearing themselves speak, dopamine neurons regulate how much dopamine is released based on how much dopamine they sense. This feedback system is known as autoinhibition. These neurons sense dopamine when it binds to, and activates, so-called ‘dopamine D2 receptors’ on their cell surface. But not all D2 receptors are alike. Instead there are two variants called D2S and D2L. Previous studies have shown that D2 receptor signaling in dopamine neurons is altered by the concentration of calcium ions inside these cells. Furthermore, exposure to cocaine and other drugs is known to change how these calcium ions regulate D2 receptor signaling. Now, Gantz et al. have used mice that produce only a single variant of the D2 receptor (either D2S or D2L) in their dopamine neurons to uncover similarities and differences between the two variants. The experiments show that localized increases in calcium ion concentration make D2S less capable of autoinhibition, like D2 receptors in neurons from wild type mice, without affecting autoinhibition by D2L. In further experiments, some of these mice were given cocaine before D2 receptor signaling was assessed. In dopamine neurons from wild type mice, a single exposure to cocaine eliminates the calcium-dependent regulation; thus, cocaine treatment causes a D2L-like response. In contrast, cocaine treatment did not affect the calcium-dependent regulation when only one variant of the D2 receptor was present. This implies that dopamine neurons must have both D2S and D2L receptors before the drug can induce changes in D2 receptor signaling. These findings also challenge the long-held view that the D2S receptor is the predominant form involved in autoinhibition. The next challenge is to determine how cocaine induces an apparent switch from D2S to D2L and the implications of this switch for the development of cocaine addiction. DOI:http://dx.doi.org/10.7554/eLife.09358.002
Collapse
Affiliation(s)
- Stephanie C Gantz
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Brooks G Robinson
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - David C Buck
- Research Service, VA Portland Health Care System, United States Department of Veterans Affairs, Portland, United States
| | - James R Bunzow
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Kim A Neve
- Research Service, VA Portland Health Care System, United States Department of Veterans Affairs, Portland, United States
| |
Collapse
|
12
|
Neurobiological model of stimulated dopamine neurotransmission to interpret fast-scan cyclic voltammetry data. Brain Res 2014; 1599:67-84. [PMID: 25527399 DOI: 10.1016/j.brainres.2014.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 11/22/2022]
Abstract
Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology.
Collapse
|
13
|
Rieck M, Schumacher-Schuh AF, Altmann V, Francisconi CL, Fagundes PT, Monte TL, Callegari-Jacques SM, Rieder CR, Hutz MH. DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson's disease patients. Pharmacogenomics 2013; 13:1701-10. [PMID: 23171335 DOI: 10.2217/pgs.12.149] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Dyskinesia and motor fluctuation are frequent and serious complications of chronic levodopa therapy in patients with Parkinson's disease. Since genetic factors could play a role in determining the occurrence of these problems, the aim of the present study was to investigate whether possible functional polymorphisms among DRD2 and ANKK1 genes are associated with the risk of developing dyskinesia and motor fluctuations in Parkinson's disease patients. PATIENTS & METHODS One hundred and ninety nine patients in treatment with levodopa were genotyped for the -141CIns/Del, rs2283265, rs1076560, C957T, TaqIA and rs2734849 polymorphisms at the DRD2/ANKK1 gene region. RESULTS Carriers of the TTCTA haplotype showed an increased risk for the presence of dyskinesia (p = 0.007; 1.538 [95% CI: 1.126-2.101]). CONCLUSION Our data suggest an influence of the DRD2/ANKK1 gene region on levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Mariana Rieck
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Neve KA, Ford CP, Buck DC, Grandy DK, Neve RL, Phillips TJ. Normalizing dopamine D2 receptor-mediated responses in D2 null mutant mice by virus-mediated receptor restoration: comparing D2L and D2S. Neuroscience 2013; 248:479-87. [PMID: 23811070 DOI: 10.1016/j.neuroscience.2013.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/31/2013] [Accepted: 06/18/2013] [Indexed: 11/29/2022]
Abstract
D2 receptor null mutant (Drd2(-/-)) mice have altered responses to the rewarding and locomotor effects of psychostimulant drugs, which is evidence of a necessary role for D2 receptors in these behaviors. Furthermore, work with mice that constitutively express only the D2 receptor short form (D2S), as a result of genetic deletion of the long form (D2L), provides the basis for a current model in which D2L is thought to be the postsynaptic D2 receptor on medium spiny neurons in the basal forebrain, and D2S the autoreceptor that regulates the activity of dopamine neurons and dopamine synthesis and release. Because constitutive genetic deletion of the D2 or D2L receptor may cause compensatory changes that influence functional outcomes, our approach is to identify aspects of the abnormal phenotype of a Drd2(-/-) mouse that can be normalized by virus-mediated D2 receptor expression. Drd2(-/-) mice are deficient in basal and methamphetamine-induced locomotor activation and lack D2 receptor agonist-induced activation of G protein-regulated inward rectifying potassium channels (GIRKs) in dopaminergic neurons. Here we show that virus-mediated expression of D2L in the nucleus accumbens significantly restored methamphetamine-induced locomotor activation, but not basal locomotor activity, compared to mice receiving the control virus. It also restored the effect of methamphetamine to decrease time spent in the center of the activity chamber in female but not male Drd2(-/-) mice. Furthermore, the effect of expression of D2S was indistinguishable from D2L. Similarly, virus-mediated expression of either D2S or D2L in substantia nigra neurons restored D2 agonist-induced activation of GIRKs. In this acute expression system, the alternatively spliced forms of the D2 receptor appear to be equally capable of acting as postsynaptic receptors and autoreceptors.
Collapse
Affiliation(s)
- K A Neve
- Research Service, Portland VA Medical Center, and Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | - C P Ford
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - D C Buck
- Research Service, Portland VA Medical Center, and Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | - D K Grandy
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - R L Neve
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| | - T J Phillips
- Research Service, Portland VA Medical Center, and Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
15
|
Mersha M, Formisano R, McDonald R, Pandey P, Tavernarakis N, Harbinder S. GPA-14, a Gα(i) subunit mediates dopaminergic behavioral plasticity in C. elegans. Behav Brain Funct 2013; 9:16. [PMID: 23607404 PMCID: PMC3679979 DOI: 10.1186/1744-9081-9-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 04/12/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Precise levels of specific neurotransmitters are required for appropriate neuronal functioning. The neurotransmitter dopamine is implicated in modulating behaviors, such as cognition, reward and memory. In the nematode Caenorhabditis elegans, the release of dopamine during behavioral plasticity is in part modulated through an acid-sensing ion channel expressed in its eight dopaminergic neurons. A D2-like C. elegans dopamine receptor DOP-2 co-expresses along with a Gα(i) subunit (GPA-14) in the anterior deirid (ADE) pair of dopaminergic neurons. FINDINGS In follow-up experiments to our recently reported in vitro physical interaction between DOP-2 and GPA-14, we have behaviorally characterized worms carrying deletion mutations in gpa-14 and/or dop-2. We found both mutants to display behavioral abnormalities in habituation as well as associative learning, and exogenous supply of dopamine was able to revert the observed behavioral deficits. The behavioral phenotypes of dop-2 and gpa-14 loss-of-function mutants were found to be remarkably similar, and we did not observe any cumulative defects in their double mutants. CONCLUSION Our results provide genetic and phenotypic support to our earlier in vitro results where we had shown that the DOP-2 dopamine receptor and the GPA-14 Gα(i) subunit physically interact with each other. Results from behavioral experiments presented here together with our previous in-vitro work suggests that the DOP-2 functions as a dopamine auto-receptor to modulate two types of learning, anterior touch habituation and chemosensory associative conditioning, through a G-protein complex that comprises GPA-14 as its Gα subunit.
Collapse
Affiliation(s)
- Mahlet Mersha
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA
| | | | | | | | | | | |
Collapse
|
16
|
Gbahou F, Rouleau A, Arrang JM. The histamine autoreceptor is a short isoform of the H₃ receptor. Br J Pharmacol 2012; 166:1860-71. [PMID: 22356432 DOI: 10.1111/j.1476-5381.2012.01913.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The histamine H(3) receptor was identified as the autoreceptor of brain histaminergic neurons. After its cloning, functional H(3) receptor isoforms generated by a deletion in the third intracellular loop were found in the brain. Here, we determined if this autoreceptor was the long or the short isoform. EXPERIMENTAL APPROACH We hypothesized that the deletion would affect H(3) receptor stereoselectivity. The effects of the enantiomers of two chiral ligands, N(α)-methyl-α-chloromethylhistamine (N(α) Me-αClMeHA) and sopromidine, were investigated on cAMP formation at the H(3(445)) and H(3(413)) receptor isoforms, common to all species. They were further compared with their effects at autoreceptors. They were also compared on [(35)S]GTPγ[S] binding to membranes of rat cerebral cortex, striatum and hypothalamus, the richest area in autoreceptors. KEY RESULTS The stereoselectivity of N(α) Me-αClMeHA enantiomers as agonists was similar at the H(3(413)) receptor isoform and autoreceptors, but lower at the long isoform. While (S) sopromidine did not discriminate between the isoforms, (R) sopromidine was an antagonist at the H(3(413)) receptor isoform and autoreceptors, but a full agonist at the long isoform. In rat brain, stereoselectivity of N(α) Me-αClMeHA was higher in the hypothalamus than in cerebral cortex or striatum, whereas the opposite pattern was found for sopromidine. CONCLUSIONS AND IMPLICATIONS The pharmacological profiles of H(3) receptor isoforms differed markedly, showing that the function of autoreceptors was fulfilled by a short isoform, such as the H(3(413)) receptor. Development of drugs selectively targeting autoreceptors might enhance their therapeutic efficacy and/or decrease incidence of side effects.
Collapse
Affiliation(s)
- F Gbahou
- Laboratoire de Neurobiologie et Pharmacologie Moléculaire, Centre de Psychiatrie et Neurosciences (CPN, U 894), INSERM, Paris, France
| | | | | |
Collapse
|
17
|
Vauquelin G, Bostoen S, Vanderheyden P, Seeman P. Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:337-72. [PMID: 22331262 DOI: 10.1007/s00210-012-0734-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
Drug-receptor interactions are traditionally quantified in terms of affinity and efficacy, but there is increasing awareness that the drug-on-receptor residence time also affects clinical performance. While most interest has hitherto been focused on slow-dissociating drugs, D(2) dopamine receptor antagonists show less extrapyramidal side effects but still have excellent antipsychotic activity when they dissociate swiftly. Fast dissociation of clozapine, the prototype of the "atypical antipsychotics", has been evidenced by distinct radioligand binding approaches both on cell membranes and intact cells. The surmountable nature of clozapine in functional assays with fast-emerging responses like calcium transients is confirmatory. Potential advantages and pitfalls of the hitherto used techniques are discussed, and recommendations are given to obtain more precise dissociation rates for such drugs. Surmountable antagonism is necessary to allow sufficient D(2) receptor stimulation by endogenous dopamine in the striatum. Simulations are presented to find out whether this can be achieved during sub-second bursts in dopamine concentration or rather during much slower, activity-related increases thereof. While the antagonist's dissociation rate is important to distinguish between both mechanisms, this becomes much less so when contemplating time intervals between successive drug intakes, i.e., when pharmacokinetic considerations prevail. Attention is also drawn to the divergent residence times of hydrophobic antagonists like haloperidol when comparing radioligand binding data on cell membranes with those on intact cells and clinical data.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | | | | | | |
Collapse
|
18
|
Cumming P. Absolute abundances and affinity states of dopamine receptors in mammalian brain: A review. Synapse 2011; 65:892-909. [DOI: 10.1002/syn.20916] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/14/2011] [Indexed: 12/14/2022]
|
19
|
Jang JY, Jang M, Kim SH, Um KB, Kang YK, Kim HJ, Chung S, Park MK. Regulation of dopaminergic neuron firing by heterogeneous dopamine autoreceptors in the substantia nigra pars compacta. J Neurochem 2011; 116:966-74. [PMID: 21073466 DOI: 10.1111/j.1471-4159.2010.07107.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopamine (DA) receptors generate many cellular signals and play various roles in locomotion, motivation, hormone production, and drug abuse. According to the location and expression types of the receptors in the brain, DA signals act in either stimulatory or inhibitory manners. Although DA autoreceptors in the substantia nigra pars compacta are known to regulate firing activity, the exact expression patterns and roles of DA autoreceptor types on the firing activity are highly debated. Therefore, we performed individual correlation studies between firing activity and receptor expression patterns using acutely isolated rat substantia nigra pars compacta DA neurons. When we performed single-cell RT-PCR experiments, D(1), D(2)S, D(2)L, D(3), and D(5) receptor mRNA were heterogeneously expressed in the order of D(2)L > D(2)S > D(3) > D(5) > D(1). Stimulation of D(2) receptors with quinpirole suppressed spontaneous firing similarly among all neurons expressing mRNA solely for D(2)S, D(2)L, or D(3) receptors. However, quinpirole most strongly suppressed spontaneous firing in the neurons expressing mRNA for both D(2) and D(3) receptors. These data suggest that D(2) S, D(2)L, and D(3) receptors are able to equally suppress firing activity, but that D(2) and D(3) receptors synergistically suppress firing. This diversity in DA autoreceptors could explain the various actions of DA in the brain.
Collapse
Affiliation(s)
- Jin Young Jang
- Department of Physiology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Jangan-ku, Suwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Millan MJ. From the cell to the clinic: a comparative review of the partial D₂/D₃receptor agonist and α2-adrenoceptor antagonist, piribedil, in the treatment of Parkinson's disease. Pharmacol Ther 2010; 128:229-73. [PMID: 20600305 DOI: 10.1016/j.pharmthera.2010.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2010] [Indexed: 12/16/2022]
Abstract
Though L-3,4-dihydroxyphenylalanine (L-DOPA) is universally employed for alleviation of motor dysfunction in Parkinson's disease (PD), it is poorly-effective against co-morbid symptoms like cognitive impairment and depression. Further, it elicits dyskinesia, its pharmacokinetics are highly variable, and efficacy wanes upon long-term administration. Accordingly, "dopaminergic agonists" are increasingly employed both as adjuncts to L-DOPA and as monotherapy. While all recognize dopamine D(2) receptors, they display contrasting patterns of interaction with other classes of monoaminergic receptor. For example, pramipexole and ropinirole are high efficacy agonists at D(2) and D(3) receptors, while pergolide recognizes D(1), D(2) and D(3) receptors and a broad suite of serotonergic receptors. Interestingly, several antiparkinson drugs display modest efficacy at D(2) receptors. Of these, piribedil displays the unique cellular signature of: 1), signal-specific partial agonist actions at dopamine D(2)and D(3) receptors; 2), antagonist properties at α(2)-adrenoceptors and 3), minimal interaction with serotonergic receptors. Dopamine-deprived striatal D(2) receptors are supersensitive in PD, so partial agonism is sufficient for relief of motor dysfunction while limiting undesirable effects due to "over-dosage" of "normosensitive" D(2) receptors elsewhere. Further, α(2)-adrenoceptor antagonism reinforces adrenergic, dopaminergic and cholinergic transmission to favourably influence motor function, cognition, mood and the integrity of dopaminergic neurones. In reviewing the above issues, the present paper focuses on the distinctive cellular, preclinical and therapeutic profile of piribedil, comparisons to pramipexole, ropinirole and pergolide, and the core triad of symptoms that characterises PD-motor dysfunction, depressed mood and cognitive impairment. The article concludes by highlighting perspectives for clarifying the mechanisms of action of piribedil and other antiparkinson agents, and for optimizing their clinical exploitation.
Collapse
Affiliation(s)
- Mark J Millan
- Dept of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine (Paris), France.
| |
Collapse
|
21
|
Zeng C, Villar VAM, Yu P, Zhou L, Jose PA. Reactive oxygen species and dopamine receptor function in essential hypertension. Clin Exp Hypertens 2009; 31:156-78. [PMID: 19330604 DOI: 10.1080/10641960802621283] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Essential hypertension is a major risk factor for stroke, myocardial infarction, and heart and kidney failure. Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones and humoral factors. However, the mechanisms leading to impaired dopamine receptor function in hypertension states are not clear. Compelling experimental evidence indicates a role of reactive oxygen species (ROS) in hypertension, and there are increasing pieces of evidence showing that in conditions associated with oxidative stress, which is present in hypertensive states, dopamine receptor effects, such as natriuresis, diuresis, and vasodilation, are impaired. The goal of this review is to present experimental evidence that has led to the conclusion that decreased dopamine receptor function increases ROS activity and vice versa. Decreased dopamine receptor function and increased ROS production, working in concert or independent of each other, contribute to the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China.
| | | | | | | | | |
Collapse
|
22
|
Forbes EE, Brown SM, Kimak M, Ferrell RE, Manuck SB, Hariri AR. Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol Psychiatry 2009; 14:60-70. [PMID: 17893706 PMCID: PMC2668513 DOI: 10.1038/sj.mp.4002086] [Citation(s) in RCA: 345] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Individual differences in traits such as impulsivity involve high reward sensitivity and are associated with risk for substance use disorders. The ventral striatum (VS) has been widely implicated in reward processing, and individual differences in its function are linked to these disorders. Dopamine (DA) plays a critical role in reward processing and is a potent neuromodulator of VS reactivity. Moreover, altered DA signaling has been associated with normal and pathological reward-related behaviors. Functional polymorphisms in DA-related genes represent an important source of variability in DA function that may subsequently impact VS reactivity and associated reward-related behaviors. Using an imaging genetics approach, we examined the modulatory effects of common, putatively functional DA-related polymorphisms on reward-related VS reactivity associated with self-reported impulsivity. Genetic variants associated with relatively increased striatal DA release (DRD2 -141C deletion) and availability (DAT1 9-repeat), as well as diminished inhibitory postsynaptic DA effects (DRD2 -141C deletion and DRD4 7-repeat), predicted 9-12% of the interindividual variability in reward-related VS reactivity. In contrast, genetic variation directly affecting DA signaling only in the prefrontal cortex (COMT Val158Met) was not associated with variability in VS reactivity. Our results highlight an important role for genetic polymorphisms affecting striatal DA neurotransmission in mediating interindividual differences in reward-related VS reactivity. They further suggest that altered VS reactivity may represent a key neurobiological pathway through which these polymorphisms contribute to variability in behavioral impulsivity and related risk for substance use disorders.
Collapse
Affiliation(s)
- EE Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - SM Brown
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Kimak
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - RE Ferrell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - SB Manuck
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - AR Hariri
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Wang X, Villar VAM, Armando I, Eisner GM, Felder RA, Jose PA. Dopamine, kidney, and hypertension: studies in dopamine receptor knockout mice. Pediatr Nephrol 2008; 23:2131-46. [PMID: 18615257 PMCID: PMC3724362 DOI: 10.1007/s00467-008-0901-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/18/2008] [Accepted: 05/07/2008] [Indexed: 02/06/2023]
Abstract
Dopamine is important in the pathogenesis of hypertension because of abnormalities in receptor-mediated regulation of renal sodium transport. Dopamine receptors are classified into D(1)-like (D(1), D(5)) and D(2)-like (D(2), D(3), D(4)) subtypes, all of which are expressed in the kidney. Mice deficient in specific dopamine receptors have been generated to provide holistic assessment on the varying physiological roles of each receptor subtype. This review examines recent studies on these mutant mouse models and evaluates the impact of individual dopamine receptor subtypes on blood pressure regulation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | | | - Ines Armando
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Gilbert M. Eisner
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Pedro A. Jose
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
24
|
Fasano C, Poirier A, DesGroseillers L, Trudeau LE. Chronic activation of the D2 dopamine autoreceptor inhibits synaptogenesis in mesencephalic dopaminergic neuronsin vitro. Eur J Neurosci 2008; 28:1480-90. [DOI: 10.1111/j.1460-9568.2008.06450.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Zeng C, Armando I, Luo Y, Eisner GM, Felder RA, Jose PA. Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice. Am J Physiol Heart Circ Physiol 2008; 294:H551-69. [PMID: 18083900 PMCID: PMC4029502 DOI: 10.1152/ajpheart.01036.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D(1)-like (D(1) and D(5)) and D(2)-like (D(2), D(3), and D(4)) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes. This review summarizes the results from studies of various dopamine receptor mutant mice on the role of individual dopamine receptor subtypes and their interactions with other G protein-coupled receptors in the regulation of blood pressure.
Collapse
MESH Headings
- Animals
- Blood Pressure/genetics
- Blood Pressure/physiology
- Dopamine/physiology
- Hypertension/genetics
- Hypertension/physiopathology
- Mice
- Mice, Knockout
- Receptors, Dopamine/genetics
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/physiology
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/physiology
- Receptors, Dopamine D5/genetics
- Receptors, Dopamine D5/physiology
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing City 400042, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
26
|
Jordan S, Regardie K, Johnson JL, Chen R, Kambayashi J, McQuade R, Kitagawa H, Tadori Y, Kikuchi T. In vitro functional characteristics of dopamine D2 receptor partial agonists in second and third messenger-based assays of cloned human dopamine D2Long receptor signalling. J Psychopharmacol 2007; 21:620-7. [PMID: 17092971 DOI: 10.1177/0269881106072090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aripiprazole, (+)terguride, OPC-4392 and (-)3-PPP have been classified as dopamine D(2) receptor partial agonists based largely on their activity in second messenger-based assays of dopamine D(2) receptor signalling. Nevertheless, signal transduction amplification might result in these compounds behaving as dopamine D(2) receptor full agonists at a more downstream level of signalling. We compared the intrinsic activity (E(max), expressed as a percentage of the maximal effect of dopamine) of aripiprazole, (+)terguride, OPC-4392 and (-)3-PPP using second (calcium (Ca(2+)) mobilization) and third (extracellular signal-regulated kinase 2 (ERK2) phosphoprotein expression) messenger readouts of cloned human dopamine D(2long) (hD(2L)) receptor signalling in CHO cells. These compounds were all less potent and displayed lower intrinsic activity in the Ca(2+) assay (aripiprazole = 24.3%, (+)terguride = 56.9%, OPC-4392 = 58.6% and (-)3-PPP = 75.1%), and aripiprazole (E(max) = 54.5%) displayed a substantially lower intrinsic activity than (+)terguride (E(max) = 92.3%), OPC-4392 (E(max) = 93.1%) and (-)3-PPP (E(max) = 101.1%) in the more downstream-based ERK2 phosphoprotein expression assay. These drug effects on Ca(2+) mobilization and ERK2 phosphoprotein expression were mediated through dopamine hD(2L) receptors, as they all were blocked by (-)raclopride, whereas (-)raclopride and other dopamine D(2) receptor antagonists (haloperidol, risperidone, ziprasidone, olanzapine, clozapine and quetiapine) were inactive on their own in both assays. These data are consistent with clinical evidence that only dopamine D(2) receptor partial agonists with a sufficiently low enough intrinsic activity will prove effective against the positive symptoms of schizophrenia, and also highlight the importance of using downstream-based assays in the discovery of novel D(2) receptor partial agonist therapeutics.
Collapse
Affiliation(s)
- Shaun Jordan
- Department of Neuroscience Research, Otsuka Maryland Medicinal Laboratories, 9900 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Giordano TP, Satpute SS, Striessnig J, Kosofsky BE, Rajadhyaksha AM. Up-regulation of dopamine D(2)L mRNA levels in the ventral tegmental area and dorsal striatum of amphetamine-sensitized C57BL/6 mice: role of Ca(v)1.3 L-type Ca(2+) channels. J Neurochem 2006; 99:1197-206. [PMID: 17026527 DOI: 10.1111/j.1471-4159.2006.04186.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dopamine D(2) long (D(2)L) and D(2) short (D(2)S) isoforms of the D(2) receptor play an important role in psychostimulant-induced neuronal adaptations. In this study, we used quantitative real-time PCR to specifically amplify these two splice variants to examine their mRNA expression in the dorsal striatum (dStr), nucleus accumbens (NAc) and the ventral tegmental area (VTA) of amphetamine-sensitized C57BL/6 mice. We found a significant increase in D(2)L mRNA in the VTA and dStr of amphetamine-treated mice that positively correlated with the sensitized locomotor response. We also found a significant increase in D(2)S mRNA in the VTA. We further examined the role of the Ca(v)1.3 subtype of L-type Ca(2+) channels in up-regulation of D(2)L and D(2)S mRNA in the VTA. Amphetamine-pretreated Ca(v)1.3 wild-type (Ca(v)1.3(+/+)) mice exhibited sensitized behavior and a significant increase in D(2)L and D(2)S mRNA compared with saline-pretreated mice Amphetamine-pretreated homozygous Ca(v)1.3 knockout (Ca(v)1.3(-/-)) mice did not exhibit sensitized behavior. There was a significant increase in D(2)S mRNA, but not D(2)L mRNA. In conclusion, our results find that amphetamine increases D(2)L mRNA expression in the dStr and the VTA, an adaptation that correlates with expression of sensitized behavior and dependence on Ca(v)1.3 Ca(2+) channels.
Collapse
Affiliation(s)
- T P Giordano
- Laboratory of Molecular and Developmental Neuroscience, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | | | | | | | | |
Collapse
|