1
|
Chandler CM, Nickell JR, George Wilson A, Culver JP, Crooks PA, Bardo MT, Dwoskin LP. Vesicular monoamine transporter-2 inhibitor JPC-141 prevents methamphetamine-induced dopamine toxicity and blocks methamphetamine self-administration in rats. Biochem Pharmacol 2024; 228:116189. [PMID: 38580165 DOI: 10.1016/j.bcp.2024.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Previous research has demonstrated therapeutic potential for VMAT2 inhibitors in rat models of methamphetamine use disorder. Here, we report on the neurochemical and behavioral effects of 1-(2-methoxyphenethyl)-4-phenethypiperazine (JPC-141), a novel analog of lobelane. JPC-141 potently inhibited (Ki = 52 nM) [3H]dopamine uptake by VMAT2 in striatal vesicles with 50 to 250-fold greater selectivity for VMAT2 over dopamine, norepinephrine and serotonin plasmalemma transporters. Also, JPC-141 was 57-fold more selective for inhibiting VMAT2 over [3H]dofetilide binding to hERG channels expressed by HEK293, suggesting relatively low potential for cardiotoxicity. When administered in vivo to rats, JPC-141 prevented the METH-induced reduction in striatal dopamine content when given either prior to or after a high dose of METH, suggesting a reduction in METH-induced dopaminergic neurotoxicity. In behavioral assays, JPC-141 decreased METH-stimulated locomotor activity in METH-sensitized rats at doses of JPC-141 which did not alter locomotor activity in the saline control group. Moreover, JPC-141 specifically decreased iv METH self-administration at doses that had no effect on food-maintained responding. These findings support the further development of VMAT2 inhibitors as pharmacotherapies for individuals with methamphetamine use disorder.
Collapse
Affiliation(s)
- Cassie M Chandler
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Justin R Nickell
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - A George Wilson
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - John P Culver
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
2
|
Dalvi-Garcia F, Fonseca LL, Vasconcelos ATR, Hedin-Pereira C, Voit EO. A model of dopamine and serotonin-kynurenine metabolism in cortisolemia: Implications for depression. PLoS Comput Biol 2021; 17:e1008956. [PMID: 33970902 PMCID: PMC8136856 DOI: 10.1371/journal.pcbi.1008956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/20/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022] Open
Abstract
A major factor contributing to the etiology of depression is a neurochemical imbalance of the dopaminergic and serotonergic systems, which is caused by persistently high levels of circulating stress hormones. Here, a computational model is proposed to investigate the interplay between dopaminergic and serotonergic-kynurenine metabolism under cortisolemia and its consequences for the onset of depression. The model was formulated as a set of nonlinear ordinary differential equations represented with power-law functions. Parameter values were obtained from experimental data reported in the literature, biological databases, and other general information, and subsequently fine-tuned through optimization. Model simulations predict that changes in the kynurenine pathway, caused by elevated levels of cortisol, can increase the risk of neurotoxicity and lead to increased levels of 3,4-dihydroxyphenylaceltahyde (DOPAL) and 5-hydroxyindoleacetaldehyde (5-HIAL). These aldehydes contribute to alpha-synuclein aggregation and may cause mitochondrial fragmentation. Further model analysis demonstrated that the inhibition of both serotonin transport and kynurenine-3-monooxygenase decreased the levels of DOPAL and 5-HIAL and the neurotoxic risk often associated with depression. The mathematical model was also able to predict a novel role of the dopamine and serotonin metabolites DOPAL and 5-HIAL in the ethiology of depression, which is facilitated through increased cortisol levels. Finally, the model analysis suggests treatment with a combination of inhibitors of serotonin transport and kynurenine-3-monooxygenase as a potentially effective pharmacological strategy to revert the slow-down in monoamine neurotransmission that is often triggered by inflammation.
Collapse
Affiliation(s)
- Felipe Dalvi-Garcia
- Bioinformatics Lab, National Laboratory for Scientific Computing, Petrópolis, Rio de Janeiro, Brazil
- School of Medicine and Surgery, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis L. Fonseca
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ana Tereza R. Vasconcelos
- Bioinformatics Lab, National Laboratory for Scientific Computing, Petrópolis, Rio de Janeiro, Brazil
| | - Cecilia Hedin-Pereira
- Center of Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
3
|
Lee NR, Zheng G, Leggas M, Janganati V, Nickell JR, Crooks PA, Bardo MT, Dwoskin LP. GZ-11608, a Vesicular Monoamine Transporter-2 Inhibitor, Decreases the Neurochemical and Behavioral Effects of Methamphetamine. J Pharmacol Exp Ther 2019; 371:526-543. [PMID: 31413138 DOI: 10.1124/jpet.119.258699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/01/2019] [Indexed: 11/22/2022] Open
Abstract
Despite escalating methamphetamine use and high relapse rates, pharmacotherapeutics for methamphetamine use disorders are not available. Our iterative drug discovery program had found that R-N-(1,2-dihydroxypropyl)-2,6-cis-di-(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A), a selective vesicular monoamine transporter-2 (VMAT2) inhibitor, specifically decreased methamphetamine's behavioral effects. However, GZ-793A inhibited human-ether-a-go-go-related gene (hERG) channels, suggesting cardiotoxicity and prohibiting clinical development. The current study determined if replacement of GZ-793A's piperidine ring with a phenylalkyl group to yield S-3-(4-methoxyphenyl)-N-(1-phenylpropan-2-yl)propan-1-amine (GZ-11608) diminished hERG interaction while retaining pharmacological efficacy. VMAT2 inhibition, target selectivity, and mechanism of GZ-11608-induced inhibition of methamphetamine-evoked vesicular dopamine release were determined. We used GZ-11608 doses that decreased methamphetamine-sensitized activity to evaluate the potential exacerbation of methamphetamine-induced dopaminergic neurotoxicity. GZ-11608-induced decreases in methamphetamine reinforcement and abuse liability were determined using self-administration, reinstatement, and substitution assays. Results show that GZ-11608 exhibited high affinity (Ki = 25 nM) and selectivity (92-1180-fold) for VMAT2 over nicotinic receptors, dopamine transporter, and hERG, suggesting low side-effects. GZ-11608 (EC50 = 620 nM) released vesicular dopamine 25-fold less potently than it inhibited VMAT2 dopamine uptake. GZ-11608 competitively inhibited methamphetamine-evoked vesicular dopamine release (Schild regression slope = 0.9 ± 0.13). GZ-11608 decreased methamphetamine sensitization without altering striatal dopamine content or exacerbating methamphetamine-induced dopamine depletion, revealing efficacy without neurotoxicity. GZ-11608 exhibited linear pharmacokinetics and rapid brain penetration. GZ-11608 decreased methamphetamine self-administration, and this effect was not surmounted by increasing methamphetamine unit doses. GZ-11608 reduced cue- and methamphetamine-induced reinstatement, suggesting potential to prevent relapse. GZ-11608 neither served as a reinforcer nor substituted for methamphetamine, suggesting low abuse liability. Thus, GZ-11608, a potent and selective VMAT2 inhibitor, shows promise as a therapeutic for methamphetamine use disorder. SIGNIFICANCE STATEMENT: GZ-11608 is a potent and selective vesicular monoamine transporter-2 inhibitor that decreases methamphetamine-induced dopamine release from isolated synaptic vesicles from brain dopaminergic neurons. Results from behavioral studies show that GZ-11608 specifically decreases methamphetamine-sensitized locomotor activity, methamphetamine self-administration, and reinstatement of methamphetamine-seeking behavior, without exhibiting abuse liability. Tolerance does not develop to the efficacy of GZ-11608 to decrease the behavioral effects of methamphetamine. In conclusion, GZ-11608 is an outstanding lead in our search for a therapeutic to treat methamphetamine use disorder.
Collapse
Affiliation(s)
- Na-Ra Lee
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Markos Leggas
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Venumadhav Janganati
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Justin R Nickell
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Michael T Bardo
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| |
Collapse
|
4
|
Lee NR, Zheng G, Crooks PA, Bardo MT, Dwoskin LP. New Scaffold for Lead Compounds to Treat Methamphetamine Use Disorders. AAPS JOURNAL 2018; 20:29. [PMID: 29427069 DOI: 10.1208/s12248-018-0192-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
Abstract
Despite increased methamphetamine use worldwide, pharmacotherapies are not available to treat methamphetamine use disorder. The vesicular monoamine transporter-2 (VMAT2) is an important pharmacological target for discovery of treatments for methamphetamine use disorder. VMAT2 inhibition by the natural product, lobeline, reduced methamphetamine-evoked dopamine release, methamphetamine-induced hyperlocomotion, and methamphetamine self-administration in rats. Compared to lobeline, lobelane exhibited improved affinity and selectivity for VMAT2 over nicotinic acetylcholine receptors. Lobelane inhibited neurochemical and behavioral effects of methamphetamine, but tolerance developed to its behavioral efficacy in reducing methamphetamine self-administration, preventing further development. The lobelane analog, R-N-(1,2-dihydroxypropyl)-2,6-cis-di-(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A), potently and selectively inhibited VMAT2 function and reduced neurochemical and behavioral effects of methamphetamine. However, GZ-793A exhibited potential to induce ventricular arrhythmias interacting with human-ether-a-go-go (hERG) channels. Herein, a new lead, R-3-(4-methoxyphenyl)-N-(1-phenylpropan-2-yl)propan-1-amine (GZ-11610), from the novel scaffold (N-alkyl(1-methyl-2-phenylethyl)amine) was evaluated as a VMAT2 inhibitor and potential therapeutic for methamphetamine use disorder. GZ-11610 was 290-fold selective for VMAT2 over dopamine transporters, suggesting that it may lack abuse liability. GZ-11610 was 640- to 3500-fold selective for VMAT2 over serotonin transporters and nicotinic acetylcholine receptors. GZ-11610 exhibited > 1000-fold selectivity for VMAT2 over hERG, representing a robust improvement relative to our previous VMAT2 inhibitors. GZ-11610 (3-30 mg/kg, s.c. or 56-300 mg/kg, oral) reduced methamphetamine-induced hyperactivity in methamphetamine-sensitized rats. Thus, GZ-11610 is a potent and selective inhibitor of VMAT2, may have low abuse liability and low cardiotoxicity, and after oral administration is effective and specific in inhibiting the locomotor stimulant effects of methamphetamine, suggesting further investigation as a potential therapeutic for methamphetamine use disorder.
Collapse
Affiliation(s)
- Na-Ra Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 465 TODD Building, 789 South Limestone, Lexington, Kentucky, 40536-0596, USA
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michael T Bardo
- Department of Psychology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 465 TODD Building, 789 South Limestone, Lexington, Kentucky, 40536-0596, USA.
| |
Collapse
|
5
|
O’Leary A, Kõiv K, Raudkivi K, Harro J. Antidepressants differentially affect striatal amphetamine-stimulated dopamine and serotonin release in rats with high and low novelty-oriented behaviour. Pharmacol Res 2016; 113:739-746. [DOI: 10.1016/j.phrs.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/24/2022]
|
6
|
Darna M, Chow JJ, Yates JR, Charnigo RJ, Beckmann JS, Bardo MT, Dwoskin LP. Role of serotonin transporter function in rat orbitofrontal cortex in impulsive choice. Behav Brain Res 2015; 293:134-42. [PMID: 26183652 DOI: 10.1016/j.bbr.2015.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 07/05/2015] [Accepted: 07/06/2015] [Indexed: 01/29/2023]
Abstract
Impulsivity is a multi-faceted personality construct that plays a prominent role in drug abuse vulnerability. Dysregulation of 5-hydroxytryptamine (serotonin, 5-HT) systems in subregions of the prefrontal cortex has been implicated in impulsivity. Extracellular 5-HT concentrations are regulated by 5-HT transporters (SERTs), indicating that these transporters may be important molecular targets underlying individual differences in impulsivity and drug abuse vulnerability. The present study evaluated the role of SERT in mediating individual differences in impulsivity. Rats were tested for both impulsive action using the cued go/no-go task and for impulsive choice using a delay discounting task in a counterbalanced design. Following behavioral evaluation, Km and Vmax were obtained from kinetic analysis of [(3)H]5-HT uptake by SERT using synaptosomes prepared from both orbitofrontal cortex (OFC) and medial prefrontal cortex (mPFC) obtained from each individual rat. Vmax for SERT in OFC, but not mPFC, was negatively correlated with mean adjusted delay scores in the delay discounting task. In contrast, Vmax for SERT in OFC and mPFC was not correlated with performance in the cued go/no-go task. To further evaluate the relationship between SERT function and impulsive choice, a selective SERT inhibitor, fluoxetine (0, 15, 50 and 150pmol/side) was microinjected bilaterally into OFC and effects on the delay discounting task determined. Following stabilization of behavior, fluoxetine increased mean adjusted delay scores (decreased impulsivity) in high impulsive rats compared to saline microinjection, but had no effect in low impulsive rats. These ex vivo and in vivo results suggest that enhanced SERT function in OFC underlies high impulsive choice behavior.
Collapse
Affiliation(s)
- Mahesh Darna
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Drug Abuse Research Translation, University of Kentucky, Lexington, KY 40536, USA
| | - Jonathan J Chow
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - Justin R Yates
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA; Department of Psychological Science, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Richard J Charnigo
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA; Center for Drug Abuse Research Translation, University of Kentucky, Lexington, KY 40536, USA
| | - Joshua S Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA; Center for Drug Abuse Research Translation, University of Kentucky, Lexington, KY 40536, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Drug Abuse Research Translation, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
7
|
Dissociable roles of dopamine and serotonin transporter function in a rat model of negative urgency. Behav Brain Res 2015; 291:201-208. [PMID: 26005123 DOI: 10.1016/j.bbr.2015.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/22/2022]
Abstract
Negative urgency is a facet of impulsivity that reflects mood-based rash action and is associated with various maladaptive behaviors in humans. However, the underlying neural mechanisms of negative urgency are not fully understood. Several brain regions within the mesocorticolimbic pathway, as well as the neurotransmitters dopamine (DA) and serotonin (5-HT), have been implicated in impulsivity. Extracellular DA and 5-HT concentrations are regulated by DA transporters (DAT) and 5-HT transporters (SERT); thus, these transporters may be important molecular mechanisms underlying individual differences in negative urgency. The current study employed a reward omission task to model negative urgency in rats. During reward trials, a cue light signaled the non-contingent delivery of one sucrose pellet; immediately following the non-contingent reward, rats responded on a lever to earn sucrose pellets (operant phase). Omission trials were similar to reward trials, except that non-contingent sucrose was omitted following the cue light prior to the operant phase. As expected, contingent responding was higher following omission of expected reward than following delivery of expected reward, thus reflecting negative urgency. Upon completion of behavioral training, Vmax and Km were obtained from kinetic analysis of [(3)H]DA and [(3)H]5-HT uptake using synaptosomes prepared from nucleus accumbens (NAc), dorsal striatum (Str), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) isolated from individual rats. Vmax for DAT in NAc and for SERT in OFC were positively correlated with negative urgency scores. The current findings suggest that mood-based impulsivity (negative urgency) is associated with enhanced DAT function in NAc and SERT function in OFC.
Collapse
|
8
|
Darna M, Beckmann JS, Gipson CD, Bardo MT, Dwoskin LP. Effect of environmental enrichment on dopamine and serotonin transporters and glutamate neurotransmission in medial prefrontal and orbitofrontal cortex. Brain Res 2014; 1599:115-25. [PMID: 25536304 DOI: 10.1016/j.brainres.2014.12.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/10/2014] [Accepted: 12/14/2014] [Indexed: 01/27/2023]
Abstract
Recent studies have reported that rats raised in an enriched condition (EC) have decreased dopamine transporter (DAT) function and expression in medial prefrontal cortex (mPFC), as well as increased d-amphetamine-induced glutamate release in nucleus accumbens compared to rats raised in an isolated condition (IC). In these previous studies, DAT function and expression were evaluated using mPFC pooled from four rats for each condition to obtain kinetic parameters due to sparse DAT expression in mPFC. In contrast, accumbal glutamate release was determined using individual rats. The current study extends the previous work and reports on the optimization of DAT and serotonin transporter (SERT) functional assays, as well as cell surface expression assays using both mPFC and orbitofrontal cortex (OFC) from individual EC or IC rats. In addition, the effect of d-amphetamine on glutamate release in mPFC and OFC of EC and IC rats was determined using in vivo microdialysis. Results show that environmental enrichment decreased maximal transport velocity (Vmax) for [(3)H]dopamine uptake in mPFC, but increased Vmax for [(3)H]dopamine uptake in OFC. Corresponding changes in DAT cell surface expression were not found. In contrast, Vmax for [(3)H]serotonin uptake and cellular localization of SERT in mPFC and OFC were not different between EC and IC rats. Further, acute d-amphetamine (2mg/kg, s.c.) increased extracellular glutamate concentrations in mPFC of EC rats only and in OFC of IC rats only. Overall, these results suggest that enrichment produces long-lasting alterations in mPFC and OFC DAT function via a trafficking-independent mechanism, as well as differential glutamate release in mPFC and OFC. Rearing-induced modulation of DAT function and glutamate release in prefrontal cortical subregions may contribute to the known protective effects of enrichment on drug abuse vulnerability.
Collapse
Affiliation(s)
- Mahesh Darna
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Joshua S Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - Cassandra D Gipson
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
9
|
Decynium-22 enhances SSRI-induced antidepressant-like effects in mice: uncovering novel targets to treat depression. J Neurosci 2013; 33:10534-43. [PMID: 23785165 DOI: 10.1523/jneurosci.5687-11.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mood disorders cause much suffering and lost productivity worldwide, compounded by the fact that many patients are not effectively treated by currently available medications. The most commonly prescribed antidepressant drugs are the selective serotonin (5-HT) reuptake inhibitors (SSRIs), which act by blocking the high-affinity 5-HT transporter (SERT). The increase in extracellular 5-HT produced by SSRIs is thought to be critical to initiate downstream events needed for therapeutic effects. A potential explanation for their limited therapeutic efficacy is the recently characterized presence of low-affinity, high-capacity transporters for 5-HT in brain [i.e., organic cation transporters (OCTs) and plasma membrane monoamine transporter], which may limit the ability of SSRIs to increase extracellular 5-HT. Decynium-22 (D-22) is a blocker of these transporters, and using this compound we uncovered a significant role for OCTs in 5-HT uptake in mice genetically modified to have reduced or no SERT expression (Baganz et al., 2008). This raised the possibility that pharmacological inactivation of D-22-sensitive transporters might enhance the neurochemical and behavioral effects of SSRIs. Here we show that in wild-type mice D-22 enhances the effects of the SSRI fluvoxamine to inhibit 5-HT clearance and to produce antidepressant-like activity. This antidepressant-like activity of D-22 was attenuated in OCT3 KO mice, whereas the effect of D-22 to inhibit 5-HT clearance in the CA3 region of hippocampus persisted. Our findings point to OCT3, as well as other D-22-sensitive transporters, as novel targets for new antidepressant drugs with improved therapeutic potential.
Collapse
|
10
|
Smith AM, Wellmann KA, Lundblad TM, Carter ML, Barron S, Dwoskin LP. Lobeline attenuates neonatal ethanol-mediated changes in hyperactivity and dopamine transporter function in the prefrontal cortex in rats. Neuroscience 2011; 206:245-54. [PMID: 22119644 DOI: 10.1016/j.neuroscience.2011.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 01/29/2023]
Abstract
Current therapies for attention deficit hyperactivity disorder (ADHD) have varying efficacy in individuals with fetal alcohol spectrum disorders (FASD), suggesting that alternative therapeutics are needed. Developmental exposure to ethanol produces changes in dopamine (DA) systems, and DA has also been implicated in ADHD pathology. In the current study, lobeline, which interacts with proteins in dopaminergic presynaptic terminals, was evaluated for its ability to attenuate neonatal ethanol-induced locomotor hyperactivity and alterations in dopamine transporter (DAT) function in striatum and prefrontal cortex (PFC). From postnatal days (PND) 1-7, male and female rat pups were intubated twice daily with either 3 g/kg ethanol or milk, or were not intubated (non-intubated control) as a model for "third trimester" ethanol exposure. On PND 21 and 22, pups received acute lobeline (0, 0.3, 1, or 3 mg/kg), and locomotor activity was assessed. On PND 23-25, pups again received an acute injection of lobeline (1 or 3 mg/kg), and DAT kinetic parameters (Km and V(max)) were determined. Results demonstrated that neonatal ethanol produced locomotor hyperactivity on PND 21 that was reversed by lobeline (1 and 3 mg/kg). Although striatal DAT function was not altered by neonatal ethanol or acute lobeline, neonatal ethanol exposure increased the V(max) for DAT in the PFC, suggesting an increase in DAT function in PFC. Lobeline ameliorated this effect on PFC V(max) at the same doses that decreased hyperactivity. Methylphenidate, the gold standard therapeutic for ADHD, was also evaluated for comparison with lobeline. Methylphenidate decreased DAT V(max) and Km in PFC from ethanol-treated pups. Thus, lobeline and methylphenidate differentially altered DAT function following neonatal ethanol exposure. Collectively, these findings provide support that lobeline may be a useful pharmacotherapy for some of the deficits associated with neonatal ethanol exposure.
Collapse
Affiliation(s)
- A M Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| | | | | | | | | | | |
Collapse
|
11
|
Horton DB, Siripurapu KB, Zheng G, Crooks PA, Dwoskin LP. Novel N-1,2-dihydroxypropyl analogs of lobelane inhibit vesicular monoamine transporter-2 function and methamphetamine-evoked dopamine release. J Pharmacol Exp Ther 2011; 339:286-97. [PMID: 21778282 DOI: 10.1124/jpet.111.184770] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lobelane, a chemically defunctionalized saturated analog of lobeline, has increased selectivity for the vesicular monoamine transporter 2 (VMAT2) compared with the parent compound. Lobelane inhibits methamphetamine-evoked dopamine (DA) release and decreases methamphetamine self-administration. Unfortunately, tolerance develops to the ability of lobelane to decrease these behavioral effects of methamphetamine. Lobelane has low water solubility, which is problematic for drug development. The aim of the current study was to determine the pharmacological effect of replacement of the N-methyl moiety with a chiral N-1,2-dihydroxypropyl (N-1,2-diol) moiety, which enhances water solubility, altering the configuration of the N-1,2-diol moiety and incorporating phenyl ring substituents into the analogs. To determine VMAT2 selectivity, structure-activity relationships also were generated for inhibition of DA and serotonin transporters. Analogs with the highest potency for inhibiting DA uptake at VMAT2 and at least 10-fold selectivity were evaluated further for ability to inhibit methamphetamine-evoked DA release from superfused striatal slices. (R)-3-[2,6-cis-di(4-methoxyphenethyl)piperidin-1-yl]propane-1,2-diol (GZ-793A), the (R)-4-methoxyphenyl-N-1,2-diol analog, and (R)-3-[2,6-cis-di(1-naphthylethyl)piperidin-1-yl]propane-1,2-diol (GZ-794A), the (R)-1-naphthyl-N-1,2-diol analog, exhibited the highest potency (K(i) ∼30 nM) inhibiting VMAT2, and both analogs inhibited methamphetamine-evoked endogenous DA release (IC(50) = 10.6 and 0.4 μM, respectively). Thus, the pharmacophore for VMAT2 inhibition accommodates the N-1,2-diol moiety, which improves drug-likeness and enhances the potential for the development of these clinical candidates as treatments for methamphetamine abuse.
Collapse
Affiliation(s)
- David B Horton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082, USA
| | | | | | | | | |
Collapse
|
12
|
Larsen MB, Sonders MS, Mortensen OV, Larson GA, Zahniser NR, Amara SG. Dopamine transport by the serotonin transporter: a mechanistically distinct mode of substrate translocation. J Neurosci 2011; 31:6605-15. [PMID: 21525301 PMCID: PMC3107525 DOI: 10.1523/jneurosci.0576-11.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/04/2011] [Accepted: 03/10/2011] [Indexed: 01/23/2023] Open
Abstract
The serotonin transporter (SERT) is the principal mechanism for terminating serotonin (5-HT) signals in the nervous system and is a site of action for a variety of psychoactive drugs including antidepressants, amphetamines, and cocaine. Here we show that human SERTs (hSERTs) and rat SERTs are capable of robust dopamine (DA) uptake through a process that differs mechanistically from 5-HT transport in several unanticipated ways. DA transport by hSERT has a higher maximum velocity than 5-HT transport, requires significantly higher Na(+) and Cl(-) concentrations to sustain transport, is inhibited noncompetitively by 5-HT, and is more sensitive to SERT inhibitors, including selective serotonin reuptake inhibitors. We use a thiol-reactive methane thiosulfonate (MTS) reagent to modify a conformationally sensitive cysteine residue to demonstrate that hSERT spends more time in an outward facing conformation when transporting DA than when transporting 5-HT. Cotransfection of an inactive or an MTS-sensitive SERT with wild-type SERT subunits reveals an absence of cooperative interactions between subunits during DA but not 5-HT transport. To establish the physiological relevance of this mechanism for DA clearance, we show using in vivo high-speed chronoamperometry that SERT has the capacity to clear extracellularly applied DA in the hippocampal CA3 region of anesthetized rats. Together, these observations suggest the possibility that SERT serves as a DA transporter in vivo and highlight the idea that there can be distinct modes of transport of alternative physiological substrates by SERT.
Collapse
Affiliation(s)
- Mads Breum Larsen
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Mark S. Sonders
- Center for Molecular Recognition, Columbia University and New York State Psychiatric Institute, New York, New York 10032, and
| | - Ole Valente Mortensen
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Gaynor A. Larson
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045
| | - Nancy R. Zahniser
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045
| | - Susan G. Amara
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
13
|
Hagan CE, Neumaier JF, Schenk JO. Rotating disk electrode voltammetric measurements of serotonin transporter kinetics in synaptosomes. J Neurosci Methods 2010; 193:29-38. [PMID: 20713085 PMCID: PMC2952731 DOI: 10.1016/j.jneumeth.2010.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 12/13/2022]
Abstract
Altered serotonin (5-HT) signaling is implicated in several neuropsychiatric disorders, including depression, anxiety, obsessive-compulsive disorder, and autism. The 5-HT transporter (SERT) modulates 5-HT neurotransmission strength and duration. This is the first study using rotating disk electrode voltammetry (RDEV) to measure 5-HT clearance. SERT kinetics were measured in whole brain synaptosomes. Uptake kinetics of exogenous 5-HT were measured using glassy carbon electrodes rotated in 500 μL glass chambers containing synaptosomes from SERT-knockout (-/-), heterozygous (+/-), or wild-type (+/+) mice. RDEV detected 5-HT concentrations of 5nM and higher. Initial velocities were kinetically resolved with K(m) and V(max) values of 99±35 standard error of regression (SER) nM and 181±11 SER fmol/(s×mg protein), respectively in wild-type synaptosomes. The method enables control over drug and chemical concentrations, facilitating interpretation of results. Results are compared in detail to other techniques used to measure SERT kinetics, including tritium labeled assays, chronoamperometry, and fast scan cyclic voltammetry. RDEV exhibits decreased 5-HT detection limits, decreased vulnerability to 5-HT oxidation products that reduce electrode sensitivity, and also overcomes diffusion limitations via forced convection by providing a continuous, kinetically resolved signal. Finally, RDEV distinguishes functional differences between genotypes, notably, between wild-type and heterozygous mice, an experimental problem with other experimental approaches.
Collapse
Affiliation(s)
- Catherine E Hagan
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
14
|
Sato H, Skelin I, Diksic M. Chronic buspirone treatment decreases 5-HT1B receptor densities and the serotonin transporter but increases the density of 5-HT2A receptors in the bulbectomized rat model of depression: an autoradiographic study. Brain Res 2010; 1345:28-44. [DOI: 10.1016/j.brainres.2010.05.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/16/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
|
15
|
Zhu J, Apparsundaram S, Dwoskin LP. Nicotinic receptor activation increases [3H]dopamine uptake and cell surface expression of dopamine transporters in rat prefrontal cortex. J Pharmacol Exp Ther 2009; 328:931-9. [PMID: 19088301 PMCID: PMC2682260 DOI: 10.1124/jpet.108.147025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 12/15/2008] [Indexed: 11/22/2022] Open
Abstract
Previous research shows that nicotine increases dopamine (DA) clearance in rat prefrontal cortex (PFC) and striatum via a nicotinic receptor (nAChR)-mediated mechanism. The present study investigated whether activation of nAChRs regulates DA transporter (DAT) function through a trafficking-dependent mechanism. After nicotine administration (0, 0.3, and 0.8 mg/kg s.c., 15-1440 min after injection), DAT function and trafficking in synaptosomes of PFC and striatum were determined. nAChR mediation of the effect of nicotine on DAT function and trafficking in PFC was determined by pretreatment with mecamylamine, dihydro-beta-erythroidine, or methyllycaconitine. Nicotine (0.8 mg/kg, 15 and 30 min after injection) increased the maximal velocity (V(max)) of [3H]DA uptake in PFC with no change in K(m), compared with control. Biotinylation and Western blot assays showed that nicotine (0.8 mg/kg; 30 min) increased DAT cell surface expression in PFC. In contrast, a lower dose of nicotine (0.3 mg/kg; 30 min) did not alter DAT function and trafficking in PFC. Pretreatment with mecamylamine, dihydro-beta-erythroidine, or methyllycaconitine (1.5, 8.0, and 10.0 mg/kg s.c., respectively) completely blocked the nicotine-induced increase in V(max) in PFC. In addition, mecamylamine completely blocked the nicotine-induced increase in DAT cell surface expression in PFC. Nicotine did not increase DAT function and cell surface expression in striatum, indicating that nicotine modulates DAT function in a brain region-specific manner. Thus, results from the present study suggest that the nicotine-induced increases in DAT function and cell surface expression in PFC may mediate some of the behavioral effects of nicotine.
Collapse
Affiliation(s)
- Jun Zhu
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|