1
|
Hagena H, Manahan-Vaughan D. Interplay of hippocampal long-term potentiation and long-term depression in enabling memory representations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230229. [PMID: 38853558 PMCID: PMC11343234 DOI: 10.1098/rstb.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Hippocampal long-term potentiation (LTP) and long-term depression (LTD) are Hebbian forms of synaptic plasticity that are widely believed to comprise the physiological correlates of associative learning. They comprise a persistent, input-specific increase or decrease, respectively, in synaptic efficacy that, in rodents, can be followed for days and weeks in vivo. Persistent (>24 h) LTP and LTD exhibit distinct frequency-dependencies and molecular profiles in the hippocampal subfields. Moreover, causal and genetic studies in behaving rodents indicate that both LTP and LTD fulfil specific and complementary roles in the acquisition and retention of spatial memory. LTP is likely to be responsible for the generation of a record of spatial experience, which may serve as an associative schema that can be re-used to expedite or facilitate subsequent learning. In contrast, LTD may enable modification and dynamic updating of this representation, such that detailed spatial content information is included and the schema is rendered unique and distinguishable from other similar representations. Together, LTP and LTD engage in a dynamic interplay that supports the generation of complex associative memories that are resistant to generalization. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Hardy Hagena
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum44780, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum44780, Germany
| |
Collapse
|
2
|
Dolón Vera L, Dietz B, Manahan-Vaughan D. Distal but not local auditory information supports spatial representations by place cells. Cereb Cortex 2024; 34:bhae202. [PMID: 39016432 PMCID: PMC11252853 DOI: 10.1093/cercor/bhae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 07/18/2024] Open
Abstract
Sound is an important navigational cue for mammals. During spatial navigation, hippocampal place cells encode spatial representations of the environment based on visual information, but to what extent audiospatial information can enable reliable place cell mapping is largely unknown. We assessed this by recording from CA1 place cells in the dark, under circumstances where reliable visual, tactile, or olfactory information was unavailable. Male rats were exposed to auditory cues of different frequencies that were delivered from local or distal spatial locations. We observed that distal, but not local cue presentation, enables and supports stable place fields, regardless of the sound frequency used. Our data suggest that a context dependency exists regarding the relevance of auditory information for place field mapping: whereas locally available auditory cues do not serve as a salient spatial basis for the anchoring of place fields, auditory cue localization supports spatial representations by place cells when available in the form of distal information. Furthermore, our results demonstrate that CA1 neurons can effectively use auditory stimuli to generate place fields, and that hippocampal pyramidal neurons are not solely dependent on visual cues for the generation of place field representations based on allocentric reference frames.
Collapse
Affiliation(s)
- Laura Dolón Vera
- Ruhr University Bochum, Medical Faculty, Department of Neurophysiology, Universitätsstrasse 150, MA4/150, Bochum 44780, Germany
- Ruhr University Bochum, International Graduate School of Neuroscience, Universitätsstrasse 150, FNO 01, Bochum 44780, Germany
| | - Birte Dietz
- Ruhr University Bochum, Medical Faculty, Department of Neurophysiology, Universitätsstrasse 150, MA4/150, Bochum 44780, Germany
- Ruhr University Bochum, International Graduate School of Neuroscience, Universitätsstrasse 150, FNO 01, Bochum 44780, Germany
| | - Denise Manahan-Vaughan
- Ruhr University Bochum, Medical Faculty, Department of Neurophysiology, Universitätsstrasse 150, MA4/150, Bochum 44780, Germany
| |
Collapse
|
3
|
Hoang TH, Manahan-Vaughan D. Differentiated somatic gene expression is triggered in the dorsal hippocampus and the anterior retrosplenial cortex by hippocampal synaptic plasticity prompted by spatial content learning. Brain Struct Funct 2024; 229:639-655. [PMID: 37690045 PMCID: PMC10978647 DOI: 10.1007/s00429-023-02694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Hippocampal afferent inputs, terminating on proximal and distal subfields of the cornus ammonis (CA), enable the functional discrimination of 'what' (item identity) and 'where' (spatial location) elements of a spatial representation. This kind of information is supported by structures such as the retrosplenial cortex (RSC). Spatial content learning promotes the expression of hippocampal synaptic plasticity, particularly long-term depression (LTD). In the CA1 region, this is specifically facilitated by the learning of item-place features of a spatial environment. Gene-tagging, by means of time-locked fluorescence in situ hybridization (FISH) to detect nuclear expression of immediate early genes, can reveal neuronal populations that engage in experience-dependent information encoding. In the current study, using FISH, we examined if learning-facilitated LTD results in subfield-specific information encoding in the hippocampus and RSC. Rats engaged in novel exploration of small items during stimulation of Schaffer collateral-CA1 synapses. This resulted in LTD (> 24 h). FISH, to detect nuclear expression of Homer1a, revealed that the distal-CA1 and proximal-CA3 subcompartments were particularly activated by this event. By contrast, all elements of the proximodistal cornus ammonis-axis showed equal nuclear Homer1a expression following LTD induction solely by means of afferent stimulation. The RSC exhibited stronger nuclear Homer1a expression in response to learning-facilitated LTD, and to novel item-place experience, compared to LTD induced by sole afferent stimulation in CA1. These results show that both the cornus ammonis and RSC engage in differentiated information encoding of item-place learning that is salient enough, in its own right, to drive the expression of hippocampal LTD. These results also reveal a novel role of the RSC in item-place learning.
Collapse
Affiliation(s)
- Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany.
| |
Collapse
|
4
|
Avci NB, Cicek Cinar B. Does Hearing Impairment Impact Spatial Orientation, Navigation, and Rotation Abilities? Ann Otol Rhinol Laryngol 2024; 133:330-336. [PMID: 38130098 DOI: 10.1177/00034894231219127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
OBJECTIVES Spatial cognition is a perceptual-motor function that pertains to the comprehension and processing of two-dimensional and three-dimensional space. The impairment of any sensory system can have adverse effects on cognitive functioning. The objective of this study is to examine spatial cognition in adults with hearing impairments. METHODS There were a total of 61 individuals in this study: thirty-six with hearing loss and 25 with normal hearing. The Spatial Orientation Test (SOT), the Mental Rotation test (MR), and the Money's Road Map Test (RMT) were administered to assess participants' spatial learning-orientation, mental imagery-rotation, and spatial navigation abilities. A high number of errors in RMT, high angle difference in SOT and a low score in MR suggest poor spatial abilities. RESULTS Participants with hearing loss had a greater number of RMT errors and SOT angle difference, but lower MR scores than those with normal hearing (P < .001). Hearing impairment negatively impacted all 3 spatial cognitive assessments. Hearing loss was associated with a 6.9 increase in the number of RMT errors (95% Confidence Interval (CI): 4.8, 9), a 23.6 increase in the SOT angle difference (95% CI: 16, 31.2), and an 8.5 decrease in the MR score (95% CI: -10.8, -6.2). CONCLUSIONS The study found that individuals with hearing loss exhibited lower performance in various cognitive tasks related to spatial orientation, navigation, spatial learning, mental imagery, and rotation abilities when compared to an age and sex matched control group. In future study, it is imperative to place greater emphasis on hearing loss as a potential detrimental factor in the prediction of spatial cognition impairment.
Collapse
Affiliation(s)
- Nizamettin Burak Avci
- Department of Audiology, Faculty of Health Sciences, Trakya University, Edirne, Turkiye
| | - Betul Cicek Cinar
- Department of Audiology, Faculty of Health Sciences, Hacettepe University, Ankara, Turkiye
| |
Collapse
|
5
|
Paciello F, Pisani A, Rinaudo M, Cocco S, Paludetti G, Fetoni AR, Grassi C. Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiol Dis 2023; 178:106024. [PMID: 36724860 DOI: 10.1016/j.nbd.2023.106024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
Several studies identified noise-induced hearing loss (NIHL) as a risk factor for sensory aging and cognitive decline processes, including neurodegenerative diseases, such as dementia and age-related hearing loss (ARHL). Although the association between noise- and age-induced hearing impairment has been widely documented by epidemiological and experimental studies, the molecular mechanisms underlying this association are not fully understood as it is not known how these risk factors (aging and noise) can interact, affecting memory processes. We recently found that early noise exposure in an established animal model of ARHL (C57BL/6 mice) accelerates the onset of age-related cochlear dysfunctions. Here, we extended our previous data by investigating what happens in central brain structures (auditory cortex and hippocampus), to assess the relationship between hearing and memory impairment and the possible combined effect of noise and sensory aging on the cognitive domain. To this aim, we exposed juvenile C57BL/6 mice of 2 months of age to repeated noise sessions (60 min/day, pure tone of 100 dB SPL, 10 kHz, 10 consecutive days) and we monitored auditory threshold by measuring auditory brainstem responses (ABR), spatial working memory, by using the Y-maze test, and basal synaptic transmission by using ex vivo electrophysiological recordings, at different time points (1, 4 and 7 months after the onset of noise exposure, corresponding to 3, 6 and 9 months of age). We found that hearing loss, along with accelerated presbycusis onset, can induce persistent synaptic alterations in the auditory cortex. This was associated with decreased memory performance and oxidative-inflammatory injury in the hippocampus, the extra-auditory structure involved in memory processes. Collectively, our data confirm the critical relationship between auditory and memory circuits, suggesting that the combined detrimental effect of noise and sensory aging on hearing function can be considered a high-risk factor for both sensory and cognitive degenerative processes, given that early noise exposure accelerates presbycusis phenotype and induces hippocampal-dependent memory dysfunctions.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Anna Pisani
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Marco Rinaudo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Anna Rita Fetoni
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy; Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
6
|
Paciello F, Ripoli C, Fetoni AR, Grassi C. Redox Imbalance as a Common Pathogenic Factor Linking Hearing Loss and Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12020332. [PMID: 36829891 PMCID: PMC9952092 DOI: 10.3390/antiox12020332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Experimental and clinical data suggest a tight link between hearing and cognitive functions under both physiological and pathological conditions. Indeed, hearing perception requires high-level cognitive processes, and its alterations have been considered a risk factor for cognitive decline. Thus, identifying common pathogenic determinants of hearing loss and neurodegenerative disease is challenging. Here, we focused on redox status imbalance as a possible common pathological mechanism linking hearing and cognitive dysfunctions. Oxidative stress plays a critical role in cochlear damage occurring during aging, as well as in that induced by exogenous factors, including noise. At the same time, increased oxidative stress in medio-temporal brain regions, including the hippocampus, is a hallmark of neurodegenerative disorders like Alzheimer's disease. As such, antioxidant therapy seems to be a promising approach to prevent and/or counteract both sensory and cognitive neurodegeneration. Here, we review experimental evidence suggesting that redox imbalance is a key pathogenetic factor underlying the association between sensorineural hearing loss and neurodegenerative diseases. A greater understanding of the pathophysiological mechanisms shared by these two diseased conditions will hopefully provide relevant information to develop innovative and effective therapeutic strategies.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-0630154966
| | - Anna Rita Fetoni
- Unit of Audiology, Department of Neuroscience, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
7
|
Nasarudeen R, Singh A, Rana ZS, Punnakkal P. Epileptiform activity induced metaplasticity impairs bidirectional plasticity in the hippocampal CA1 synapses via GluN2B NMDA receptors. Exp Brain Res 2022; 240:3339-3349. [DOI: 10.1007/s00221-022-06486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
|
8
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
9
|
Lifelong changes of neurotransmitter receptor expression and debilitation of hippocampal synaptic plasticity following early postnatal blindness. Sci Rep 2022; 12:9142. [PMID: 35650390 PMCID: PMC9160005 DOI: 10.1038/s41598-022-13127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
In the weeks immediately after onset of sensory loss, extensive reorganization of both the cortex and hippocampus occurs. Two fundamental characteristics comprise widespread changes in the relative expression of GABA and glutamate receptors and debilitation of hippocampal synaptic plasticity. Here, we explored whether recovery from adaptive changes in the expression of plasticity-related neurotransmitter receptors and hippocampal synaptic plasticity occurs in the time-period of up to 12 months after onset of sensory loss. We compared receptor expression in CBA/J mice that develop hereditary blindness, with CBA/CaOlaHsd mice that have intact vision and no deficits in other sensory modalities throughout adulthood. GluN1-subunit expression was reduced and the GluN2A:GluN2B ratio was persistently altered in cortex and hippocampus. GABA-receptor expression was decreased and metabotropic glutamate receptor expression was altered. Hippocampal synaptic plasticity was persistently compromised in vivo. But although LTP in blind mice was chronically impaired throughout adulthood, a recovery of the early phase of LTP became apparent when the animals reached 12 months of age. These data show that cortical and hippocampal adaptation to early postnatal blindness progresses into advanced adulthood and is a process that compromises hippocampal function. A partial recovery of hippocampal synaptic plasticity emerges in advanced adulthood, however.
Collapse
|
10
|
Sun W, Li J, Li X, Chen X, Mei Y, Yang Y, An L. Aluminium oxide nanoparticles compromise spatial memory performance and proBDNF-mediated neuronal function in the hippocampus of rats. Part Fibre Toxicol 2022; 19:34. [PMID: 35538555 PMCID: PMC9087928 DOI: 10.1186/s12989-022-00477-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background Alumina nanoparticles (aluminaNPs), which are widely used in a range of daily and medical fields, have been shown to penetrate blood-brain barrier, and distribute and accumulate in different brain areas. Although oral treatment of aluminaNPs induces hippocampus-dependent learning and memory impairments, characteristic effects and exact mechanisms have not been fully elucidated. Here, male adult rats received a single bilateral infusion of aluminaNPs (10 or 20 µg/kg of body weight) into the hippocampal region, and their behavioral performance and neural function were assessed. Results The results indicated that the intra-hippocampus infusions at both doses of aluminaNPs did not cause spatial learning inability but memory deficit in the water maze task. This impairment was attributed to the effects of aluminaNP on memory consolidation phase through activation of proBDNF/RhoA pathway. Inhibition of the increased proBDNF by hippocampal infusions of p75NTR antagonist could effectively rescue the memory impairment. Incubation of aluminaNPs exaggerated GluN2B-dependent LTD induction with no effects on LTD expression in hippocampal slices. AluminaNP could also depress the amplitude of NMDA-GluN2B EPSCs. Meanwhile, increased reactive oxygen specie production was reduced by blocking proBDNF-p75NTR pathway in the hippocampal homogenates. Furthermore, the neuronal correlate of memory behavior was drastically weakened in the aluminaNP-infused groups. The dysfunction of synaptic and neuronal could be obviously mitigated by blocking proBDNF receptor p75NTR, implying the involvement of proBDNF signaling in aluminaNP-impaired memory process. Conclusions Taken together, our findings provide the first evidence that the accumulation of aluminaNPs in the hippocampus exaggeratedly activates proBDNF signaling, which leads to neural and memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Jia Li
- College of Acupuncture and Orthopedics, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Xiao Chen
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Yazi Mei
- Graduate School of Guangzhou, University of Chinese Medicine, Guangzhou, 510006, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China. .,Graduate School of Guangzhou, University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Babushkina N, Manahan-Vaughan D. Frequency-dependency of the involvement of dopamine D1/D5 and beta-adrenergic receptors in hippocampal LTD triggered by locus coeruleus stimulation. Hippocampus 2022; 32:449-465. [PMID: 35478421 DOI: 10.1002/hipo.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
Patterned stimulation of the locus coeruleus (LC, 100 Hz), in conjunction with test-pulse stimulation of hippocampal afferents, results in input-specific long-term depression (LTD) of synaptic plasticity in the hippocampus. Effects are long-lasting and have been described in Schaffer-collateral-CA1 and perforant path-dentate gyrus synapses in behaving rats. To what extent LC-mediated hippocampal LTD (LC-LTD) is frequency-dependent is unclear. Here, we report that LC-LTD can be triggered by LC stimulation with 2 and 5 Hz akin to tonic activity, 10 Hz equivalent to phasic activity, and 100 Hz akin to high-phasic activity in the dentate gyrus (DG) of freely behaving rats. LC-LTD at both 2 and 100 Hz can be significantly prevented by an NMDA receptor antagonist. The LC releases both noradrenaline (NA) and dopamine (DA) from its hippocampal terminals and may also trigger hippocampal DA release by activating the ventral tegmental area (VTA). Unclear is whether both neurotransmitters contribute equally to hippocampal LTD triggered by LC stimulation (LC-LTD). Both DA D1/D5 receptors (D1/D5R) and beta-adrenergic receptors (β-AR) are critically required for hippocampal LTD that is induced by patterned stimulation of hippocampal afferents, or is facilitated by spatial learning. We, therefore, explored to what extent these receptor subtypes mediate frequency-dependent hippocampal LC-LTD. LC-LTD elicited by 2, 5, and 10 Hz stimulation was unaffected by antagonism of β-AR with propranolol, whereas LC-LTD induced by these frequencies was prevented by D1/D5R-antagonism using SCH23390. By contrast, LC-LTD evoked at 100 Hz was prevented by β-AR-antagonism and only mildly affected by D1/D5R-antagonism. Taken together, these findings support that LC-LTD can be triggered by LC activity at a wide range of frequencies. Furthermore, the contribution of D1/D5R and β-AR to hippocampal LTD that is triggered by LC activity is frequency-dependent and suggests that D1/D5R may be involved in LC-mediated hippocampal tonus.
Collapse
Affiliation(s)
- Natalia Babushkina
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Stacho M, Manahan-Vaughan D. The Intriguing Contribution of Hippocampal Long-Term Depression to Spatial Learning and Long-Term Memory. Front Behav Neurosci 2022; 16:806356. [PMID: 35548697 PMCID: PMC9084281 DOI: 10.3389/fnbeh.2022.806356] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) comprise the principal cellular mechanisms that fulfill established criteria for the physiological correlates of learning and memory. Traditionally LTP, that increases synaptic weights, has been ascribed a prominent role in learning and memory whereas LTD, that decreases them, has often been relegated to the category of "counterpart to LTP" that serves to prevent saturation of synapses. In contradiction of these assumptions, studies over the last several years have provided functional evidence for distinct roles of LTD in specific aspects of hippocampus-dependent associative learning and information encoding. Furthermore, evidence of the experience-dependent "pruning" of excitatory synapses, the majority of which are located on dendritic spines, by means of LTD has been provided. In addition, reports exist of the temporal and physical restriction of LTP in dendritic compartments by means of LTD. Here, we discuss the role of LTD and LTP in experience-dependent information encoding based on empirical evidence derived from conjoint behavioral and electrophysiological studies conducted in behaving rodents. We pinpoint the close interrelation between structural modifications of dendritic spines and the occurrence of LTP and LTD. We report on findings that support that whereas LTP serves to acquire the general scheme of a spatial representation, LTD enables retention of content details. We argue that LTD contributes to learning by engaging in a functional interplay with LTP, rather than serving as its simple counterpart, or negator. We propose that similar spatial experiences that share elements of neuronal representations can be modified by means of LTD to enable pattern separation. Therewith, LTD plays a crucial role in the disambiguation of similar spatial representations and the prevention of generalization.
Collapse
|
13
|
Paciello F, Rinaudo M, Longo V, Cocco S, Conforto G, Pisani A, Podda MV, Fetoni AR, Paludetti G, Grassi C. Auditory sensory deprivation induced by noise exposure exacerbates cognitive decline in a mouse model of Alzheimer's disease. eLife 2021; 10:70908. [PMID: 34699347 PMCID: PMC8547960 DOI: 10.7554/elife.70908] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Although association between hearing impairment and dementia has been widely documented by epidemiological studies, the role of auditory sensory deprivation in cognitive decline remains to be fully understood. To address this issue we investigated the impact of hearing loss on the onset and time-course of cognitive decline in an animal model of Alzheimer's disease (AD), that is the 3×Tg-AD mice and the underlying mechanisms. We found that hearing loss induced by noise exposure in the 3×Tg-AD mice before the phenotype is manifested caused persistent synaptic and morphological alterations in the auditory cortex. This was associated with earlier hippocampal dysfunction, increased tau phosphorylation, neuroinflammation, and redox imbalance, along with anticipated memory deficits compared to the expected time-course of the neurodegenerative phenotype. Our data suggest that a mouse model of AD is more vulnerable to central damage induced by hearing loss and shows reduced ability to counteract noise-induced detrimental effects, which accelerates the neurodegenerative disease onset.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Longo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Conforto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Vittoria Podda
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
14
|
Sun W, Cheng H, Yang Y, Tang D, Li X, An L. Requirements of Postnatal proBDNF in the Hippocampus for Spatial Memory Consolidation and Neural Function. Front Cell Dev Biol 2021; 9:678182. [PMID: 34336832 PMCID: PMC8319730 DOI: 10.3389/fcell.2021.678182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Mature brain-derived neurotrophic factor (BDNF) and its downstream signaling pathways have been implicated in regulating postnatal development and functioning of rodent brain. However, the biological role of its precursor pro-brain-derived neurotrophic factor (proBDNF) in the postnatal brain remains unknown. The expression of hippocampal proBDNF was blocked in postnatal weeks, and multiple behavioral tests, Western blot and morphological techniques, and neural recordings were employed to investigate how proBDNF played a role in spatial cognition in adults. The peak expression and its crucial effects were found in the fourth but not in the second or eighth postnatal week. Blocking proBDNF expression disrupted spatial memory consolidation rather than learning or memory retrieval. Structurally, blocking proBDNF led to the reduction in spine density and proportion of mature spines. Although blocking proBDNF did not affect N-methyl-D-aspartate (NMDA) receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, the learning-induced phosphorylation of the GluN2B subunit level declined significantly. Functionally, paired-pulse facilitation, post-low-frequency stimulation (LFS) transiently enhanced depression, and GluN2B-dependent short-lasting long-term depression in the Schaffer collateral-CA1 pathway were weakened. The firing rate of pyramidal neurons was significantly suppressed around the target region during the memory test. Furthermore, the activation of GluN2B-mediated signaling could effectively facilitate neural function and mitigate memory impairment. The findings were consistent with the hypothesis that postnatal proBDNF played an essential role in synaptic and cognitive functions.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hong Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaolian Li
- Department of Neurology, Jinan Geriatric Hospital, Jinan, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
15
|
Collitti-Klausnitzer J, Hagena H, Dubovyk V, Manahan-Vaughan D. Preferential frequency-dependent induction of synaptic depression by the lateral perforant path and of synaptic potentiation by the medial perforant path inputs to the dentate gyrus. Hippocampus 2021; 31:957-981. [PMID: 34002905 DOI: 10.1002/hipo.23338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
The encoding of spatial representations is enabled by synaptic plasticity. The entorhinal cortex sends information to the hippocampus via the lateral (LPP) and medial perforant (MPP) paths that transfer egocentric item-related and allocentric spatial information, respectively. To what extent LPP and MPP information-relay results in different homosynaptic synaptic plasticity responses is unclear. We examined the frequency dependency (at 1, 5, 10, 50, 100, 200 Hz) of long-term potentiation (LTP) and long-term depression (LTD) at MPP and LPP synapses in the dentate gyrus (DG) of freely behaving adult rats. We report that whereas the MPP-DG synapses exhibit a predisposition toward the expression of LTP, LPP-DG synapses prefer to express synaptic depression. The divergence of synaptic plasticity responses is most prominent at afferent frequencies of 5, 100, Hz and 200 Hz. Priming with 10 or 50 Hz significantly modified the subsequent plasticity response in a frequency-dependent manner, but failed to change the preferred direction of change in synaptic strength of MPP and LPP synapses. Evaluation of the expression of GluN1, GluN2A, or GluN2B subunits of the NMDA receptor revealed equivalent expression in the outer and middle thirds of the molecular layer where LPP and MPP inputs convene, respectively, thus excluding NMDA receptors as a substrate for the frequency-dependent differences in bidirectional plasticity. These findings demonstrate that the LPP and MPP inputs to the DG enable differentiated and distinct forms of synaptic plasticity in response to the same afferent frequencies. Effects are extremely robust and resilient to metaplastic priming. These properties may support the functional differentiation of allocentric and item information provided to the DG by the MPP and LPP, respectively, that has been proposed by others. We propose that allocentric spatial information, conveyed by the MPP is encoded through hippocampal LTP in a designated synaptic network. This network is refined and optimized to include egocentric contextual information through LTD triggered by LPP inputs.
Collapse
Affiliation(s)
| | - Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Germany
| | - Valentyna Dubovyk
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Germany
| | | |
Collapse
|
16
|
Hoang TH, Böge J, Manahan-Vaughan D. Hippocampal subfield-specific Homer1a expression is triggered by learning-facilitated long-term potentiation and long-term depression at medial perforant path synapses. Hippocampus 2021; 31:897-915. [PMID: 33964041 DOI: 10.1002/hipo.23333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/22/2021] [Accepted: 04/11/2021] [Indexed: 12/23/2022]
Abstract
Learning about general aspects, or content details, of space results in differentiated neuronal information encoding within the proximodistal axis of the hippocampus. These processes are tightly linked to long-term potentiation (LTP) and long-term depression (LTD). Here, we explored the precise sites of encoding of synaptic plasticity in the hippocampus that are mediated by information throughput from the perforant path. We assessed nuclear Homer1a-expression that was triggered by electrophysiological induction of short and long forms of hippocampal synaptic plasticity, and compared it to Homer1a-expression that was triggered by LTP and LTD enabled by different forms of spatial learning. Plasticity responses were induced by patterned stimulation of the perforant path and were recorded in the dentate gyrus (DG) of freely behaving rats. We used fluorescence in situ hybridization to detect experience-dependent nuclear encoding of Homer1a in proximodistal hippocampal subfields. Induction of neither STP nor STD resulted in immediate early gene (IEG) encoding. Electrophysiological induction of robust LTP, or LTD, resulted in highly significant and widespread induction of nuclear Homer1a in all hippocampal subfields. LTP that was facilitated by novel spatial exploration triggered similar widespread Homer1a-expression. The coupling of synaptic depression with the exploration of a novel configuration of landmarks resulted in localized IEG expression in the proximal CA3 region and the lower (infrapyramidal) blade of the DG. Our findings support that synaptic plasticity induction via perforant path inputs promotes widespread hippocampal information encoding. Furthermore, novel spatial exploration promotes the selection of a hippocampal neuronal network by means of LTP that is distributed in an experience-dependent manner across all hippocampus subfields. This network may be modified during spatial content learning by LTD in specific hippocampal subfields. Thus, long-term plasticity-inducing events result in IEG expression that supports establishment and/or restructuring of neuronal networks that are necessary for long-term information storage.
Collapse
Affiliation(s)
- Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Juliane Böge
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
17
|
Reset of hippocampal-prefrontal circuitry facilitates learning. Nature 2021; 591:615-619. [PMID: 33627872 PMCID: PMC7990705 DOI: 10.1038/s41586-021-03272-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The ability to rapidly adapt to novel situations is essential for survival, and this flexibility is impaired in many neuropsychiatric disorders1. Thus, understanding whether and how novelty prepares, or primes, brain circuitry to facilitate cognitive flexibility has important translational relevance. Exposure to novelty recruits the hippocampus and medial prefrontal cortex (mPFC)2 and may prime hippocampal-prefrontal circuitry for subsequent learning-associated plasticity. Here we show that novelty resets the neural circuits that link the ventral hippocampus (vHPC) and the mPFC, facilitating the ability to overcome an established strategy. Exposing mice to novelty disrupted a previously encoded strategy by reorganizing vHPC activity to local theta (4-12 Hz) oscillations and weakening existing vHPC-mPFC connectivity. As mice subsequently adapted to a new task, vHPC neurons developed new task-associated activity, vHPC-mPFC connectivity was strengthened, and mPFC neurons updated to encode the new rules. Without novelty, however, mice adhered to their established strategy. Blocking dopamine D1 receptors (D1Rs) or inhibiting novelty-tagged cells that express D1Rs in the vHPC prevented these behavioural and physiological effects of novelty. Furthermore, activation of D1Rs mimicked the effects of novelty. These results suggest that novelty promotes adaptive learning by D1R-mediated resetting of vHPC-mPFC circuitry, thereby enabling subsequent learning-associated circuit plasticity.
Collapse
|
18
|
Sun W, Wu Y, Tang D, Li X, An L. Melamine disrupts spatial reversal learning and learning strategy via inhibiting hippocampal BDNF-mediated neural activity. PLoS One 2021; 16:e0245326. [PMID: 33428671 PMCID: PMC7799824 DOI: 10.1371/journal.pone.0245326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Although several studies showed adverse neurotoxic effects of melamine on hippocampus (HPC)-dependent learning and reversal learning, the evidence for this mechanism is still unknown. We recently demonstrated that intra-hippocampal melamine injection affected the induction of long-term depression, which is associated with novelty acquisition and memory consolidation. Here, we infused melamine into the HPC of rats, and employed behavioral tests, immunoblotting, immunocytochemistry and electrophysiological methods to sought evidence for its effects on cognitive flexibility. Rats with intra-hippocampal infusion of melamine displayed dose-dependent increase in trials to the criterion in reversal learning, with no locomotion or motivation defect. Compared with controls, melamine-treated rats avoided HPC-dependent place strategy. Meanwhile, the learning-induced BDNF level in the HPC neurons was significantly reduced. Importantly, bilateral intra-hippocampal BDNF infusion could effectively mitigate the suppressive effects of melamine on neural correlate with reversal performance, and rescue the strategy bias and reversal learning deficits. Our findings provide first evidence for the effect of melamine on cognitive flexibility and suggest that the reversal learning deficit is due to the inability to use place strategy. Furthermore, the suppressive effects of melamine on BDNF-mediated neural activity could be the mechanism, thus advancing the understanding of compulsive behavior in melamine-induced and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yuanhua Wu
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Hospital, Jinan, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
19
|
Qian ZJ, Ricci AJ. Effects of cochlear hair cell ablation on spatial learning/memory. Sci Rep 2020; 10:20687. [PMID: 33244175 PMCID: PMC7692547 DOI: 10.1038/s41598-020-77803-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Current clinical interest lies in the relationship between hearing loss and cognitive impairment. Previous work demonstrated that noise exposure, a common cause of sensorineural hearing loss (SNHL), leads to cognitive impairments in mice. However, in noise-induced models, it is difficult to distinguish the effects of noise trauma from subsequent SNHL on central processes. Here, we use cochlear hair cell ablation to isolate the effects of SNHL. Cochlear hair cells were conditionally and selectively ablated in mature, transgenic mice where the human diphtheria toxin (DT) receptor was expressed behind the hair-cell specific Pou4f3 promoter. Due to higher Pou4f3 expression in cochlear hair cells than vestibular hair cells, administration of a low dose of DT caused profound SNHL without vestibular dysfunction and had no effect on wild-type (WT) littermates. Spatial learning/memory was assayed using an automated radial 8-arm maze (RAM), where mice were trained to find food rewards over a 14-day period. The number of working memory errors (WME) and reference memory errors (RME) per training day were recorded. All animals were injected with DT during P30-60 and underwent the RAM assay during P90-120. SNHL animals committed more WME and RME than WT animals, demonstrating that isolated SNHL affected cognitive function. Duration of SNHL (60 versus 90 days post DT injection) had no effect on RAM performance. However, younger age of acquired SNHL (DT on P30 versus P60) was associated with fewer WME. This describes the previously undocumented effect of isolated SNHL on cognitive processes that do not directly rely on auditory sensory input.
Collapse
MESH Headings
- Animals
- Cognition/physiology
- Deafness/metabolism
- Deafness/physiopathology
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/physiology
- Hair Cells, Vestibular/metabolism
- Hair Cells, Vestibular/physiology
- Hearing/physiology
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/physiopathology
- Heparin-binding EGF-like Growth Factor/metabolism
- Memory/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Noise
- Spatial Learning/physiology
- Transcription Factor Brn-3C/metabolism
Collapse
Affiliation(s)
- Z Jason Qian
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, 240 Pasteur Drive, Biomedical Innovations Building, R0551, Palo Alto, CA, 94304, USA
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, 240 Pasteur Drive, Biomedical Innovations Building, R0551, Palo Alto, CA, 94304, USA.
| |
Collapse
|
20
|
Sethumadhavan N, Hoang TH, Strauch C, Manahan-Vaughan D. Involvement of the Postrhinal and Perirhinal Cortices in Microscale and Macroscale Visuospatial Information Encoding. Front Behav Neurosci 2020; 14:556645. [PMID: 33192363 PMCID: PMC7584114 DOI: 10.3389/fnbeh.2020.556645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022] Open
Abstract
Whereas the postrhinal cortex (POR) is a critical center for the integration of egocentric and allocentric spatial information, the perirhinal cortex (PRC) plays an important role in the encoding of objects that supports spatial learning. The POR and PRC send afferents to the hippocampus, a structure that builds complex associative memories from the spatial experience. Hippocampal encoding of item-place experience is accompanied by the nuclear expression of immediate early gene (IEGs). Subfields of the Cornus ammonius and subregions of the hippocampus exhibit differentiated and distinct encoding responses, depending on whether the spatial location and relationships of large highly visible items (macroscale encoding) or small partially concealed items (microscale encoding), is learned. But to what extent the PRC and POR support hippocampal processing of different kinds of item-place representations is unclear. Using fluorescence in situ hybridization (FISH), we examined the effect of macroscale (overt, landmark) and microscale (subtle, discrete) item-place learning on the nuclear expression of the IEG, Arc. We observed an increase in Arc mRNA in the caudal part of PRC area 35 and the caudal part of the POR after macroscale, but not microscale item-place learning. The caudal part of PRC area 36, the rostral and middle parts of PRC areas 35 and 36, as well as the middle part of the POR responded to neither type of item. These results suggest that macroscale items may contain a strong identity component that is processed by specific compartments of the PRC and POR. In contrast small, microscale items are not encoded by the POR or PRC, indicating that item dimensions may play a role in the involvement of these structures in item processing.
Collapse
Affiliation(s)
- Nithya Sethumadhavan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Thu-Huong Hoang
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christina Strauch
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
21
|
Abstract
Based on the analysis of literature, the authors describe the neuropathophysiological mechanism of the formation of synapses, synaptic transmission and plasticity, which may underlie the pathogenesis of autism. The results of some studies confirm the involvement of aberrant expression of genes and proteins of synaptic contacts, cell adhesion molecules p120ctn, CNTN5, CNTN6, activation of NMDA glutamate, TrkB, p75 receptors, Ca2+-input, BDNF, serotonin and testosterone. This leads to an imbalance in the exciting, inhibitory synaptic transmission and forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD) at the level of individual neurons and their chains due to suppression of GABA synthesis, expression of its ionotropic and metabotropic receptors, G proteins, NGF, TrkA receptors, a reduction in the number of GABAergic neurons, their contacts and disruption of differentiation. The pathology of the nuclei of the thalamus, especially the reticular nucleus (RN), is associated with a disturbance of the expression of the subunits of metabotropic GABAβ receptors, Ca2+ channels, GABA excretion and the work of chlorine transmitters. These failures do not ensure the inhibitory effect of OC on the exciting associative and ventral nuclei of the thalamus, nor modify the incoming information to the cerebral cortex (CC) from these thalamus nuclei, the dentate gyrus of the hippocampus and the nuclei of the reticular formation. Information propagating into the somatosensory and associative regions of CC is not modified by mirror neurons (MN) when performing arbitrary actions, which prevents the formation of an adequate image in the neural networks of the associative cortex and promotes the development of hyperexcitability, irritability, increased visual and auditory sensitivity, anxiety, and the ability to form a holistic image based on the actions of other people.
Collapse
Affiliation(s)
- A N Chernov
- Almazov National Medical Research Center of the Ministry of Health of Russia, St. Petersburg, Russia
| |
Collapse
|
22
|
Feldmann M, Beckmann D, Eysel UT, Manahan-Vaughan D. Early Loss of Vision Results in Extensive Reorganization of Plasticity-Related Receptors and Alterations in Hippocampal Function That Extend Through Adulthood. Cereb Cortex 2020; 29:892-905. [PMID: 30535137 PMCID: PMC6319173 DOI: 10.1093/cercor/bhy297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/07/2018] [Indexed: 11/15/2022] Open
Abstract
Although by adulthood cortical structures and their capacity for processing sensory information have become established and stabilized, under conditions of cortical injury, or sensory deprivation, rapid reorganization occurs. Little is known as to the impact of this kind of adaptation on cellular processes related to memory encoding. However, imaging studies in humans suggest that following loss or impairment of a sensory modality, not only cortical but also subcortical structures begin to reorganize. It is likely that these processes are supported by neurotransmitter receptors that enable synaptic and cortical plasticity. Here, we explored to what extent the expression of plasticity-related proteins (GABA-A, GABA-B, GluN1, GluN2A, GluN2B) is altered following early vision loss, and whether this impacts on hippocampal function. We observed that in the period of 2-4 months postnatally in CBA/J-mice that experience hereditary postnatal retinal degeneration, systematic changes of GABA-receptor and NMDA-receptor subunit expression occurred that emerged first in the hippocampus and developed later in the cortex, compared to control mice that had normal vision. Changes were accompanied by significant impairments in hippocampal long-term potentiation and hippocampus-dependent learning. These data indicate that during cortical adaptation to early loss of vision, hippocampal information processing is compromised, and this status impacts on the acquisition of spatial representations.
Collapse
Affiliation(s)
- Mirko Feldmann
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Daniela Beckmann
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Ulf T Eysel
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
23
|
Beckmann D, Feldmann M, Shchyglo O, Manahan-Vaughan D. Hippocampal Synaptic Plasticity, Spatial Memory, and Neurotransmitter Receptor Expression Are Profoundly Altered by Gradual Loss of Hearing Ability. Cereb Cortex 2020; 30:4581-4596. [PMID: 32202614 PMCID: PMC7325716 DOI: 10.1093/cercor/bhaa061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/20/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
Sensory information comprises the substrate from which memories are created. Memories of spatial sensory experience are encoded by means of synaptic plasticity in the hippocampus. Hippocampal dependency on sensory information is highlighted by the fact that sudden and complete loss of a sensory modality results in an impairment of hippocampal function that persists for months. Effects are accompanied by extensive changes in the expression of neurotransmitter receptors in cortex and hippocampus, consistent with a substantial adaptive reorganization of cortical function. Whether gradual sensory loss affects hippocampal function is unclear. Progressive age-dependent hearing loss (presbycusis) is a risk factor for cognitive decline. Here, we scrutinized C57BL/6 mice that experience hereditary and cumulative deafness starting in young adulthood. We observed that 2–4 months postnatally, increases in the cortical and hippocampal expression of GluN2A and GluN2B subunits of the N-methyl-D-aspartate receptor occurred compared to control mice that lack sensory deficits. Furthermore, GABA and metabotropic glutamate receptor expression were significantly altered. Hippocampal synaptic plasticity was profoundly impaired and mice exhibited significant deficits in spatial memory. These data show that during cortical adaptation to cumulative loss of hearing, plasticity-related neurotransmitter expression is extensively altered in the cortex and hippocampus. Furthermore, cumulative sensory loss compromises hippocampal function.
Collapse
Affiliation(s)
- Daniela Beckmann
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum 44780, Germany
| | - Mirko Feldmann
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum 44780, Germany
| | - Olena Shchyglo
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum 44780, Germany
| |
Collapse
|
24
|
Strauch C, Manahan-Vaughan D. Orchestration of Hippocampal Information Encoding by the Piriform Cortex. Cereb Cortex 2020; 30:135-147. [PMID: 31220213 PMCID: PMC7029697 DOI: 10.1093/cercor/bhz077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 01/03/2023] Open
Abstract
The hippocampus utilizes olfactospatial information to encode sensory experience by means of synaptic plasticity. Odor exposure is also a potent impetus for hippocampus-dependent memory retrieval. Here, we explored to what extent the piriform cortex directly impacts upon hippocampal information processing and storage. In behaving rats, test-pulse stimulation of the anterior piriform cortex (aPC) evoked field potentials in the dentate gyrus (DG). Patterned stimulation of the aPC triggered both long-term potentiation (LTP > 24 h) and short-term depression (STD), in a frequency-dependent manner. Dual stimulation of the aPC and perforant path demonstrated subordination of the aPC response, which was nonetheless completely distinct in profile to perforant path-induced DG plasticity. Correspondingly, patterned aPC stimulation resulted in somatic immediate early gene expression in the DG that did not overlap with responses elicited by perforant path stimulation. Our results support that the piriform cortex engages in specific control of hippocampal information processing and encoding. This process may underlie the unique role of olfactory cues in information encoding and retrieval of hippocampus-dependent associative memories.
Collapse
Affiliation(s)
- Christina Strauch
- Department of Neurophysiology, Medical Faculty
- International Graduate School for Neuroscience, Ruhr University Bochum, Universitaetsstr. Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty
- International Graduate School for Neuroscience, Ruhr University Bochum, Universitaetsstr. Bochum, Germany
| |
Collapse
|
25
|
Wang J, Kou XL, Chen C, Wang M, Qi C, Wang J, You WY, Hu G, Chen J, Gao J. Hippocampal Wdr1 Deficit Impairs Learning and Memory by Perturbing F-actin Depolymerization in Mice. Cereb Cortex 2019; 29:4194-4207. [PMID: 30590446 DOI: 10.1093/cercor/bhy301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
WD repeat protein 1 (Wdr1), known as a cofactor of actin-depolymerizing factor (ADF)/cofilin, is conserved among eukaryotes, and it plays a critical role in the dynamic reorganization of the actin cytoskeleton. However, the function of Wdr1 in the central nervous system remains elusive. Using Wdr1 conditional knockout mice, we demonstrated that Wdr1 plays a significant role in regulating synaptic plasticity and memory. The knockout mice exhibited altered reversal spatial learning and fear responses. Moreover, the Wdr1 CKO mice showed significant abnormalities in spine morphology and synaptic function, including enhanced hippocampal long-term potentiation and impaired long-term depression. Furthermore, we observed that Wdr1 deficiency perturbed actin rearrangement through regulation of the ADF/cofilin activity. Taken together, these results indicate that Wdr1 in the hippocampal CA1 area plays a critical role in actin dynamics in associative learning and postsynaptic receptor availability.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Xiao-Lin Kou
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Chen
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mei Wang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cui Qi
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Jing Wang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Wei-Yan You
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gang Hu
- Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Jiong Chen
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Nanjing, China
| | - Jun Gao
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Huang X, Wang M, Zhang Q, Chen X, Wu J. The role of glutamate receptors in attention-deficit/hyperactivity disorder: From physiology to disease. Am J Med Genet B Neuropsychiatr Genet 2019; 180:272-286. [PMID: 30953404 DOI: 10.1002/ajmg.b.32726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is the most common psychiatric disorder in children and adolescents, which is characterized by behavioral problems such as attention deficit, hyperactivity, and impulsivity. As the receptors of the major excitatory neurotransmitter in the mammalian central nervous system (CNS), glutamate receptors (GluRs) are strongly linked to normal brain functioning and pathological processes. Extensive investigations have been made about the structure, function, and regulation of GluR family, describing evidences that support the disruption of these mechanisms in mental disorders, including ADHD. In this review, we briefly described the family and function of GluRs in the CNS, and discussed what is recently known about the role of GluRs in ADHD, that including GluR genes, animal models, and the treatment, which would help us further elucidate the etiology of ADHD.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Wang J, Xie R, Kou X, Liu Y, Qi C, Liu R, You W, Gao J, Gao X. A protein phosphatase 2A deficit in the hippocampal CA1 area impairs memory extinction. Mol Brain 2019; 12:51. [PMID: 31113458 PMCID: PMC6528246 DOI: 10.1186/s13041-019-0469-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/30/2019] [Indexed: 01/17/2023] Open
Abstract
Protein phosphorylation plays an important role in learning and memory. Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase involved in the regulation of neural synaptic plasticity. Here, to determine if PP2A is necessary for successful learning and memory, we have utilized a Tg (Camk2a-cre) T29–2Stl mice to specific knock down the expression of hippocampal PP2A in mice. By analysing behavioural, we observed that loss of PP2A in the hippocampal CA1 area did not affect the formation of memory but impaired contextual fear memory extinction. We use the electrophysiological recording to find the synaptic mechanisms. The results showed that the basic synapse transmission and synaptic plasticity of PP2A conditional knockout (CKO) mice were impaired. Moreover, PP2A CKO mice exhibited a saturating long-term potentiation inducted by strong theta burst stimulation but no depotentiation after low-frequency stimulation. Taken together, our results provide the evidence that PP2A is involved in synaptic transmission and hippocampus-dependent memory extinction.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurobiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ran Xie
- Department of Neurobiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xiaolin Kou
- Department of Neurobiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yu Liu
- Department of Neurobiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Cui Qi
- Department of Neurobiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Rui Liu
- Department of Neurobiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Weiyan You
- Department of Neurobiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jun Gao
- Department of Neurobiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Xiang Gao
- Model Animal Research Center and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
28
|
Morató X, Luján R, Gonçalves N, Watanabe M, Altafaj X, Carvalho AL, Fernández-Dueñas V, Cunha RA, Ciruela F. Metabotropic glutamate type 5 receptor requires contactin-associated protein 1 to control memory formation. Hum Mol Genet 2019; 27:3528-3541. [PMID: 30010864 DOI: 10.1093/hmg/ddy264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022] Open
Abstract
The hippocampus is a key brain region for memory formation. Metabotropic glutamate type 5 receptors (mGlu5R) are strongly expressed in CA1 pyramidal neurons and fine-tune synaptic plasticity. Accordingly, mGlu5R pharmacological manipulation may represent an attractive therapeutic strategy to manage hippocampal-related neurological disorders. Here, by means of a membrane yeast two-hybrid screening, we identified contactin-associated protein 1 (Caspr1), a type I transmembrane protein member of the neurexin family, as a new mGlu5R partner. We report that mGlu5R and Caspr1 co-distribute and co-assemble both in heterologous expression systems and in rat brain. Furthermore, downregulation of Caspr1 in rat hippocampal primary cultures decreased mGlu5R-mediated signaling. Finally, silencing Caspr1 expression in the hippocampus impaired the impact of mGlu5R on spatial memory. Our results indicate that Caspr1 plays a pivotal role controlling mGlu5R function in hippocampus-dependent memory formation. Hence, this new protein-protein interaction may represent novel target for neurological disorders affecting hippocampal glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Xavier Morató
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Luján
- IDINE, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | - Nélio Gonçalves
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Xavier Altafaj
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Ana Luísa Carvalho
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rodrigo A Cunha
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Neyman S, Braunewell KH, O'Connell KE, Dev KK, Manahan-Vaughan D. Inhibition of the Interaction Between Group I Metabotropic Glutamate Receptors and PDZ-Domain Proteins Prevents Hippocampal Long-Term Depression, but Not Long-Term Potentiation. Front Synaptic Neurosci 2019; 11:13. [PMID: 31057390 PMCID: PMC6482240 DOI: 10.3389/fnsyn.2019.00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/04/2019] [Indexed: 01/07/2023] Open
Abstract
The group I metabotropic glutamate (mGlu) receptor subtypes, mGlu1 and mGlu5, strongly regulate hippocampal synaptic plasticity. Both harbor PSD-95/discs-large/ZO-1 (PDZ) motifs at their extreme carboxyl terminals, which allow interaction with the PDZ domain of Tamalin, regulate the cell surface expression of group I mGlu receptors, and may modulate their coupling to signaling proteins. We investigated the functional role of this interaction in hippocampal long-term depression (LTD). Acute intracerebral treatment of adult rats with a cell-permeable PDZ-blocking peptide (pep-mGluR-STL), designed to competitively inhibit the interaction between Tamalin and group 1 mGlu receptors, prevented expression of LTD in the hippocampal CA1 region without affecting long-term potentiation (LTP) or basal synaptic transmission. Pep-mGluR-STL prevented facilitation by the group I mGlu receptor agonist, (S)-3,5-Dihydroxyphenylglycine (DHPG), and the mGlu5 agonist, (R,S)-2-chloro-5-Hydroxyphenylglycine (CHPG), of short-term depression (STD) into LTD, suggesting that Tamalin preferentially acts by mediating signaling through mGlu5. These data support that Tamalin is essential for the persistent expression of LTD and that it subserves the effective signaling of group 1 mGlu receptors.
Collapse
Affiliation(s)
- Sergey Neyman
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Karl-Heinz Braunewell
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Kara E O'Connell
- Drug Development, School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
30
|
O'Reilly KC, Perica MI, Fenton AA. Synaptic plasticity/dysplasticity, process memory and item memory in rodent models of mental dysfunction. Schizophr Res 2019; 207:22-36. [PMID: 30174252 PMCID: PMC6395534 DOI: 10.1016/j.schres.2018.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022]
Abstract
Activity-dependent changes in the effective connection strength of synapses are a fundamental feature of a nervous system. This so-called synaptic plasticity is thought to underlie storage of information in memory and has been hypothesized to be crucial for the effects of cognitive behavioral therapy. Synaptic plasticity stores information in a neural network, creating a trace of neural activity from past experience. The plasticity can also change the behavior of the network so the network can differentially transform/compute information in future activations. We discuss these two related but separable functions of synaptic plasticity; one we call "item memory" as it represents and stores items of information in memory, the other we call "process memory" as it encodes and stores functions such as computations to modify network information processing capabilities. We review evidence of item and process memory operations in behavior and evidence that experience modifies the brain's functional networks. We discuss neurodevelopmental rodent models relevant for understanding mental illness and compare two models in which one model, neonatal ventral hippocampal lesion (NVHL) has beneficial adult outcomes after being exposed to an adolescent cognitive experience that is potentially similar to cognitive behavioral therapy. The other model, gestational day 17 methylazoxymethanol acetate (GD17-MAM), does not benefit from the same adolescent cognitive experience. We propose that process memory is altered by early cognitive experience in NVHL rats but not in GD17-MAM rats, and discuss how dysplasticity factors may contribute to the differential adult outcomes after early cognitive experience in the NVHL and MAM models.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Maria I Perica
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - André A Fenton
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute at the New York University Langone Medical Center, New York, NY 10016, USA; Department of Physiology & Pharmacology, Robert F. Furchgott Center for Neuroscience, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
31
|
Lim J, Kim E, Noh HJ, Kang S, Phillips BU, Kim DG, Bussey TJ, Saksida L, Heath CJ, Kim CH. Assessment of mGluR5 KO mice under conditions of low stress using a rodent touchscreen apparatus reveals impaired behavioural flexibility driven by perseverative responses. Mol Brain 2019; 12:37. [PMID: 30971312 PMCID: PMC6458840 DOI: 10.1186/s13041-019-0441-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and pharmacological manipulations targeting metabotropic glutamate receptor 5 (mGluR5) affect performance in behavioural paradigms that depend on cognitive flexibility. Many of these studies involved exposing mice to highly stressful conditions including electric foot shocks or water immersion and forced swimming. Because mGluR5 is also implicated in resilience and stress responses, however, apparent impairments in inhibitory learning may have been an artifact of manipulation-induced changes in affective state. To address this, we present here a characterization of cognitive flexibility in mGluR5 knockout (KO) mice conducted with a rodent touchscreen cognitive assessment apparatus in which the animals experience significantly less stress. Our results indicate a significant reversal learning impairment relative to wild-type (WT) controls in the two-choice Visual Discrimination-Reversal (VDR) paradigm. Upon further analysis, we found that this deficit is primarily driven by a prolonged period of perseveration in the early phase of reversal. We also observed a similar perseveration phenotype in the KO mice in the Extinction (EXT) paradigm. In addition, mGluR5 KO mice show higher breakpoints in the touchscreen Progressive Ratio (PR) and altered decision making in the Effort-related Choice (ERC) tasks. Interestingly, this impairment in PR is an additional manifestation of an increased propensity to perseverate on the emission of relatively simplistic behavioural outputs. Together, these findings suggest that under conditions of low stress, mGluR5 KO mice exhibit a pronounced perseverative phenotype that blunts cognitive flexibility.
Collapse
Affiliation(s)
- Jisoo Lim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioural Science in Medicine, BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyun Jong Noh
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Shinwon Kang
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Benjamin U Phillips
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Dong Goo Kim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,Molecular Medicine Research Laboratories, Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Brain and Mind Institute, Western University, London, ON, Canada
| | - Lisa Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,Molecular Medicine Research Laboratories, Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Brain and Mind Institute, Western University, London, ON, Canada
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - Chul Hoon Kim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
32
|
Cellular and Molecular Differences Between Area CA1 and the Dentate Gyrus of the Hippocampus. Mol Neurobiol 2019; 56:6566-6580. [PMID: 30874972 DOI: 10.1007/s12035-019-1541-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
A distinct feature of the hippocampus of the brain is its unidirectional tri-synaptic pathway originating from the entorhinal cortex and projecting to the dentate gyrus (DG) then to area CA3 and subsequently, area CA1 of the Ammon's horn. Each of these areas of the hippocampus has its own cellular structure and distinctive function. The principal neurons in these areas are granule cells in the DG and pyramidal cells in the Ammon's horn's CA1 and CA3 areas with a vast network of interneurons. This review discusses the fundamental differences between the CA1 and DG areas regarding cell morphology, synaptic plasticity, signaling molecules, ability for neurogenesis, vulnerability to various insults and pathologies, and response to pharmacological agents.
Collapse
|
33
|
Hansen N. Memory Reinforcement and Attenuation by Activating the Human Locus Coeruleus via Transcutaneous Vagus Nerve Stimulation. Front Neurosci 2019; 12:955. [PMID: 30686963 PMCID: PMC6333671 DOI: 10.3389/fnins.2018.00955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/30/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Niels Hansen
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Neurology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
34
|
Manohar S, Ramchander PV, Salvi R, Seigel GM. Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure. Neuroscience 2018; 399:184-198. [PMID: 30593923 DOI: 10.1016/j.neuroscience.2018.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
The cochlear nucleus, located in the brainstem, receives its afferent auditory input exclusively from the auditory nerve fibers of the ipsilateral cochlea. Noise-induced neurodegenerative changes occurring in the auditory nerve stimulate a cascade of neuroplastic changes in the cochlear nucleus resulting in major changes in synaptic structure and function. To identify some of the key molecular mechanisms mediating this synaptic reorganization, we unilaterally exposed rats to a high-intensity noise that caused significant hearing loss and then measured the resulting changes in a synaptic plasticity gene array targeting neurogenesis and synaptic reorganization. We compared the gene expression patterns in the dorsal cochlear nucleus (DCN) and ventral cochlear nucleus (VCN) on the noise-exposed side versus the unexposed side using a PCR gene array at 2 d (early) and 28 d (late) post-exposure. We discovered a number of differentially expressed genes, particularly those related to synaptogenesis and regeneration. Significant gene expression changes occurred more frequently in the VCN than the DCN and more changes were seen at 28 d versus 2 d post-exposure. We confirmed the PCR findings by in situ hybridization for Brain-derived neurotrophic factor (Bdnf), Homer-1, as well as the glutamate NMDA receptor Grin1, all involved in neurogenesis and plasticity. These results suggest that Bdnf, Homer-1 and Grin1 play important roles in synaptic remodeling and homeostasis in the cochlear nucleus following severe noise-induced afferent degeneration.
Collapse
Affiliation(s)
- S Manohar
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - P V Ramchander
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - R Salvi
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - G M Seigel
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| |
Collapse
|
35
|
Recording Field Potentials and Synaptic Plasticity From Freely Behaving Rodents. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Item-Place Encoding Through Hippocampal Long-Term Depression. HANDBOOK OF OBJECT NOVELTY RECOGNITION 2018. [DOI: 10.1016/b978-0-12-812012-5.00019-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Wilkerson JR, Albanesi JP, Huber KM. Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: Implications in health and disease. Semin Cell Dev Biol 2017; 77:51-62. [PMID: 28969983 DOI: 10.1016/j.semcdb.2017.09.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
The Arc gene is robustly transcribed in specific neural ensembles in response to experience-driven activity. Upon induction, Arc mRNA is transported to dendrites, where it can be rapidly and locally translated by activation of metabotropic glutamate receptors (mGluR1/5). mGluR-induced dendritic synthesis of Arc is implicated in weakening or elimination of excitatory synapses by triggering endocytosis of postsynaptic AMPARs in both hippocampal CA1 and cerebellar Purkinje neurons. Importantly, CA1 neurons with experience-induced Arc mRNA are susceptible, or primed for mGluR-induced long-term synaptic depression (mGluR-LTD). Here we review mechanisms and function of Arc in mGluR-LTD and synapse elimination and propose roles for these forms of plasticity in Arc-dependent formation of sparse neural representations of learned experience. We also discuss accumulating evidence linking dysregulation of Arc and mGluR-LTD in human cognitive disorders such as intellectual disability, autism and Alzheimer's disease.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Joseph P Albanesi
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Kimberly M Huber
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
38
|
|
39
|
Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara-Solarz S, de La Fuente Revenga M, Guillem AM, Haidar M, Ijomone OM, Nadorp B, Qi L, Perera ND, Refsgaard LK, Reid KM, Sabbar M, Sahoo A, Schaefer N, Sheean RK, Suska A, Verma R, Vicidomini C, Wright D, Zhang XD, Seidenbecher C. Synaptopathies: synaptic dysfunction in neurological disorders - A review from students to students. J Neurochem 2016; 138:785-805. [PMID: 27333343 PMCID: PMC5095804 DOI: 10.1111/jnc.13713] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022]
Abstract
Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neurological diseases. This notion has led to the concept of synaptopathies as brain diseases with synapse defects as shared pathogenic features. In this review, which was initiated at the 13th International Society for Neurochemistry Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer and Parkinson disease). We finally discuss the appropriateness and potential implications of gathering synapse diseases under a single term. Understanding common causes and intrinsic differences in disease-associated synaptic dysfunction could offer novel clues toward synapse-based therapeutic intervention for neurological and neuropsychiatric disorders. In this Review, which was initiated at the 13th International Society for Neurochemistry (ISN) Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer's and Parkinson's diseases), gathered together under the term of synaptopathies. Read the Editorial Highlight for this article on page 783.
Collapse
Affiliation(s)
- Katarzyna Lepeta
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Barbara C Schweitzer
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Pamela V Martino Adami
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina
| | - Priyanjalee Banerjee
- Department of Biochemistry, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Silvina Catuara-Solarz
- Systems Biology Program, Cellular and Systems Neurobiology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mario de La Fuente Revenga
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Alain Marc Guillem
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07000, Mexico
| | - Mouna Haidar
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Omamuyovwi M Ijomone
- Department of Human Anatomy, Cross River University of Technology, Okuku Campus, Cross River, Nigeria
| | - Bettina Nadorp
- The Department of Biological Chemistry, The Edmond and Lily Safra Center for Brain Sciences, The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Israel
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States of America
| | - Nirma D Perera
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Louise K Refsgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kimberley M Reid
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Mariam Sabbar
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Arghyadip Sahoo
- Department of Biochemistry, Midnapore Medical College, West Bengal University of Health Sciences, West Bengal, India
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Wuerzburg, Wuerzburg, Germany
| | - Rebecca K Sheean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Anna Suska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Rajkumar Verma
- Department of Neurosciences Uconn Health Center, Farmington, CT, United States of America
| | | | - Dean Wright
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Xing-Ding Zhang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Constanze Seidenbecher
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, Germany.
| |
Collapse
|