1
|
Gao M, Kirk M, Lash E, Knight H, Michalopoulou M, Guess N, Browning M, Weich S, Burnet P, Jebb SA, Stevens R, Aveyard P. Evaluating the efficacy and mechanisms of a ketogenic diet as adjunctive treatment for people with treatment-resistant depression: A protocol for a randomised controlled trial. J Psychiatr Res 2024; 174:230-236. [PMID: 38653031 DOI: 10.1016/j.jpsychires.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND One-third of people with depression do not respond to antidepressants, and, after two adequate courses of antidepressants, are classified as having treatment-resistant depression (TRD). Some case reports suggest that ketogenic diets (KDs) may improve some mental illnesses, and preclinical data indicate that KDs can influence brain reward signalling, anhedonia, cortisol, and gut microbiome which are associated with depression. To date, no trials have examined the clinical effect of a KD on TRD. METHODS This is a proof-of-concept randomised controlled trial to investigate the efficacy of a six-week programme of weekly dietitian counselling plus provision of KD meals, compared with an intervention involving similar dietetic contact time and promoting a healthy diet with increased vegetable consumption and reduction in saturated fat, plus food vouchers to purchase healthier items. At 12 weeks we will assess whether participants have continued to follow the assigned diet. The primary outcome is the difference between groups in the change in Patient Health Questionnaire-9 (PHQ-9) score from baseline to 6 weeks. PHQ-9 will be measured at weeks 2, 4, 6 and 12. The secondary outcomes are the differences between groups in the change in remission of depression, change in anxiety score, functioning ability, quality of life, cognitive performance, reward sensitivity, and anhedonia from baseline to 6 and 12 weeks. We will also assess whether changes in reward sensitivity, anhedonia, cortisol awakening response and gut microbiome may explain any changes in depression severity. DISCUSSION This study will test whether a ketogenic diet is an effective intervention to reduce the severity of depression, anxiety and improve quality of life and functioning ability for people with treatment-resistant depression.
Collapse
Affiliation(s)
- Min Gao
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, UK.
| | - Megan Kirk
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, UK
| | - Eva Lash
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, UK
| | - Heather Knight
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Moscho Michalopoulou
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Nicola Guess
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Michael Browning
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Scott Weich
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Philip Burnet
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Susan A Jebb
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, UK; NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Richard Stevens
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Paul Aveyard
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, UK; NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
2
|
Villa RF, Ferrari F, Gorini A. Effects of Chronic Hypertension on the Energy Metabolism of Cerebral Cortex Mitochondria in Normotensive and in Spontaneously Hypertensive Rats During Aging. Neuromolecular Med 2024; 26:2. [PMID: 38393429 DOI: 10.1007/s12017-023-08772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
Abstract
In this study the subcellular modifications undergone by cerebral cortex mitochondrial metabolism in chronic hypertension during aging were evaluated. The catalytic properties of regulatory energy-linked enzymes of Tricarboxylic Acid Cycle (TCA), Electron Transport Chain (ETC) and glutamate metabolism were assayed on non-synaptic mitochondria (FM, located in post-synaptic compartment) and on intra-synaptic mitochondria of pre-synaptic compartment, furtherly divided in "light" (LM) and "heavy" (HM) mitochondria, purified form cerebral cortex of normotensive Wistar Kyoto Rats (WKY) versus Spontaneously Hypertensive Rats (SHR) at 6, 12 and 18 months. During physiological aging, the metabolic machinery was differently expressed in pre- and post-synaptic compartments: LM and above all HM were more affected by aging, displaying lower ETC activities. In SHR at 6 months, FM and LM showed an uncoupling between TCA and ETC, likely as initial adaptive response to hypertension. During pathological aging, HM were particularly affected at 12 months in SHR, as if the adaptive modifications in FM and LM at 6 months granted a mitochondrial functional balance, while at 18 months all the neuronal mitochondria displayed decreased metabolic fluxes versus WKY. This study describes the effects of chronic hypertension on cerebral mitochondrial energy metabolism during aging through functional proteomics of enzymes at subcellular levels, i.e. in neuronal soma and synapses. In addition, this represents the starting point to envisage an experimental physiopathological model which could be useful also for pharmacological studies, to assess drug actions during the development of age-related pathologies that could coexist and/or are provoked by chronic hypertension.
Collapse
Affiliation(s)
- Roberto Federico Villa
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy.
| | - Federica Ferrari
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy
- School of Neurology, Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi. 21, 27100, Pavia, Italy
| | - Antonella Gorini
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| |
Collapse
|
3
|
Zhao W, Ji C, Zheng J, Zhou S, Tian J, Han Y, Qin X. Effects of Xiaoyao San on exercise capacity and liver mitochondrial metabolomics in rat depression model. CHINESE HERBAL MEDICINES 2024; 16:132-142. [PMID: 38375048 PMCID: PMC10874765 DOI: 10.1016/j.chmed.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 02/21/2024] Open
Abstract
Objective This study aimed to investigate the therapeutic effects of Xiaoyao San (XYS), a herbal medicine formula, on exercise capacity and liver mitochondrial metabolomics in a rat model of depression induced by chronic unpredictable mild stress (CUMS). Methods A total of 24 male SD rats were randomly divided into four groups: control group (C), CUMS control group (M), Venlafaxine positive treatment group (V), and XYS treatment group (X). Depressive behaviour and exercise capacity of rats were assessed by body weight, sugar-water preference test, open field test, pole test, and rotarod test. The liver mitochondria metabolomics were analyzed by using liquid chromatography-mass spectrometry (LC-MS) method. TCMSP database and GeneCards database were used to screen XYS for potential targets for depression, and GO and KEGG enrichment analyses were performed. Results Compared with C group, rats in M group showed significantly lower body weight, sugar water preference rate, number of crossing and rearing in the open field test, climbing down time in the pole test, and retention time on the rotarod test (P < 0.01). The above behaviors and exercise capacity indices were significantly modulated in rats in V and X groups compared with M group (P < 0.05, 0.01). Compared with C group, a total of 18 different metabolites were changed in the liver mitochondria of rats in M group. Nine different metabolites and six metabolic pathways were regulated in the liver mitochondria of rats in X group compared with M group. The results of network pharmacology showed that 88 intersecting targets for depression and XYS were obtained, among which 15 key targets such as IL-1β, IL-6, and TNF were predicted to be the main differential targets for the treatment of depression. Additionally, a total of 1 553 GO signaling pathways and 181 KEGG signaling pathways were identified, and the main biological pathways were AGE-RAGE signaling pathway, HIF-1 signaling pathway, and calcium signaling pathway. Conclusion XYS treatment could improve depressive symptoms, enhance exercise capacity, positively regulate the changes of mitochondrial metabolites and improve energy metabolism in the liver of depressed rats. These findings suggest that XYS exerts antidepressant effects through multi-target and multi-pathway.
Collapse
Affiliation(s)
- Weidi Zhao
- School of Physical Education, Shanxi University, Taiyuan 030006, China
| | - Cui Ji
- School of Health, Yantai Nanshan University, Yantai 265706, China
| | - Jie Zheng
- School of Physical Education, Shanxi University, Taiyuan 030006, China
| | - Shi Zhou
- Physical Activity, Sport and Exercise Research Theme, Faculty of Health, Southern Cross University, Lismore NSW2480, Australia
| | - Junsheng Tian
- Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Yumei Han
- School of Physical Education, Shanxi University, Taiyuan 030006, China
- Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China
| | - Xuemei Qin
- Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
4
|
Khan M, Baussan Y, Hebert-Chatelain E. Connecting Dots between Mitochondrial Dysfunction and Depression. Biomolecules 2023; 13:695. [PMID: 37189442 PMCID: PMC10135685 DOI: 10.3390/biom13040695] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Mitochondria are the prime source of cellular energy, and are also responsible for important processes such as oxidative stress, apoptosis and Ca2+ homeostasis. Depression is a psychiatric disease characterized by alteration in the metabolism, neurotransmission and neuroplasticity. In this manuscript, we summarize the recent evidence linking mitochondrial dysfunction to the pathophysiology of depression. Impaired expression of mitochondria-related genes, damage to mitochondrial membrane proteins and lipids, disruption of the electron transport chain, higher oxidative stress, neuroinflammation and apoptosis are all observed in preclinical models of depression and most of these parameters can be altered in the brain of patients with depression. A deeper knowledge of the depression pathophysiology and the identification of phenotypes and biomarkers with respect to mitochondrial dysfunction are needed to help early diagnosis and the development of new treatment strategies for this devastating disorder.
Collapse
Affiliation(s)
- Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Yann Baussan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
5
|
Zakaria F, Akhtar MT, Wan Norhamidah WI, Noraini AB, Muhamad A, Shohaimi S, Ahmad H, Ismail IS, Ismail NH, Shaari K. Centella asiatica (L.) Urb. Extract ameliorates branched-chain amino acid (BCAA) metabolism in acute reserpine-induced stress zebrafish model via 1H Nuclear Magnetic Resonance (NMR)-based metabolomics approach. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109501. [PMID: 36336330 DOI: 10.1016/j.cbpc.2022.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Depression is a common mental disorder that can adversely affect psychosocial function and quality of life. However, the exact aetiology and pathogenesis of depression are still unclear. Stress plays a major role in the pathogenesis of depression. The use of currently prescribed antidepressants has many side effects. Centella asiatica (C. asiatica) has shown promising antidepressant activity in rodent models. Here, we developed a reserpine-induced zebrafish stress-like model and performed behavioural analysis, cortisol measurement and 1H-Nuclear Magnetic Resonance (1H NMR) spectroscopy-based metabolomics analysis to test the anti-stress activity of ethanolic extract of C. asiatica (RECA). A significant increase in total distance travelled (F(8,8) = 8.905, p = 0.0054) and a reduction in freezing duration (F(9, 9) = 10.38, p = 0.0018) were found in the open field test (OFT). Asiaticoside, one of tested C.asiatica's triterpenoid gives a significant increase in contact duration (F(5,5) = 142.3, (p = 0.0330) at 2.5 mg/kg). Eight biomarkers were found, i.e. ß-hydroxyisovaleric acid, leucine, threonine, scylloinositol, lactate, betaine, valine, choline and l-fucose, to be responsible for the class separation between stress and RECA-treated groups. Metabolic pathway alteration in zebrafish brain upon treatment with RECA was identified as valine, leucine and isoleucine biosynthesis, while alanine, aspartate, glutamate and glycerophospholipid metabolism was involved after fluoxetine treatment.
Collapse
Affiliation(s)
- Fauziahanim Zakaria
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia; Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Muhammad Tayyab Akhtar
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Wan Ibrahim Wan Norhamidah
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Faculty of Science, Biology Department, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Abu Bakar Noraini
- Faculty of Science, Biology Department, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Azira Muhamad
- National Institutes of Biotechnology Malaysia (NIBM), Malaysia Genome Institute, Bangi, Selangor, Malaysia.
| | - Shamarina Shohaimi
- Faculty of Science, Biology Department, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hafandi Ahmad
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Intan Safinar Ismail
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hadiani Ismail
- Attar-Ur-Rahman Institute for Natural Products Discovery, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Khozirah Shaari
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Lu S, Li C, Jin X, Zhu L, Shen J, Bai M, Li Y, Xu E. Baicalin improves the energy levels in the prefrontal cortex of mice exposed to chronic unpredictable mild stress. Heliyon 2022; 8:e12083. [DOI: 10.1016/j.heliyon.2022.e12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/11/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
|
7
|
Gangopadhyay A, Ibrahim R, Theberge K, May M, Houseknecht KL. Non-alcoholic fatty liver disease (NAFLD) and mental illness: Mechanisms linking mood, metabolism and medicines. Front Neurosci 2022; 16:1042442. [PMID: 36458039 PMCID: PMC9707801 DOI: 10.3389/fnins.2022.1042442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world and one of the leading indications for liver transplantation. It is one of the many manifestations of insulin resistance and metabolic syndrome as well as an independent risk factor for cardiovascular disease. There is growing evidence linking the incidence of NAFLD with psychiatric illnesses such as schizophrenia, bipolar disorder and depression mechanistically via genetic, metabolic, inflammatory and environmental factors including smoking and psychiatric medications. Indeed, patients prescribed antipsychotic medications, regardless of diagnosis, have higher incidence of NAFLD than population norms. The mechanistic pharmacology of antipsychotic-associated NAFLD is beginning to emerge. In this review, we aim to discuss the pathophysiology of NAFLD including its risk factors, insulin resistance and systemic inflammation as well as its intersection with psychiatric illnesses.
Collapse
Affiliation(s)
| | | | | | | | - Karen L. Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
8
|
Brivio P, Gallo MT, Karel P, Cogi G, Fumagalli F, Homberg JR, Calabrese F. Alterations of mitochondrial dynamics in serotonin transporter knockout rats: A possible role in the fear extinction recall mechanisms. Front Behav Neurosci 2022; 16:957702. [PMID: 36386781 PMCID: PMC9650094 DOI: 10.3389/fnbeh.2022.957702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 08/20/2023] Open
Abstract
Stress-related mental disorders encompass a plethora of pathologies that share the exposure to a negative environment as trigger for their development. The vulnerability to the effects of a negative environment is not equal to all but differs between individuals based on the genetic background makeup. Here, to study the molecular mechanisms potentially underlying increased threat anticipation, we employed an animal model showing this symptom (5-HTT knockout rats) which we exposed to Pavlovian fear conditioning (FC). We investigated the role of mitochondria, taking advantage of the recent evidence showing that the dynamic of these organelles is dysregulated after stress exposure. Behavioral experiments revealed that, during the second day of extinction of the FC paradigm, 5-HTT knockout (5-HTT-/-) animals showed a lack of fear extinction recall. From a mechanistic standpoint, we carried out our molecular analyses on the amygdala and prefrontal cortex, given their role in the management of the fear response due to their tight connection. We demonstrated that mitochondrial dynamics are impaired in the amygdala and prefrontal cortex of 5-HTT-/- rats. The dissection of the potential contributing factors revealed a critical role in the mechanisms regulating fission and fusion that are dysregulated in transgenic animals. Furthermore, mitochondrial oxidative phosphorylation, mitochondrial biogenesis, and the production of antioxidant enzymes were altered in these brain regions in 5-HTT-/- rats. In summary, our data suggest that increased extracellular 5-HT levels cause an unbalance of mitochondrial functionality that could contribute to the reduced extinction recall of 5-HTT-/- rats, pointing out the role of mitochondrial dynamics in the etiology of psychiatric disorders. Our findings, also, provide some interesting insights into the targeted development of drugs to treat such disorders.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Peter Karel
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Giulia Cogi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Brain Bioenergetics in Chronic Hypertension: Risk Factor for Acute Ischemic Stroke. Biochem Pharmacol 2022; 205:115260. [PMID: 36179931 DOI: 10.1016/j.bcp.2022.115260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
Abstract
Chronic hypertension is one of the key modifiable risk factors for acute ischemic stroke, also contributing to determine greater neurological deficits and worse functional outcome when an acute cerebrovascular event would occur. A tight relationship exists between cerebrovascular autoregulation, neuronal activity and brain bioenergetics. In chronic hypertension, progressive adaptations of these processes occur as an attempt to cope with the demanding necessity of brain functions, creating a new steady-state homeostatic condition. However, these adaptive modifications are insufficient to grant an adequate response to possible pathological perturbations of the established fragile hemodynamic and metabolic homeostasis. In this narrative review, we will discuss the main mechanisms by which alterations in brain bioenergetics and mitochondrial function in chronic hypertension could lead to increased risk of acute ischemic stroke, stressing the interconnections between hemodynamic factors (i.e. cerebral autoregulation and neurovascular coupling) and metabolic processes. Both experimental and clinical pieces of evidence will be discussed. Moreover, the potential role of mitochondrial dysfunction in determining, or at least sustaining, the pathogenesis and progression of chronic neurogenic hypertension will be considered. In the perspective of novel therapeutic strategies aiming at improving brain bioenergetics, we propose some determinant factors to consider in future studies focused on the cause-effect relationships between chronic hypertension and brain bioenergetic abnormalities (and vice versa), so to help translational research in this so-far unfilled gap.
Collapse
|
10
|
Park SS, Jeong H, Andreazza AC. Circulating cell-free mitochondrial DNA in brain health and disease: A systematic review and meta-analysis. World J Biol Psychiatry 2022; 23:87-102. [PMID: 34096821 DOI: 10.1080/15622975.2021.1938214] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Circulating cell-free mitochondrial DNA (ccf-mtDNA) are detectable fragments of mtDNA released from the cell as a result of mitochondrial dysfunction or apoptosis. The brain is one of the most energy demanding organs in the human body, and many neuropsychiatric and non-psychiatric neurological diseases have mitochondrial dysfunction associated with disease pathophysiology. Thus, we aimed to assess ccf-mtDNA as a potential biomarker for brain diseases. METHODS We conducted a systematic review and meta-analyses of studies that examined peripheral and/or cerebrospinal fluid (CSF) ccf-mtDNA relevant to neuropsychiatric conditions, which we define as disorders of affect, behaviour and mood, and non-psychiatric neurological diseases, which consist of neurological diseases not related to psychiatry including neurodegenerative diseases. RESULTS The results of the sensitivity analysis investigating the levels of peripheral ccf-mtDNA in neuropsychiatric studies showed no significant difference between cases and controls (Z = 1.57; p = 0.12), whereas the results of the sensitivity analysis investigating the levels of CSF ccf-mtDNA in non-psychiatric neurological diseases showed a decreasing trend in cases compared with controls (Z = 2.32; p = 0.02). Interestingly, the results indicate an overall mitochondrial stress associated mainly with non-psychiatric neurological diseases. CONCLUSIONS Our study supports the involvement of mitochondrial stress, here defined as ccf-mtDNA, in brain diseases and encourage further investigation of ccf-mtDNA among patients with brain diseases.
Collapse
Affiliation(s)
- Sarah Sohyun Park
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, Canada
| | - Hyunjin Jeong
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,Centre for Addiction and Mental Health, Toronto, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Villa RF, Gorini A, Ferrari F. Clonidine and Brain Mitochondrial Energy Metabolism: Pharmacodynamic Insights Beyond Receptorial Effects. Neurochem Res 2022; 47:1429-1441. [DOI: 10.1007/s11064-022-03541-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/27/2022]
|
12
|
Integrative multi-omics landscape of fluoxetine action across 27 brain regions reveals global increase in energy metabolism and region-specific chromatin remodelling. Mol Psychiatry 2022; 27:4510-4525. [PMID: 36056172 PMCID: PMC9734063 DOI: 10.1038/s41380-022-01725-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.
Collapse
|
13
|
Ramos-da-Silva L, Carlson PT, Silva-Costa LC, Martins-de-Souza D, de Almeida V. Molecular Mechanisms Associated with Antidepressant Treatment on Major Depression. Complex Psychiatry 2021; 7:49-59. [PMID: 35813936 PMCID: PMC8739385 DOI: 10.1159/000518098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/23/2021] [Indexed: 11/25/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and multifactorial psychiatric disorder that causes serious health, social, and economic concerns worldwide. The main treatment of the symptoms is through antidepressant (AD) drugs. However, not all patients respond properly to these drugs. Omic sciences are widely used to analyze not only biomarkers for the AD response but also their molecular mechanism. In this review, we aimed to focus on omics data to better understand the molecular mechanisms involving AD effects on MDD. We consistently found, from preclinical to clinical data, that glutamatergic transmission, immune/inflammatory processes, energy metabolism, oxidative stress, and lipid metabolism were associated with traditional and potential new ADs. Despite efforts of studies investigating biomarkers of response to ADs, which could contribute to personalized treatment, there is no biomarker panel available for clinical application. From clinical genomic studies, we found that the main findings contribute to the development of pharmacogenomic tests for AD efficacy for each patient. Several studies pointed at DRD2, PXDNL, CACNA1E, and CACNA2D1 genes as potential targets for MDD treatment and the efficacy and rapid-antidepressant effect of ketamine. Finally, more in-depth studies of the molecular targets pointed here are needed to determine the clinical relevance and provide further evidence for precision MDD treatment.
Collapse
Affiliation(s)
- Lívia Ramos-da-Silva
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Pamela T. Carlson
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Licia C. Silva-Costa
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Valéria de Almeida
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
14
|
Elexpe A, Nieto N, Fernández-Cuétara C, Domínguez-Fernández C, Morera-Herreras T, Torrecilla M, Miguélez C, Laso A, Ochoa E, Bailen M, González-Coloma A, Angulo-Barturen I, Astigarraga E, Barreda-Gómez G. Study of Tissue-Specific Reactive Oxygen Species Formation by Cell Membrane Microarrays for the Characterization of Bioactive Compounds. MEMBRANES 2021; 11:membranes11120943. [PMID: 34940444 PMCID: PMC8705675 DOI: 10.3390/membranes11120943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/26/2023]
Abstract
The production of reactive oxygen species (ROS) increases considerably in situations of cellular stress, inducing lipid peroxidation and multiple alterations in proteins and nucleic acids. However, sensitivity to oxidative damage varies between organs and tissues depending on the triggering process. Certain drugs used in the treatment of diverse diseases such as malaria have side effects similar to those produced by oxidative damage, although no specific study has been conducted. For this purpose, cell membrane microarrays were developed and the superoxide production evoked by the mitochondrial activity was assayed in the presence of specific inhibitors: rotenone, antimycin A and azide. Once the protocol was set up on cell membrane isolated from rat brain areas, the effect of six antimalarial drugs (atovaquone, quinidine, doxycycline, mefloquine, artemisinin, and tafenoquine) and two essential oils (Rosmarinus officinalis and Origanum majoricum) were evaluated in multiple human samples. The basal activity was different depending on the type of tissue, the liver, jejunum and adrenal gland being the ones with the highest amount of superoxide. The antimalarial drugs studied showed specific behavior according to the type of human tissue analyzed, with atovaquone and quinidine producing the highest percentage of superoxide formation, and doxycycline the lowest. In conclusion, the analysis of superoxide production evaluated in cell membranes of a collection of human tissues allowed for the characterization of the safety profile of these antimalarial drugs against toxicity mediated by oxidative stress.
Collapse
Affiliation(s)
- Ane Elexpe
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain; (A.E.); (N.N.); (C.D.-F.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (T.M.-H.); (M.T.); (C.M.)
| | - Nerea Nieto
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain; (A.E.); (N.N.); (C.D.-F.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (T.M.-H.); (M.T.); (C.M.)
| | - Claudia Fernández-Cuétara
- Department of Preventive Medicine and Public Health and Microbiology, Faculty of Medicine, Autonomus University of Madrid UAM, 28029 Madrid, Spain; (C.F.-C.); (M.B.)
| | - Celtia Domínguez-Fernández
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain; (A.E.); (N.N.); (C.D.-F.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (T.M.-H.); (M.T.); (C.M.)
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (T.M.-H.); (M.T.); (C.M.)
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Instiute, 48903 Barakaldo, Spain
| | - María Torrecilla
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (T.M.-H.); (M.T.); (C.M.)
| | - Cristina Miguélez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (T.M.-H.); (M.T.); (C.M.)
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Instiute, 48903 Barakaldo, Spain
| | - Antonio Laso
- Research and Development Division, AleoVitro, 48160 Derio, Spain; (A.L.); (E.O.)
| | - Eneko Ochoa
- Research and Development Division, AleoVitro, 48160 Derio, Spain; (A.L.); (E.O.)
| | - María Bailen
- Department of Preventive Medicine and Public Health and Microbiology, Faculty of Medicine, Autonomus University of Madrid UAM, 28029 Madrid, Spain; (C.F.-C.); (M.B.)
| | - Azucena González-Coloma
- Institute of Agricultural Sciences (ICA), Spanish Research Council (CSIC), 28006 Madrid, Spain;
| | | | - Egoitz Astigarraga
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain; (A.E.); (N.N.); (C.D.-F.); (E.A.)
| | - Gabriel Barreda-Gómez
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain; (A.E.); (N.N.); (C.D.-F.); (E.A.)
- Correspondence: ; Tel.: +34-94-4316-577; Fax: +34-94-6013-455
| |
Collapse
|
15
|
Gu X, Ke S, Wang Q, Zhuang T, Xia C, Xu Y, Yang L, Zhou M. Energy metabolism in major depressive disorder: Recent advances from omics technologies and imaging. Biomed Pharmacother 2021; 141:111869. [PMID: 34225015 DOI: 10.1016/j.biopha.2021.111869] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Major depressive disorder (MDD) is a serious psychiatric disorder that associated with high rate of disability and increasing suicide rate, and the pathogenesis is still unclear. Many researches showed that the energy metabolism of patients with depression is impaired, which may be the direction of depression treatment. In this review, we focus on the "omics" technologies such as genomics, proteomics, transcriptomics and metabolomics, as well as imaging, and the progress on energy metabolism of MDD. These findings indicate that abnormal energy metabolism is one of the important mechanisms for the occurrence and development of depression. Although the research on various mechanisms of depression is still ongoing, the rapid development of new technologies and the joint use of various technologies will help to clarify the pathogenesis of depression and explore efficient diagnosis and treatment methods.
Collapse
Affiliation(s)
- Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuang Ke
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tongxi Zhuang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
16
|
Emmerzaal TL, Nijkamp G, Veldic M, Rahman S, Andreazza AC, Morava E, Rodenburg RJ, Kozicz T. Effect of neuropsychiatric medications on mitochondrial function: For better or for worse. Neurosci Biobehav Rev 2021; 127:555-571. [PMID: 34000348 DOI: 10.1016/j.neubiorev.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023]
Abstract
Individuals with mitochondrial disease often present with psychopathological comorbidity, and mitochondrial dysfunction has been proposed as the underlying pathobiology in various psychiatric disorders. Several studies have suggested that medications used to treat neuropsychiatric disorders could directly influence mitochondrial function. This review provides a comprehensive overview of the effect of these medications on mitochondrial function. We collected preclinical information on six major groups of antidepressants and other neuropsychiatric medications and found that the majority of these medications either positively influenced mitochondrial function or showed mixed effects. Only amitriptyline, escitalopram, and haloperidol were identified as having exclusively adverse effects on mitochondrial function. In the absence of formal clinical trials, and until such trials are completed, the data from preclinical studies reported and discussed here could inform medication prescribing practices for individuals with psychopathology and impaired mitochondrial function in the underlying pathology.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA
| | - Gerben Nijkamp
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands
| | - Marin Veldic
- Mayo Clinic, Department of Psychiatry, Rochester, MN, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ana Cristina Andreazza
- University of Toronto, Temerty Faculty of Medicine, Department of Pharmacology & Toxicology and Psychiatry, Toronto, Canada
| | - Eva Morava
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Biochemistry and Molecular Biology, Rochester, MN, USA.
| |
Collapse
|
17
|
Głombik K, Budziszewska B, Basta-Kaim A. Mitochondria-targeting therapeutic strategies in the treatment of depression. Mitochondrion 2021; 58:169-178. [PMID: 33766747 DOI: 10.1016/j.mito.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Depression is an affective disease with a complex clinical picture that is characterized by mood and emotional disturbances. It is known that several factors contribute to the risk of developing depression. The concept that mitochondrial dysfunction is one of the causes of depression is supported by a wide range of studies on cell cultures, animal models, and clinical research. An understanding the relationship between mitochondrial processes and central nervous system abnormalities that occur in the course of depression can guide the development of novel mitochondrial targeted therapeutic strategies as well as the usage of currently available antidepressants in a new context. This brief review aims to summarize recent findings on mitochondria dysfunction in depression, provide insight into therapeutic strategies targeting mitochondrial pathways, allude to future promising therapies, and discuss factors that can be used to improve treatment outcomes. The main focus is on new aspects (the effects of nutraceuticals and physical activity on brain metabolism), which can be combined with the available treatment options [monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs) and atypical drugs] to enhance their therapeutic effects.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland.
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland
| |
Collapse
|
18
|
Giménez-Palomo A, Dodd S, Anmella G, Carvalho AF, Scaini G, Quevedo J, Pacchiarotti I, Vieta E, Berk M. The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Front Psychiatry 2021; 12:546801. [PMID: 34295268 PMCID: PMC8291901 DOI: 10.3389/fpsyt.2021.546801] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are cellular organelles involved in several biological processes, especially in energy production. Several studies have found a relationship between mitochondrial dysfunction and mood disorders, such as major depressive disorder and bipolar disorder. Impairments in energy production are found in these disorders together with higher levels of oxidative stress. Recently, many agents capable of enhancing antioxidant defenses or mitochondrial functioning have been studied for the treatment of mood disorders as adjuvant therapy to current pharmacological treatments. A better knowledge of mitochondrial physiology and pathophysiology might allow the identification of new therapeutic targets and the development and study of novel effective therapies to treat these specific mitochondrial impairments. This could be especially beneficial for treatment-resistant patients. In this article, we provide a focused narrative review of the currently available evidence supporting the involvement of mitochondrial dysfunction in mood disorders, the effects of current therapies on mitochondrial functions, and novel targeted therapies acting on mitochondrial pathways that might be useful for the treatment of mood disorders.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Seetal Dodd
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Anmella
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Isabella Pacchiarotti
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Eduard Vieta
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- School of Medicine, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Colle R, El Asmar K, Verstuyft C, Lledo PM, Lazarini F, Chappell K, Deflesselle E, Ait Tayeb AEK, Falissard B, Duron E, Rotenberg S, Costemale-Lacoste JF, David DJ, Gressier F, Gardier AM, Hummel T, Becquemont L, Corruble E. The olfactory deficits of depressed patients are restored after remission with venlafaxine treatment. Psychol Med 2020; 52:1-9. [PMID: 33087184 DOI: 10.1017/s0033291720003918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND It is unclear whether olfactory deficits improve after remission in depressed patients. Therefore, we aimed to assess in drug-free patients the olfactory performance of patients with major depressive episodes (MDE) and its change after antidepressant treatment. METHODS In the DEP-ARREST-CLIN study, 69 drug-free patients with a current MDE in the context of major depressive disorder (MDD) were assessed for their olfactory performances and depression severity, before and after 1 (M1) and 3 (M3) months of venlafaxine antidepressant treatment. They were compared to 32 age- and sex-matched healthy controls (HCs). Olfaction was assessed with a psychophysical test, the Sniffin' Sticks test (Threshold: T score; Discrimination: D score; Identification: I score; total score: T + D + I = TDI score) and Pleasantness (pleasantness score: p score; neutral score: N score; unpleasantness score: U score). RESULTS As compared to HCs, depressed patients had lower TDI olfactory scores [mean (s.d.) 30.0(4.5) v. 33.3(4.2), p < 0.001], T scores [5.6(2.6) v. 7.4(2.6), p < 0.01], p scores [7.5(3.0) v. 9.8(2.8), p < 0.001)] and higher N scores [3.5(2.6) v. 2.1(1.8), p < 0.01]. T, p and N scores at baseline were independent from depression and anhedonia severity. After venlafaxine treatment, significant increases of T scores [M1: 7.0(2.6) and M3: 6.8(3.1), p < 0.01] and p scores [M1: 8.1(3.0) and M3: 8.4(3.3), p < 0.05] were evidenced, in remitters only (T: p < 0.01; P: p < 0.01). Olfaction improvement was mediated by depression improvement. CONCLUSIONS The olfactory signature of MDE is restored after venlafaxine treatment. This olfaction improvement is mediated by depression improvement.
Collapse
Affiliation(s)
- Romain Colle
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Khalil El Asmar
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Céline Verstuyft
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Pierre-Marie Lledo
- Unité Perception et Mémoire, Institut Pasteur, CNRS UMR3571, Paris, F-75015, France
| | - Françoise Lazarini
- Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Kenneth Chappell
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Eric Deflesselle
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Abd El Kader Ait Tayeb
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Bruno Falissard
- Département de Biostatistiques, Université Paris-Sud, Hôpital Paul Brousse, Assistance Publique Hôpitaux de Paris, Villejuif94400, France
| | - Emmanuelle Duron
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Samuel Rotenberg
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Jean-Francois Costemale-Lacoste
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Denis J David
- Equipe Moods, INSERM UMR-1178, CESP, Univ. Paris-Sud, Fac. Pharmacie, Inserm, Université Paris-Saclay, Chatenay Malabry92290, France
| | - Florence Gressier
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Alain M Gardier
- Equipe Moods, INSERM UMR-1178, CESP, Univ. Paris-Sud, Fac. Pharmacie, Inserm, Université Paris-Saclay, Chatenay Malabry92290, France
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Dresden, TU, Germany
| | - Laurent Becquemont
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Centre de recherche clinique, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| |
Collapse
|
20
|
Mitochondria under the spotlight: On the implications of mitochondrial dysfunction and its connectivity to neuropsychiatric disorders. Comput Struct Biotechnol J 2020; 18:2535-2546. [PMID: 33033576 PMCID: PMC7522539 DOI: 10.1016/j.csbj.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022] Open
Abstract
Neuropsychiatric disorders (NPDs) such as bipolar disorder (BD), schizophrenia (SZ) and mood disorder (MD) are hard to manage due to overlapping symptoms and lack of biomarkers. Risk alleles of BD/SZ/MD are emerging, with evidence suggesting mitochondrial (mt) dysfunction as a critical factor for disease onset and progression. Mood stabilizing treatments for these disorders are scarce, revealing the need for biomarker discovery and artificial intelligence approaches to design synthetically accessible novel therapeutics. Here, we show mt involvement in NPDs by associating 245 mt proteins to BD/SZ/MD, with 7 common players in these disease categories. Analysis of over 650 publications suggests that 245 NPD-linked mt proteins are associated with 800 other mt proteins, with mt impairment likely to rewire these interactions. High dosage of mood stabilizers is known to alleviate manic episodes, but which compounds target mt pathways is another gap in the field that we address through mood stabilizer-gene interaction analysis of 37 prescriptions and over-the-counter psychotropic treatments, which we have refined to 15 mood-stabilizing agents. We show 26 of the 245 NPD-linked mt proteins are uniquely or commonly targeted by one or more of these mood stabilizers. Further, induced pluripotent stem cell-derived patient neurons and three-dimensional human brain organoids as reliable BD/SZ/MD models are outlined, along with multiomics methods and machine learning-based decision making tools for biomarker discovery, which remains a bottleneck for precision psychiatry medicine.
Collapse
|
21
|
Rappeneau V, Wilmes L, Touma C. Molecular correlates of mitochondrial dysfunctions in major depression: Evidence from clinical and rodent studies. Mol Cell Neurosci 2020; 109:103555. [PMID: 32979495 DOI: 10.1016/j.mcn.2020.103555] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent stress-related mental disorders worldwide. Several biological mechanisms underlying the pathophysiology of MDD have been proposed, including endocrine disturbances, neurotransmitter deficits, impaired neuronal plasticity, and more recently, mitochondrial dysfunctions. In this review, we provide an overview of relevant molecular correlates of mitochondrial dysfunction in MDD, based on findings from clinical studies and stress-induced rodent models. We also compare differences and similarities between the phenotypes of MDD patients and animal models. Our analysis of the literature reveals that both MDD and stress are associated, in humans and animals, with changes in mitochondrial biogenesis, redox imbalance, increased oxidative damages of cellular macromolecules, and apoptosis. Yet, a considerable amount of conflicting data exist and therefore, the translation of findings from clinical and preclinical research to novel therapies for MDD remains complex. Further studies are needed to advance our understanding of the molecular networks and biological mechanisms involving mitochondria in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany.
| | - Lars Wilmes
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Chadi Touma
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
22
|
Emmerzaal TL, Jacobs L, Geenen B, Verweij V, Morava E, Rodenburg RJ, Kozicz T. Chronic fluoxetine or ketamine treatment differentially affects brain energy homeostasis which is not exacerbated in mice with trait suboptimal mitochondrial function. Eur J Neurosci 2020; 53:2986-3001. [PMID: 32644274 DOI: 10.1111/ejn.14901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
Antidepressants have been shown to influence mitochondrial function directly, and suboptimal mitochondrial function (SMF) has been implicated in complex psychiatric disorders. In the current study, we used a mouse model for trait SMF to test the hypothesis that chronic fluoxetine treatment in mice subjected to chronic stress would negatively impact brain bioenergetics, a response that would be more pronounced in mice with trait SMF. In contrast, we hypothesized that chronic ketamine treatment would positively impact mitochondrial function in both WT and mice with SMF. We used an animal model for trait SMF, the Ndufs4GT/GT mice, which exhibit 25% lower mitochondrial complex I activity. In addition to antidepressant treatment, mice were subjected to chronic unpredictable stress (CUS). This paradigm is widely used to model complex behaviours expressed in various psychiatric disorders. We assayed several physiological indices as proxies for the impact of chronic stress and antidepressant treatment. Furthermore, we measured brain mitochondrial complex activities using clinically validated assays as well as established metabolic signatures using targeted metabolomics. As hypothesized, we found evidence that chronic fluoxetine treatment negatively impacted brain bioenergetics. This phenotype was, however, not further exacerbated in mice with trait SMF. Ketamine did not have a significant influence on brain mitochondrial function in either genotype. Here we report that trait SMF could be a moderator for an individual's response to antidepressant treatment. Based on these results, we propose that in individuals with SMF and comorbid psychopathology, fluoxetine should be avoided, whereas ketamine could be a safer choice of treatment.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Leah Jacobs
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bram Geenen
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vivienne Verweij
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Picard M, Sandi C. The social nature of mitochondria: Implications for human health. Neurosci Biobehav Rev 2020; 120:595-610. [PMID: 32651001 DOI: 10.1016/j.neubiorev.2020.04.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
Sociality has profound evolutionary roots and is observed from unicellular organisms to multicellular animals. In line with the view that social principles apply across levels of biological complexity, a growing body of data highlights the remarkable social nature of mitochondria - life-sustaining endosymbiotic organelles with their own genome that populate the cell cytoplasm. Here, we draw from organizing principles of behavior in social organisms to reveal that similar to individuals among social networks, mitochondria communicate with each other and with the cell nucleus, exhibit group formation and interdependence, synchronize their behaviors, and functionally specialize to accomplish specific functions within the organism. Mitochondria are social organelles. The extension of social principles across levels of biological complexity is a theoretical shift that emphasizes the role of communication and interdependence in cell biology, physiology, and neuroscience. With the help of emerging computational methods capable of capturing complex dynamic behavioral patterns, the implementation of social concepts in mitochondrial biology may facilitate cross-talk across disciplines towards increasingly holistic and accurate models of human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
| |
Collapse
|
24
|
Effects of resveratrol on the levels of ATP, 5-HT and GAP-43 in the hippocampus of mice exposed to chronic unpredictable mild stress. Neurosci Lett 2020; 735:135232. [PMID: 32621948 DOI: 10.1016/j.neulet.2020.135232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/28/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence suggested that energy deficiency might be involved in the pathophysiological mechanism of depression. Energy deficiency, mainly results from mitochondrial damage, can lead to the dysfunction of synaptic neurotransmission, and further cause depressive-like behavior. The antidepressant effect of resveratrol had been widely demonstrated in previous studies; however, the underlying mechanism remains poorly understood. The present study aimed to investigate whether the antidepressant effects of resveratrol involved in the energy levels and neurotransmission in the hippocampus. We found that resveratrol and fluoxetine significantly attenuated depressive-like behaviors induced by chronic unpredictable mild stress (CUMS), which evidenced by the increased sucrose preference and the reduced immobility time in a forced swimming test. In addition, resveratrol increased hippocampal ATP levels, decreased Na+-K+-ATPase and pyruvate levels, and upregulated the levels of mitochondrial DNA (mtDNA), mRNA expression of sirtuin (SIRT)1 and peroxisome proliferator-activated receptor γ coactivator (PGC)1α. Furthermore, resveratrol and fluoxetine increased serotonin (5-HT) levels and downregulated the mRNA expression of 5-HT transporter (SERT) in the hippocampus. The decreased protein expression of growth-associated protein (GAP)-43 induced by CUMS was also ameliorated by resveratrol and fluoxetine. These findings demonstrated the antidepressant effects of resveratrol and suggested that resveratrol was able to promote mitochondrial biogenesis, enhance ATP and 5-HT levels, as well as upregulate GAP-43 expression in the hippocampus.
Collapse
|
25
|
Ferrari F, Moretti A, Villa RF. The treament of hyperglycemia in acute ischemic stroke with incretin-based drugs. Pharmacol Res 2020; 160:105018. [PMID: 32574826 DOI: 10.1016/j.phrs.2020.105018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Stroke is a major cause of mortality and morbidity worldwide. Considerable experimental and clinical evidence suggests that both diabetes mellitus (DM) and post-stroke hyperglycemia are associated with increased mortality rate and worsened clinical conditions in acute ischemic stroke (AIS) patients. Insulin treatment does not seem to provide convincing benefits for these patients, therefore prompting a change of strategy. The selective agonists of Glucagon-Like Peptide-1 Receptors (GLP-1Ras) and the Inhibitors of Dipeptidyl Peptidase-IV (DPP-IVIs, gliptins) are two newer classes of glucose-lowering drugs used for the treatment of DM. This review examines in detail the rationale for their development and the physicochemical, pharmacokinetic and pharmacodynamic properties and clinical activities. Emphasis will be placed on their neuroprotective effects at cellular and molecular levels in experimental models of acute cerebral ischemia. In perspective, an adequate basis does exist for a novel therapeutic approach to hyperglycemia in AIS patients through the additive treatment with GLP-1Ras plus DPP-IVIs.
Collapse
Affiliation(s)
- Federica Ferrari
- Department of Advanced Diagnostic and Therapeutic Technologies, Section of Neuroradiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy; Departments of Biology-Biotechnology and Chemistry, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Antonio Moretti
- Departments of Biology-Biotechnology and Chemistry, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Roberto Federico Villa
- Departments of Biology-Biotechnology and Chemistry, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
26
|
Chen C, Yin Q, Tian J, Gao X, Qin X, Du G, Zhou Y. Studies on the potential link between antidepressant effect of Xiaoyao San and its pharmacological activity of hepatoprotection based on multi-platform metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112432. [PMID: 31790818 DOI: 10.1016/j.jep.2019.112432] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM) theory, depression is considered to be "liver qi stagnation", and relieving "liver qi stagnation" is regarded as an effective method for treating depression. Xiaoyao San (XYS) is a well-known TCM formula for the treatment of depression by relieving "liver qi stagnation". This formula consists of Radix Paeoniae Alba (Paeonia lactiflora Pall.), Radix Bupleuri (Bupleurum chinense DC.), Poria (Poria cocos (Schw.) Wolf), Rhizoma Atractylodis Macrocephalae (Atractylodes macrocephala Koidz.), Radix Angelicae Sinensis (Angelica sinensis (Oliv.) Diels), Radix Glycyrrhizae (Glycyrrhiza uralensis Fisch.), Rhizoma Zingiberis Recens (Zingiber officinale Roscoe) and Herba Menthae Haplocalycis (Mentha haplocalyx Briq.). AIM OF THE STUDY Several studies have suggested that depression is associated with liver injury. XYS was a well-known TCM formula for the treatment of depression and liver stagnancy. However, it was still unknown whether the antidepressant effect of XYS is related to the pharmacological activity of hepatoprotection. The aim of this study was to elucidate the potential link between the antidepressant and hepatoprotective effect of XYS. MATERIALS AND METHODS A depression rat model was established by the CUMS (chronic unpredictable mild stress) procedure. The antidepressant effect of XYS was assessed by the behavioral indicators, and the hepatoprotective effect of XYS was evaluated through biochemical assays. 1H-NMR and LC/MS-based liver metabolomics were performed to discover key metabolic pathways involved in the antidepressant and hepatoprotective effects of XYS. Further, the key pathway was validated using commercial kits. RESULTS The results demonstrated that XYS pretreatment could significantly improve the depressive symptom induced by CUMS. More importantly, the results demonstrated that liver injury was observed in the CUMS model rats, and XYS had a hepatoprotective effect by reducing the activities of AST and ALT in serum, increasing the levels of SOD and GSH-Px and reducing the contents of MDA, IL-6, and IL-1β in the liver. In addition, the NMR and LC/MS-based metabolomics results indicated that XYS improved 23 of the 35 perturbed potential liver biomarkers that were induced by CUMS. Among them, 9 biomarkers were significantly correlated with both depression and liver pathology, according to Pearson correlation analysis. Metabolic pathway analyses of these 9 biomarkers showed that glutamine and glutamate metabolism were the most important metabolic pathways. Furthermore, to verify glutamine and glutamate metabolism, the levels of glutamine and glutamate, and the activity of glutamine synthetase (GS) and glutaminase (GLS) were quantitatively determined in the liver by commercial kits, and these results were consistent with the metabolomics results. CONCLUSIONS XYS could significantly improve the depressive and liver injury symptoms induced by CUMS. The metabolomics results indicate that the regulation of glutamine and glutamate metabolism to maintain the balance of ammonia and promote energy metabolism is a potential junction between the antidepressant and hepatoprotective effects of XYS.
Collapse
Affiliation(s)
- Congcong Chen
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, PR China
| | - Qicai Yin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, PR China
| | - Junshen Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China.
| |
Collapse
|
27
|
Chan ST, McCarthy MJ, Vawter MP. Psychiatric drugs impact mitochondrial function in brain and other tissues. Schizophr Res 2020; 217:136-147. [PMID: 31744750 PMCID: PMC7228833 DOI: 10.1016/j.schres.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
Abstract
Mitochondria have been linked to the etiology of schizophrenia (SZ). However, studies of mitochondria in SZ might be confounded by the effects of pharmacological treatment with antipsychotic drugs (APDs) and other common medications. This review summarizes findings on relevant mitochondria mechanisms underlying SZ, and the potential impact of psychoactive drugs including primarily APDs, but also antidepressants and anxiolytics. The summarized data suggest that APDs impair mitochondria function by decreasing Complex I activity and ATP production and dissipation of the mitochondria membrane potential. At the same time, in the brains of patients with SZ, antipsychotic drug treatment normalizes gene expression modules enriched in mitochondrial genes that are decreased in SZ. This indicates that APDs may have both positive and negative effects on mitochondria. The available evidence suggests three conclusions i) alterations in mitochondria functions in SZ exist prior to APD treatment, ii) mitochondria alterations in SZ can be reversed by APD treatment, and iii) APDs directly cause impairment of mitochondria function. Overall, the mechanisms of action of psychiatric drugs on mitochondria are both direct and indirect; we conclude the effects of APDs on mitochondria may contribute to both their therapeutic and metabolic side effects. These studies support the hypothesis that neuronal mitochondria are an etiological factor in SZ. Moreover, APDs and other drugs must be considered in the evaluation of this pathophysiological role of mitochondria in SZ. Considering these effects, pharmacological actions on mitochondria may be a worthwhile target for further APD development.
Collapse
Affiliation(s)
- Shawna T Chan
- Functional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of California, Irvine, USA; School of Medicine University of California, Irvine, USA
| | - Michael J McCarthy
- Psychiatry Service VA San Diego Healthcare System, Department of Psychiatry, University of California, San Diego, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of California, Irvine, USA.
| |
Collapse
|
28
|
Robertson OD, Coronado NG, Sethi R, Berk M, Dodd S. Putative neuroprotective pharmacotherapies to target the staged progression of mental illness. Early Interv Psychiatry 2019; 13:1032-1049. [PMID: 30690898 DOI: 10.1111/eip.12775] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
AIM Neuropsychiatric disorders including depression, bipolar and schizophrenia frequently exhibit a neuroprogressive course from prodrome to chronicity. There are a range of agents exhibiting capacity to attenuate biological mechanisms associated with neuroprogression. This review will update the evidence for putative neuroprotective agents including clinical efficacy, mechanisms of action and limitations in current assessment tools, and identify novel agents with neuroprotective potential. METHOD Data for this review were sourced from online databases PUBMED, Embase and Web of Science. Only data published since 2012 were included in this review, no data were excluded based on language or publication origin. RESULTS Each of the agents reviewed inhibit one or multiple pathways of neuroprogression including: inflammatory gene expression and cytokine release, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophin dysregulation and apoptotic signalling. Some demonstrate clinical efficacy in preventing neural damage or loss, relapse or cognitive/functional decline. Agents include: the psychotropic medications lithium, second generation antipsychotics and antidepressants; other pharmacological agents such as minocycline, aspirin, cyclooxygenase-2 inhibitors, statins, ketamine and alpha-2-delta ligands; and others such as erythropoietin, oestrogen, leptin, N-acetylcysteine, curcumin, melatonin and ebselen. CONCLUSIONS Signals of evidence of clinical neuroprotection are evident for a number of candidate agents. Adjunctive use of multiple agents may present a viable avenue to clinical realization of neuroprotection. Definitive prospective studies of neuroprotection with multimodal assessment tools are required.
Collapse
Affiliation(s)
- Oliver D Robertson
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia
| | - Nieves G Coronado
- Unidad de Gestión Clinica Salud Mental, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Rickinder Sethi
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Does obesity and diabetes mellitus metastasize to the brain? "Metaboptosis" and implications for drug discovery and development. CNS Spectr 2019; 24:467-469. [PMID: 30940233 DOI: 10.1017/s1092852918001670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Caruso G, Benatti C, Blom JMC, Caraci F, Tascedda F. The Many Faces of Mitochondrial Dysfunction in Depression: From Pathology to Treatment. Front Pharmacol 2019; 10:995. [PMID: 31551791 PMCID: PMC6746908 DOI: 10.3389/fphar.2019.00995] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Joan M C Blom
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Caraci
- Oasi Research Institute, IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
31
|
Holper L, Ben-Shachar D, Mann JJ. Psychotropic and neurological medication effects on mitochondrial complex I and IV in rodent models. Eur Neuropsychopharmacol 2019; 29:986-1002. [PMID: 31320210 DOI: 10.1016/j.euroneuro.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/29/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH-dehydrogenase) and complex IV (cytochrome-c-oxidase) are reported to be affected by drugs used to treat psychiatric or neurodegenerative diseases, including antidepressants, antipsychotics, anxiolytics, mood stabilizers, stimulants, antidementia, and antiparkinsonian drugs. We conducted meta-analyses examining the effects of each drug category on complex I and IV. The electronic databases Pubmed, EMBASE, CENTRAL, and Google Scholar were searched for studies published between 1970 and 2018. Of 3105 screened studies, 68 articles covering 53 drugs were included in the meta-analyses. All studies assessed complex I and IV in rodent brain at the level of enzyme activity. Results revealed that selected antidepressants increase or decrease complex I and IV, antipsychotics and stimulants decrease complex I but increase complex IV, whereas anxiolytics, mood stabilizers, antidementia, and antiparkinsonian drugs preserve or even enhance both complex I and IV. Potential contributions to the drug effects were found to be related to the drugs' neurotransmitter receptor profiles with adrenergic (α1B), dopaminergic (D1/2), glutaminergic (NMDA1,3), histaminergic (H1), muscarinic (M1,3), opioid (OP1-3), serotonergic (5-HT2A, 5-HT2C, 5-HT3A) and sigma (σ1) receptors having the greatest effects. The findings are discussed in relation to pharmacological mechanisms of action that might have relevance for clinical and research applications.
Collapse
Affiliation(s)
- L Holper
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, 8032 Zurich, Switzerland.
| | - D Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion IIT, Haifa, Israel
| | - J J Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, USA
| |
Collapse
|
32
|
Caruso G, Fresta CG, Fidilio A, O'Donnell F, Musso N, Lazzarino G, Grasso M, Amorini AM, Tascedda F, Bucolo C, Drago F, Tavazzi B, Lazzarino G, Lunte SM, Caraci F. Carnosine Decreases PMA-Induced Oxidative Stress and Inflammation in Murine Macrophages. Antioxidants (Basel) 2019; 8:E281. [PMID: 31390749 PMCID: PMC6720685 DOI: 10.3390/antiox8080281] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine. This naturally occurring molecule is present at high concentrations in several mammalian excitable tissues such as muscles and brain, while it can be found at low concentrations in a few invertebrates. Carnosine has been shown to be involved in different cellular defense mechanisms including the inhibition of protein cross-linking, reactive oxygen and nitrogen species detoxification as well as the counteraction of inflammation. As a part of the immune response, macrophages are the primary cell type that is activated. These cells play a crucial role in many diseases associated with oxidative stress and inflammation, including atherosclerosis, diabetes, and neurodegenerative diseases. In the present study, carnosine was first tested for its ability to counteract oxidative stress. In our experimental model, represented by RAW 264.7 macrophages challenged with phorbol 12-myristate 13-acetate (PMA) and superoxide dismutase (SOD) inhibitors, carnosine was able to decrease the intracellular concentration of superoxide anions (O2-•) as well as the expression of Nox1 and Nox2 enzyme genes. This carnosine antioxidant activity was accompanied by the attenuation of the PMA-induced Akt phosphorylation, the down-regulation of TNF-α and IL-6 mRNAs, and the up-regulation of the expression of the anti-inflammatory mediators IL-4, IL-10, and TGF-β1. Additionally, when carnosine was used at the highest dose (20 mM), there was a generalized amelioration of the macrophage energy state, evaluated through the increase both in the total nucleoside triphosphate concentrations and the sum of the pool of intracellular nicotinic coenzymes. Finally, carnosine was able to decrease the oxidized (NADP+)/reduced (NADPH) ratio of nicotinamide adenine dinucleotide phosphate in a concentration dependent manner, indicating a strong inhibitory effect of this molecule towards the main source of reactive oxygen species in macrophages. Our data suggest a multimodal mechanism of action of carnosine underlying its beneficial effects on macrophage cells under oxidative stress and inflammation conditions.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Laboratories, Oasi Research Institute-IRCCS, 94018 Troina, Italy.
| | - Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Annamaria Fidilio
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Fergal O'Donnell
- School of Biotechnology, Dublin City University, D09W6Y4 Dublin, Ireland
| | - Nicolò Musso
- Bio-Nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Margherita Grasso
- Department of Laboratories, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Angela M Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy.
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Department of Laboratories, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
33
|
A comprehensive metabolomics investigation of hippocampus, serum, and feces affected by chronic fluoxetine treatment using the chronic unpredictable mild stress mouse model of depression. Sci Rep 2019; 9:7566. [PMID: 31110199 PMCID: PMC6527582 DOI: 10.1038/s41598-019-44052-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/27/2019] [Indexed: 02/01/2023] Open
Abstract
A metabolomic investigation of depression and chronic fluoxetine treatment was conducted using a chronic unpredictable mild stress model with C57BL/6N mice. Establishment of the depressive model was confirmed by body weight measurement and behavior tests including the forced swim test and the tail suspension test. Behavioral despair by depression was reversed by four week-treatment with fluoxetine. Hippocampus, serum, and feces samples collected from four groups (control + saline, control + fluoxetine, model + saline, and model + fluoxetine) were subjected to metabolomic profiling based on ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Alterations in the metabolic patterns were evident in all sample types. The antidepressant effects of fluoxetine appeared to involve various metabolic pathways including energy metabolism, neurotransmitter synthesis, tryptophan metabolism, fatty acid metabolism, lipid metabolism, and bile acid metabolism. Predictive marker candidates of depression were identified, including β-citryl-L-glutamic acid (BCG) and docosahexaenoic acid (DHA) in serum and chenodeoxycholic acid and oleamide in feces. This study suggests that treatment effects of fluoxetine might be differentiated by altered levels of tyramine and BCG in serum, and that DHA is a potential serum marker for depression with positive association with hippocampal DHA. Collectively, our comprehensive study provides insights into the biochemical perturbations involved in depression and the antidepressant effects of fluoxetine.
Collapse
|
34
|
Benatti C, Radighieri G, Alboni S, Blom JMC, Brunello N, Tascedda F. Modulation of neuroplasticity-related targets following stress-induced acute escape deficit. Behav Brain Res 2019; 364:140-148. [PMID: 30771367 DOI: 10.1016/j.bbr.2019.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Understanding resilience is a major challenge to improve current pharmacological therapies aimed at complementing psychological-based approaches of stress-related disorders. In particular, resilience is a multi-factorial construct where the complex network of molecular events that drive the process still needs to be resolved. Here, we exploit the acute escape deficit model, an animal model based on exposure to acute unavoidable stress followed by an escape test, to define vulnerable and resilient phenotypes in rats. Hippocampus and prefrontal cortex (PFC), two of the brain areas most involved in the stress response, were analysed for gene expression at two different time points (3 and 24 h) after the escape test. Total Brain-Derived Neurotrophic Factor (BDNF) was highly responsive in the PFC at 24-h after the escape test, while expression of BDNF transcript IV increased in the hippocampus of resistant animals 3 h post-test. Expression of memory enhancers like Neuronal PAS Domain Protein 4 (Npas4) and Activity-regulated cytoskeleton-associated protein (Arc) decreased in a time- and region-dependent fashion in both behavioural phenotypes. Also, the memory inhibitor Protein Phosphatase 1 (Ppp1ca) was increased in the hippocampus of resilient rats at 3 h post-test. Given the importance of neurotrophic factors and synaptic plasticity-related genes for the development of appropriate coping strategies, our data contribute to an additional step forward in the comprehension of the psychobiology of stress and resiliency.
Collapse
Affiliation(s)
- C Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - S Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - J M C Blom
- Department of Education and Human Sciences, University of Modena and Reggio Emilia, viale Antonio Allegri 9, 42121, Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
35
|
Ferrari F, Viscardi P, Gorini A, Villa RF. Synaptic ATPases system of rat frontal cerebral cortex during aging. Neurosci Lett 2019; 694:74-79. [DOI: 10.1016/j.neulet.2018.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 01/28/2023]
|
36
|
Ramos-Miguel A, Barakauskas V, Alamri J, Miyauchi M, Barr AM, Beasley CL, Rosoklija G, Mann JJ, Dwork AJ, Moradian A, Morin GB, Honer WG. The SNAP25 Interactome in Ventromedial Caudate in Schizophrenia Includes the Mitochondrial Protein ARF1. Neuroscience 2019; 420:97-111. [PMID: 30610939 DOI: 10.1016/j.neuroscience.2018.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
Abnormalities of SNAP25 (synaptosome-associated protein 25) amount and protein-protein interactions occur in schizophrenia, and may contribute to abnormalities of neurotransmitter release in patients. However, presynaptic terminal function depends on multiple subcellular mechanisms, including energy provided by mitochondria. To explore the SNAP25 interactome in schizophrenia, we immunoprecipitated SNAP25 along with interacting proteins from the ventromedial caudate of 15 cases of schizophrenia and 13 controls. Proteins were identified with mass spectrometry-based proteomics. As well as 15 SNARE- (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) associated proteins, we identified 17 mitochondria-associated and four other proteins. The mitochondrial small GTPase ARF1 (ADP-ribosylation factor 1) was identified in eight schizophrenia SNAP25 immunoprecipitates and none from controls (P = 0.004). Although the ARF1-SNAP25 interaction may be increased, immunoblotting demonstrated 21% lower ARF1-21 (21 kiloDaltons) in schizophrenia samples (P = 0.04). In contrast, the mitochondrial protein UQCRC1 (ubiquinol-cytochrome c reductase core protein 1) did not differ. Lower ARF1-21 levels were associated with the previously reported increased SNAP25-syntaxin interaction in schizophrenia (r = -0.39, P = 0.04). Additional immunoprecipitation studies confirmed the ARF1-21-SNAP25 interaction, independent of UQCRC1. Both ARF1 and SNAP25 were localized to synaptosomes. Confocal microscopy demonstrated co-localization of ARF1 and SNAP25, and further suggested fivefold enrichment of ARF1 in synaptosomes containing an excitatory marker (vesicular glutamate transporter) compared with synaptosomes containing an inhibitory marker (vesicular GABA transporter). The present findings suggest an association between abnormalities of SNARE proteins involved with vesicular neurotransmission and the mitochondrial protein ARF1 that may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada; Department of Pharmacology, University of the Basque Country, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barrio Sarriena, s/n, 48940 Leioa, Biscay, Spain
| | - Vilte Barakauskas
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, 2J9-4500 Oak St., Vancouver, BC V6H 3B1, Canada
| | - Jehan Alamri
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Masatoshi Miyauchi
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Alasdair M Barr
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Anesthesiology, Pharmacology, & Therapeutics, University of British Columbia, 2176 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - Clare L Beasley
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Annie Moradian
- Department of Medical Genetics, University of British Columbia, C234-4500 Oak St., Vancouver, BC V6H 3B1, Canada
| | - Gregg B Morin
- Department of Medical Genetics, University of British Columbia, C234-4500 Oak St., Vancouver, BC V6H 3B1, Canada
| | - William G Honer
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
37
|
Blatteau JE, Gaillard S, De Maistre S, Richard S, Louges P, Gempp E, Druelles A, Lehot H, Morin J, Castagna O, Abraini JH, Risso JJ, Vallée N. Reduction in the Level of Plasma Mitochondrial DNA in Human Diving, Followed by an Increase in the Event of an Accident. Front Physiol 2018; 9:1695. [PMID: 30555340 PMCID: PMC6282000 DOI: 10.3389/fphys.2018.01695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023] Open
Abstract
Circulating mitochondrial DNA (mtDNA) is receiving increasing attention as a danger-associated molecular pattern in conditions such as autoimmunity or trauma. In the context of decompression sickness (DCS), the course of which is sometimes erratic, we hypothesize that mtDNA plays a not insignificant role particularly in neurological type accidents. This study is based on the comparison of circulating mtDNA levels in humans presenting with various types of diving accidents, and punctured upon their admission at the hyperbaric facility. One hundred and fourteen volunteers took part in the study. According to the clinical criteria there were 12 Cerebro DCS, 57 Medullary DCS, 15 Vestibular DCS, 8 Ctrl+ (accident-free divers), and 22 Ctrl- (non-divers). This work demonstrates that accident-free divers have less mtDNA than non-divers, which leads to the assumption that hyperbaric exposure degrades the mtDNA. mtDNA levels are on average greater in divers with DCS compared with accident-free divers. On another hand, the amount of double strand DNA (dsDNA) is neither significantly different between controls, nor between the different DCS types. Initially the increase in circulating oligonucleotides was attributed to the destruction of cells by bubble abrasion following necrotic phenomena. If there really is a significant difference between the Medullary DCS and the Ctrl-, this difference is not significant between these same DCS and the Ctrl+. This refutes the idea of massive degassing and suggests the need for new research in order to verify that oxidative stress could be a key element without necessarily being sufficient for the occurrence of a neurological type of accident.
Collapse
Affiliation(s)
- Jean-Eric Blatteau
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | | | - Sébastien De Maistre
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Simone Richard
- Mediterranean Institute of Oceanography, Université de Toulon, Toulon, France
| | - Pierre Louges
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Emmanuel Gempp
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Arnaud Druelles
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Henri Lehot
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Jean Morin
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Olivier Castagna
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
| | - Jacques H. Abraini
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
| | - Nicolas Vallée
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
| |
Collapse
|
38
|
Brietzke E, Mansur RB, Subramaniapillai M, Balanzá-Martínez V, Vinberg M, González-Pinto A, Rosenblat JD, Ho R, McIntyre RS. Ketogenic diet as a metabolic therapy for mood disorders: Evidence and developments. Neurosci Biobehav Rev 2018; 94:11-16. [DOI: 10.1016/j.neubiorev.2018.07.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022]
|
39
|
Ferrari F, Gorini A, Hoyer S, Villa RF. Glutamate metabolism in cerebral mitochondria after ischemia and post-ischemic recovery during aging: relationships with brain energy metabolism. J Neurochem 2018; 146:416-428. [PMID: 29779216 DOI: 10.1111/jnc.14464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
Glutamate is involved in cerebral ischemic injury, but its role has not been completely clarified and studies are required to understand how to minimize its detrimental effects, contemporarily boosting the positive ones. In fact, glutamate is not only a neurotransmitter, but primarily a key metabolite for brain bioenergetics. Thus, we investigated the relationships between glutamate and brain energy metabolism in an in vivo model of complete cerebral ischemia of 15 min and during post-ischemic recovery after 1, 24, 48, 72, and 96 h in 1-year-old adult and 2-year-old aged rats. The maximum rates (Vmax ) of glutamate dehydrogenase (GlDH), glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase were assayed in somatic mitochondria (FM) and in intra-synaptic 'Light' mitochondria and intra-synaptic 'Heavy' mitochondria ones purified from cerebral cortex, distinguishing post- and pre-synaptic compartments. During ischemia, none of the enzymes were modified in adult animals. In aged ones, glutamate-oxaloacetate transaminase was increased in FM and GlDH in intra-synaptic 'Heavy' mitochondria, stimulating glutamate catabolism. During post-ischemic recovery, FM did not show modifications at both ages while, in intra-synaptic mitochondria of adult animals, glutamate catabolism was increased after 1 h of recirculation and decreased after 48 and 72 h, whereas it remained decreased up to 96 h in aged rats. These results, with those previously published about Krebs' cycle and Electron Transport Chain (Villa et al., [2013] Neurochem. Int. 63, 765-781), demonstrate that: (i) Vmax of energy-linked enzymes are different in the various cerebral mitochondria, which (ii) respond differently to ischemia and post-ischemic recovery, also (iii) with respect to aging.
Collapse
Affiliation(s)
- Federica Ferrari
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Antonella Gorini
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Siegfried Hoyer
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.,Department of Pathology, University Clinic, University of Heidelberg, Heidelberg, Germany
| | - Roberto Federico Villa
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
40
|
Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE. Mitochondria and Mood: Mitochondrial Dysfunction as a Key Player in the Manifestation of Depression. Front Neurosci 2018; 12:386. [PMID: 29928190 PMCID: PMC5997778 DOI: 10.3389/fnins.2018.00386] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Human and animal studies suggest an intriguing link between mitochondrial diseases and depression. Although depression has historically been linked to alterations in monoaminergic pharmacology and adult hippocampal neurogenesis, new data increasingly implicate broader forms of dampened plasticity, including plasticity within the cell. Mitochondria are the cellular powerhouse of eukaryotic cells, and they also regulate brain function through oxidative stress and apoptosis. In this paper, we make the case that mitochondrial dysfunction could play an important role in the pathophysiology of depression. Alterations in mitochondrial functions such as oxidative phosphorylation (OXPHOS) and membrane polarity, which increase oxidative stress and apoptosis, may precede the development of depressive symptoms. However, the data in relation to antidepressant drug effects are contradictory: some studies reveal they have no effect on mitochondrial function or even potentiate dysfunction, whereas other studies show more beneficial effects. Overall, the data suggest an intriguing link between mitochondrial function and depression that warrants further investigation. Mitochondria could be targeted in the development of novel antidepressant drugs, and specific forms of mitochondrial dysfunction could be identified as biomarkers to personalize treatment and aid in early diagnosis by differentiating between disorders with overlapping symptoms.
Collapse
Affiliation(s)
- Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Kyle J Brymer
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
41
|
Perić I, Costina V, Stanisavljević A, Findeisen P, Filipović D. Proteomic characterization of hippocampus of chronically socially isolated rats treated with fluoxetine: Depression-like behaviour and fluoxetine mechanism of action. Neuropharmacology 2018; 135:268-283. [DOI: 10.1016/j.neuropharm.2018.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
|
42
|
Mitochondrial proteomics investigation of frontal cortex in an animal model of depression: Focus on chronic antidepressant drugs treatment. Pharmacol Rep 2018; 70:322-330. [DOI: 10.1016/j.pharep.2017.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022]
|
43
|
Villa RF, Ferrari F, Moretti A. Post-stroke depression: Mechanisms and pharmacological treatment. Pharmacol Ther 2018; 184:131-144. [DOI: 10.1016/j.pharmthera.2017.11.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|