1
|
Maxwell DL, Orian JM. Cerebellar pathology in multiple sclerosis and experimental autoimmune encephalomyelitis: current status and future directions. J Cent Nerv Syst Dis 2023; 15:11795735231211508. [PMID: 37942276 PMCID: PMC10629308 DOI: 10.1177/11795735231211508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023] Open
Abstract
Recent decades have witnessed significant progress in understanding mechanisms driving neurodegeneration and disease progression in multiple sclerosis (MS), but with a focus on the cerebrum. In contrast, there have been limited studies of cerebellar disease, despite the common occurrence of cerebellar symptoms in this disorder. These rare studies, however, highlight the early cerebellar involvement in disease development and an association between the early occurrence of cerebellar lesions and risk of worse prognosis. In parallel developments, it has become evident that far from being a region specialized in movement control, the cerebellum plays a crucial role in cognitive function, via circuitry connecting the cerebellum to association areas of the cerebrum. This complexity, coupled with challenges in imaging of the cerebellum have been major obstacles in the appreciation of the spatio-temporal evolution of cerebellar damage in MS and correlation with disability and progression. MS studies based on animal models have relied on an induced neuroinflammatory disease known as experimental autoimmune encephalomyelitis (EAE), in rodents and non-human primates (NHP). EAE has played a critical role in elucidating mechanisms underpinning tissue damage and been validated for the generation of proof-of-concept for cerebellar pathological processes relevant to MS. Additionally, rodent and NHP studies have formed the cornerstone of current knowledge of functional anatomy and cognitive processes. Here, we propose that improved insight into consequences of cerebellar damage in MS at the functional, cellular and molecular levels would be gained by more extensive characterization of EAE cerebellar pathology combined with the power of experimental paradigms in the field of cognition. Such combinatorial approaches would lead to improved potential for the development of MS sensitive markers and evaluation of candidate therapeutics.
Collapse
Affiliation(s)
- Dain L. Maxwell
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
2
|
Fabian CB, Seney ML, Joffe ME. Sex differences and hormonal regulation of metabotropic glutamate receptor synaptic plasticity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 168:311-347. [PMID: 36868632 PMCID: PMC10392610 DOI: 10.1016/bs.irn.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Striking sex differences exist in presentation and incidence of several psychiatric disorders. For example, major depressive disorder is more prevalent in women than men, and women who develop alcohol use disorder progress through drinking milestones more rapidly than men. With regards to psychiatric treatment responses, women respond more favorably to selective serotonin reuptake inhibitors than men, whereas men have better outcomes when prescribed tricyclic antidepressants. Despite such well-documented biases in incidence, presentation, and treatment response, sex as a biological variable has long been neglected in preclinical and clinical research. An emerging family of druggable targets for psychiatric diseases, metabotropic glutamate (mGlu) receptors are G-protein coupled receptors broadly distributed throughout the central nervous system. mGlu receptors confer diverse neuromodulatory actions of glutamate at the levels of synaptic plasticity, neuronal excitability, and gene transcription. In this chapter, we summarize the current preclinical and clinical evidence for sex differences in mGlu receptor function. We first highlight basal sex differences in mGlu receptor expression and function and proceed to describe how gonadal hormones, notably estradiol, regulate mGlu receptor signaling. We then describe sex-specific mechanisms by which mGlu receptors differentially modulate synaptic plasticity and behavior in basal states and models relevant for disease. Finally, we discuss human research findings and highlight areas in need of further research. Taken together, this review emphasizes how mGlu receptor function and expression can differ across sex. Gaining a more complete understanding of how sex differences in mGlu receptor function contribute to psychiatric diseases will be critical in the development of novel therapeutics that are effective in all individuals.
Collapse
Affiliation(s)
- Carly B Fabian
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marianne L Seney
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Max E Joffe
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
3
|
Harbers M, Nakao H, Watanabe T, Matsuyama K, Tohyama S, Nakao K, Kishimoto Y, Kano M, Aiba A. mGluR5 Is Substitutable for mGluR1 in Cerebellar Purkinje Cells for Motor Coordination, Developmental Synapse Elimination, and Motor Learning. Cells 2022; 11:cells11132004. [PMID: 35805089 PMCID: PMC9265771 DOI: 10.3390/cells11132004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Group I metabotropic glutamate receptors (mGluRs) include mGluR1 and mGluR5, which are coupled to the Gq family of heterotrimeric G-proteins and readily activated by their selective agonist 3,5-dihydroxyphenilglycine (DHPG). mGluR1 and mGluR5 exhibit nearly complementary distributions spatially or temporally in the central nervous system (CNS). In adult cerebellar Purkinje cells (PCs), mGluR1 is a dominant group I mGluR and mGluR5 is undetectable. mGluR1 expression increases substantially during the first three weeks of postnatal development and remains high throughout adulthood. On the other hand, mGluR5 expression is observed during the first two postnatal weeks and then decreases. However, functional differences between mGluR1 and mGluR5 in the CNS remains to be elucidated. To address this issue, we generated “mGluR5-rescue” mice in which mGluR5 is specifically expressed in PCs in global mGluR1-knockout (KO) mice. mGluR5-rescue mice exhibited apparently normal motor coordination, developmental elimination of redundant climbing fiber (CF)-PC synapses, and delay eyeblink conditioning, which were severely impaired in mGluR1-KO mice. We concluded that mGluR5 is functionally comparable with mGluR1 in cerebellar PCs.
Collapse
Affiliation(s)
- Maria Harbers
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.H.); (H.N.); (K.N.)
| | - Harumi Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.H.); (H.N.); (K.N.)
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (T.W.); (K.M.); (M.K.)
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kyoko Matsuyama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (T.W.); (K.M.); (M.K.)
| | - Shoichi Tohyama
- Laboratory of Physical Chemistry, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (S.T.); (Y.K.)
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.H.); (H.N.); (K.N.)
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Osaka 565-0871, Japan
| | - Yasushi Kishimoto
- Laboratory of Physical Chemistry, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (S.T.); (Y.K.)
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (T.W.); (K.M.); (M.K.)
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.H.); (H.N.); (K.N.)
- Correspondence:
| |
Collapse
|
4
|
Planas-Fontánez TM, Dreyfus CF, Saitta KS. Reactive Astrocytes as Therapeutic Targets for Brain Degenerative Diseases: Roles Played by Metabotropic Glutamate Receptors. Neurochem Res 2020; 45:541-550. [PMID: 31983009 PMCID: PMC7058558 DOI: 10.1007/s11064-020-02968-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are well known to play critical roles in the development and maintenance of the central nervous system (CNS). Moreover, recent reports indicate that these cells are heterogeneous with respect to the molecules they express and the functions they exhibit in the quiescent or activated state. Because astrocytes also contribute to pathology, promising new results raise the possibility of manipulating specific astroglial populations for therapeutic roles. In this mini-review, we highlight the function of metabotropic glutamate receptors (mGluRs), in particular mGluR3 and mGluR5, in reactive astrocytes and relate these to three degenerative CNS diseases: multiple sclerosis, Alzheimer's disease and Amyotrophic Lateral Sclerosis. Previous studies demonstrate that effects of these receptors may be beneficial, but this varies depending on the subtype of receptor, the state of the astrocytes, and the specific disease to which they are exposed. Elucidating the role of mGluRs on astrocytes at specific times during development and disease will provide novel insights in understanding how to best use these to serve as therapeutic targets.
Collapse
Affiliation(s)
- Talia M. Planas-Fontánez
- grid.430387.b0000 0004 1936 8796Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ USA
| | - Cheryl F. Dreyfus
- grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 361, Piscataway, NJ 08854 USA
| | - Kyle S. Saitta
- grid.430387.b0000 0004 1936 8796Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ USA
| |
Collapse
|
5
|
Kuzmina US, Zainullina LF, Vakhitov VA, Bakhtiyarova KZ, Vakhitova YV. The role of glutamate in the pathogenesis of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:160-167. [DOI: 10.17116/jnevro2019119081160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
mGlu1 Receptors Monopolize the Synaptic Control of Cerebellar Purkinje Cells by Epigenetically Down-Regulating mGlu5 Receptors. Sci Rep 2018; 8:13361. [PMID: 30190524 PMCID: PMC6127335 DOI: 10.1038/s41598-018-31369-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/09/2018] [Indexed: 11/10/2022] Open
Abstract
In cerebellar Purkinje cells (PCs) type-1 metabotropic glutamate (mGlu1) receptors play a key role in motor learning and drive the refinement of synaptic innervation during postnatal development. The cognate mGlu5 receptor is absent in mature PCs and shows low expression levels in the adult cerebellar cortex. Here we found that mGlu5 receptors were heavily expressed by PCs in the early postnatal life, when mGlu1α receptors were barely detectable. The developmental decline of mGlu5 receptors coincided with the appearance of mGlu1α receptors in PCs, and both processes were associated with specular changes in CpG methylation in the corresponding gene promoters. It was the mGlu1 receptor that drove the elimination of mGlu5 receptors from PCs, as shown by data obtained with conditional mGlu1α receptor knockout mice and with targeted pharmacological treatments during critical developmental time windows. The suppressing activity of mGlu1 receptors on mGlu5 receptor was maintained in mature PCs, suggesting that expression of mGlu1α and mGlu5 receptors is mutually exclusive in PCs. These findings add complexity to the the finely tuned mechanisms that regulate PC biology during development and in the adult life and lay the groundwork for an in-depth analysis of the role played by mGlu5 receptors in PC maturation.
Collapse
|
7
|
Hedges VL, Chen G, Yu L, Krentzel AA, Starrett JR, Zhu JN, Suntharalingam P, Remage-Healey L, Wang JJ, Ebner TJ, Mermelstein PG. Local Estrogen Synthesis Regulates Parallel Fiber-Purkinje Cell Neurotransmission Within the Cerebellar Cortex. Endocrinology 2018; 159:1328-1338. [PMID: 29381778 PMCID: PMC5839732 DOI: 10.1210/en.2018-00039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 02/04/2023]
Abstract
Estrogens affect cerebellar activity and cerebellum-based behaviors. Within the adult rodent cerebellum, the best-characterized action of estradiol is to enhance glutamatergic signaling. However, the mechanisms by which estradiol promotes glutamatergic neurotransmission remain unknown. Within the mouse cerebellum, we found that estrogen receptor activation of metabotropic glutamate receptor type 1a strongly enhances neurotransmission at the parallel fiber-Purkinje cell synapse. The blockade of local estrogen synthesis within the cerebellum results in a diminution of glutamatergic neurotransmission. Correspondingly, decreased estrogen availability via gonadectomy or blockade of aromatase activity negatively affects locomotor performance. These data indicate that locally derived, and not just gonad-derived, estrogens affect cerebellar physiology and function. In addition, estrogens were found to facilitate parallel fiber-Purkinje cell synaptic transmission in both sexes. As such, the actions of estradiol to support cerebellar neurotransmission and cerebellum-based behaviors might be fundamental to understanding the normal processing of activity within the cerebellar cortex.
Collapse
Affiliation(s)
- Valerie L. Hedges
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Amanda A. Krentzel
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Joseph R. Starrett
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | | | - Luke Remage-Healey
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Correspondence: Paul G. Mermelstein, PhD, Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455. E-mail:
| |
Collapse
|
8
|
Bossi S, Musante I, Bonfiglio T, Bonifacino T, Emionite L, Cerminara M, Cervetto C, Marcoli M, Bonanno G, Ravazzolo R, Pittaluga A, Puliti A. Genetic inactivation of mGlu5 receptor improves motor coordination in the Grm1 crv4 mouse model of SCAR13 ataxia. Neurobiol Dis 2017; 109:44-53. [PMID: 28982591 DOI: 10.1016/j.nbd.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/13/2017] [Accepted: 10/01/2017] [Indexed: 01/29/2023] Open
Abstract
Deleterious mutations in the glutamate receptor metabotropic 1 gene (GRM1) cause a recessive form of cerebellar ataxia, SCAR13. GRM1 and GRM5 code for the metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, respectively. Their different expression profiles suggest they could have distinct functional roles. In a previous study, homozygous mice lacking mGlu1 receptors (Grm1crv4/crv4) and exhibiting ataxia presented cerebellar overexpression of mGlu5 receptors, that was proposed to contribute to the mouse phenotype. To test this hypothesis, we here crossed Grm1crv4 and Grm5ko mice to generate double mutants (Grm1crv4/crv4Grm5ko/ko) lacking both mGlu1 and mGlu5 receptors. Double mutants and control mice were analyzed for spontaneous behavior and for motor activity by rotarod and footprint analyses. In the same mice, the release of glutamate from cerebellar nerve endings (synaptosomes) elicited by 12mM KCl or by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) was also evaluated. Motor coordination resulted improved in double mutants when compared to Grm1crv4/crv4 mice. Furthermore, in in vitro studies, glutamate release elicited by both KCl depolarization and activation of AMPA autoreceptors resulted reduced in Grm1crv4/crv4 mice compared to wild type mice, while it presented normal levels in double mutants. Moreover, we found that Grm1crv4/crv4 mice showed reduced expression of GluA2/3 AMPA receptor subunits in cerebellar synaptosomes, while it resulted restored to wild type level in double mutants. To conclude, blocking of mGlu5 receptor reduced the dysregulation of glutamate transmission and improved motor coordination in the Grm1crv4 mouse model of SCAR13, thus suggesting the possible usefulness of pharmacological therapies based on modulation of mGlu5 receptor activity for the treatment of this type of ataxia.
Collapse
Affiliation(s)
- Simone Bossi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, via Gaslini 5, 16148 Genoa, Italy
| | - Ilaria Musante
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, via Gaslini 5, 16148 Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS A.U.O. San Martino-IST, Largo Rosanna Benzi 10, Genoa, Italy
| | - Maria Cerminara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, via Gaslini 5, 16148 Genoa, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy
| | - Roberto Ravazzolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, via Gaslini 5, 16148 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy; Medical Genetics Unit, Istituto Giannina Gaslini, via Gaslini 5, 16148 Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, via Gaslini 5, 16148 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy; Medical Genetics Unit, Istituto Giannina Gaslini, via Gaslini 5, 16148 Genoa, Italy.
| |
Collapse
|
9
|
Pittaluga A. CCL5-Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis. Front Immunol 2017; 8:1079. [PMID: 28928746 PMCID: PMC5591427 DOI: 10.3389/fimmu.2017.01079] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Notartomaso S, Mascio G, Scarselli P, Martinello K, Fucile S, Gradini R, Bruno V, Battaglia G, Nicoletti F. Expression of the K +/Cl - cotransporter, KCC2, in cerebellar Purkinje cells is regulated by group-I metabotropic glutamate receptors. Neuropharmacology 2017; 115:51-59. [PMID: 27498071 DOI: 10.1016/j.neuropharm.2016.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/30/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
The neuronal K+/Cl- symporter, KCC2, shapes synaptic responses mediated by Cl--permeant GABAA receptors. Moving from the evidence that excitatory neurotransmission drives changes in KCC2 expression in cerebellar neurons, we studied the regulation of KCC2 expression by group-I metabotropic glutamate (mGlu) receptors in the cerebellum of adult mice. Mice lacking mGlu5 receptors showed a large reduction in cerebellar KCC2 protein levels and a loss of KCC2 immunoreactivity in Purkinje cells. Similar changes were seen in mice treated with the mGlu5 receptor antagonist, MPEP, whereas treatment with the mGlu5 receptor positive allosteric modulator (PAM), VU0360172, increased KCC2 expression. In contrast, pharmacological inhibition of mGlu1 receptors with JNJ16259685 enhanced cerebellar KCC2 protein levels and KCC2 immunoreactivity in Purkinje cells, whereas treatment with the mGlu1 receptor PAM, RO0711401, reduced KCC2 expression. To examine whether the reduction in KCC2 expression caused by the absence or the inhibition of mGlu5 receptors could affect GABAergic transmission, we performed electrophysiological and behavioral studies. Recording of extracellular action potentials in Purkinje cells showed that the inhibitory effect of the GABAA receptor agonist, muscimol, was lost in cerebellar slices prepared from mGlu5-/- mice or from mice treated systemically with MPEP, in line with the reduction in KCC2 expression. Similarly, motor impairment caused by the GABAA receptor PAM, diazepam, was attenuated in mice pre-treated with MPEP. These findings disclose a novel function of mGlu5 receptors in the cerebellum and suggest that mGlu5 receptor ligands might influence GABAergic transmission in the cerebellum and affect motor responses to GABA-mimetic drugs. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
| | | | | | | | - Sergio Fucile
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, University Sapienza of Rome, Italy
| | - Roberto Gradini
- IRCCS Neuromed, Pozzilli, Italy; Department of Experimental Medicine, University Sapienza of Rome, Italy
| | - Valeria Bruno
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, University Sapienza of Rome, Italy
| | | | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, University Sapienza of Rome, Italy.
| |
Collapse
|
11
|
Lindsley CW, Emmitte KA, Hopkins CR, Bridges TM, Gregory KJ, Niswender CM, Conn PJ. Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chem Rev 2016; 116:6707-41. [PMID: 26882314 PMCID: PMC4988345 DOI: 10.1021/acs.chemrev.5b00656] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulation of GPCRs has initiated a new era of basic and translational discovery, filled with therapeutic promise yet fraught with caveats. Allosteric ligands stabilize unique conformations of the GPCR that afford fundamentally new receptors, capable of novel pharmacology, unprecedented subtype selectivity, and unique signal bias. This review provides a comprehensive overview of the basics of GPCR allosteric pharmacology, medicinal chemistry, drug metabolism, and validated approaches to address each of the major challenges and caveats. Then, the review narrows focus to highlight recent advances in the discovery of allosteric ligands for metabotropic glutamate receptor subtypes 1-5 and 7 (mGlu1-5,7) highlighting key concepts ("molecular switches", signal bias, heterodimers) and practical solutions to enable the development of tool compounds and clinical candidates. The review closes with a section on late-breaking new advances with allosteric ligands for other GPCRs and emerging data for endogenous allosteric modulators.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Corey R. Hopkins
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville VIC 3052, Australia
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
12
|
Garcia-Barrantes PM, Cho HP, Starr TM, Blobaum AL, Niswender CM, Conn PJ, Lindsley CW. Re-exploration of the mGlu₁ PAM Ro 07-11401 scaffold: Discovery of analogs with improved CNS penetration despite steep SAR. Bioorg Med Chem Lett 2016; 26:2289-92. [PMID: 27013388 DOI: 10.1016/j.bmcl.2016.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 12/14/2022]
Abstract
This letter describes the re-exploration of the mGlu1 PAM Ro 07-11401 scaffold through a multi-dimensional, iterative parallel synthesis approach. Unlike recent series of mGlu1 PAMs with robust SAR, the SAR around the Ro 07-11401 structure was incredibly steep (only ∼6 of 200 analogs displayed mGlu1 PAM activity), and reminiscent of the CPPHA mGlu5 PAM scaffold. Despite the steep SAR, two new thiazole derivatives were discovered with improved in vitro DMPK profiles and ∼3- to 4-fold improvement in CNS exposure (Kps 1.01-1.19); albeit, with a ∼3-fold diminution in mGlu1 PAM potency, yet comparable efficacy (∼5-fold leftward shift of the glutamate concentration-response curve at 10μM). Thus, this effort has provided additional CNS penetrant mGlu1 PAM tools in a different chemotype than the VU0486321 scaffold. These compounds will permit a better understanding of the pharmacology and therapeutic potential of selective mGlu1 activation, while highlighting the steep SAR challenges that can often be encountered in GPCR allosteric modulator discovery.
Collapse
Affiliation(s)
- Pedro M Garcia-Barrantes
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hyekyung P Cho
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tahj M Starr
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
Di Prisco S, Merega E, Bonfiglio T, Olivero G, Cervetto C, Grilli M, Usai C, Marchi M, Pittaluga A. Presynaptic, release-regulating mGlu2 -preferring and mGlu3 -preferring autoreceptors in CNS: pharmacological profiles and functional roles in demyelinating disease. Br J Pharmacol 2016; 173:1465-77. [PMID: 26791341 DOI: 10.1111/bph.13442] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/08/2016] [Accepted: 01/17/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Presynaptic, release-regulating metabotropic glutamate 2 and 3 (mGlu2/3) autoreceptors exist in the CNS. They represent suitable targets for therapeutic approaches to central diseases that are typified by hyperglutamatergicity. The availability of specific ligands able to differentiate between mGlu2 and mGlu3 subunits allows us to further characterize these autoreceptors. In this study we investigated the pharmacological profile of mGlu2/3 receptors in selected CNS regions and evaluated their functions in mice with experimental autoimmune encephalomyelitis (EAE). EXPERIMENTAL APPROACH The comparative analysis of presynaptic mGlu2/3 autoreceptors was performed by determining the effect of selective mGlu2/3 receptor agonist(s) and antagonist(s) on the release of [(3)H]-D-aspartate from cortical and spinal cord synaptosomes in superfusion. In EAE mice, mGlu2/3 autoreceptor-mediated release functions were investigated and effects of in vivo LY379268 administration on impaired glutamate release examined ex vivo. KEY RESULTS Western blot analysis and confocal microscopy confirmed the presence of presynaptic mGlu2/3 receptor proteins. Cortical synaptosomes possessed LY541850-sensitive, NAAG-insensitive autoreceptors having low affinity for LY379268, while LY541850-insensitive, NAAG-sensitive autoreceptors with high affinity for LY379268 existed in spinal cord terminals. In EAE mice, mGlu2/3 autoreceptors completely lost their inhibitory activity in cortical, but not in spinal cord synaptosomes. In vivo LY379268 administration restored the glutamate exocytosis capability in spinal cord but not in cortical terminals in EAE mice. CONCLUSIONS AND IMPLICATIONS We propose the existence of mGlu2-preferring and mGlu3-preferring autoreceptors in mouse cortex and spinal cord respectively. The mGlu3 -preferring autoreceptors could represent a target for new pharmacological approaches for treating demyelinating diseases.
Collapse
Affiliation(s)
- Silvia Di Prisco
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Elisa Merega
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Chiara Cervetto
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Genoa, Italy
| | - Mario Marchi
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
14
|
Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, Sepman H, Marfia GA, Centonze D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 2015; 11:711-24. [PMID: 26585978 DOI: 10.1038/nrneurol.2015.222] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) has long been regarded as a chronic inflammatory disease of the white matter that leads to demyelination and eventually to neurodegeneration. In the past decade, several aspects of MS pathogenesis have been challenged, and degenerative changes of the grey matter, which are independent of demyelination, have become a topic of interest. CNS inflammation in MS and experimental autoimmune encephalomyelitis (EAE; a disease model used to study MS in rodents) causes a marked imbalance between GABAergic and glutamatergic transmission, and a loss of synapses, all of which leads to a diffuse 'synaptopathy'. Altered synaptic transmission can occur early in MS and EAE, independently of demyelination and axonal loss, and subsequently causes excitotoxic damage. Inflammation-driven synaptic abnormalities are emerging as a prominent pathogenic mechanism in MS-importantly, they are potentially reversible and, therefore, represent attractive therapeutic targets. In this Review, we focus on the connection between inflammation and synaptopathy in MS and EAE, which sheds light not only on the pathophysiology of MS but also on that of primary neurodegenerative disorders in which inflammatory processes contribute to disease progression.
Collapse
Affiliation(s)
- Georgia Mandolesi
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Antonietta Gentile
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Diego Fresegna
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Francesca De Vito
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Bullitta
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Helena Sepman
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Girolama A Marfia
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Diego Centonze
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
15
|
Garcia-Barrantes PM, Cho HP, Niswender CM, Byers FW, Locuson CW, Blobaum AL, Xiang Z, Rook JM, Conn PJ, Lindsley CW. Development of Novel, CNS Penetrant Positive Allosteric Modulators for the Metabotropic Glutamate Receptor Subtype 1 (mGlu1), Based on an N-(3-Chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide Scaffold, That Potentiate Wild Type and Mutant mGlu1 Receptors Found in Schizophrenics. J Med Chem 2015; 58:7959-71. [PMID: 26426481 DOI: 10.1021/acs.jmedchem.5b00727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The therapeutic potential of selective mGlu1 activation is vastly unexplored relative to the other group I mGlu receptor, mGlu5; therefore, our lab has focused considerable effort toward developing mGlu1 positive allosteric modulators (PAMs) suitable as in vivo proof of concept tool compounds. Optimization of a series of mGlu1 PAMs based on an N-(3-chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide scaffold provided 17e, a potent (mGlu1 EC50 = 31.8 nM) and highly CNS penetrant (brain to plasma ratio (Kp) of 1.02) mGlu1 PAM tool compound, that potentiated not only wild-type human mGlu1 but also mutant mGlu1 receptors derived from deleterious GRM1 mutations found in schizophrenic patients. Moreover, both electrophysiological and in vivo studies indicate the mGlu1 ago-PAMs/PAMs do not possess the same epileptiform adverse effect liability as mGlu5 ago-PAMs/PAMs and maintain temporal activity suggesting a broader therapeutic window.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Craig W Lindsley
- Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
16
|
Spampinato SF, Merlo S, Chisari M, Nicoletti F, Sortino MA. Glial metabotropic glutamate receptor-4 increases maturation and survival of oligodendrocytes. Front Cell Neurosci 2015; 8:462. [PMID: 25642169 PMCID: PMC4294134 DOI: 10.3389/fncel.2014.00462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/18/2014] [Indexed: 11/22/2022] Open
Abstract
Group III metabotropic glutamate (mGlu) receptors mediate important neuroprotective and anti-inflammatory effects. Stimulation of mGlu4 receptor reduces neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) whereas mGlu4 knockout mice display exacerbated EAE clinical scores. We now show that mGlu4 receptors are expressed in oligodendrocytes, astrocytes and microglia in culture. Oligodendrocytes express mGlu4 receptors only at early stages of maturation (O4 positive), but not when more differentiated (myelin basic protein, MBP positive). Treatment of immature oligodendrocytes with the mGlu4 receptor agonist L-2-Amino-4-phosphonobutyrate (L-AP4; 50 μM for 48 h) accelerates differentiation with enhanced branching and earlier appearance of MBP staining. Oligodendrocyte death induced by exposure to 1 mM kainic acid for 24 h is significantly reduced by a 30-min pretreatment with L-AP4 (50 μM), an effect observed only in the presence of astrocytes, mimicked by the specific mGlu4 receptor positive allosteric modulator N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) (30 μM) and prevented by pretreatment with the mGlu4 receptor antagonist, cyclopropyl-4-phosphonophenylglycine (CPPG) (100 μM). In astrocytes, mGlu4 receptor is the most expressed among group III mGlu receptors, as by Quantitative real time PCR (QRT-PCR), and its silencing prevents protective effects. Protection is also observed when conditioned medium (CM) from L-AP4-pretreated astrocytes is transferred to oligodendrocytes challenged with kainic acid. Transforming growth factor β (TGF-β) mediates the increased oligodendrocyte survival as the effect of L-AP4 is mimicked by addition of 10 ng/ml TGF-β and prevented by incubation with a neutralizing anti-TGF-β antibody. In contrast, despite the expression of mGlu4 receptor in resting and activated microglia, CM from L-AP4-stimulated microglia does not modify kainate-induced oligodendrocyte toxicity. Our results suggest that mGlu4 receptors expressed in astrocytes mediate enhanced survival of oligodendrocytes under conditions of excitotoxicity.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania Catania, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania Catania, Italy
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania Catania, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University of Rome Sapienza Rome, Italy ; IRCSS Neuromed Pozzilli, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania Catania, Italy
| |
Collapse
|
17
|
Metabotropic glutamate receptors as drug targets: what's new? Curr Opin Pharmacol 2014; 20:89-94. [PMID: 25506748 DOI: 10.1016/j.coph.2014.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 11/23/2022]
Abstract
The question in the title: 'what's new?' has two facets. First, are 'clinical' expectations met with success? Second, is the number of CNS disorders targeted by mGlu drugs still increasing? The answer to the first question is 'no', because development program with promising drugs in the treatment of schizophrenia, Parkinson's disease, and Fragile X syndrome have been discontinued. Nonetheless, we continue to be optimistic because there is still the concrete hope that some of these drugs are beneficial in targeted subpopulations of patients. The answer to the second question is 'yes', because mGlu ligands are promising targets for 'new' disorders such as type-1 spinocerebellar ataxia and absence epilepsy. In addition, the increasing availability of pharmacological tools may push mGlu7 and mGlu8 receptors into the clinical scenario. After almost 30 years from their discovery, mGlu receptors are still alive.
Collapse
|
18
|
Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. J Neurosci 2014; 34:8186-96. [PMID: 24920623 DOI: 10.1523/jneurosci.4267-13.2014] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is well established that BDNF may enhance oligodendrocyte differentiation following a demyelinating lesion, however, the endogenous sources of BDNF that may be harnessed to reverse deficits associated with such lesions are poorly defined. Here, we investigate roles of astrocytes in synthesizing and releasing BDNF. These cells are known to express BDNF following injury in vivo. In culture, they increase BDNF synthesis and release in response to glutamate metabotropic stimulation. Following cuprizone-elicited demyelination in mice, astrocytes contain BDNF and increase levels of metabotropic receptors. The metabotropic agonist, trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD), was therefore injected into the demyelinating lesion. Increases in BDNF, as well as myelin proteins, were observed. Effects of ACPD were eliminated by coinjection of trkB-Fc to locally deplete BDNF and by deletion of astrocyte-derived BDNF. The data indicate that astrocyte-derived BDNF may be a source of trophic support that can be used to reverse deficits elicited following demyelination.
Collapse
|
19
|
Milanese M, Giribaldi F, Melone M, Bonifacino T, Musante I, Carminati E, Rossi PI, Vergani L, Voci A, Conti F, Puliti A, Bonanno G. Knocking down metabotropic glutamate receptor 1 improves survival and disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2014; 64:48-59. [DOI: 10.1016/j.nbd.2013.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/17/2013] [Accepted: 11/12/2013] [Indexed: 11/26/2022] Open
|
20
|
Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 2014; 344:58-64. [PMID: 24603153 DOI: 10.1126/science.1249489] [Citation(s) in RCA: 403] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.
Collapse
Affiliation(s)
- Huixian Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fazio F, Zappulla C, Notartomaso S, Busceti C, Bessede A, Scarselli P, Vacca C, Gargaro M, Volpi C, Allegrucci M, Lionetto L, Simmaco M, Belladonna ML, Nicoletti F, Fallarino F. Cinnabarinic acid, an endogenous agonist of type-4 metabotropic glutamate receptor, suppresses experimental autoimmune encephalomyelitis in mice. Neuropharmacology 2014; 81:237-43. [PMID: 24565643 DOI: 10.1016/j.neuropharm.2014.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 01/18/2023]
Abstract
Cinnabarinic acid (CA) is an endogenous metabolite of the kynurenine pathway which acts as an orthosteric agonist of type-4 metabotropic glutamate receptor (mGlu4). We now report that systemic administration of CA (0.1-10 mg/kg, i.p.) was highly protective against experimental autoimmune encephalomyelitis (EAE) induced by the myelin oligodendrocyte glycoprotein (MOG35-55) peptide, which models multiple sclerosis in mice. Full protection against EAE required daily injections of CA since the time of immunization, similarly to what reported for the mGlu4 enhancer N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1acarboxamide (PHCCC). CA treatment boosted an immune response dominated by regulatory T (Treg) cells at the expenses of Th17 cells. In addition, exogenous CA enhanced endogenous CA formation in lymphocytes, suggesting the occurrence of a positive feedback loop sustaining immune tolerance. To examine whether activation of mGlu4 could account for the protective activity of CA against EAE, we used mGlu4 knockout mice. As expected, these mice displayed a more severe form of EAE in response to immunization. CA was still protective against EAE in mGlu4-deficient mice, although its action was significantly reduced both at high and low CA doses. This suggests that the action of CA against neuroinflammation involves multiple mechanisms including the activation of mGlu4. These data further suggest that CA is one possible bridge between activation of the kynurenine pathway and immune tolerance aimed at restraining neuroinflammation.
Collapse
Affiliation(s)
- Francesco Fazio
- I.R.C.C.S. Neuromed, Pozzilli, Parco Tecnologico, Località Camerelle, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Cristina Zappulla
- I.R.C.C.S. Neuromed, Pozzilli, Parco Tecnologico, Località Camerelle, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Serena Notartomaso
- I.R.C.C.S. Neuromed, Pozzilli, Parco Tecnologico, Località Camerelle, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Carla Busceti
- I.R.C.C.S. Neuromed, Pozzilli, Parco Tecnologico, Località Camerelle, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | | | - Pamela Scarselli
- I.R.C.C.S. Neuromed, Pozzilli, Parco Tecnologico, Località Camerelle, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, Polo Didattico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Polo Didattico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Polo Didattico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Massimo Allegrucci
- Department of Experimental Medicine, University of Perugia, Polo Didattico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Luana Lionetto
- NESMOS Department, Advanced Molecular Diagnostic Unit, Sant'Andrea Hospital, University of Rome 'Sapienza', Via di Grotta Rossa 1035-39, 00189 Rome, Italy
| | - Maurizio Simmaco
- NESMOS Department, Advanced Molecular Diagnostic Unit, Sant'Andrea Hospital, University of Rome 'Sapienza', Via di Grotta Rossa 1035-39, 00189 Rome, Italy
| | - Maria Laura Belladonna
- Department of Experimental Medicine, University of Perugia, Polo Didattico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Ferdinando Nicoletti
- Department of Human Physiology and Pharmacology, University of Rome 'Sapienza', Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Polo Didattico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| |
Collapse
|
22
|
Neuroendocrine immunoregulation in multiple sclerosis. Clin Dev Immunol 2013; 2013:705232. [PMID: 24382974 PMCID: PMC3870621 DOI: 10.1155/2013/705232] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 12/03/2022]
Abstract
Currently, it is generally accepted that multiple sclerosis (MS) is a complex multifactorial disease involving genetic and environmental factors affecting the autoreactive immune responses that lead to damage of myelin. In this respect, intrinsic or extrinsic factors such as emotional, psychological, traumatic, or inflammatory stress as well as a variety of other lifestyle interventions can influence the neuroendocrine system. On its turn, it has been demonstrated that the neuroendocrine system has immunomodulatory potential. Moreover, the neuroendocrine and immune systems communicate bidirectionally via shared receptors and shared messenger molecules, variously called hormones, neurotransmitters, or cytokines. Discrepancies at any level can therefore lead to changes in susceptibility and to severity of several autoimmune and inflammatory diseases. Here we provide an overview of the complex system of crosstalk between the neuroendocrine and immune system as well as reported dysfunctions involved in the pathogenesis of autoimmunity, including MS. Finally, possible strategies to intervene with the neuroendocrine-immune system for MS patient management will be discussed. Ultimately, a better understanding of the interactions between the neuroendocrine system and the immune system can open up new therapeutic approaches for the treatment of MS as well as other autoimmune diseases.
Collapse
|
23
|
Notartomaso S, Zappulla C, Biagioni F, Cannella M, Bucci D, Mascio G, Scarselli P, Fazio F, Weisz F, Lionetto L, Simmaco M, Gradini R, Battaglia G, Signore M, Puliti A, Nicoletti F. Pharmacological enhancement of mGlu1 metabotropic glutamate receptors causes a prolonged symptomatic benefit in a mouse model of spinocerebellar ataxia type 1. Mol Brain 2013; 6:48. [PMID: 24252411 PMCID: PMC4225515 DOI: 10.1186/1756-6606-6-48] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/28/2013] [Indexed: 11/10/2022] Open
Abstract
Background Spinocerebellar ataxia type 1 (SCA1) is a genetic disorder characterized by severe ataxia associated with progressive loss of cerebellar Purkinje cells. The mGlu1 metabotropic glutamate receptor plays a key role in mechanisms of activity-dependent synaptic plasticity in the cerebellum, and its dysfunction is linked to the pathophysiology of motor symptoms associated with SCA1. We used SCA1 heterozygous transgenic mice (Q154/Q2) as a model for testing the hypothesis that drugs that enhance mGlu1 receptor function may be good candidates for the medical treatment of SCA1. Results Symptomatic 30-week old SCA1 mice showed reduced mGlu1 receptor mRNA and protein levels in the cerebellum. Interestingly, these mice also showed an intense expression of mGlu5 receptors in cerebellar Purkinje cells, which normally lack these receptors. Systemic treatment of SCA1 mice with the mGlu1 receptor positive allosteric modulator (PAM), Ro0711401 (10 mg/kg, s.c.), caused a prolonged improvement of motor performance on the rotarod and the paw-print tests. A single injection of Ro0711401 improved motor symptoms for several days, and no tolerance developed to the drug. In contrast, the mGlu5 receptor PAM, VU0360172 (10 mg/kg, s.c.), caused only a short-lasting improvement of motor symptoms, whereas the mGlu1 receptor antagonist, JNJ16259685 (2.5 mg/kg, i.p.), further impaired motor performance in SCA1 mice. The prolonged symptomatic benefit caused by Ro0711401 outlasted the time of drug clearance from the cerebellum, and was associated with neuroadaptive changes in the cerebellum, such as a striking reduction of the ectopically expressed mGlu5 receptors in Purkinje cells, increases in levels of total and Ser880-phosphorylated GluA2 subunit of AMPA receptors, and changes in the length of spines in the distal dendrites of Purkinje cells. Conclusions These data demonstrate that pharmacological enhancement of mGlu1 receptors causes a robust and sustained motor improvement in SCA1 mice, and lay the groundwork for the development of mGlu1 receptor PAMs as novel “cerebellum-specific”, effective, and safe symptomatic drugs for the treatment of SCA1 in humans.
Collapse
|
24
|
Rossi PIA, Musante I, Summa M, Pittaluga A, Emionite L, Ikehata M, Rastaldi MP, Ravazzolo R, Puliti A. Compensatory molecular and functional mechanisms in nervous system of the Grm1(crv4) mouse lacking the mGlu1 receptor: a model for motor coordination deficits. ACTA ACUST UNITED AC 2012; 23:2179-89. [PMID: 22791805 DOI: 10.1093/cercor/bhs200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, the only members of group I mGlu receptors, are implicated in synaptic plasticity and mechanisms of feedback control of glutamate release. They exhibit nearly complementary distributions throughout the central nervous system, well evident in the cerebellum, where mGlu1 receptor is most intensely expressed while mGlu5 receptor is not. Despite their different distribution, they show a similar subcellular localization and use common transducing pathways. We recently described the Grm1(crv4) mouse with motor coordination deficits and renal anomalies caused by a spontaneous mutation inactivating the mGlu1 receptor. To define the neuropathological mechanisms in these mice, we evaluated expression and function of the mGlu5 receptor in cerebral and cerebellar cortices. Western blot and immunofluorescence analyses showed mGlu5 receptor overexpression. Quantitative reverse transcriptase-polymerase chain reaction results indicated that the up-regulation is already evident at RNA level. Functional studies confirmed an enhanced glutamate release from cortical cerebral and cerebellar synaptosomes when compared with wild-type that is abolished by the mGlu5 receptor-specific inhibitor, 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). Finally, acute MPEP treatment of Grm1(crv4/crv4) mice induced an evident although incomplete improvement of motor coordination, suggesting that mGlu5 receptors enhanced activity worsens, instead of improving, the motor-coordination defects in the Grm1(crv4/crv4) mice.
Collapse
|
25
|
Shields SD, Cheng X, Gasser A, Saab CY, Tyrrell L, Eastman EM, Iwata M, Zwinger PJ, Black JA, Dib-Hajj SD, Waxman SG. A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis. Ann Neurol 2012; 71:186-94. [PMID: 22367990 DOI: 10.1002/ana.22665] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Cerebellar dysfunction in multiple sclerosis (MS) contributes significantly to disability, is relatively refractory to symptomatic therapy, and often progresses despite treatment with disease-modifying agents. We previously observed that sodium channel Nav1.8, whose expression is normally restricted to the peripheral nervous system, is present in cerebellar Purkinje neurons in a mouse model of MS (experimental autoimmune encephalomyelitis [EAE]) and in humans with MS. Here, we tested the hypothesis that upregulation of Nav1.8 in cerebellum in MS and EAE has functional consequences contributing to symptom burden. METHODS Electrophysiology and behavioral assessment were performed in a new transgenic mouse model overexpressing Nav1.8 in Purkinje neurons. We also measured EAE symptom progression in mice lacking Nav1.8 compared to wild-type littermates. Finally, we administered the Nav1.8-selective blocker A803467 in the context of previously established EAE to determine reversibility of MS-like deficits. RESULTS We report that, in the context of an otherwise healthy nervous system, ectopic expression of Nav1.8 in Purkinje neurons alters their electrophysiological properties, and disrupts coordinated motor behaviors. Additionally, we show that Nav1.8 expression contributes to symptom development in EAE. Finally, we demonstrate that abnormal patterns of Purkinje neuron firing and MS-like deficits in EAE can be partially reversed by pharmacotherapy using a Nav1.8-selective blocker. INTERPRETATION Our results add to the evidence that a channelopathy contributes to cerebellar dysfunction in MS. Our data suggest that Nav1.8-specific blockers, when available for humans, merit study in MS.
Collapse
Affiliation(s)
- Shannon D Shields
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mandolesi G, Grasselli G, Musella A, Gentile A, Musumeci G, Sepman H, Haji N, Fresegna D, Bernardi G, Centonze D. GABAergic signaling and connectivity on Purkinje cells are impaired in experimental autoimmune encephalomyelitis. Neurobiol Dis 2012; 46:414-24. [PMID: 22349452 DOI: 10.1016/j.nbd.2012.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 01/30/2012] [Accepted: 02/04/2012] [Indexed: 12/25/2022] Open
Abstract
A significant proportion of multiple sclerosis (MS) patients have functionally relevant cerebellar deficits, which significantly contribute to disability. Although clinical and experimental studies have been conducted to understand the pathophysiology of cerebellar dysfunction in MS, no electrophysiological and morphological studies have investigated potential alterations of synaptic connections of cerebellar Purkinje cells (PC). For this reason we analyzed cerebellar PC GABAergic connectivity in mice with MOG((35-55))-induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We observed a strong reduction in the frequency of the spontaneous inhibitory post-synaptic currents (IPSCs) recorded from PCs during the symptomatic phase of the disease, and in presence of prominent microglia activation not only in the white matter (WM) but also in the molecular layer (ML). The massive GABAergic innervation on PCs from basket and stellate cells was reduced and associated to a decrease of the number of these inhibitory interneurons. On the contrary no significant loss of the PCs could be detected. Incubation of interleukin-1beta (IL-1β) was sufficient to mimic the electrophysiological alterations observed in EAE mice. We thus suggest that microglia and pro-inflammatory cytokines, together with a degeneration of basket and stellate cells and their synaptic terminals, contribute to impair GABAergic transmission on PCs during EAE. Our results support a growing body of evidence that GABAergic signaling is compromised in EAE and in MS, and show a selective susceptibility to neuronal and synaptic degeneration of cerebellar inhibitory interneurons.
Collapse
Affiliation(s)
- Georgia Mandolesi
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello, 00143 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shields SD, Waxman SG. Cerebellar dysfunction in multiple sclerosis: in the blink of an eye. Mult Scler 2011; 17:1152-4. [DOI: 10.1177/1352458511410345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shannon D Shields
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
28
|
Rampello L, Casolla B, Rampello L, Pignatelli M, Battaglia G, Gradini R, Orzi F, Nicoletti F. The conditioned eyeblink reflex: a potential tool for the detection of cerebellar dysfunction in multiple sclerosis. Mult Scler 2011; 17:1155-61. [PMID: 21613334 DOI: 10.1177/1352458511406311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The delayed conditioned eyeblink reflex, in which an individual learns to close the eyelid in response to a conditioned stimulus (e.g. a tone) relies entirely on the functional integrity of a cerebellar motor circuitry that involves the contingent activation of Purkinje cells by parallel and climbing fibres. Molecular changes that disrupt the function of this circuitry, in particular a loss of type-1 metabotropic glutamate receptors (mGlu1 receptors), occur in Purkinje cells of patients with multiple sclerosis and in mice with experimental autoimmune encephalomyelitis as a result of neuroinflammation. mGlu1 receptors are required for cerebellar motor learning associated with the conditioned eyeblink reflex. We propose that the delayed paradigm of the eyeblink conditioning might be particularly valuable for the detection of subtle abnormalities of cerebellar motor learning that are clinically silent and are not associated with demyelinating lesions or axonal damage. In addition, the test might have predictive value following a clinically isolated syndrome, and might be helpful for the evaluation of the efficacy of drug treatment in multiple sclerosis.
Collapse
|
29
|
Ngomba RT, Santolini I, Biagioni F, Molinaro G, Simonyi A, van Rijn CM, D'Amore V, Mastroiacovo F, Olivieri G, Gradini R, Ferraguti F, Battaglia G, Bruno V, Puliti A, van Luijtelaar G, Nicoletti F. Protective role for type-1 metabotropic glutamate receptors against spike and wave discharges in the WAG/Rij rat model of absence epilepsy. Neuropharmacology 2011; 60:1281-91. [PMID: 21277877 DOI: 10.1016/j.neuropharm.2011.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/24/2010] [Accepted: 01/05/2011] [Indexed: 12/13/2022]
Abstract
Eight-month old WAG/Rij rats, which developed spontaneous occurring absence seizures, showed a reduced function of mGlu1 metabotropic glutamate receptors in the thalamus, as assessed by in vivo measurements of DHPG-stimulated polyphosphoinositide hydrolysis, in the presence of the mGlu5 antagonist MPEP as compared to age-matched non-epileptic control rats. These symptomatic 8-month old WAG/Rij rats also showed lower levels of thalamic mGlu1α receptors than age-matched controls and 2-month old (pre-symptomatic) WAG/Rij rats, as detected by immunoblotting. Immunohistochemical and in situ hybridization analysis indicated that the reduced expression of mGlu1 receptors found in symptomatic WAG/Rij rats was confined to an area of the thalamus that excluded the ventroposterolateral nucleus. No mGlu1 receptor mRNA was detected in the reticular thalamic nucleus. Pharmacological manipulation of mGlu1 receptors had a strong impact on absence seizures in WAG/Rij rats. Systemic treatment with the mGlu1 receptor enhancer SYN119, corresponding to compound RO0711401, reduced spontaneous spike and wave discharges spike-wave discharges (SWDs) in epileptic rats. Subcutaneous doses of 10 mg/kg of SYN119 only reduced the incidence of SWDs, whereas higher doses (30 mg/kg) also reduced the mean duration of SWDs. In contrast, treatment with the non-competitive mGlu1 receptor antagonist, JNJ16259685 (2.5 and 5 mg/kg, i.p.) increased the incidence of SWDs. These data suggest that absence epilepsy might be associated with a reduction of mGlu1 receptors in the thalamus, and that compounds that amplify the activity of mGlu1 receptors might be developed as novel anti-absence drugs. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- R T Ngomba
- Neuromed Institute, Neuropharmacology Unit, Parco Technologico, Località Camerelle 86077, Pozzilli, Isernia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Urwyler S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 2011; 63:59-126. [PMID: 21228259 DOI: 10.1124/pr.109.002501] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Allosteric receptor modulation is an attractive concept in drug targeting because it offers important potential advantages over conventional orthosteric agonism or antagonism. Allosteric ligands modulate receptor function by binding to a site distinct from the recognition site for the endogenous agonist. They often have no effect on their own and therefore act only in conjunction with physiological receptor activation. This article reviews the current status of allosteric modulation at family C G-protein coupled receptors in the light of their specific structural features on the one hand and current concepts in receptor theory on the other hand. Family C G-protein-coupled receptors are characterized by a large extracellular domain containing the orthosteric agonist binding site known as the "venus flytrap module" because of its bilobal structure and the dynamics of its activation mechanism. Mutational analysis and chimeric constructs have revealed that allosteric modulators of the calcium-sensing, metabotropic glutamate and GABA(B) receptors bind to the seven transmembrane domain, through which they modify signal transduction after receptor activation. This is in contrast to taste-enhancing molecules, which bind to different parts of sweet and umami receptors. The complexity of interactions between orthosteric and allosteric ligands is revealed by a number of adequate biochemical and electrophysiological assay systems. Many allosteric family C GPCR modulators show in vivo efficacy in behavioral models for a variety of clinical indications. The positive allosteric calcium sensing receptor modulator cinacalcet is the first drug of this type to enter the market and therefore provides proof of principle in humans.
Collapse
Affiliation(s)
- Stephan Urwyler
- Department of Chemistry and Biochemistry, University of Berne, P/A Weissensteinweg 3, CH-3303 Jegenstorf, Berne, Switzerland.
| |
Collapse
|
31
|
Rossi S, De Chiara V, Furlan R, Musella A, Cavasinni F, Muzio L, Bernardi G, Martino G, Centonze D. Abnormal activity of the Na/Ca exchanger enhances glutamate transmission in experimental autoimmune encephalomyelitis. Brain Behav Immun 2010; 24:1379-85. [PMID: 20647042 DOI: 10.1016/j.bbi.2010.07.241] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/11/2010] [Accepted: 07/14/2010] [Indexed: 01/06/2023] Open
Abstract
It is increasingly accepted that excessive glutamate release plays a key role in the pathophysiology of grey matter damage in multiple sclerosis (MS). The mechanisms causing abnormal glutamate transmission in this disorder are however largely unexplored. By means of electrophysiological recordings from single striatal neurons in slices, we found that the presymptomatic and acute phases of experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS, are associated with enhanced synaptic release of glutamate. The reverse mode of action of axonal Na(+)/Ca(++) exchanger, secondary to abnormal functioning of voltage-dependent Na(+) channels, was identified as a major cause of this alteration. In fact, inhibition of the Na(+)/Ca(++) exchanger with bepridil or with KB-R7943, which selectively blocks the reverse mode of the exchanger, reduced the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from striatal neurons in EAE mice but not in control animals. In the presence of tetrodotoxin (TTX), a blocker of voltage-dependent Na(+) channels, the effect of bepridil was normalized in acute (25 days post-immunization) EAE mice, indicating that axonal accumulation of Na(+) ions flowing through voltage-dependent Na(+) channels plays a role in the abnormal activity of the Na(+)/Ca(++) exchanger in EAE. Our data reveal an important role of Na(+)/Ca(++) exchanger and of voltage-dependent Na(+) channels in the pathological process of EAE, and provide a rationale for the use of neuroprotective strategies since the very early stages of MS.
Collapse
Affiliation(s)
- Silvia Rossi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2010; 60:1017-41. [PMID: 21036182 DOI: 10.1016/j.neuropharm.2010.10.022] [Citation(s) in RCA: 487] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/15/2010] [Accepted: 10/21/2010] [Indexed: 12/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson's disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fallarino F, Volpi C, Fazio F, Notartomaso S, Vacca C, Busceti C, Bicciato S, Battaglia G, Bruno V, Puccetti P, Fioretti MC, Nicoletti F, Grohmann U, Di Marco R. Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nat Med 2010; 16:897-902. [PMID: 20657581 DOI: 10.1038/nm.2183] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/21/2010] [Indexed: 12/13/2022]
Abstract
High amounts of glutamate are found in the brains of people with multiple sclerosis, an inflammatory disease marked by progressive demyelination. Glutamate might affect neuroinflammation via effects on immune cells. Knockout mice lacking metabotropic glutamate receptor-4 (mGluR4) were markedly vulnerable to experimental autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis) and developed responses dominated by interleukin-17-producing T helper (T(H)17) cells. In dendritic cells (DCs) from those mice, defective mGluR4 signaling-which would normally decrease intracellular cAMP formation-biased T(H) cell commitment to the T(H)17 phenotype. In wild-type mice, mGluR4 was constitutively expressed in all peripheral DCs, and this expression increased after cell activation. Treatment of wild-type mice with a selective mGluR4 enhancer increased EAE resistance via regulatory T (T(reg)) cells. The high amounts of glutamate in neuroinflammation might reflect a counterregulatory mechanism that is protective in nature and might be harnessed therapeutically for restricting immunopathology in multiple sclerosis.
Collapse
Affiliation(s)
- Francesca Fallarino
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lesage A, Steckler T. Metabotropic glutamate mGlu1 receptor stimulation and blockade: therapeutic opportunities in psychiatric illness. Eur J Pharmacol 2010; 639:2-16. [PMID: 20371230 DOI: 10.1016/j.ejphar.2009.12.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 12/26/2022]
Abstract
Metabotropic glutamate mGlu(1) receptors play a modulatory role in the nervous system. They enhance cell excitability, modulate synaptic neurotransmission and are involved in synaptic plasticity. During the last 10 years, several selective metabotropic glutamate mGlu(1) receptor competitive antagonists and potentiators have been discovered. These pharmacological tools, together with early and later work in metabotropic glutamate mGlu(1) receptor mutant mice have allowed studying the role of the receptor in various aspects of psychiatric illnesses such as anxiety, depression and schizophrenia. We here review the data on selective metabotropic glutamate mGlu(1) receptor antagonists in support of their potential as anxiolytic and antidepressant treatments. We propose a rationale for the development of metabotropic glutamate mGlu(1) receptor positive allosteric modulators for the treatment of schizophrenia. Potential side effects of blockade and activation of metabotropic glutamate mGlu(1) receptors are addressed, with special focus on the differential effects of metabotropic glutamate mGlu(1) receptor antagonists in cognition models with positive reinforcement versus those that use aversive learning procedures. Further development of negative allosteric modulators and more drug-like positive allosteric modulators will be required in order to decipher the therapeutic efficacy and safety margin of these compounds in the clinic.
Collapse
Affiliation(s)
- Anne Lesage
- Department of CNS-Neuroscience, Research and Early Development, Johnson and Johnson Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | | |
Collapse
|
35
|
The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ 2009; 17:1083-91. [DOI: 10.1038/cdd.2009.179] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
36
|
Fluorinated 9H-xanthene-9-carboxylic acid oxazol-2-yl-amides as potent, orally available mGlu1 receptor enhancers. Bioorg Med Chem Lett 2009; 19:1666-9. [PMID: 19233648 DOI: 10.1016/j.bmcl.2009.01.108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 11/22/2022]
Abstract
Small molecule mGluR1 enhancers, which are 9H-xanthene-9-carboxylic acid [1,2,4]oxadiazol-3-yl- and (2H-tetrazol-5-yl)-amides, have been previously reported. Fluorinated 9H-xanthene-9-carboxylic acid oxazol-2-yl-amides with improved pharmacokinetic properties have been designed and synthesized as useful pharmacological tools for the study of the physiological roles mediated by mGlu1 receptors. The synthesis and the structure-activity relationship of this class of positive allosteric modulators of mGlu1 receptors will be discussed in detail.
Collapse
|