1
|
Riessland M, Ximerakis M, Jarjour AA, Zhang B, Orr ME. Therapeutic targeting of senescent cells in the CNS. Nat Rev Drug Discov 2024; 23:817-837. [PMID: 39349637 DOI: 10.1038/s41573-024-01033-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/01/2024]
Abstract
Senescent cells accumulate throughout the body with advanced age, diseases and chronic conditions. They negatively impact health and function of multiple systems, including the central nervous system (CNS). Therapies that target senescent cells, broadly referred to as senotherapeutics, recently emerged as potentially important treatment strategies for the CNS. Promising therapeutic approaches involve clearing senescent cells by disarming their pro-survival pathways with 'senolytics'; or dampening their toxic senescence-associated secretory phenotype (SASP) using 'senomorphics'. Following the pioneering discovery of first-generation senolytics dasatinib and quercetin, dozens of additional therapies have been identified, and several promising targets are under investigation. Although potentially transformative, senotherapies are still in early stages and require thorough testing to ensure reliable target engagement, specificity, safety and efficacy. The limited brain penetrance and potential toxic side effects of CNS-acting senotherapeutics pose challenges for drug development and translation to the clinic. This Review assesses the potential impact of senotherapeutics for neurological conditions by summarizing preclinical evidence, innovative methods for target and biomarker identification, academic and industry drug development pipelines and progress in clinical trials.
Collapse
Affiliation(s)
- Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
2
|
Bekhbat M. Glycolytic metabolism: Food for immune cells, fuel for depression? Brain Behav Immun Health 2024; 40:100843. [PMID: 39263313 PMCID: PMC11387811 DOI: 10.1016/j.bbih.2024.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
Inflammation is one biological pathway thought to impact the brain to contribute to major depressive disorder (MDD) and is reliably associated with resistance to standard antidepressant treatments. While peripheral immune cells, particularly monocytes, have been associated with aspects of increased inflammation in MDD and symptom severity, significant gaps in knowledge exist regarding the mechanisms by which these cells are activated to contribute to behavioral symptoms in MDD. One concept that has gained recent appreciation is that metabolic rewiring to glycolysis in activated myeloid cells plays a crucial role in facilitating these cells' pro-inflammatory functions, which may underlie myeloid contribution to systemic inflammation and its effects on the brain. Given emerging evidence from translational studies of depression that peripheral monocytes exhibit signs of glycolytic activation, better understanding the immunometabolic phenotypes of monocytes which are known to be elevated in MDD with high inflammation is a critical step toward comprehending and treating the impact of inflammation on the brain. This narrative review examines the extant literature on glycolytic metabolism of circulating monocytes in depression and discusses the functional implications of immunometabolic shifts at both cellular and systemic levels. Additionally, it proposes potential therapeutic applications of existing immunomodulators that target glycolysis and related metabolic pathways in order to reverse the impact of elevated inflammation on the brain and depressive symptoms.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Lin R, Jin L, Xue Y, Zhang Z, Huang H, Chen D, Liu Q, Mao Z, Wu Z, Tao Q. Hybrid Membrane-Coated Nanoparticles for Precise Targeting and Synergistic Therapy in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306675. [PMID: 38647399 PMCID: PMC11200089 DOI: 10.1002/advs.202306675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/01/2024] [Indexed: 04/25/2024]
Abstract
The blood brain barrier (BBB) limits the application of most therapeutic drugs for neurological diseases (NDs). Hybrid cell membrane-coated nanoparticles derived from different cell types can mimic the surface properties and functionalities of the source cells, further enhancing their targeting precision and therapeutic efficacy. Neuroinflammation has been increasingly recognized as a critical factor in the pathogenesis of various NDs, especially Alzheimer's disease (AD). In this study, a novel cell membrane coating is designed by hybridizing the membrane from platelets and chemokine (C-C motif) receptor 2 (CCR2) cells are overexpressed to cross the BBB and target neuroinflammatory lesions. Past unsuccessful endeavors in AD drug development underscore the challenge of achieving favorable outcomes when utilizing single-mechanism drugs.Two drugs with different mechanisms of actions into liposomes are successfully loaded to realize multitargeting treatment. In a transgenic mouse model for familial AD (5xFAD), the administration of these drug-loaded hybrid cell membrane liposomes results in a significant reduction in amyloid plaque deposition, neuroinflammation, and cognitive impairments. Collectively, the hybrid cell membrane-coated nanomaterials offer new opportunities for precise drug delivery and disease-specific targeting, which represent a versatile platform for targeted therapy in AD.
Collapse
Affiliation(s)
- Rong‐Rong Lin
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Lu‐Lu Jin
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Yan‐Yan Xue
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Zhe‐Sheng Zhang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Hui‐Feng Huang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Dian‐Fu Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Qian Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Zheng‐Wei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Zhi‐Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
- MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhou310058China
- CAS Center for Excellence in Brain Science and Intelligence TechnologyShanghai200031China
| | - Qing‐Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| |
Collapse
|
4
|
Xu H, Wang Y, Yu C, Han C, Cui H. Heparin-Modified Superparamagnetic Iron Oxide Nanoparticles Suppress Lithium Chloride/Pilocarpine-Induced Temporal Lobe Epilepsy in Rats through Attenuation of Inflammation and Oxidative Stress. ACS Chem Neurosci 2024; 15:1937-1947. [PMID: 38630556 DOI: 10.1021/acschemneuro.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The development of antiepileptic drugs is still a long process. In this study, heparin-modified superparamagnetic iron oxide nanoparticles (UFH-SPIONs) were prepared, and their antiepileptic effect and underlying mechanism were investigated. UFH-SPIONs are stable, homogeneous nanosystems with antioxidant enzyme activity that are able to cross the blood-brain barrier (BBB) and enriched in hippocampal epileptogenic foci. The pretreatment with UFH-SPIONs effectively prolonged the onset of seizures and reduced seizure severity after lithium/pilocarpine (LP)-induced seizures in rats. The pretreatment with UFH-SPIONs significantly decreased the expression of inflammatory factors in hippocampal tissues, including IL-6, IL-1β, and TNF-α. LP-induced oxidative stress in hippocampal tissues was in turn reduced upon pretreatment with UFH-SPIONs, as evidenced by an increase in the levels of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and a decrease in the level of lipid peroxidation (MDA). Moreover, the LP-induced upregulation of apoptotic cells was decreased upon pretreatment with UFH-SPIONs. Together, these observations suggest that the pretreatment with UFH-SPIONs ameliorates LP-induced seizures and downregulates the inflammatory response and oxidative stress, which exerts neuronal protection during epilepsy.
Collapse
Affiliation(s)
- Hanbing Xu
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yubo Wang
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Congcong Yu
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunhong Han
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huifei Cui
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- National Glycoengineering Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
5
|
Ampudia-Mesias E, Cameron CS, Yoo E, Kelly M, Anderson SM, Manning R, Abrahante Lloréns JE, Moertel CL, Yim H, Odde DJ, Saydam N, Saydam O. The OTX2 Gene Induces Tumor Growth and Triggers Leptomeningeal Metastasis by Regulating the mTORC2 Signaling Pathway in Group 3 Medulloblastomas. Int J Mol Sci 2024; 25:4416. [PMID: 38674001 PMCID: PMC11050316 DOI: 10.3390/ijms25084416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.
Collapse
Affiliation(s)
- Elisabet Ampudia-Mesias
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Charles S. Cameron
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Eunjae Yoo
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - Marcus Kelly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Sarah M. Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Riley Manning
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Christopher L. Moertel
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Hyungshin Yim
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| |
Collapse
|
6
|
Li Y, Yang P, Meng R, Xu S, Zhou L, Qian K, Wang P, Cheng Y, Sheng D, Xu M, Wang T, Wu J, Cao J, Zhang Q. Multidimensional autophagy nano-regulator boosts Alzheimer's disease treatment by improving both extra/intraneuronal homeostasis. Acta Pharm Sin B 2024; 14:1380-1399. [PMID: 38486986 PMCID: PMC10935063 DOI: 10.1016/j.apsb.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 03/17/2024] Open
Abstract
Intraneuronal dysproteostasis and extraneuronal microenvironmental abnormalities in Alzheimer's disease (AD) collectively culminate in neuronal deterioration. In the context of AD, autophagy dysfunction, a multi-link obstacle involving autophagy downregulation and lysosome defects in neurons/microglia is highly implicated in intra/extraneuronal pathological processes. Therefore, multidimensional autophagy regulation strategies co-manipulating "autophagy induction" and "lysosome degradation" in dual targets (neuron and microglia) are more reliable for AD treatment. Accordingly, we designed an RP-1 peptide-modified reactive oxygen species (ROS)-responsive micelles (RT-NM) loading rapamycin or gypenoside XVII. Guided by RP-1 peptide, the ligand of receptor for advanced glycation end products (RAGE), RT-NM efficiently targeted neurons and microglia in AD-affected region. This nano-combination therapy activated the whole autophagy-lysosome pathway by autophagy induction (rapamycin) and lysosome improvement (gypenoside XVII), thus enhancing autophagic degradation of neurotoxic aggregates and inflammasomes, and promoting Aβ phagocytosis. Resultantly, it decreased aberrant protein burden, alleviated neuroinflammation, and eventually ameliorated memory defects in 3 × Tg-AD transgenic mice. Our research developed a multidimensional autophagy nano-regulator to boost the efficacy of autophagy-centered AD therapy.
Collapse
Affiliation(s)
| | | | | | - Shuting Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lingling Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Pengzhen Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Dongyu Sheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tianying Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jing Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinxu Cao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
7
|
Wang SJ, Zhao MY, Zhao PC, Zhang W, Rao GW. Research Status, Synthesis and Clinical Application of Antiepileptic Drugs. Curr Med Chem 2024; 31:410-452. [PMID: 36650655 DOI: 10.2174/0929867330666230117160632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023]
Abstract
According to the 2017 ILAE's official definition, epilepsy is a slow brain disease state characterized by recurrent episodes. Due to information released by ILAE in 2017, it can be divided into four types, including focal epilepsy, generalized epilepsy, combined generalized, and focal epilepsy, and unknown epilepsy. Since 1989, 24 new antiepileptic drugs have been approved to treat different types of epilepsy. Besides, there are a variety of antiepileptic medications under clinical monitoring. These novel antiepileptic drugs have plenty of advantages. Over the past 33 years, there have been many antiepileptic drugs on the mearket, but no one has been found that can completely cure epilepsy. In this paper, the mentioned drugs were classified according to their targets, and the essential information, and clinical studies of each drug were described. The structure-activity relationship of different chemical structures was summarized. This paper provides help for the follow-up research on epilepsy drugs.
Collapse
Affiliation(s)
- Si-Jie Wang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Min-Yan Zhao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Peng-Cheng Zhao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
8
|
Varlamova EG, Borisova EV, Evstratova YA, Newman AG, Kuldaeva VP, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Socrates: A Novel N-Ethyl-N-nitrosourea-Induced Mouse Mutant with Audiogenic Epilepsy. Int J Mol Sci 2023; 24:17104. [PMID: 38069426 PMCID: PMC10707124 DOI: 10.3390/ijms242317104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Ekaterina V. Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Yuliya A. Evstratova
- Federal State Budgetary Educational Institution of Higher Education “MIREA—Russian Technological University”, 78, Vernadskogo Ave., 119454 Moscow, Russia;
| | - Andrew G. Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Victor S. Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Alexey A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| |
Collapse
|
9
|
Dhamne SC, Modi ME, Gray A, Bonazzi S, Craig L, Bainbridge E, Lalani L, Super CE, Schaeffer S, Capre K, Lubicka D, Liang G, Burdette D, McTighe SM, Gurnani S, Vermudez SAD, Curtis D, Wilson CJ, Hameed MQ, D'Amore A, Rotenberg A, Sahin M. Seizure reduction in TSC2-mutant mouse model by an mTOR catalytic inhibitor. Ann Clin Transl Neurol 2023; 10:1790-1801. [PMID: 37545094 PMCID: PMC10578885 DOI: 10.1002/acn3.51868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023] Open
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder caused by autosomal-dominant pathogenic variants in either the TSC1 or TSC2 gene, and it is characterized by hamartomas in multiple organs, such as skin, kidney, lung, and brain. These changes can result in epilepsy, learning disabilities, and behavioral complications, among others. The mechanistic link between TSC and the mechanistic target of the rapamycin (mTOR) pathway is well established, thus mTOR inhibitors can potentially be used to treat the clinical manifestations of the disorder, including epilepsy. METHODS In this study, we tested the efficacy of a novel mTOR catalytic inhibitor (here named Tool Compound 1 or TC1) previously reported to be more brain-penetrant compared with other mTOR inhibitors. Using a well-characterized hypomorphic Tsc2 mouse model, which displays a translationally relevant seizure phenotype, we tested the efficacy of TC1. RESULTS Our results show that chronic treatment with this novel mTOR catalytic inhibitor (TC1), which affects both the mTORC1 and mTORC2 signaling complexes, reduces seizure burden, and extends the survival of Tsc2 hypomorphic mice, restoring species typical weight gain over development. INTERPRETATION Novel mTOR catalytic inhibitor TC1 exhibits a promising therapeutic option in the treatment of TSC.
Collapse
Affiliation(s)
- Sameer C. Dhamne
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Meera E. Modi
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Audrey Gray
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Simone Bonazzi
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Lucas Craig
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Elizabeth Bainbridge
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lahin Lalani
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Chloe E. Super
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Samantha Schaeffer
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Ketthsy Capre
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Danuta Lubicka
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Guiqing Liang
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Doug Burdette
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | | | - Sarika Gurnani
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Sheryl Anne D. Vermudez
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Daniel Curtis
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | | | - Mustafa Q. Hameed
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Angelica D'Amore
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
10
|
Semenescu LE, Kamel A, Ciubotaru V, Baez-Rodriguez SM, Furtos M, Costachi A, Dricu A, Tătăranu LG. An Overview of Systemic Targeted Therapy in Renal Cell Carcinoma, with a Focus on Metastatic Renal Cell Carcinoma and Brain Metastases. Curr Issues Mol Biol 2023; 45:7680-7704. [PMID: 37754269 PMCID: PMC10528141 DOI: 10.3390/cimb45090485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
The most commonly diagnosed malignancy of the urinary system is represented by renal cell carcinoma. Various subvariants of RCC were described, with a clear-cell type prevailing in about 85% of all RCC tumors. Patients with metastases from renal cell carcinoma did not have many effective therapies until the end of the 1980s, as long as hormonal therapy and chemotherapy were the only options available. The outcomes were unsatisfactory due to the poor effectiveness of the available therapeutic options, but then interferon-alpha and interleukin-2 showed treatment effectiveness, providing benefits but only for less than half of the patients. However, it was not until 2004 that targeted therapies emerged, prolonging the survival rate. Currently, new technologies and strategies are being developed to improve the actual efficacy of available treatments and their prognostic aspects. This article summarizes the mechanisms of action, importance, benefits, adverse events of special interest, and efficacy of immunotherapy in metastatic renal cell carcinoma, with a focus on brain metastases.
Collapse
Affiliation(s)
- Liliana Eleonora Semenescu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania; (L.E.S.); (A.C.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (A.K.); (V.C.); (S.M.B.-R.); (L.G.T.)
| | - Vasile Ciubotaru
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (A.K.); (V.C.); (S.M.B.-R.); (L.G.T.)
| | - Silvia Mara Baez-Rodriguez
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (A.K.); (V.C.); (S.M.B.-R.); (L.G.T.)
| | - Mircea Furtos
- Neurosurgical Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania;
| | - Alexandra Costachi
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania; (L.E.S.); (A.C.)
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania; (L.E.S.); (A.C.)
| | - Ligia Gabriela Tătăranu
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (A.K.); (V.C.); (S.M.B.-R.); (L.G.T.)
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| |
Collapse
|
11
|
Bonazzi S, Gray A, Thomsen NM, Biag J, Labbe-Giguere N, Keaney EP, Malik HA, Sun Y, Nunez J, Karki RG, Knapp M, Elling R, Fuller J, Pardee G, Craig L, Capre K, Salas S, Gorde A, Liang G, Lubicka D, McTighe SM, Goold C, Liu S, Deng L, Hong J, Fekete A, Stadelmann P, Frieauff W, Elhajouji A, Bauer D, Lerchner A, Radetich B, Furet P, Piizzi G, Burdette D, Wilson CJ, Peukert S, Hamann LG, Murphy LO, Curtis D. Identification of Brain-Penetrant ATP-Competitive mTOR Inhibitors for CNS Syndromes. J Med Chem 2023. [PMID: 37399505 DOI: 10.1021/acs.jmedchem.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The allosteric inhibitor of the mechanistic target of rapamycin (mTOR) everolimus reduces seizures in tuberous sclerosis complex (TSC) patients through partial inhibition of mTOR functions. Due to its limited brain permeability, we sought to develop a catalytic mTOR inhibitor optimized for central nervous system (CNS) indications. We recently reported an mTOR inhibitor (1) that is able to block mTOR functions in the mouse brain and extend the survival of mice with neuronal-specific ablation of the Tsc1 gene. However, 1 showed the risk of genotoxicity in vitro. Through structure-activity relationship (SAR) optimization, we identified compounds 9 and 11 without genotoxicity risk. In neuronal cell-based models of mTOR hyperactivity, both corrected aberrant mTOR activity and significantly improved the survival rate of mice in the Tsc1 gene knockout model. Unfortunately, 9 and 11 showed limited oral exposures in higher species and dose-limiting toxicities in cynomolgus macaque, respectively. However, they remain optimal tools to explore mTOR hyperactivity in CNS disease models.
Collapse
Affiliation(s)
- Simone Bonazzi
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Audrey Gray
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Noel M Thomsen
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Jonathan Biag
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Nancy Labbe-Giguere
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Erin P Keaney
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Hasnain A Malik
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Yingchuan Sun
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Jill Nunez
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Rajeshri G Karki
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Mark Knapp
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5959 Horton St, Emeryville, California 94608, United States
| | - Robert Elling
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5959 Horton St, Emeryville, California 94608, United States
| | - John Fuller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 5959 Horton St, Emeryville, California 94608, United States
| | - Gwynn Pardee
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 5959 Horton St, Emeryville, California 94608, United States
| | - Lucas Craig
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Ketthsy Capre
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Sarah Salas
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Aakruti Gorde
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Guiqing Liang
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Danuta Lubicka
- Global Drug Development/Technical Research and Development, Novartis Institutes for BioMedical Research, 700 Main Street, Cambridge, Massachusetts 02139, United States
| | - Stephanie M McTighe
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Carleton Goold
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Shanming Liu
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Lin Deng
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jin Hong
- Preclinical Safety, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander Fekete
- Preclinical Safety, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Pascal Stadelmann
- Preclinical Safety, Novartis Institutes for BioMedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Wilfried Frieauff
- Preclinical Safety, Novartis Institutes for BioMedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Azeddine Elhajouji
- Preclinical Safety, Novartis Institutes for BioMedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Daniel Bauer
- Preclinical Safety, Novartis Institutes for BioMedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Andreas Lerchner
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Branko Radetich
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Pascal Furet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Grazia Piizzi
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Doug Burdette
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christopher J Wilson
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Stefan Peukert
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Lawrence G Hamann
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Leon O Murphy
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Daniel Curtis
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Chen M, Lan H, Yao S, Jin K, Chen Y. Metabolic Interventions in Tumor Immunity: Focus on Dual Pathway Inhibitors. Cancers (Basel) 2023; 15:cancers15072043. [PMID: 37046703 PMCID: PMC10093048 DOI: 10.3390/cancers15072043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
The metabolism of tumors and immune cells in the tumor microenvironment (TME) can affect the fate of cancer and immune responses. Metabolic reprogramming can occur following the activation of metabolic-related signaling pathways, such as phosphoinositide 3-kinases (PI3Ks) and the mammalian target of rapamycin (mTOR). Moreover, various tumor-derived immunosuppressive metabolites following metabolic reprogramming also affect antitumor immune responses. Evidence shows that intervention in the metabolic pathways of tumors or immune cells can be an attractive and novel treatment option for cancer. For instance, administrating inhibitors of various signaling pathways, such as phosphoinositide 3-kinases (PI3Ks), can improve T cell-mediated antitumor immune responses. However, dual pathway inhibitors can significantly suppress tumor growth more than they inhibit each pathway separately. This review discusses the latest metabolic interventions by dual pathway inhibitors as well as the advantages and disadvantages of this therapeutic approach.
Collapse
Affiliation(s)
- Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Huanrong Lan
- Department of Surgical Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang 312500, China
| |
Collapse
|
13
|
De Pascale M, Bissegger L, Tarantelli C, Beaufils F, Prescimone A, Mohamed Seid Hedad H, Kayali O, Orbegozo C, Raguž L, Schaefer T, Hebeisen P, Bertoni F, Wymann MP, Borsari C. Investigation of morpholine isosters for the development of a potent, selective and metabolically stable mTOR kinase inhibitor. Eur J Med Chem 2023; 248:115038. [PMID: 36634458 DOI: 10.1016/j.ejmech.2022.115038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022]
Abstract
Upregulation of mechanistic target of rapamycin (mTOR) signaling drives various types of cancers and neurological diseases. Rapamycin and its analogues (rapalogs) are first generation mTOR inhibitors, and selectively block mTOR complex 1 (TORC1) by an allosteric mechanism. In contrast, second generation ATP-binding site inhibitors of mTOR kinase (TORKi) target both TORC1 and TORC2. Here, we explore 3,6-dihydro-2H-pyran (DHP) and tetrahydro-2H-pyran (THP) as isosteres of the morpholine moiety to unlock a novel chemical space for TORKi generation. A library of DHP- and THP-substituted triazines was prepared, and molecular modelling provided a rational for a structure activity relationship study. Finally, compound 11b [5-(4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazin-2-yl)-4-(difluoromethyl)pyridin-2-amine] was selected due its potency and selectivity for mTOR kinase over the structurally related class I phosphoinositide 3-kinases (PI3Ks) isoforms. 11b displayed high metabolic stability towards CYP1A1 degradation, which is of advantage in drug development. After oral administration to male Sprague Dawley rats, 11b reached high concentrations both in plasma and brain, revealing an excellent oral bioavailability. In a metabolic stability assay using human hepatocytes, 11b was more stable than PQR620, the first-in-class brain penetrant TORKi. Compound 11b also displayed dose-dependent anti-proliferative activity in splenic marginal zone lymphoma (SMZL) cell lines as single agent and when combined with BCL2 inhibition (venetoclax). Our results identify the THP-substituted triazine core as a novel scaffold for the development of metabolically stable TORKi for the treatment of chronic diseases and cancers driven by mTOR deregulation and requiring drug distribution also to the central nervous system.
Collapse
Affiliation(s)
- Martina De Pascale
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Lukas Bissegger
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Florent Beaufils
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Alessandro Prescimone
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058, Basel, Switzerland
| | | | - Omar Kayali
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Clara Orbegozo
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Luka Raguž
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Thorsten Schaefer
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Paul Hebeisen
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Matthias P Wymann
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland.
| | - Chiara Borsari
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|
14
|
Hamed R, Eyal AD, Berman E, Eyal S. In silico screening for clinical efficacy of antiseizure medications: Not all central nervous system drugs are alike. Epilepsia 2023; 64:311-319. [PMID: 36478573 PMCID: PMC10107105 DOI: 10.1111/epi.17479] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Roaa Hamed
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit David Eyal
- Computational Medicine Program, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Erez Berman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Hei C, Zhou Y, Zhang C, Gao F, Cao M, Yuan S, Qin Y, Li PA, Yang X. Rapamycin ameliorates brain damage and maintains mitochondrial dynamic balance in diabetic rats subjected to middle cerebral artery occlusion. Metab Brain Dis 2023; 38:409-418. [PMID: 35670992 DOI: 10.1007/s11011-022-01020-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/26/2022] [Indexed: 01/25/2023]
Abstract
To investigate the effect of rapamycin on mitochondrial dynamic balance in diabetic rats subjected to cerebral ischemia-reperfusion injury. Male Sprague Dawley (SD) rats (n = 78) were treated with high fat diet combined with streptozotocin injection to construct diabetic model in rats. Transient middle cerebral artery occlusion (MCAO) of 2 hours was induced and the brains were harvested after 1 and 3 days of reperfusion. Rapamycin was injected intraperitoneally for 3 days prior to and immediately after operation, once a day. The neurological function was assessed, infarct volumes were measured and HE staining as well as immunohistochemistry were performed. The protein of hippocampus was extracted and Western blotting were performed to detect the levels of mTOR, mitochondrial dynamin related proteins (DRP1, p-DRP1, OPA1), SIRT3, and Nix/BNIP3L. Diabetic hyperglycemia worsened the neurological function performance (p < 0.01), enlarged infarct size (p < 0.01) and increased ischemic neuronal cell death (p < 0.01). The increased damage was associated with elevations of p-mTOR, p-S6, and p-DRP1; and suppressions of SIRT3 and Nix/BNIP3L. Rapamycin ameliorated diabetes-enhanced ischemic brain damage and reversed the biomarker alterations caused by diabetes. High glucose activated mTOR pathway and caused mitochondrial dynamics toward fission. The protective effect of rapamycin against diabetes-enhanced ischemic brain damage was associated with inhibiting mTOR pathway, redressing mitochondrial dynamic imbalance, and elevating SIRT3 and Nix/BNIP3L expression.
Collapse
Affiliation(s)
- Changchun Hei
- Department of Human Anatomy, Histology and Embryology, Ningxia Medical University, Key Laboratory for Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yujia Zhou
- Neuroscience Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chenyang Zhang
- Neuroscience Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Furong Gao
- Medical Audit Department, Medical Security Bureau of Jiaxiang County, Jining, China
| | - Meiling Cao
- Neuroscience Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shilin Yuan
- Neuroscience Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yixin Qin
- Neuroscience Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| | - Xiao Yang
- Neuroscience Center, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
16
|
Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. MOLECULAR BIOMEDICINE 2022; 3:47. [PMID: 36539659 PMCID: PMC9768098 DOI: 10.1186/s43556-022-00110-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Ting Luo
- Department of Breast, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
17
|
Yang M, Fu JD, Zou J, Sridharan D, Zhao MT, Singh H, Krigman J, Khan M, Xin G, Sun N. Assessment of mitophagy in human iPSC-derived cardiomyocytes. Autophagy 2022; 18:2481-2494. [PMID: 35220905 PMCID: PMC9542630 DOI: 10.1080/15548627.2022.2037920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Defective mitophagy contributes to normal aging and various neurodegenerative and cardiovascular diseases. The newly developed methodologies to visualize and quantify mitophagy allow for additional progress in defining the pathophysiological significance of mitophagy in various model organisms. However, current knowledge regarding mitophagy relevant to human physiology is still limited. Model organisms such as mice might not be optimal models to recapitulate all the key aspects of human disease phenotypes. The development of the human-induced pluripotent stem cells (hiPSCs) may provide an exquisite approach to bridge the gap between animal mitophagy models and human physiology. To explore this premise, we take advantage of the pH-dependent fluorescent mitophagy reporter, mt-Keima, to assess mitophagy in hiPSCs and hiPSC-derived cardiomyocytes (hiPSC-CMs). We demonstrate that mt-Keima expression does not affect mitochondrial function or cardiomyocytes contractility. Comparison of hiPSCs and hiPSC-CMs during different stages of differentiation revealed significant variations in basal mitophagy. In addition, we have employed the mt-Keima hiPSC-CMs to analyze how mitophagy is altered under certain pathological conditions including treating the hiPSC-CMs with doxorubicin, a chemotherapeutic drug well known to cause life-threatening cardiotoxicity, and hypoxia that stimulates ischemia injury. We have further developed a chemical screening to identify compounds that modulate mitophagy in hiPSC-CMs. The ability to assess mitophagy in hiPSC-CMs suggests that the mt-Keima hiPSCs should be a valuable resource in determining the role mitophagy plays in human physiology and hiPSC-based disease models. The mt-Keima hiPSCs could prove a tremendous asset in the search for pharmacological interventions that promote mitophagy as a therapeutic target.Abbreviations: AAVS1: adeno-associated virus integration site 1; AKT/protein kinase B: AKT serine/threonine kinase; CAG promoter: cytomegalovirus early enhancer, chicken ACTB/β-actin promoter; CIS: cisplatin; CRISPR: clustered regularly interspaced short palindromic repeats; FACS: fluorescence-activated cell sorting; FCCP: carbonyl cyanide p-trifluoromethoxyphenylhydrazone; hiPSC: human induced pluripotent stem cell; hiPSC-CMs: human induced pluripotent stem cell-derived cardiomyocytes; ISO: isoproterenol; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RT: room temperature; SB: SBI-0206965; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Mingchong Yang
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ji-Dong Fu
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Divya Sridharan
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Judith Krigman
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mahmood Khan
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Gang Xin
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Nuo Sun
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,CONTACT Nuo Sun Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Gang Xin Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, 473 W 12th Ave, Columbus43210, OH, USA
| |
Collapse
|
18
|
Two-drug trick to target the brain blocks toxicity in the body. Nature 2022; 609:681-683. [DOI: 10.1038/d41586-022-02892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Morawe MP, Liao F, Amberg W, van Bergeijk J, Chang R, Gulino M, Hamilton C, Hoft C, Lumpkin C, Mastis B, McGlame E, Nuber J, Plaas C, Ravikumar B, Roy K, Schanzenbächer M, Tierno J, Lakics V, Dellovade T, Townsend M. Pharmacological mTOR-inhibition facilitates clearance of AD-related tau aggregates in the mouse brain. Eur J Pharmacol 2022; 934:175301. [DOI: 10.1016/j.ejphar.2022.175301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
|
20
|
Blaine AT, Miao Y, Yuan J, Palant S, Liu RJ, Zhang ZY, van Rijn RM. Exploration of beta-arrestin isoform signaling pathways in delta opioid receptor agonist-induced convulsions. Front Pharmacol 2022; 13:914651. [PMID: 36059958 PMCID: PMC9428791 DOI: 10.3389/fphar.2022.914651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
The δ-opioid receptor (δOR) has been considered as a therapeutic target in multiple neurological and neuropsychiatric disorders particularly as δOR agonists are deemed safer alternatives relative to the more abuse-liable µ-opioid receptor drugs. Clinical development of δOR agonists, however, has been challenging in part due to the seizure-inducing effects of certain δOR agonists. Especially agonists that resemble the δOR-selective agonist SNC80 have well-established convulsive activity. Close inspection suggests that many of those seizurogenic δOR agonists efficaciously recruit β-arrestin, yet surprisingly, SNC80 displays enhanced seizure activity in β-arrestin 1 knockout mice. This finding led us to hypothesize that perhaps β-arrestin 1 is protective against, whereas β-arrestin 2 is detrimental for δOR-agonist-induced seizures. To investigate our hypothesis, we characterized three different δOR agonists (SNC80, ADL5859, ARM390) in cellular assays and in vivo in wild-type and β-arrestin 1 and β-arrestin 2 knockout mice for seizure activity. We also investigated downstream kinases associated with β-arrestin-dependent signal transduction. We discovered that δOR agonist-induced seizure activity strongly and positively correlates with β-arrestin 2 efficacy for the agonist, but that indirect inhibition of ERK activation using the MEK inhibitor SL327 did not inhibit seizure potency and duration. Inhibition of the PI3K/AKT/mTOR signaling with honokiol but not PQR530, attenuated SNC80 seizure duration in β-arrestin 1 knockout, but honokiol did not reduce SNC80-induced seizures in wild-type mice. Ultimately, our results indicate that β-arrestin 2 is correlated with δOR agonist-induced seizure intensity, but that global β-arrestin 1 knockout mice are a poor model system to investigate their mechanism of action.
Collapse
Affiliation(s)
- Arryn T. Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN, United States
| | - Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Jinling Yuan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Sophia Palant
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Rebecca J. Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Drug Discovery, West Lafayette, IN, United States
- Purdue University Cancer Center, West Lafayette, IN, United States
| | - Richard. M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Drug Discovery, West Lafayette, IN, United States
- Purdue University Cancer Center, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
- *Correspondence: Richard. M. van Rijn,
| |
Collapse
|
21
|
Sharma A, Bhalla S, Mehan S. PI3K/AKT/mTOR signalling inhibitor chrysophanol ameliorates neurobehavioural and neurochemical defects in propionic acid-induced experimental model of autism in adult rats. Metab Brain Dis 2022; 37:1909-1929. [PMID: 35687217 DOI: 10.1007/s11011-022-01026-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/05/2022] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder marked by social and communication deficits as well as repetitive behaviour. Several studies have found that overactivation of the PI3K/AKT/mTOR signalling pathways during brain development plays a significant role in autism pathogenesis. Overexpression of the PI3K/AKT/mTOR signalling pathway causes neurological disorders by increasing cell death, neuroinflammation, and oxidative stress. Chrysophanol, also known as chrysophanic acid, is a naturally occurring chemical obtained from the plant Rheum palmatum. This study aimed to examine the neuroprotective effect of CPH on neurobehavioral, molecular, neurochemical, and gross pathological alterations in ICV-PPA induced experimental model of autism in adult rats. The effects of ICV-PPA on PI3K/AKT/mTOR downregulation in the brain were studied in autism-like rats. Furthermore, we investigated how CPH affected myelin basic protein (MBP) levels in rat brain homogenate and apoptotic biomarkers such as caspase-3, Bax, and Bcl-2 levels in rat brain homogenate and blood plasma samples. Rats were tested for behavioural abnormalities such as neuromuscular dysfunction using an actophotometer, motor coordination using a beam crossing task (BCT), depressive behaviour using a forced swim test (FST), cognitive deficiency, and memory consolidation using a Morris water maze (MWM) task. In PPA-treated rats, prolonged oral CPH administration from day 12 to day 44 of the experimental schedule reduces autistic-like symptoms. Furthermore, in rat brain homogenates, blood plasma, and CSF samples, cellular, molecular, and cell death markers, neuroinflammatory cytokines, neurotransmitter levels, and oxidative stress indicators were investigated. The recent findings imply that CPH also restores abnormal neurochemical levels and may prevent autism-like gross pathological alterations, such as demyelination volume, in the rat brain.
Collapse
Affiliation(s)
- Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sonalika Bhalla
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
22
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
23
|
Noori T, Sahebgharani M, Sureda A, Sobarzo-Sanchez E, Fakhri S, Shirooie S. Targeting PI3K by Natural Products: A Potential Therapeutic Strategy for Attention-deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1564-1578. [PMID: 35043762 PMCID: PMC9881086 DOI: 10.2174/1570159x20666220119125040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/02/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is a highly prevalent childhood psychiatric disorder. In general, a child with ADHD has significant attention problems with difficulty concentrating on a subject and is generally associated with impulsivity and excessive activity. The etiology of ADHD in most patients is unknown, although it is considered to be a multifactorial disease caused by a combination of genetics and environmental factors. Diverse factors, such as the existence of mental, nutritional, or general health problems during childhood, as well as smoking and alcohol drinking during pregnancy, are related to an increased risk of ADHD. Behavioral and psychological characteristics of ADHD include anxiety, mood disorders, behavioral disorders, language disorders, and learning disabilities. These symptoms affect individuals, families, and communities, negatively altering educational and social results, strained parent-child relationships, and increased use of health services. ADHD may be associated with deficits in inhibitory frontostriatal noradrenergic neurons on lower striatal structures that are predominantly driven by dopaminergic neurons. Phosphoinositide 3-kinases (PI3Ks) are a conserved family of lipid kinases that control a number of cellular processes, including cell proliferation, differentiation, migration, insulin metabolism, and apoptosis. Since PI3K plays an important role in controlling the noradrenergic neuron, it opens up new insights into research on ADHD and other developmental brain diseases. This review presents evidence for the potential usefulness of PI3K and its modulators as a potential treatment for ADHD.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mousa Sahebgharani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de MallorcaE-07122, Balearic Islands, Spain;,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile;,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;,Address correspondence to this author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; E-mail:
| |
Collapse
|
24
|
Shao E, Chang CW, Li Z, Yu X, Ho K, Zhang M, Wang X, Simms J, Lo I, Speckart J, Holtzman J, Yu GQ, Roberson ED, Mucke L. TAU ablation in excitatory neurons and postnatal TAU knockdown reduce epilepsy, SUDEP, and autism behaviors in a Dravet syndrome model. Sci Transl Med 2022; 14:eabm5527. [PMID: 35476595 DOI: 10.1126/scitranslmed.abm5527] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular accumulation of TAU aggregates is a hallmark of several neurodegenerative diseases. However, global genetic reduction of TAU is beneficial also in models of other brain disorders that lack such TAU pathology, suggesting a pathogenic role of nonaggregated TAU. Here, conditional ablation of TAU in excitatory, but not inhibitory, neurons reduced epilepsy, sudden unexpected death in epilepsy, overactivation of the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway, brain overgrowth (megalencephaly), and autism-like behaviors in a mouse model of Dravet syndrome, a severe epileptic encephalopathy of early childhood. Furthermore, treatment with a TAU-lowering antisense oligonucleotide, initiated on postnatal day 10, had similar therapeutic effects in this mouse model. Our findings suggest that excitatory neurons are the critical cell type in which TAU has to be reduced to counteract brain dysfunctions associated with Dravet syndrome and that overall cerebral TAU reduction could have similar benefits, even when initiated postnatally.
Collapse
Affiliation(s)
- Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zhiyong Li
- Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michelle Zhang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xin Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jessica Speckart
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julia Holtzman
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Neuroprotective Effect of Chrysophanol as a PI3K/AKT/mTOR Signaling Inhibitor in an Experimental Model of Autologous Blood-induced Intracerebral Hemorrhage. Curr Med Sci 2022; 42:249-266. [PMID: 35079960 DOI: 10.1007/s11596-022-2496-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) refers to predominant, sporadic, and non-traumatic bleeding in the brain parenchyma. The PI3K/AKT/mTOR signaling pathway is an important signal transduction pathway regulated by enzyme-linked receptors and has many biological functions in mammals. It plays a key role in neuronal metabolism, gene expression regulation, and tissue homeostasis in the healthy and diseased brain. METHODS In the present study, the role of the PI3K/AKT/mTOR pathway inhibitor chrysophanol (CPH) (10 mg/kg and 20 mg/kg, orally) in the improvement of ICH-associated neurological defects in rats was investigated. Autologous blood (20 µL/5 min/unilateral/intracerebroventricular) mimics ICH-like defects involving cellular and molecular dysfunction and neurotransmitter imbalance. The current study also included various behavioral assessments to examine cognition, memory, and motor and neuromuscular coordination. The protein expression levels of PI3K, AKT, and mTOR as well as myelin basic protein and apoptotic markers, such as Bax, Bcl-2, and caspase-3, were examined using ELISA kits. Furthermore, the levels of various neuroinflammatory cytokines and oxidative stress markers were assessed. Additionally, the neurological severity score, brain water content, gross brain pathology, and hematoma size were used to indicate neurological function and brain edema. RESULTS CPH was found to be neuroprotective by restoring neurobehavioral alterations and significantly reducing the elevated PI3K, AKT, and mTOR protein levels, and modulating the apoptotic markers such as Bax, Bcl-2, and caspase-3 in rat brain homogenate. CPH substantially reduced the inflammatory cytokines like interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. CPH administration restored the neurotransmitters GABA, glutamate, acetylcholine, dopamine, and various oxidative stress markers. CONCLUSION Our results show that CPH may be a promising therapeutic approach for overcoming neuronal damage caused by the overexpression of the PI3K/AKT/mTOR signaling pathway in ICH-induced neurological dysfunctions in rats.
Collapse
|
26
|
Jadaun KS, Mehan S, Sharma A, Siddiqui EM, Kumar S, Alsuhaymi N. Neuroprotective Effect of Chrysophanol as a PI3K/AKT/mTOR Signaling Inhibitor in an Experimental Model of Autologous Blood-induced Intracerebral Hemorrhage. Curr Med Sci 2022:10.1007/s11596-022-2522-7. [PMID: 35099677 DOI: 10.1007/s11596-022-2522-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) refers to predominant, sporadic, and non-traumatic bleeding in the brain parenchyma. The PI3K/AKT/mTOR signaling pathway is an important signal transduction pathway regulated by enzyme-linked receptors and has many biological functions in mammals. It plays a key role in neuronal metabolism, gene expression regulation, and tissue homeostasis in the healthy and diseased brain. METHODS In the present study, the role of the PI3K/AKT/mTOR pathway inhibitor chrysophanol (CPH) (10 mg/kg and 20 mg/kg, orally) in the improvement of ICH-associated neurological defects in rats was investigated. Autologous blood (20 µL/5 min/unilateral/intracerebroventricular) mimics ICH-like defects involving cellular and molecular dysfunction and neurotransmitter imbalance. The current study also included various behavioral assessments to examine cognition, memory, and motor and neuromuscular coordination. The protein expression levels of PI3K, AKT, and mTOR as well as myelin basic protein and apoptotic markers, such as Bax, Bcl-2, and caspase-3, were examined using ELISA kits. Furthermore, the levels of various neuroinflammatory cytokines and oxidative stress markers were assessed. Additionally, the neurological severity score, brain water content, gross brain pathology, and hematoma size were used to indicate neurological function and brain edema. RESULTS CPH was found to be neuroprotective by restoring neurobehavioral alterations and significantly reducing the elevated PI3K, AKT, and mTOR protein levels, and modulating the apoptotic markers such as Bax, Bcl-2, and caspase-3 in rat brain homogenate. CPH substantially reduced the inflammatory cytokines like interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. CPH administration restored the neurotransmitters GABA, glutamate, acetylcholine, dopamine, and various oxidative stress markers. CONCLUSION Our results show that CPH may be a promising therapeutic approach for overcoming neuronal damage caused by the overexpression of the PI3K/AKT/mTOR signaling pathway in ICH-induced neurological dysfunctions in rats.
Collapse
Affiliation(s)
- Kuldeep Singh Jadaun
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ehraz Mehmood Siddiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sumit Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Naif Alsuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences - AlQunfudah, Umm Al-Qura University, Mekkah, Saudi Arabia
| |
Collapse
|
27
|
Xu S, Yang P, Qian K, Li Y, Guo Q, Wang P, Meng R, Wu J, Cao J, Cheng Y, Xu M, Zhang Q. Modulating autophagic flux via ROS-responsive targeted micelles to restore neuronal proteostasis in Alzheimer's disease. Bioact Mater 2022; 11:300-316. [PMID: 34977433 PMCID: PMC8668445 DOI: 10.1016/j.bioactmat.2021.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Compromised autophagy and defective lysosomal clearance significantly contribute to impaired neuronal proteostasis, which represents a hallmark of Alzheimer's disease (AD) and other age-related neurodegenerative disorders. Growing evidence has implicated that modulating autophagic flux, instead of inducing autophagosome formation alone, would be more reliable to rescue neuronal proteostasis. Concurrently, selectively enhancing drug concentrations in the leision areas, instead of the whole brain, will maximize therapeutic efficacy while reduing non-selective autophagy induction. Herein, we design a ROS-responsive targeted micelle system (TT-NM/Rapa) to enhance the delivery efficiency of rapamycin to neurons in AD lesions guided by the fusion peptide TPL, and facilitate its intracellular release via ROS-mediated disassembly of micelles, thereby maximizing autophagic flux modulating efficacy of rapamycin in neurons. Consequently, it promotes the efficient clearance of intracellular neurotoxic proteins, β-amyloid and hyperphosphorylated tau proteins, and ameliorates memory defects and neuronal damage in 3 × Tg-AD transgenic mice. Our studies demonstrate a promising strategy to restore autophagic flux and improve neuronal proteostasis by rationally-engineered nano-systems for delaying the progression of AD. Modulating autophagic flux to restore neuronal proteostasis was proved to be effective in delaying the progression of AD. We designed a novel ROS-responsive targeted micelle with superior targetability and desirable cargo release in AD neurons. Our designed TPL peptide with high preferentiality to AD lesions showed great promise for developing AD-targeted therapeutics. Systematic evaluation of TT-NM/Rapa would provide a rationale for applying rapamycin in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Shuting Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Peng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qian Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Pengzhen Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ran Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jing Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jinxu Cao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
28
|
Palmas MF, Ena A, Burgaletto C, Casu MA, Cantarella G, Carboni E, Etzi M, De Simone A, Fusco G, Cardia MC, Lai F, Picci L, Tweedie D, Scerba MT, Coroneo V, Bernardini R, Greig NH, Pisanu A, Carta AR. Repurposing Pomalidomide as a Neuroprotective Drug: Efficacy in an Alpha-Synuclein-Based Model of Parkinson's Disease. Neurotherapeutics 2022; 19:305-324. [PMID: 35072912 PMCID: PMC9130415 DOI: 10.1007/s13311-022-01182-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Marketed drugs for Parkinson's disease (PD) treat disease motor symptoms but are ineffective in stopping or slowing disease progression. In the quest of novel pharmacological approaches that may target disease progression, drug-repurposing provides a strategy to accelerate the preclinical and clinical testing of drugs already approved for other medical indications. Here, we targeted the inflammatory component of PD pathology, by testing for the first time the disease-modifying properties of the immunomodulatory imide drug (IMiD) pomalidomide in a translational rat model of PD neuropathology based on the intranigral bilateral infusion of toxic preformed oligomers of human α-synuclein (H-αSynOs). The neuroprotective effect of pomalidomide (20 mg/kg; i.p. three times/week 48 h apart) was tested in the first stage of disease progression by means of a chronic two-month administration, starting 1 month after H-αSynOs infusion, when an already ongoing neuroinflammation is observed. The intracerebral infusion of H-αSynOs induced an impairment in motor and coordination performance that was fully rescued by pomalidomide, as assessed via a battery of motor tests three months after infusion. Moreover, H-αSynOs-infused rats displayed a 40-45% cell loss within the bilateral substantia nigra, as measured by stereological counting of TH + and Nissl-stained neurons, that was largely abolished by pomalidomide. The inflammatory response to H-αSynOs infusion and the pomalidomide treatment was evaluated both in CNS affected areas and peripherally in the serum. A reactive microgliosis, measured as the volume occupied by the microglial marker Iba-1, was present in the substantia nigra three months after H-αSynOs infusion as well as after H-αSynOs plus pomalidomide treatment. However, microglia differed for their phenotype among experimental groups. After H-αSynOs infusion, microglia displayed a proinflammatory profile, producing a large amount of the proinflammatory cytokine TNF-α. In contrast, pomalidomide inhibited the TNF-α overproduction and elevated the anti-inflammatory cytokine IL-10. Moreover, the H-αSynOs infusion induced a systemic inflammation with overproduction of serum proinflammatory cytokines and chemokines, that was largely mitigated by pomalidomide. Results provide evidence of the disease modifying potential of pomalidomide in a neuropathological rodent model of PD and support the repurposing of this drug for clinical testing in PD patients.
Collapse
Affiliation(s)
| | - Anna Ena
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Michela Etzi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maria Cristina Cardia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luca Picci
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Valentina Coroneo
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, Cagliari, Italy.
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
29
|
Liu J, Luo M, Lv S, Tao S, Wu Z, Yu L, Lin D, Huang L, Wu L, Liao X, Zi J, Lai X, Yuan Y, Zhang W, Yang L. Case Report: Reversible Hyperglycemia Following Rapamycin Treatment for Atypical Choroid Plexus Papilloma in an Infant. Front Endocrinol (Lausanne) 2022; 13:865913. [PMID: 35865311 PMCID: PMC9294177 DOI: 10.3389/fendo.2022.865913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
In this study, atypical choroid plexus papilloma was treated with high-dose rapamycin for 17 days preoperatively in an infant. Rapamycin significantly reduced the blood supply to the tumor while reducing the tumor volume, and most of the tumor was resected successfully. However, the infant developed hyperglycemia related to the rapamycin dose, which was effectively controlled by adjusting the dose and applying insulin.
Collapse
Affiliation(s)
- Jiale Liu
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minjie Luo
- Department of Pediatric Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siyuan Lv
- Department of Pediatric Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shaohua Tao
- Department of Pediatric Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhu Wu
- Department of Pediatric Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lihua Yu
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Danna Lin
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lulu Huang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Wu
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Liao
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Juan Zi
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaorong Lai
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Yuan
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangming Zhang
- Department of Pediatric Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wangming Zhang, ; Lihua Yang,
| | - Lihua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wangming Zhang, ; Lihua Yang,
| |
Collapse
|
30
|
Borsari C, Wymann MP. Targeting Phosphoinositide 3-Kinase - Five Decades of Chemical Space Exploration. Chimia (Aarau) 2021; 75:1037-1044. [PMID: 34920774 DOI: 10.2533/chimia.2021.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) plays a key role in a plethora of physiologic processes and controls cell growth, metabolism, immunity, cardiovascular and neurological function, and more. The discovery of wort-mannin as the first potent PI3K inhibitor (PI3Ki) in the 1990s provided rapid identification of PI3K-dependent processes, which drove the discovery of the PI3K/protein kinase B (PKB/Akt)/target of rapamycin (mTOR) pathway. Genetic mouse models and first PI3K isoform-specific inhibitors pinpointed putative therapeutic applications. The recognition of PI3K as target for cancer therapy drove subsequently drug development. Here we provide a brief journey through the emerging roles of PI3K to the development of preclinical and clinical PI3Ki candidates.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland;,
| |
Collapse
|
31
|
Vyas P, Tulsawani R, Vohora D. Dual Targeting by Inhibition of Phosphoinositide-3-Kinase and Mammalian Target of Rapamycin Attenuates the Neuroinflammatory Responses in Murine Hippocampal Cells and Seizures in C57BL/6 Mice. Front Immunol 2021; 12:739452. [PMID: 34887852 PMCID: PMC8650161 DOI: 10.3389/fimmu.2021.739452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence suggests the association of seizures and inflammation; however, underlying cell signaling mechanisms are still not fully understood. Overactivation of phosphoinositide-3-kinases is associated with both neuroinflammation and seizures. Herein, we speculate the PI3K/Akt/mTOR pathway as a promising therapeutic target for neuroinflammation-mediated seizures and associated neurodegeneration. Firstly, we cultured HT22 cells for detection of the downstream cell signaling events activated in a lipopolysaccharide (LPS)-primed pilocarpine (PILO) model. We then evaluated the effects of 7-day treatment of buparlisib (PI3K inhibitor, 25 mg/kg p.o.), dactolisib (PI3K/mTOR inhibitor, 25 mg/kg p.o.), and rapamycin (mTORC1 inhibitor, 10 mg/kg p.o.) in an LPS-primed PILO model of seizures in C57BL/6 mice. LPS priming resulted in enhanced seizure severity and reduced latency. Buparlisib and dactolisib, but not rapamycin, prolonged latency to seizures and reduced neuronal loss, while all drugs attenuated seizure severity. Buparlisib and dactolisib further reduced cellular redox, mitochondrial membrane potential, cleaved caspase-3 and p53, nuclear integrity, and attenuated NF-κB, IL-1β, IL-6, TNF-α, and TGF-β1 and TGF-β2 signaling both in vitro and in vivo post-PILO and LPS+PILO inductions; however, rapamycin mitigated the same only in the PILO model. Both drugs protected against neuronal cell death demonstrating the contribution of this pathway in the seizure-induced neuronal pyknosis; however, rapamycin showed resistance in a combination model. Furthermore, LPS and PILO exposure enhanced pAkt/Akt and phospho-p70S6/total-p70S6 kinase activity, while buparlisib and dactolisib, but not rapamycin, could reduce it in a combination model. Partial rapamycin resistance was observed possibly due to the reactivation of the pathway by a functionally different complex of mTOR, i.e., mTORC2. Our study substantiated the plausible involvement of PI3K-mediated apoptotic and inflammatory pathways in LPS-primed PILO-induced seizures and provides evidence that its modulation constitutes an anti-inflammatory mechanism by which seizure inhibitory effects are observed. We showed dual inhibition by dactolisib as a promising approach. Targeting this pathway at two nodes at a time may provide new avenues for antiseizure therapies.
Collapse
Affiliation(s)
- Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rajkumar Tulsawani
- Defense Institute of Physiology & Allied Science, Defense Research and Development Organization, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
32
|
Borsari C, De Pascale M, Wymann MP. Chemical and Structural Strategies to Selectively Target mTOR Kinase. ChemMedChem 2021; 16:2744-2759. [PMID: 34114360 PMCID: PMC8518124 DOI: 10.1002/cmdc.202100332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/08/2022]
Abstract
Dysregulation of the mechanistic target of rapamycin (mTOR) pathway is implicated in cancer and neurological disorder, which identifies mTOR inhibition as promising strategy for the treatment of a variety of human disorders. First-generation mTOR inhibitors include rapamycin and its analogues (rapalogs) which act as allosteric inhibitors of TORC1. Structurally unrelated, ATP-competitive inhibitors that directly target the mTOR catalytic site inhibit both TORC1 and TORC2. Here, we review investigations of chemical scaffolds explored for the development of highly selective ATP-competitive mTOR kinase inhibitors (TORKi). Extensive medicinal chemistry campaigns allowed to overcome challenges related to structural similarity between mTOR and the phosphoinositide 3-kinase (PI3K) family. A broad region of chemical space is covered by TORKi. Here, the investigation of chemical substitutions and physicochemical properties has shed light on the compounds' ability to cross the blood brain barrier (BBB). This work provides insights supporting the optimization of TORKi for the treatment of cancer and central nervous system disorders.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| | - Martina De Pascale
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| | - Matthias P. Wymann
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| |
Collapse
|
33
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Qiu HY, Wang PF, Zhang M. A patent review of mTOR inhibitors for cancer therapy (2011-2020). Expert Opin Ther Pat 2021; 31:965-975. [PMID: 34098816 DOI: 10.1080/13543776.2021.1940137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The mammalian target of rapamycin (mTOR) kinase is a central component in the PI3K/Akt/mTOR pathway and plays a crucial role in tumor biology, making it one appealing therapeutic target. In the past decade, the mTORi (mTOR inhibitor) development field has made great progress, with more agents entering key trials and the proposal of third-generation mTORi concept. Yet to achieve significant clinical success, combined efforts from multiple disciplines are ever needed. AREAS COVERED This review focuses on the progress of mTORi development with anticancer potential from the perspective of the patent literature proposed between 2011 and 2020. EXPERT OPINION The highly complex regulatory mechanism network of mTOR proposes huge challenges to the development of clinically efficient mTORis. While in-depth biological research and fundamental medchemistry research are of importance to provide guidelines for improving mTORis, new technologies to pre-diagnose applicable populations is another key to provide precise personal cancer treatment. New mTOR agents are ever needed to tackle the common problems of side effects and drug resistance.
Collapse
Affiliation(s)
- Han-Yue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Peng-Fei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
35
|
Zha JH, Xia YC, Ye CL, Hu Z, Zhang Q, Xiao H, Yu BT, Xu WH, Xu GQ. The Anti-Non-Small Cell Lung Cancer Cell Activity by a mTOR Kinase Inhibitor PQR620. Front Oncol 2021; 11:669518. [PMID: 34178653 PMCID: PMC8222575 DOI: 10.3389/fonc.2021.669518] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
In non-small-cell lung carcinoma (NSCLC), aberrant activation of mammalian target of rapamycin (mTOR) contributes to tumorigenesis and cancer progression. PQR620 is a novel and highly-potent mTOR kinase inhibitor. We here tested its potential activity in NSCLC cells. In primary human NSCLC cells and established cell lines (A549 and NCI-H1944), PQR620 inhibited cell growth, proliferation, and cell cycle progression, as well as cell migration and invasion, while inducing significant apoptosis activation. PQR620 disrupted assembles of mTOR complex 1 (mTOR-Raptor) and mTOR complex 2 (mTOR-Rictor-Sin1), and blocked Akt, S6K1, and S6 phosphorylations in NSCLC cells. Restoring Akt-mTOR activation by a constitutively-active Akt1 (S473D) only partially inhibited PQR620-induced cytotoxicity in NSCLC cells. PQR620 was yet cytotoxic in Akt1/2-silenced NSCLC cells, supporting the existence of Akt-mTOR-independent mechanisms. Indeed, PQR620 induced sphingosine kinase 1 (SphK1) inhibition, ceramide production and oxidative stress in primary NSCLC cells. In vivo studies demonstrated that daily oral administration of a single dose of PQR620 potently inhibited primary NSCLC xenograft growth in severe combined immune deficient mice. In PQR620-treated xenograft tissues, Akt-mTOR inactivation, apoptosis induction, SphK1 inhibition and oxidative stress were detected. In conclusion, PQR620 exerted potent anti-NSCLC cell activity via mTOR-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Jian-Hua Zha
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying-Chen Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chun-Lin Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Zhang
- Department of Respiratory Medicine, Suzhou Hospital Affiliated Nanjing Medical University, Suzhou, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei-Hua Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guo-Qiu Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Richardson P. Applications of fluorine to the construction of bioisosteric elements for the purposes of novel drug discovery. Expert Opin Drug Discov 2021; 16:1261-1286. [PMID: 34074189 DOI: 10.1080/17460441.2021.1933427] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction There continues to be an exponential rise in the number of small molecule drugs that contain either a fluorine atom or a fluorinated fragment. While the unique properties of fluorine enable the precise modulation of a molecule's physicochemical properties, strategic bioisosteric replacement of fragments with fluorinated moieties represents an area of significant growth.Areas covered This review discusses the strategic employment of fluorine substitution in the design and development of bioisosteres in medicinal chemistry. In addition, the classic exploitation of trifluoroethylamine group as an amide bioisostere is discussed. In each of the case studies presented, emphasis is placed on the context-dependent influence of the fluorinated fragment on the overall properties/binding of the compound of interest.Expert opinion Whereas utilization of bioisosteric replacements to modify molecular structures is commonplace within drug discovery, the overarching lesson to be learned is that the chances of success with this strategy significantly increase as the knowledge of the structure/environment of the biological target grows. Coupled to this, breakthroughs and learnings achieved using bioisosteres within a specific program are context-based, and though may be helpful in guiding future intuition, will not necessarily be directly translated to future programs. Another important point is to bear in mind what implications a structural change based on a bioisosteric replacement will have on the candidate molecule. Finally, the development of new methods and reagents for the controlled regioselective introduction of fluorine and fluorinated moieties into biologically relevant compounds particularly in drug discovery remains a contemporary challenge in organic chemistry.
Collapse
|
37
|
Chang GR, Hou PH, Wang CM, Wu CF, Su HK, Liao HJ, Chen TP. Chronic everolimus treatment of high-fat diet mice leads to a reduction in obesity but impaired glucose tolerance. Pharmacol Res Perspect 2021; 9:e00732. [PMID: 33715287 PMCID: PMC7955951 DOI: 10.1002/prp2.732] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Everolimus, which inhibits mTOR kinase activity and is clinically used in graft rejection treatment, may have a two‐sided influence on metabolic syndrome; its role in obesity and hyperglycemic in animals and humans, however, has been explored insufficiently. This study further determined how continual everolimus treatment affects glucose homeostasis and body weight control in C57BL6/J mice with obesity. An obesity mouse model was developed by administering a high‐fat diet (HFD) to C57BL6/J mice over 12 weeks. The experimental group, while continuing their HFD consumption, were administered everolimus daily for 8 weeks. Metabolic parameters, glucose tolerance, fatty liver score, endocrine profile, insulin sensitivity index (ISI), insulin resistance (IR) index, and Akt phosphorylation, GLUT4, TNF‐α, and IL‐1 levels were measured in vivo. Compared with the control group, the everolimus group gained less body weight and had smaller adipocytes and lower fat pad weight; triglyceride (serum and hepatic), patatin‐like phospholipase domain‐containing 3, and fatty acid synthase levels; fatty liver scores; and glucose tolerance test values—all despite consuming more food. However, the everolimus group exhibited decreased ISI and muscle Akt phosphorylation and GLUT4 expression as well as impaired glucose tolerance and serum TNF‐α and IL‐1β levels—even when insulin levels were high. In conclusion, continual everolimus treatment may lead to diabetes with glucose intolerance and IR.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huang-Kai Su
- Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - To-Pang Chen
- Division of Endocrinology and Metabolism, Show Chwan Memorial Hospital, Changhua, Taiwan
| |
Collapse
|
38
|
Johannessen Landmark C, Potschka H, Auvin S, Wilmshurst JM, Johannessen SI, Kasteleijn-Nolst Trenité D, Wirrell EC. The role of new medical treatments for the management of developmental and epileptic encephalopathies: Novel concepts and results. Epilepsia 2021; 62:857-873. [PMID: 33638459 DOI: 10.1111/epi.16849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Developmental and epileptic encephalopathies (DEEs) are among the most challenging of all epilepsies to manage, given the exceedingly frequent and often severe seizure types, pharmacoresistance to conventional antiseizure medications, and numerous comorbidities. During the past decade, efforts have focused on development of new treatment options for DEEs, with several recently approved in the United States or Europe, including cannabidiol as an orphan drug in Dravet and Lennox-Gastaut syndromes and everolimus as a possible antiepileptogenic and precision drug for tuberous sclerosis complex, with its impact on the mammalian target of rapamycin pathway. Furthermore, fenfluramine, an old drug, was repurposed as a novel therapy in the treatment of Dravet syndrome. The evolution of new insights into pathophysiological processes of various DEEs provides possibilities to investigate novel and repurposed drugs and to place them into the context of their role in future management of these patients. The purpose of this review is to provide an overview of these new medical treatment options for the DEEs and to discuss the clinical implications of these results for improved treatment.
Collapse
Affiliation(s)
- Cecilie Johannessen Landmark
- Program for Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.,National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stéphane Auvin
- Pediatric Neurology Department, Robert Debré Hospital, Public Hospital Network of Paris, Paris, France.,Mixed Unit of Research NeuroDiderot U1141, University of Paris, Paris, France
| | - Jo M Wilmshurst
- Paediatric Neurology Department, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Svein I Johannessen
- National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | | | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
39
|
Borsari C, Keles E, Treyer A, De Pascale M, Hebeisen P, Hamburger M, Wymann MP. Second-generation tricyclic pyrimido-pyrrolo-oxazine mTOR inhibitor with predicted blood-brain barrier permeability. RSC Med Chem 2021; 12:579-583. [PMID: 34041490 PMCID: PMC8128076 DOI: 10.1039/d0md00408a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Highly selective mTOR inhibitors have been discovered through the exploration of the heteroaromatic ring engaging the binding affinity region in mTOR kinase. Compound 11 showed predicted BBB permeability in a MDCK-MDR1 permeability in vitro assay, being the first pyrimido-pyrrolo-oxazine with potential application in the treatment of neurological disorders. Here we present the first pyrimido-pyrrolo-oxazine-based mTOR kinase inhibitor (11) predicted to penetrate the blood brain barrier (BBB). Thus, 11 has a potential in treatments of neurological disorders.![]()
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland
| | - Erhan Keles
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland
| | - Andrea Treyer
- Pharmaceutical Biology, Pharmacenter, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Martina De Pascale
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland
| | - Paul Hebeisen
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland .,PIQUR Therapeutics AG Hochbergerstrasse 60 4057 Basel Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland
| |
Collapse
|
40
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
41
|
Borsari C, Keles E, Rageot D, Treyer A, Bohnacker T, Bissegger L, De Pascale M, Melone A, Sriramaratnam R, Beaufils F, Hamburger M, Hebeisen P, Löscher W, Fabbro D, Hillmann P, Wymann MP. 4-(Difluoromethyl)-5-(4-((3 R,5 S)-3,5-dimethylmorpholino)-6-(( R)-3-methylmorpholino)-1,3,5-triazin-2-yl)pyridin-2-amine (PQR626), a Potent, Orally Available, and Brain-Penetrant mTOR Inhibitor for the Treatment of Neurological Disorders. J Med Chem 2020; 63:13595-13617. [PMID: 33166139 DOI: 10.1021/acs.jmedchem.0c00620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway is hyperactivated in cancer and neurological disorders. Rapalogs and mTOR kinase inhibitors (TORKi) have recently been applied to alleviate epileptic seizures in tuberous sclerosis complex (TSC). Herein, we describe a pharmacophore exploration to identify a highly potent, selective, brain penetrant TORKi. An extensive investigation of the morpholine ring engaging the mTOR solvent exposed region led to the discovery of PQR626 (8). 8 displayed excellent brain penetration and was well-tolerated in mice. In mice with a conditionally inactivated Tsc1 gene in glia, 8 significantly reduced the loss of Tsc1-induced mortality at 50 mg/kg p.o. twice a day. 8 overcomes the metabolic liabilities of PQR620 (52), the first-in-class brain penetrant TORKi showing efficacy in a TSC mouse model. The improved stability in human hepatocytes, excellent brain penetration, and efficacy in Tsc1GFAPCKO mice qualify 8 as a potential therapeutic candidate for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Erhan Keles
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Denise Rageot
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Andrea Treyer
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Thomas Bohnacker
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Lukas Bissegger
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Martina De Pascale
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Anna Melone
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Rohitha Sriramaratnam
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Florent Beaufils
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Paul Hebeisen
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany
| | - Doriano Fabbro
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Petra Hillmann
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| |
Collapse
|
42
|
Ramírez-Jarquín UN, Shahani N, Pryor W, Usiello A, Subramaniam S. The mammalian target of rapamycin (mTOR) kinase mediates haloperidol-induced cataleptic behavior. Transl Psychiatry 2020; 10:336. [PMID: 33009372 PMCID: PMC7532208 DOI: 10.1038/s41398-020-01014-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/20/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine/threonine kinase protein complex (mTORC1 or mTORC2) that orchestrates diverse functions ranging from embryonic development to aging. However, its brain tissue-specific roles remain less explored. Here, we have identified that the depletion of the mTOR gene in the mice striatum completely prevented the extrapyramidal motor side effects (catalepsy) induced by the dopamine 2 receptor (D2R) antagonist haloperidol, which is the most widely used typical antipsychotic drug. Conversely, a lack of striatal mTOR in mice did not affect catalepsy triggered by the dopamine 1 receptor (D1R) antagonist SCH23390. Along with the lack of cataleptic effects, the administration of haloperidol in mTOR mutants failed to increase striatal phosphorylation levels of ribosomal protein pS6 (S235/236) as seen in control animals. To confirm the observations of the genetic approach, we used a pharmacological method and determined that the mTORC1 inhibitor rapamycin has a profound influence upon post-synaptic D2R-dependent functions. We consistently found that pretreatment with rapamycin entirely prevented (in a time-dependent manner) the haloperidol-induced catalepsy, and pS6K (T389) and pS6 (S235/236) signaling upregulation, in wild-type mice. Collectively, our data indicate that striatal mTORC1 blockade may offer therapeutic benefits with regard to the prevention of D2R-dependent extrapyramidal motor side effects of haloperidol in psychiatric illness.
Collapse
Affiliation(s)
- Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - Neelam Shahani
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - William Pryor
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - Alessandro Usiello
- grid.9841.40000 0001 2200 8888Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy ,grid.4691.a0000 0001 0790 385XLaboratory of Behavioral Neuroscience, CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida, 33458, USA.
| |
Collapse
|
43
|
Novel brain permeant mTORC1/2 inhibitors are as efficacious as rapamycin or everolimus in mouse models of acquired partial epilepsy and tuberous sclerosis complex. Neuropharmacology 2020; 180:108297. [PMID: 32890589 DOI: 10.1016/j.neuropharm.2020.108297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022]
Abstract
Mechanistic target of rapamycin (mTOR) regulates cell proliferation, growth and survival, and is activated in cancer and neurological disorders, including epilepsy. The rapamycin derivative ("rapalog") everolimus, which allosterically inhibits the mTOR pathway, is approved for the treatment of partial epilepsy with spontaneous recurrent seizures (SRS) in individuals with tuberous sclerosis complex (TSC). In contrast to the efficacy in TSC, the efficacy of rapalogs on SRS in other types of epilepsy is equivocal. Furthermore, rapalogs only poorly penetrate into the brain and are associated with peripheral adverse effects, which may compromise their therapeutic efficacy. Here we compare the antiseizure efficacy of two novel, brain-permeable ATP-competitive and selective mTORC1/2 inhibitors, PQR620 and PQR626, and the selective dual pan-PI3K/mTORC1/2 inhibitor PQR530 in two mouse models of chronic epilepsy with SRS, the intrahippocampal kainate (IHK) mouse model of acquired temporal lobe epilepsy and Tsc1GFAP CKO mice, a well-characterized mouse model of epilepsy in TSC. During prolonged treatment of IHK mice with rapamycin, everolimus, PQR620, PQR626, or PQR530; only PQR620 exerted a transient antiseizure effect on SRS, at well tolerated doses whereas the other compounds were ineffective. In contrast, all of the examined compounds markedly suppressed SRS in Tsc1GFAP CKO mice during chronic treatment at well tolerated doses. Thus, against our expectation, no clear differences in antiseizure efficacy were found across the three classes of mTOR inhibitors examined in mouse models of genetic and acquired epilepsies. The main advantage of the novel 1,3,5-triazine derivatives is their excellent tolerability compared to rapalogs, which would favor their development as new therapies for TORopathies such as TSC.
Collapse
|
44
|
An OTX2-PAX3 signaling axis regulates Group 3 medulloblastoma cell fate. Nat Commun 2020; 11:3627. [PMID: 32686664 PMCID: PMC7371715 DOI: 10.1038/s41467-020-17357-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
OTX2 is a potent oncogene that promotes tumor growth in Group 3 medulloblastoma. However, the mechanisms by which OTX2 represses neural differentiation are not well characterized. Here, we perform extensive multiomic analyses to identify an OTX2 regulatory network that controls Group 3 medulloblastoma cell fate. OTX2 silencing modulates the repressive chromatin landscape, decreases levels of PRC2 complex genes and increases the expression of neurodevelopmental transcription factors including PAX3 and PAX6. Expression of PAX3 and PAX6 is significantly lower in Group 3 medulloblastoma patients and is correlated with reduced survival, yet only PAX3 inhibits self-renewal in vitro and increases survival in vivo. Single cell RNA sequencing of Group 3 medulloblastoma tumorspheres demonstrates expression of an undifferentiated progenitor program observed in primary tumors and characterized by translation/elongation factor genes. Identification of mTORC1 signaling as a downstream effector of OTX2-PAX3 reveals roles for protein synthesis pathways in regulating Group 3 medulloblastoma pathogenesis. OTX2 promotes tumour growth in Group 3 medulloblastoma. Here, the authors show that OTX2 regulates PAX3 to induce neural de-differentiation and promote tumourigenesis in Group 3 medulloblastoma.
Collapse
|
45
|
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 2020; 21:183-203. [PMID: 31937935 PMCID: PMC7102936 DOI: 10.1038/s41580-019-0199-y] [Citation(s) in RCA: 1449] [Impact Index Per Article: 362.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
The mTOR pathway integrates a diverse set of environmental cues, such as growth factor signals and nutritional status, to direct eukaryotic cell growth. Over the past two and a half decades, mapping of the mTOR signalling landscape has revealed that mTOR controls biomass accumulation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Given the pathway's central role in maintaining cellular and physiological homeostasis, dysregulation of mTOR signalling has been implicated in metabolic disorders, neurodegeneration, cancer and ageing. In this Review, we highlight recent advances in our understanding of the complex regulation of the mTOR pathway and discuss its function in the context of physiology, human disease and pharmacological intervention.
Collapse
Affiliation(s)
- Grace Y Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA.
| |
Collapse
|
46
|
Steriade C, French J, Devinsky O. Epilepsy: key experimental therapeutics in early clinical development. Expert Opin Investig Drugs 2020; 29:373-383. [DOI: 10.1080/13543784.2020.1743678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Claude Steriade
- Division of Epilepsy, Department of Neurology, NYU Comprehensive Epilepsy Center, New York, NY, USA
| | - Jacqueline French
- Division of Epilepsy, Department of Neurology, NYU Comprehensive Epilepsy Center, New York, NY, USA
| | - Orrin Devinsky
- Division of Epilepsy, Department of Neurology, NYU Comprehensive Epilepsy Center, New York, NY, USA
| |
Collapse
|
47
|
Klein P, Friedman A, Hameed MQ, Kaminski RM, Bar-Klein G, Klitgaard H, Koepp M, Jozwiak S, Prince DA, Rotenberg A, Twyman R, Vezzani A, Wong M, Löscher W. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy? Epilepsia 2020; 61:359-386. [PMID: 32196665 PMCID: PMC8317585 DOI: 10.1111/epi.16450] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland
| | - Alon Friedman
- Departments of Physiology and Cell Biology, and Brain and Cognitive Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Departments of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Mustafa Q. Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafal M. Kaminski
- Neurosymptomatic Domains Section, Roche Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Guy Bar-Klein
- McKusick-Nathans Institute of Genetic Medicine, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henrik Klitgaard
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l’Alleud, Belgium
| | - Mathias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Sergiusz Jozwiak
- Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| | - David A. Prince
- Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Scientific Institute for Research and Health Care, Milan, Italy
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
48
|
Bonazzi S, Goold CP, Gray A, Thomsen NM, Nunez J, Karki RG, Gorde A, Biag JD, Malik HA, Sun Y, Liang G, Lubicka D, Salas S, Labbe-Giguere N, Keaney EP, McTighe S, Liu S, Deng L, Piizzi G, Lombardo F, Burdette D, Dodart JC, Wilson CJ, Peukert S, Curtis D, Hamann LG, Murphy LO. Discovery of a Brain-Penetrant ATP-Competitive Inhibitor of the Mechanistic Target of Rapamycin (mTOR) for CNS Disorders. J Med Chem 2020; 63:1068-1083. [PMID: 31955578 DOI: 10.1021/acs.jmedchem.9b01398] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent clinical evaluation of everolimus for seizure reduction in patients with tuberous sclerosis complex (TSC), a disease with overactivated mechanistic target of rapamycin (mTOR) signaling, has demonstrated the therapeutic value of mTOR inhibitors for central nervous system (CNS) indications. Given that everolimus is an incomplete inhibitor of the mTOR function, we sought to develop a new mTOR inhibitor that has improved properties and is suitable for CNS disorders. Starting from an in-house purine-based compound, optimization of the physicochemical properties of a thiazolopyrimidine series led to the discovery of the small molecule 7, a potent and selective brain-penetrant ATP-competitive mTOR inhibitor. In neuronal cell-based models of mTOR hyperactivity, 7 corrected the mTOR pathway activity and the resulting neuronal overgrowth phenotype. The new mTOR inhibitor 7 showed good brain exposure and significantly improved the survival rate of mice with neuronal-specific ablation of the Tsc1 gene. These results demonstrate the potential utility of this tool compound to test therapeutic hypotheses that depend on mTOR hyperactivity in the CNS.
Collapse
Affiliation(s)
- Simone Bonazzi
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Carleton P Goold
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Audrey Gray
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Noel M Thomsen
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Jill Nunez
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Rajeshri G Karki
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Aakruti Gorde
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Jonathan D Biag
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Hasnain A Malik
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Yingchuan Sun
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Guiqing Liang
- Pharmacokinetic Sciences , Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Danuta Lubicka
- Global Drug Development/Technical Research and Development , Novartis Institutes for BioMedical Research , 700 Main Street , Cambridge , Massachusetts 02139 , United States
| | - Sarah Salas
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Nancy Labbe-Giguere
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Erin P Keaney
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Stephanie McTighe
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Shanming Liu
- Chemical Biology and Therapeutics , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Lin Deng
- Pharmacokinetic Sciences , Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Grazia Piizzi
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Franco Lombardo
- Pharmacokinetic Sciences , Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Doug Burdette
- Pharmacokinetic Sciences , Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Jean-Cosme Dodart
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Christopher J Wilson
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Stefan Peukert
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Daniel Curtis
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Lawrence G Hamann
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Leon O Murphy
- Chemical Biology and Therapeutics , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
49
|
Microglia Mediated Neuroinflammation: Focus on PI3K Modulation. Biomolecules 2020; 10:biom10010137. [PMID: 31947676 PMCID: PMC7022557 DOI: 10.3390/biom10010137] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Immune activation in the central nervous system involves mostly microglia in response to pathogen invasion or tissue damage, which react, promoting a self-limiting inflammatory response aimed to restore homeostasis. However, prolonged, uncontrolled inflammation may result in the production by microglia of neurotoxic factors that lead to the amplification of the disease state and tissue damage. In particular, specific inducers of inflammation associated with neurodegenerative diseases activate inflammatory processes that result in the production of a number of mediators and cytokines that enhance neurodegenerative processes. Phosphoinositide 3-kinases (PI3Ks) constitute a family of enzymes regulating a wide range of activity, including signal transduction. Recent studies have focused attention on the intracellular role of PI3K and its contribution to neurodegenerative processes. This review illustrates and discusses recent findings about the role of this signaling pathway in the modulation of microglia neuroinflammatory responses linked to neurodegeneration. Finally, we discuss the modulation of PI3K as a potential therapeutic approach helpful for developing innovative therapeutic strategies in neurodegenerative diseases.
Collapse
|
50
|
Zhu J, Tsai NP. Ubiquitination and E3 Ubiquitin Ligases in Rare Neurological Diseases with Comorbid Epilepsy. Neuroscience 2020; 428:90-99. [DOI: 10.1016/j.neuroscience.2019.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
|