1
|
O'Hearn LA. Signals of energy availability in sleep: consequences of a fat-based metabolism. Front Nutr 2024; 11:1397185. [PMID: 39267859 PMCID: PMC11390529 DOI: 10.3389/fnut.2024.1397185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Humans can flexibly switch between two primary metabolic modes, usually distinguished by whether substrate supply from glucose can meet energy demands or not. However, it is often overlooked that when glucose use is limited, the remainder of energy needs may still be met more or less effectively with fat and ketone bodies. Hence a fat-based metabolism marked by ketosis is often conflated with starvation and contexts of inadequate energy (including at the cellular level), even when energy itself is in ample supply. Sleep and satiation are regulated by common pathways reflecting energy metabolism. A conceptual analysis that distinguishes signals of inadequate energy in a glucose-dominant metabolism from signals of a fat-based metabolism that may well be energy sufficient allows a reexamination of experimental results in the study of sleep that may shed light on species differences and explain why ketogenic diets have beneficial effects simultaneously in the brain and the periphery. It may also help to distinguish clinically when a failure of a ketogenic diet to resolve symptoms is due to inadequate energy rather than the metabolic state itself.
Collapse
|
2
|
Kula B, Antal B, Weistuch C, Gackière F, Barre A, Velado V, Hubbard JM, Kukley M, Mujica-Parodi LR, Smith NA. D-β-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.554428. [PMID: 37662316 PMCID: PMC10473684 DOI: 10.1101/2023.08.23.554428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-β-hydroxybutyrate (D-βHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-βHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential (AP) properties, while D-βHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.
Collapse
Affiliation(s)
- Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA
| | - Botond Antal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florian Gackière
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Alexander Barre
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Victor Velado
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington D.C., USA
| | - Jeffrey M Hubbard
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, USA
| | - Nathan A Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington D.C., USA
- George Washington University School of Medicine and Health Sciences, Washington D.C., USA
| |
Collapse
|
3
|
Kula B, Antal B, Weistuch C, Gackière F, Barre A, Velado V, Hubbard JM, Kukley M, Mujica-Parodi LR, Smith NA. D-ꞵ-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance. PNAS NEXUS 2024; 3:pgae196. [PMID: 38818236 PMCID: PMC11138115 DOI: 10.1093/pnasnexus/pgae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-ꞵ-hydroxybutyrate (D-ꞵHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-ꞵHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential properties, while D-ꞵHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.
Collapse
Affiliation(s)
- Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Botond Antal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Florian Gackière
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Alexander Barre
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Victor Velado
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20012, USA
| | - Jeffrey M Hubbard
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Bizkaia, Spain
- Ikerbasque—Basque Foundation for Science, 48009 Bilbao, Spain
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nathan A Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20012, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
4
|
Choi J, Kang J, Kim T, Nehs CJ. Sleep, mood disorders, and the ketogenic diet: potential therapeutic targets for bipolar disorder and schizophrenia. Front Psychiatry 2024; 15:1358578. [PMID: 38419903 PMCID: PMC10899493 DOI: 10.3389/fpsyt.2024.1358578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Bipolar disorder and schizophrenia are serious psychiatric conditions that cause a significant reduction in quality of life and shortened life expectancy. Treatments including medications and psychosocial support exist, but many people with these disorders still struggle to participate in society and some are resistant to current therapies. Although the exact pathophysiology of bipolar disorder and schizophrenia remains unclear, increasing evidence supports the role of oxidative stress and redox dysregulation as underlying mechanisms. Oxidative stress is an imbalance between the production of reactive oxygen species generated by metabolic processes and antioxidant systems that can cause damage to lipids, proteins, and DNA. Sleep is a critical regulator of metabolic homeostasis and oxidative stress. Disruption of sleep and circadian rhythms contribute to the onset and progression of bipolar disorder and schizophrenia and these disorders often coexist with sleep disorders. Furthermore, sleep deprivation has been associated with increased oxidative stress and worsening mood symptoms. Dysfunctional brain metabolism can be improved by fatty acid derived ketones as the brain readily uses both ketones and glucose as fuel. Ketones have been helpful in many neurological disorders including epilepsy and Alzheimer's disease. Recent clinical trials using the ketogenic diet suggest positive improvement in symptoms for bipolar disorder and schizophrenia as well. The improvement in psychiatric symptoms from the ketogenic diet is thought to be linked, in part, to restoration of mitochondrial function. These findings encourage further randomized controlled clinical trials, as well as biochemical and mechanistic investigation into the role of metabolism and sleep in psychiatric disorders. This narrative review seeks to clarify the intricate relationship between brain metabolism, sleep, and psychiatric disorders. The review will delve into the initial promising effects of the ketogenic diet on mood stability, examining evidence from both human and animal models of bipolar disorder and schizophrenia. The article concludes with a summary of the current state of affairs and encouragement for future research focused on the role of metabolism and sleep in mood disorders.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Jiseung Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Christa J. Nehs
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Robberechts R, Poffé C. Defining ketone supplementation: the evolving evidence for postexercise ketone supplementation to improve recovery and adaptation to exercise. Am J Physiol Cell Physiol 2024; 326:C143-C160. [PMID: 37982172 DOI: 10.1152/ajpcell.00485.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Over the last decade, there has been a growing interest in the use of ketone supplements to improve athletic performance. These ketone supplements transiently elevate the concentrations of the ketone bodies acetoacetate (AcAc) and d-β-hydroxybutyrate (βHB) in the circulation. Early studies showed that ketone bodies can improve energetic efficiency in striated muscle compared with glucose oxidation and induce a glycogen-sparing effect during exercise. As such, most research has focused on the potential of ketone supplementation to improve athletic performance via ingestion of ketones immediately before or during exercise. However, subsequent studies generally observed no performance improvement, and particularly not under conditions that are relevant for most athletes. However, more and more studies are reporting beneficial effects when ketones are ingested after exercise. As such, the real potential of ketone supplementation may rather be in their ability to enhance postexercise recovery and training adaptations. For instance, recent studies observed that postexercise ketone supplementation (PEKS) blunts the development of overtraining symptoms, and improves sleep, muscle anabolic signaling, circulating erythropoietin levels, and skeletal muscle angiogenesis. In this review, we provide an overview of the current state-of-the-art about the impact of PEKS on aspects of exercise recovery and training adaptation, which is not only relevant for athletes but also in multiple clinical conditions. In addition, we highlight the underlying mechanisms by which PEKS may improve exercise recovery and training adaptation. This includes epigenetic effects, signaling via receptors, modulation of neurotransmitters, energy metabolism, and oxidative and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Sengupta A, Tudor JC, Cusmano D, Baur JA, Abel T, Weljie AM. Sleep deprivation and aging are metabolically linked across tissues. Sleep 2023; 46:zsad246. [PMID: 37738102 PMCID: PMC11502955 DOI: 10.1093/sleep/zsad246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Indexed: 09/24/2023] Open
Abstract
STUDY OBJECTIVES Insufficient sleep is a concerning hallmark of modern society because sleep deprivation (SD) is a risk factor for neurodegenerative and cardiometabolic disorders. SD imparts an aging-like effect on learning and memory, although little is known about possible common molecular underpinnings of SD and aging. Here, we examine this question by profiling metabolic features across different tissues after acute SD in young adult and aged mice. METHODS Young adult and aged mice were subjected to acute SD for 5 hours. Blood plasma, hippocampus, and liver samples were subjected to UPLC-MS/MS-based metabolic profiling. RESULTS SD preferentially impacts peripheral plasma and liver profiles (e.g. ketone body metabolism) whereas the hippocampus is more impacted by aging. We further demonstrate that aged animals exhibit SD-like metabolic features at baseline. Hepatic alterations include parallel changes in nicotinamide metabolism between aging and SD in young animals. Overall, metabolism in young adult animals is more impacted by SD, which in turn induces aging-like features. A set of nine metabolites was classified (79% correct) based on age and sleep status across all four groups. CONCLUSIONS Our metabolic observations demonstrate striking parallels to previous observations in studies of learning and memory and define a molecular metabolic signature of sleep loss and aging.
Collapse
Affiliation(s)
- Arjun Sengupta
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer C Tudor
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Current affiliation: Department of Biology, Saint Joseph’s University, Philadelphia, PA, USA
| | - Danielle Cusmano
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Current Affiliation: Iowa Neuroscience Institute, Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2312 PBDB, Iowa City, IA, USA
| | - Aalim M Weljie
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
ROBBERECHTS RUBEN, ALBOUY GENEVIÈVE, HESPEL PETER, POFFÉ CHIEL. Exogenous Ketosis Improves Sleep Efficiency and Counteracts the Decline in REM Sleep after Strenuous Exercise. Med Sci Sports Exerc 2023; 55:2064-2074. [PMID: 37259248 PMCID: PMC10581428 DOI: 10.1249/mss.0000000000003231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Available evidence indicates that ketone bodies may improve sleep quality. Therefore, we determined whether ketone ester (KE) intake could counteract sleep disruptions induced by strenuous exercise. METHODS Ten well-trained cyclists with good sleep quality participated in a randomized crossover design consisting of two experimental sessions each involving a morning endurance training and an evening high-intensity interval training ending 1 h before sleep, after which polysomnography was performed overnight. Postexercise and 30 min before sleeping time, subjects received either 25 g of KE (EX KE ) or a placebo drink (EX CON ). A third session without exercise but with placebo supplements (R CON ) was added to evaluate the effect of exercise per se on sleep. RESULTS Blood d -β-hydroxybutyrate concentrations transiently increased to ~3 mM postexercise and during the first part of the night in EX KE but not in EX CON or R CON . Exercise significantly reduced rapid eye movement sleep by 26% ( P = 0.001 vs R CON ) and increased wakefulness after sleep onset by 95% ( P = 0.004 vs R CON ). Interestingly, KE improved sleep efficiency by 3% ( P = 0.040 vs EX CON ) and counteracted the exercise-induced decrease in rapid eye movement sleep ( P = 0.011 vs EX CON ) and the increase in wakefulness after sleep onset ( P = 0.009 vs EX CON ). This was accompanied by a KE-induced increase in dopamine excretion ( P = 0.033 vs EX CON ), which plays a pivotal role in sleep regulation. In addition, exercise increased sleep spindle density by 36% ( P = 0.005 vs R CON ), suggesting an effect on neural plasticity processes during sleep. CONCLUSIONS These data indicate that KE ingestion improves sleep efficiency and quality after high-intensity exercise. We provide preliminary evidence that this might result from KE-induced increases in dopamine signaling.
Collapse
Affiliation(s)
- RUBEN ROBBERECHTS
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, BELGIUM
| | - GENEVIÈVE ALBOUY
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, BELGIUM
- Leuven Brain Institute (LBI), KU Leuven, Leuven, BELGIUM
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT
| | - PETER HESPEL
- Department of Movement Sciences, KU Leuven, Leuven, BELGIUM
| | - CHIEL POFFÉ
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, BELGIUM
| |
Collapse
|
8
|
Zhuang H, Fujikura Y, Ohkura N, Higo-Yamamoto S, Mishima T, Oishi K. A ketogenic diet containing medium-chain triglycerides reduces REM sleep duration without significant influence on mouse circadian phenotypes. Food Res Int 2023; 169:112852. [PMID: 37254426 DOI: 10.1016/j.foodres.2023.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Ketogenic diets (KDs) affect the circadian rhythms of behavior and clock gene expression in experimental animals. However, these diets were designed to simulate a fasting state; thus, whether these effects are caused by diet-induced ketogenesis or persistent starvation is difficult to distinguish. The present study aimed to define the effects of a KD containing medium-chain triglycerides (MCT-KD) that increase blood ketone levels without inducing carbohydrate starvation, on circadian rhythms and sleep regulation. Mice were fed with a normal diet (CTRL) or MCT-KD for 2 weeks. Blood β-hydroxybutyrate levels were significantly increased up to 2 mM by the MCT-KD, whereas body weight gain and blood glucose levels were identical between the groups, suggesting that ketosis accumulated without carbohydrate starvation in the MCT-KD mice. Circadian rhythms of wheel-running activity and core body temperature were almost identical, although wheel-running was slightly reduced in the MCT-KD mice. The circadian expression of the core clock genes, Per1, Per2, Bmal1, and Dbp in the hypothalamus, heart, liver, epididymal adipose tissues, and skeletal muscle were almost identical between the CTRL and MCT-KD mice, whereas the amplitude of hepatic Per2 and adipose Per1 expression was increased in MCT-KD mice. The MCT-KD reduced the duration of rapid-eye-movement (REM) sleep without affecting the duration of non-REM sleep and the duration of wakefulness. These findings suggested that the impact of ketone bodies on circadian systems are limited, although they might reduce locomotor activity and REM sleep duration.
Collapse
Affiliation(s)
- Haotong Zhuang
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuri Fujikura
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Naoki Ohkura
- Laboratory of Host Defense, School of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Sayaka Higo-Yamamoto
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Taiga Mishima
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan; Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan; Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan; School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
9
|
Merlino G, Tereshko Y, Pez S, Dal Bello S, Pittino A, Di Lorenzo C, Filippi F, Lettieri C, Belgrado E, Gigli GL, Valente M. Sleep of migraine patients is ameliorated by ketogenic diet, independently of pain control. Sleep Med 2023; 107:196-201. [PMID: 37209426 DOI: 10.1016/j.sleep.2023.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE/BACKGROUND Migraine patients are frequently affected by sleep complaints. The ketogenic diet (KD) is an option for the treatment of migraine. Our aim was: 1) to assess the effects of KD on sleep complaints in patients affected by migraine and 2) to verify if sleep changes were related to the effects of the diet on headache symptoms. PATIENTS/METHODS From January 2020 to July 2022 we consecutively enrolled 70 migraine patients who were treated with KD as a preventive therapy. We collected information regarding: 1) anthropometric measures; 2) migraine intensity, frequency and disability; 3) subjective sleep complaints, i.e. insomnia, sleep quality, by the Pittsburgh Sleep Quality Index (PSQI), and excessive Daytime Sleepiness (EDS), by the Epworth Sleepiness Scale (ESS). RESULTS After 3 months of KD therapy, anthropometric measures considerably changed, i.e. body mass index and free fat mass, and migraine significantly improved, i.e. lower intensity, frequency and disability. Regarding sleep, we observed that insomnia affected a decreased rate of patients (T0: 60% versus T1: 40%, p < 0.001). Similarly, patients with poor sleep were significantly less after KD therapy (T0: 74.3% versus T1: 34.3%, p < 0.001). Finally, EDS prevalence declined at the follow-up (T0: 40% versus T1: 12.9%, p < 0.001). Sleep features modifications were not correlated with migraine improvements and with anthropometric changes. CONCLUSIONS For the first time we demonstrated that KD may improve sleep complaints in migraine patients. Interestingly, the positive effect of KD on sleep is independent of migraine improvements and anthropometric modifications.
Collapse
Affiliation(s)
- Giovanni Merlino
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy.
| | - Yan Tereshko
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy
| | - Sara Pez
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy
| | - Simone Dal Bello
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy
| | - Alice Pittino
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy
| | - Cherubino Di Lorenzo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University Polo Pontino, Latina, Italy
| | - Francesca Filippi
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy
| | - Christian Lettieri
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy
| | - Enrico Belgrado
- Division of Neurology, Udine University Hospital, Udine, Italy
| | - Gian Luigi Gigli
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy; Dipartimento di Area Medica (DAME), University of Udine, Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy; Dipartimento di Area Medica (DAME), University of Udine, Udine, Italy
| |
Collapse
|
10
|
Hokari S, Chikahisa S, Shiuchi T, Nakayama Y, Konishi M, Nishino S, Itoh N, Séi H. Social stress alters sleep in FGF21-deficient mice. Brain Res Bull 2022; 191:40-47. [DOI: 10.1016/j.brainresbull.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022]
|
11
|
Checa-Ros A, D’Marco L. Role of Omega-3 Fatty Acids as Non-Photic Zeitgebers and Circadian Clock Synchronizers. Int J Mol Sci 2022; 23:12162. [PMID: 36293015 PMCID: PMC9603208 DOI: 10.3390/ijms232012162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 10/23/2024] Open
Abstract
Omega-3 fatty acids (ω-3 FAs) are well-known for their actions on immune/inflammatory and neurological pathways, functions that are also under circadian clock regulation. The daily photoperiod represents the primary circadian synchronizer ('zeitgeber'), although diverse studies have pointed towards an influence of dietary FAs on the biological clock. A comprehensive literature review was conducted following predefined selection criteria with the aim of updating the evidence on the molecular mechanisms behind circadian rhythm regulation by ω-3 FAs. We collected preclinical and clinical studies, systematic reviews, and metanalyses focused on the effect of ω-3 FAs on circadian rhythms. Twenty animal (conducted on rodents and piglets) and human trials and one observational study providing evidence on the regulation of neurological, inflammatory/immune, metabolic, reproductive, cardiovascular, and biochemical processes by ω-3 FAs via clock genes were discussed. The evidence suggests that ω-3 FAs may serve as non-photic zeitgebers and prove therapeutically beneficial for circadian disruption-related pathologies. Future work should focus on the role of clock genes as a target for the therapeutic use of ω-3 FAs in inflammatory and neurological disorders, as well as on the bidirectional association between the molecular clock and ω-3 FAs.
Collapse
Affiliation(s)
- Ana Checa-Ros
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Aston Institute of Health and Neurosciences, School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Luis D’Marco
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Department of Nephrology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
| |
Collapse
|
12
|
Wen Q, Zhou J, Sun X, Ma T, Liu Y, Xie Y, Wang L, Cheng J, Wen J, Wu J, Zou J, Liu S, Liu J. Urine metabolomics analysis of sleep quality in deep-underground miners: A pilot study. Front Public Health 2022; 10:969113. [PMID: 36062104 PMCID: PMC9437423 DOI: 10.3389/fpubh.2022.969113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
Background In previous questionnaire surveys of miners, sleep disorders were found among underground workers. The influence of the special deep-underground environment and its potential mechanism are still unclear. Therefore, this study intends to utilize LC-MS metabolomics to study the potential differences between different environments and different sleep qualities. Methods Twenty-seven miners working at 645-1,500 m deep wells were investigated in this study, and 12 local ground volunteers were recruited as the control group. The Pittsburgh Sleep Quality Index (PSQI) was used to examine and evaluate the sleep status of the subjects in the past month, and valuable basic information about the participants was collected. PSQI scores were obtained according to specific calculation rules, and the corresponding sleep grouping and subsequent analysis were carried out. Through liquid chromatography-mass spectrometry (LC-MS) non-targeted metabolomics analysis, differences in metabolism were found by bioinformatics analysis in different environments. Results Between the deep-underground and ground (DUvsG) group, 316 differential metabolites were identified and 125 differential metabolites were identified in the good sleep quality vs. poor sleep quality (GSQvsPSQ) group. The metabolic pathways of Phenylalanine, tyrosine and tryptophan biosynthesis (p = 0.0102) and D-Glutamine and D-glutamate metabolism (p = 0.0241) were significantly enriched in DUvsG. For GSQvsPSQ group, Butanoate metabolism was statistically significant (p = 0.0276). L-Phenylalanine, L-Tyrosine and L-Glutamine were highly expressed in the deep-underground group. Acetoacetic acid was poorly expressed, and 2-hydroxyglutaric acid was highly expressed in good sleep quality. Conclusions The influence of the underground environment on the human body is more likely to induce specific amino acid metabolism processes, and regulate the sleep-wake state by promoting the production of excitatory neurotransmitters. The difference in sleep quality may be related to the enhancement of glycolytic metabolism, the increase in excitatory neurotransmitters and the activation of proinflammation. L-phenylalanine, L-tyrosine and L-glutamine, Acetoacetic acid and 2-hydroxyglutaric acid may be potential biomarkers correspondingly.
Collapse
Affiliation(s)
- Qiao Wen
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhou
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoru Sun
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tengfei Ma
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yilin Liu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yike Xie
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Cheng
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China,Shixi Liu
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jifeng Liu
| |
Collapse
|
13
|
The Influence of Ketone Bodies on Circadian Processes Regarding Appetite, Sleep and Hormone Release: A Systematic Review of the Literature. Nutrients 2022; 14:nu14071410. [PMID: 35406023 PMCID: PMC9002750 DOI: 10.3390/nu14071410] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Chrononutrition is an emerging branch of chronobiology focusing on the profound interactions between biological rhythms and metabolism. This framework suggests that, just like all biological processes, even nutrition follows a circadian pattern. Recent findings elucidated the metabolic roles of circadian clocks in the regulation of both hormone release and the daily feeding–fasting cycle. Apart from serving as energy fuel, ketone bodies play pivotal roles as signaling mediators and drivers of gene transcription, promoting food anticipation and loss of appetite. Herein we provide a comprehensive review of the literature on the effects of the ketogenic diets on biological processes that follow circadian rhythms, among them appetite, sleep, and endocrine function.
Collapse
|
14
|
Wu XJ, Shu QQ, Wang B, Dong L, Hao B. Acetoacetate Improves Memory in Alzheimer's Mice via Promoting Brain-Derived Neurotrophic Factor and Inhibiting Inflammation. Am J Alzheimers Dis Other Demen 2022; 37:15333175221124949. [PMID: 36113018 PMCID: PMC10581103 DOI: 10.1177/15333175221124949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ketone bodies, especially the β-hydroxybutyrate, had been shown to modulate the function of the central nervous system and prevent the pathological progression of Alzheimer's disease (AD). However, little is known about the role of acetoacetate in the AD brain. Thus, we intraventricularly injected acetoacetate into familial AD mice (APPSWE) for 14 days and monitored their memory and biochemical changes. During the behavior test, acetoacetate at 100 mg/kg led to significant improvement in both Y-maze and novel object recognition tests (NORTs) (both P < .05), indicating ameliorating spatial and recognition memory, respectively. Biomedical tests revealed two mechanisms were involved. Firstly, acetoacetate inhibited the GPR43-pERK pathway, which led to apparent inhibition in tumor necrosis factor-α and Interleukin-6 expression in the hippocampus in a concentration-dependent manner. Secondarily, acetoacetate stimulated the expression of hippocampal brain-derived neurotrophic factor (BDNF). We concluded that acetoacetate could ameliorate AD symptoms and exhibited promising features as a therapeutic for AD.
Collapse
Affiliation(s)
- Xiao-Jun Wu
- Department of Neurosurgery, Shanghai Cancer Center, Shanghai Fu-Dan University School of Medicine, Shanghai, PR China
| | - Qin-Qin Shu
- Department of Emergency Medicine, Shanghai No. 4 People’s Hospital Affiliated to Shanghai Tongji University School of Medicine, Shanghai, PR China
| | - Bin Wang
- Department of Neurosurgery, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lan Dong
- Department of Emergency Medicine, Shanghai Chang Zheng Hospital, Shanghai, PR China
| | - Bin Hao
- Department of Neurosurgery, Shanghai Cancer Center, Shanghai Fu-Dan University School of Medicine, Shanghai, PR China
| |
Collapse
|
15
|
Barrea L, Pugliese G, Frias-Toral E, Napolitano B, Laudisio D, Aprano S, Ceriani F, Savastano S, Colao A, Muscogiuri G. Is there a relationship between the ketogenic diet and sleep disorders? Int J Food Sci Nutr 2021; 73:285-295. [PMID: 34702129 DOI: 10.1080/09637486.2021.1993154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sleep disorders are very often underestimated and, consequently, not treated with due priority. Common sleep disorders include insomnia disorders, sleep-related breathing disorders, central disorders of hypersomnolence, circadian rhythm sleep-wake disorders, sleep-related movement disorders, parasomnias, and other sleep disorders. The ketogenic diet (KD) is rich in fat, low in carbohydrates (CHO), and adequate in protein. The KD has shown several applications in treating medical conditions, such as epilepsy, neurodegenerative disorders, obesity with its comorbidities, and sleep disorders, with encouraging results. Therefore, the purpose of this review is to address the primary sleep disorders and their respective standard therapeutic approaches, analyse the effect of ketone bodies (KBs) on sleep homeostasis, and the effects of KD on sleep disorders and in particular on obstructive sleep apnoea (OSA) syndrome. The goal is to summarise the evidence existing up to now on the subject, to provide a starting point for further investigations.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Gabriella Pugliese
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Evelyn Frias-Toral
- Clinical Research Associate Professor for Palliative Care Residency from Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil, Ecuador
| | - Bruno Napolitano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Daniela Laudisio
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Sara Aprano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Florencia Ceriani
- Nutrition School, Universidad de la Republica (UdelaR), Montevideo, Uruguay
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
16
|
The Impact of Time-Restricted Diet on Sleep and Metabolism in Obese Volunteers. ACTA ACUST UNITED AC 2020; 56:medicina56100540. [PMID: 33066554 PMCID: PMC7602198 DOI: 10.3390/medicina56100540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/17/2022]
Abstract
Background and objectives: A time-restricted diet is one of the various ways to improve metabolic condition and weight control. However, until now, there have been few pieces of evidence and research to verify the methods and effectiveness of time-restricted diets on metabolic improvement and health promoting. We designed this study to make a healthy diet program and to verify the effectiveness of a time-restricted diet on general health, including sleep and metabolism, in healthy volunteers. Materials and Methods: This study was conducted in healthy adults who are obese but do not have related metabolic disease. Fifteen participants were recruited. Before and after this program, serologic tests including ketone level, questionnaires-daytime sleepiness evaluation such as the Epworth sleepiness scale and the Stanford sleepiness scale, the Korean version of the Pittsburgh sleep questionnaire index, STOP BANG to evaluate sleep apnea, the Hospital Anxiety and Depression Scale for emotion/sleep-and polysomnography (PSG) were conducted to evaluate the effects on sleep of the program. They were divided into two groups based on ketone levels that could reflect the constancy of participation in this study. We analyzed the before and after results of each group. Results: Fifteen participants (nine males and six females) completed this program without significant adverse events. Body weight after this program decreased to 78.2 ± 14.1 from 82.0 ± 15.6 kg (p = 0.539), and BMI decreased to 27.9 ± 3.8 from 29.3 ± 4.6 kg/m2 (p = 0.233). Weight loss was observed in 14 subjects except 1 participant. The results from questionnaires before and after this were not significant changes. They were classified into high/low-ketone groups according to the ketone level of the participants. In the results of the PSG, the apnea hypopnea index (25.27 ± 12.67→15.11 ± 11.50/hr, p = 0.25) and oxygen desaturation (18.43 ± 12.79→10.69 ± 10.0/hr, p = 0.004), which are indicators of sleep apnea, also improved in the high-ketone group, compared with the low-ketone group. Satisfaction interviews for this restricted diet program showed that 86% of the participants were willing to participate in the same program again. Conclusion: The time-restricted diet was successful in weight loss for a period of 4 weeks in obese participants, which did not affect the efficiency and architecture of sleep. In addition, successful weight loss and significant improvement of sleep apnea were showed in the high-ketone group. Further research is needed to demonstrate mechanisms for weight loss, sleep apnea, and time-restricted diets.
Collapse
|
17
|
Aouizerat BE, Byun E, Pullinger CR, Gay C, Lerdal A, Lee KA. Sleep disruption and duration are associated with variants in genes involved in energy homeostasis in adults with HIV/AIDS. Sleep Med 2020; 82:84-95. [PMID: 33906044 DOI: 10.1016/j.sleep.2020.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine whether selected genes and plasma markers involved in energy homeostasis are associated with sleep disruption or duration in adults with HIV/AIDS. METHODS A sample of 289 adults with HIV/AIDS wore a wrist actigraph for 72 h to estimate total sleep time (TST) and wake after sleep onset (WASO). Twenty-three single nucleotide polymorphisms (SNP) spanning 5 energy homeostasis genes (adiponectin [ADIPOQ], ghrelin [GHRL], leptin [LEP], peroxisome proliferator-activated receptor-alpha [PPARA], and -gamma [PPARG]) were genotyped using a custom array. Plasma markers of energy homeostasis (adiponectin, ghrelin, leptin) were measured by commercial multiplex assay. RESULTS After adjusting for demographic and clinical characteristics (race/ethnicity, gender, CD4 cell count, waist circumference, medications), both WASO and TST were associated with SNPs in ADIPOQ (rs182052), LEP (rs10244329, rs3828942), PPARA (rs135551, rs4253655), and PPARG (rs709151). Additional SNPs in ADIPOQ were associated with WASO (rs1501299, rs3821799, rs6773957) and TST (rs2241766). TST was also associated with SNPs in GHRL (rs26802), LEP (rs11760956), PPARA (rs135547, rs8138102, rs4253776), and PPARG (rs12490265, rs796313). Many covariate-adjusted associations involved a significant interaction with markers of HIV (viral load, years since diagnosis). Among plasma markers, higher adiponectin was associated with less WASO, higher ghrelin and glucose levels with shorter TST, and higher leptin with longer TST. CONCLUSIONS Replication of SNPs in all five genes and three plasma markers of energy homeostasis were associated with objective sleep measures. HIV disease influenced many of the associations. Findings strengthen evidence for associations between energy homeostasis genetics and poor sleep, and provide direction for pharmacological intervention research.
Collapse
Affiliation(s)
- Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, NY, USA; Department of Oral and Maxillofacial Surgery, New York University, NY, USA.
| | - Eeeseung Byun
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA, USA; Department of Physiological Nursing, University of California at San Francisco, San Francisco, CA, USA
| | - Caryl Gay
- Department of Family Health Care Nursing, University of California at San Francisco, San Francisco, CA, USA; Department of Patient Safety and Research, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Anners Lerdal
- Department of Patient Safety and Research, Lovisenberg Diakonale Hospital, Oslo, Norway; Department of Interdisciplinary Health Sciences, Institute of Health and Society, Faculty of Medicine, University of Oslo, Norway
| | - Kathryn A Lee
- Department of Family Health Care Nursing, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Northeast RC, Huang Y, McKillop LE, Bechtold DA, Peirson SN, Piggins HD, Vyazovskiy VV. Sleep homeostasis during daytime food entrainment in mice. Sleep 2020; 42:5536856. [PMID: 31329251 PMCID: PMC6802571 DOI: 10.1093/sleep/zsz157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/27/2019] [Indexed: 02/03/2023] Open
Abstract
Twenty-four hour rhythms of physiology and behavior are driven by the environment and an internal endogenous timing system. Daily restricted feeding (RF) in nocturnal rodents during their inactive phase initiates food anticipatory activity (FAA) and a reorganization of the typical 24-hour sleep-wake structure. Here, we investigate the effects of daytime feeding, where food access was restricted to 4 hours during the light period ZT4-8 (Zeitgeber time; ZT0 is lights on), on sleep-wake architecture and sleep homeostasis in mice. Following 10 days of RF, mice were returned to ad libitum feeding. To mimic the spontaneous wakefulness associated with FAA and daytime feeding, mice were then sleep deprived between ZT3-6. Although the amount of wake increased during FAA and subsequent feeding, total wake time over 24 hours remained stable as the loss of sleep in the light phase was compensated for by an increase in sleep in the dark phase. Interestingly, sleep that followed spontaneous wake episodes during the dark period and the extended period of wake associated with FAA, exhibited lower levels of slow-wave activity (SWA) when compared to baseline or after sleep deprivation, despite a similar duration of waking. This suggests an evolutionary mechanism of reducing sleep drive during negative energy balance to enable greater arousal for food-seeking behaviors. However, the total amount of sleep and SWA accumulated during the 24 hours was similar between baseline and RF. In summary, our study suggests that despite substantial changes in the daily distribution and quality of wake induced by RF, sleep homeostasis is maintained.
Collapse
Affiliation(s)
- Rebecca C Northeast
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford.,Faculty of Biology, Medicine, and Health, University of Manchester, Manchester
| | - Yige Huang
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford
| | - Laura E McKillop
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford
| | - David A Bechtold
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Hugh D Piggins
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford.,Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, United Kingdom
| |
Collapse
|
19
|
Kondo Y, Chikahisa S, Shiuchi T, Shimizu N, Tanioka D, Uguisu H, Séi H. Sleep profile during fasting in PPAR-alpha knockout mice. Physiol Behav 2020; 214:112760. [DOI: 10.1016/j.physbeh.2019.112760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/27/2023]
|
20
|
Mirza R, Sharma B. Benefits of Fenofibrate in prenatal valproic acid-induced autism spectrum disorder related phenotype in rats. Brain Res Bull 2019; 147:36-46. [PMID: 30769127 DOI: 10.1016/j.brainresbull.2019.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with two major behavioral symptoms i.e. repetitive behavior and social-communication impairment. The unknown etiology of ASD is responsible for the difficulty in identifying the possible therapeutic modulators for ASD. Valproic acid (VPA) is an anticonvulsant drug in both human and rodents with teratogenic effects during pregnancy. Therefore, prenatal exposure of VPA induced autism spectrum disorder like phenotypes in both human and rodents. Peroxisome proliferator-activated receptor-alpha (PPAR-α) is widely localized in the brain. This research investigates the utility of fenofibrate, a selective agonist of PPAR-α in prenatal VPA-induced experimental ASD in Wistar rats. The prenatal VPA has induced social impairment (three chambers social behavior apparatus), repetitive behavior (Y-maze), hyperlocomotion (actophotometer), anxiety (elevated plus maze) and low exploratory activity (hole board test). Also, prenatal VPA treated rats have shown higher levels of oxidative stress (increased in thiobarbituric acid reactive species and decreased in reduced glutathione level) and inflammation (increased in interleukin-6, tumor necrosis factor-α and decreased in interleukin-10) in the cerebellum, brainstem and prefrontal cortex. Treatment with fenofibrate significantly attenuated prenatal VPA-induced social impairment, repetitive behavior, hyperactivity, anxiety, and low exploratory activity. Furthermore, fenofibrate also decreased the prenatal VPA-induced oxidative stress and inflammation in brain regions. Hence, it may be concluded that fenofibrate may provide neurobehavioral and biochemical benefits in prenatal VPA-induced autism phenotypes in rats.
Collapse
Affiliation(s)
- Roohi Mirza
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, India; CNS Pharmacology, Conscience Research, Delhi, India.
| |
Collapse
|
21
|
Papandreou C, Camacho-Barcia L, García-Gavilán J, Hansen TT, Hjorth MF, Halford JCG, Salas-Salvadó J, Sjödin A, Bulló M. Circulating metabolites associated with objectively measured sleep duration and sleep variability in overweight/obese participants: a metabolomics approach within the SATIN study. Sleep 2019; 42:5307010. [PMID: 30722060 DOI: 10.1093/sleep/zsz030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/02/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Christopher Papandreou
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Camacho-Barcia
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús García-Gavilán
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Thea Toft Hansen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mads F Hjorth
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Jason C G Halford
- Department of Psychological Sciences, Institute of Psychology Health and Society, University of Liverpool, Liverpool, UK
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mónica Bulló
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Shigiyama F, Kumashiro N, Tsuneoka Y, Igarashi H, Yoshikawa F, Kakehi S, Funato H, Hirose T. Mechanisms of sleep deprivation-induced hepatic steatosis and insulin resistance in mice. Am J Physiol Endocrinol Metab 2018; 315:E848-E858. [PMID: 29989853 DOI: 10.1152/ajpendo.00072.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep deprivation is associated with increased risk for type 2 diabetes mellitus. However, the underlying mechanisms of sleep deprivation-induced glucose intolerance remain elusive. The aim of this study was to investigate the mechanisms of sleep deprivation-induced glucose intolerance in mice with a special focus on the liver. We established a mouse model of sleep deprivation-induced glucose intolerance using C57BL/6J male mice. A single 6-h sleep deprivation by the gentle handling method under fasting condition induced glucose intolerance. Hepatic glucose production assessed by a pyruvate challenge test was significantly increased, as was hepatic triglyceride content (by 67.9%) in the sleep deprivation group, compared with freely sleeping control mice. Metabolome and microarray analyses were used to evaluate hepatic metabolites and gene expression levels and to determine the molecular mechanisms of sleep deprivation-induced hepatic steatosis. Hepatic metabolites, such as acetyl coenzyme A, 3β-hydroxybutyric acid, and certain acylcarnitines, were significantly increased in the sleep deprivation group, suggesting increased lipid oxidation in the liver. In contrast, fasted sleep-deprived mice showed that hepatic gene expression levels of elongation of very long chain fatty acids-like 3, lipin 1, perilipin 4, perilipin 5, and acyl-CoA thioesterase 1, which are known to play lipogenic roles, were 2.7, 4.5, 3.7, 2.9, and 2.8 times, respectively, those of the fasted sleeping control group, as assessed by quantitative RT-PCR. Sleep deprivation-induced hepatic steatosis and hepatic insulin resistance seem to be mediated through upregulation of hepatic lipogenic enzymes.
Collapse
Affiliation(s)
- Fumika Shigiyama
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine , Tokyo , Japan
| | - Naoki Kumashiro
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine , Tokyo , Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Toho University Graduate School of Medicine , Tokyo , Japan
| | - Hiroyuki Igarashi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine , Tokyo , Japan
| | - Fukumi Yoshikawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine , Tokyo , Japan
| | - Saori Kakehi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine , Tokyo , Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Toho University Graduate School of Medicine , Tokyo , Japan
| | - Takahisa Hirose
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine , Tokyo , Japan
| |
Collapse
|
23
|
Sleep, an integrated physiological function of living body. Sleep Biol Rhythms 2018. [DOI: 10.1007/s41105-018-0182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Abstract
PURPOSE OF REVIEW The goal of the present paper is to review current literature supporting the occurrence of fundamental changes in brain energy metabolism during the transition from wakefulness to sleep. RECENT FINDINGS Latest research in the field indicates that glucose utilization and the concentrations of several brain metabolites consistently change across the sleep-wake cycle. Lactate, a product of glycolysis that is involved in synaptic plasticity, has emerged as a good biomarker of brain state. Sleep-induced changes in cerebral metabolite levels result from a shift in oxidative metabolism, which alters the reliance of brain metabolism upon carbohydrates. We found wide support for the notion that brain energetics is state dependent. In particular, fatty acids and ketone bodies partly replace glucose as cerebral energy source during sleep. This mechanism plausibly accounts for increases in biosynthetic pathways and functional alterations in neuronal activity associated with sleep. A better account of brain energy metabolism during sleep might help elucidate the long mysterious restorative effects of sleep for the whole organism.
Collapse
Affiliation(s)
- Nadia Nielsen Aalling
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, 14640, USA
| | - Mauro DiNuzzo
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.
| |
Collapse
|
25
|
Panagiotou M, Meijer JH, Deboer T. Chronic high-caloric diet modifies sleep homeostasis in mice. Eur J Neurosci 2018; 47:1339-1352. [PMID: 29737605 DOI: 10.1111/ejn.13932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022]
Abstract
Obesity prevalence and sleep habit changes are commonplace nowadays, due to modern lifestyle. A bidirectional relationship likely exists between sleep quality and metabolic disruptions, which could impact quality of life. In our study, we investigated the effects of a chronic high-caloric diet on sleep architecture and sleep regulation in mice. We studied the effect of 3 months high-caloric diet (HCD, 45% fat) on sleep and the sleep electroencephalogram (EEG) in C57BL/6J mice during 24-hr baseline (BL) recordings, and after 6-hr sleep deprivation (SD). We examined the effect of HCD on sleep homeostasis, by performing parameter estimation analysis and simulations of the sleep homeostatic Process S, a measure of sleep pressure, which is reflected in the non-rapid-eye-movement (NREM) sleep slow-wave-activity (SWA, EEG power density between 0.5 and 4.0 Hz). Compared to controls (n = 11, 30.7 ± 0.8 g), mice fed with HCD (n = 9, 47.6 ± 0.8 g) showed an increased likelihood of consecutive NREM-REM sleep cycles, increased REM sleep and decreased NREM sleep EEG SWA. After SD, these effects were more pronounced. The simulation resulted in a close fit between the time course of SWA and Process S in both groups. HCD fed mice had a slower time constant (Ti = 15.98 hr) for the increase in homeostatic sleep pressure compared with controls (5.95 hr) indicating a reduced effect of waking on the increase in sleep pressure. Our results suggest that chronic HCD consumption impacts sleep regulation.
Collapse
Affiliation(s)
- Maria Panagiotou
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
26
|
Keeney JTR, Ibrahimi S, Zhao L. Human ApoE Isoforms Differentially Modulate Glucose and Amyloid Metabolic Pathways in Female Brain: Evidence of the Mechanism of Neuroprotection by ApoE2 and Implications for Alzheimer's Disease Prevention and Early Intervention. J Alzheimers Dis 2016; 48:411-24. [PMID: 26402005 DOI: 10.3233/jad-150348] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three major genetic isoforms of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4, exist in humans and lead to differences in susceptibility to Alzheimer's disease (AD). This study investigated the impact of human ApoE isoforms on brain metabolic pathways involved in glucose utilization and amyloid-β (Aβ) degradation, two major areas that are significantly perturbed in preclinical AD. Hippocampal RNA samples from middle-aged female mice with targeted human ApoE2, ApoE3, and ApoE4 gene replacement were comparatively analyzed with a qRT-PCR custom array for the expression of 85 genes involved in insulin/insulin-like growth factor (Igf) signaling. Consistent with its protective role against AD, ApoE2 brain exhibited the most metabolically robust profile among the three ApoE genotypes. When compared to ApoE2 brain, both ApoE3 and ApoE4 brains exhibited markedly reduced levels of Igf1, insulin receptor substrates (Irs), and facilitated glucose transporter 4 (Glut4), indicating reduced glucose uptake. Additionally, ApoE4 brain exhibited significantly decreased Pparg and insulin-degrading enzyme (Ide), indicating further compromised glucose metabolism and Aβ dysregulation associated with ApoE4. Protein analysis showed significantly decreased Igf1, Irs, and Glut4 in ApoE3 brain, and Igf1, Irs, Glut4, Pparg, and Ide in ApoE4 brain compared to ApoE2 brain. These data provide the first documented evidence that human ApoE isoforms differentially affect brain insulin/Igf signaling and downstream glucose and amyloid metabolic pathways, illustrating a potential mechanism for their differential risk in AD. A therapeutic strategy that enhances brain insulin/Igf1 signaling activity to a more robust ApoE2-like phenotype favoring both energy production and amyloid homeostasis holds promise for AD prevention and early intervention.
Collapse
Affiliation(s)
| | - Shaher Ibrahimi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA.,Neuroscience Graduate Program, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
27
|
Sleep as a biological problem: an overview of frontiers in sleep research. J Physiol Sci 2015; 66:1-13. [PMID: 26541158 PMCID: PMC4742504 DOI: 10.1007/s12576-015-0414-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 12/14/2022]
Abstract
Sleep is a physiological process not only for the rest of the body but also for several brain functions such as mood, memory, and consciousness. Nevertheless, the nature and functions of sleep remain largely unknown due to its extremely complicated nature and lack of optimized technology for the experiments. Here we review the recent progress in the biology of the mammalian sleep, which covers a wide range of research areas: the basic knowledge about sleep, the physiology of cerebral cortex in sleeping animals, the detailed morphological features of thalamocortical networks, the mechanisms underlying fluctuating activity of autonomic nervous systems during rapid eye movement sleep, the cutting-edge technology of tissue clearing for visualization of the whole brain, the ketogenesis-mediated homeostatic regulation of sleep, and the forward genetic approach for identification of novel genes involved in sleep. We hope this multifaceted review will be helpful for researchers who are interested in the biology of sleep.
Collapse
|
28
|
Thimgan MS, Seugnet L, Turk J, Shaw PJ. Identification of genes associated with resilience/vulnerability to sleep deprivation and starvation in Drosophila. Sleep 2015; 38:801-14. [PMID: 25409104 DOI: 10.5665/sleep.4680] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND STUDY OBJECTIVES Flies mutant for the canonical clock protein cycle (cyc(01)) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc(01) mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. DESIGN We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc(01) mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. SETTING Laboratory. PATIENTS OR PARTICIPANTS Drosophila melanogaster. INTERVENTIONS Sleep deprivation and starvation. MEASUREMENTS AND RESULTS We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc(01) mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. CONCLUSIONS We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis.
Collapse
Affiliation(s)
- Matthew S Thimgan
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO.,Missouri University of Science and Technology, Department of Biological Sciences, Rolla, MO
| | - Laurent Seugnet
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO.,Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of Arousal Systems Team, Lyon, France
| | - John Turk
- Division of Endocrinology, Diabetes, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Paul J Shaw
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
29
|
Rao MN, Neylan TC, Grunfeld C, Mulligan K, Schambelan M, Schwarz JM. Subchronic sleep restriction causes tissue-specific insulin resistance. J Clin Endocrinol Metab 2015; 100:1664-71. [PMID: 25658017 PMCID: PMC4399283 DOI: 10.1210/jc.2014-3911] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Short sleep duration is associated with an increased risk of type 2 diabetes. Subchronic sleep restriction (SR) causes insulin resistance, but the mechanisms and roles of specific tissues are unclear. OBJECTIVE The purpose of this article was to determine whether subchronic SR altered (1) hepatic insulin sensitivity, (2) peripheral insulin sensitivity, and (3) substrate utilization. DESIGN This was a randomized crossover study in which 14 subjects underwent 2 admissions separated by a washout period. Each admission had 2 acclimatization nights followed by 5 nights of either SR (4 hours time in bed) or normal sleep (8 hours time in bed). MAIN OUTCOME MEASURE/METHODS: Insulin sensitivity (measured by hyperinsulinemic-euglycemic clamp) and hepatic insulin sensitivity (measured by stable isotope techniques) were measured. In addition, we assayed stress hormone (24-hour urine free cortisol, metanephrine, and normetanephrine), nonesterified fatty acid (NEFA), and β-hydroxybutyrate (β-OH butyrate) levels. Resting energy expenditure (REE) and respiratory quotient (RQ) were measured by indirect calorimetry. RESULTS Compared to normal sleep, whole-body insulin sensitivity decreased by 25% (P = .008) with SR and peripheral insulin sensitivity decreased by 29% (P = .003). Whereas hepatic insulin sensitivity (endogenous glucose production) did not change significantly, percent gluconeogenesis increased (P = .03). Stress hormones increased modestly (cortisol by 21%, P = .04; metanephrine by 8%, P = .014; normetanephrine by 18%, P = .002). Fasting NEFA and β-OH butyrate levels increased substantially (62% and 55%, respectively). REE did not change (P = 0.98), but RQ decreased (0.81 ± .02 vs 0.75 ± 0.02, P = .045). CONCLUSION Subchronic SR causes unique metabolic disturbances characterized by peripheral, but not hepatic, insulin resistance; this was associated with a robust increase in fasting NEFA levels (indicative of increased lipolysis), decreased RQ, and increased β-OH butyrate levels (indicative of whole-body and hepatic fat oxidation, respectively). We postulate that elevated NEFA levels are partially responsible for the decrease in peripheral sensitivity and modulation of hepatic metabolism (ie, increase in gluconeogenesis without increase in endogenous glucose production). Elevated cortisol and metanephrine levels may contribute to insulin resistance by increasing lipolysis and NEFA levels.
Collapse
Affiliation(s)
- Madhu N Rao
- San Francisco Veterans Affairs Medical Center (M.N.R., T.C.N., C.G.), San Francisco, California 94121; Department of Medicine (M.N.R., C.G., K.M., M.S., J.-M.S.), Division of Endocrinology and Metabolism and Department of Psychiatry (T.C.N.), University of California, San Francisco, San Francisco, California 94143; and Touro University (J.-M.S.), Vallejo, California 94592
| | | | | | | | | | | |
Collapse
|
30
|
Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt. Proc Natl Acad Sci U S A 2015; 112:2569-74. [PMID: 25675494 DOI: 10.1073/pnas.1417432112] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sleep is an essential biological process that is thought to have a critical role in metabolic regulation. In humans, reduced sleep duration has been associated with risk for metabolic disorders, including weight gain, diabetes, obesity, and cardiovascular disease. However, our understanding of the molecular mechanisms underlying effects of sleep loss is only in its nascent stages. In this study we used rat and human models to simulate modern-day conditions of restricted sleep and addressed cross-species consequences via comprehensive metabolite profiling. Serum from sleep-restricted rats was analyzed using polar and nonpolar methods in two independent datasets (n = 10 per study, 3,380 measured features, 407 identified). A total of 38 features were changed across independent experiments, with the majority classified as lipids (18 from 28 identified). In a parallel human study, 92 metabolites were identified as potentially significant, with the majority also classified as lipids (32 of 37 identified). Intriguingly, two metabolites, oxalic acid and diacylglycerol 36:3, were robustly and quantitatively reduced in both species following sleep restriction, and recovered to near baseline levels after sleep restriction (P < 0.05, false-discovery rate < 0.2). Elevated phospholipids were also noted after sleep restriction in both species, as well as metabolites associated with an oxidizing environment. In addition, polar metabolites reflective of neurotransmitters, vitamin B3, and gut metabolism were elevated in sleep-restricted humans. These results are consistent with induction of peroxisome proliferator-activated receptors and disruptions of the circadian clock. The findings provide a potential link between known pathologies of reduced sleep duration and metabolic dysfunction, and potential biomarkers for sleep loss.
Collapse
|