1
|
Santollo J, Daniels D. Fluid transitions. Neuropharmacology 2024; 256:110009. [PMID: 38823577 PMCID: PMC11184821 DOI: 10.1016/j.neuropharm.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
Water is critical for survival and thirst is a powerful way of ensuring that fluid levels remain in balance. Overconsumption, however, can have deleterious effects, therefore optimization requires a need to balance the drive for water with the satiation of that water drive. This review will highlight our current understanding of how thirst is both generated and quenched, with particular focus on the roles of angiotensin II, glucagon like-peptide 1, and estradiol in turning on and off the thirst drive. Our understanding of the roles these bioregulators play has benefited from modern behavioral analyses, which have improved the time resolution of intake measures, allowing for attention to the details of the patterns within a bout of intake. This has led to behavioral interpretation in ways that are helpful in understanding the many controls of water intake and has expanded our understanding beyond the dichotomy that something which increases water intake is simply a "stimulator" while something that decreases water intake is simply a "satiety" factor. Synthesizing the available information, we describe a framework in which thirst is driven directly by perturbations in fluid intake and indirectly modified by several bioregulators. This allows us to better highlight areas that are in need of additional attention to form a more comprehensive understanding of how the system transitions between states of thirst and satiety.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Derek Daniels
- Department of Biology, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
Jaramillo JCM, Aitken CM, Lawrence AJ, Ryan PJ. Oxytocin-receptor-expressing neurons in the lateral parabrachial nucleus activate widespread brain regions predominantly involved in fluid satiation. J Chem Neuroanat 2024; 137:102403. [PMID: 38452468 DOI: 10.1016/j.jchemneu.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Fluid satiation is an important signal and aspect of body fluid homeostasis. Oxytocin-receptor-expressing neurons (OxtrPBN) in the dorsolateral subdivision of the lateral parabrachial nucleus (dl LPBN) are key neurons which regulate fluid satiation. In the present study, we investigated brain regions activated by stimulation of OxtrPBN neurons in order to better characterise the fluid satiation neurocircuitry in mice. Chemogenetic activation of OxtrPBN neurons increased Fos expression (a proxy marker for neuronal activation) in known fluid-regulating brain nuclei, as well as other regions that have unclear links to fluid regulation and which are likely involved in regulating other functions such as arousal and stress relief. In addition, we analysed and compared Fos expression patterns between chemogenetically-activated fluid satiation and physiological-induced fluid satiation. Both models of fluid satiation activated similar brain regions, suggesting that the chemogenetic model of stimulating OxtrPBN neurons is a relevant model of physiological fluid satiation. A deeper understanding of this neural circuit may lead to novel molecular targets and creation of therapeutic agents to treat fluid-related disorders.
Collapse
Affiliation(s)
- Janine C M Jaramillo
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Connor M Aitken
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Ryan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Todini L, Fantuz F. Thirst: neuroendocrine regulation in mammals. Vet Res Commun 2023; 47:1085-1101. [PMID: 36932281 DOI: 10.1007/s11259-023-10104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Animals can sense their changing internal needs and then generate specific physiological and behavioural responses in order to restore homeostasis. Water-saline homeostasis derives from balances of water and sodium intake and output (drinking and diuresis, salt appetite and natriuresis), maintaining an appropriate composition and volume of extracellular fluid. Thirst is the sensation which drives to seek and consume water, regulated in the central nervous system by both neural and chemical signals. Water and electrolyte homeostasis depends on finely tuned physiological mechanisms, mainly susceptible to plasma Na+ concentration and osmotic pressure, but also to blood volume and arterial pressure. Increases of osmotic pressure as slight as 1-2% are enough to induce thirst ("homeostatic" or cellular), by activation of specialized osmoreceptors in the circumventricular organs, outside the blood-brain barrier. Presystemic anticipatory signals (by oropharyngeal or gastrointestinal receptors) inhibit thirst when fluids are ingested, or stimulate thirst associated with food intake. Hypovolemia, arterial hypotension, Angiotensin II stimulate thirst ("hypovolemic thirst", "extracellular dehydration"). Hypervolemia, hypertension, Atrial Natriuretic Peptide inhibit thirst. Circadian rhythms of thirst are also detectable, driven by suprachiasmatic nucleus in the hypothalamus. Such homeostasis and other fundamental physiological functions (cardiocircolatory, thermoregulation, food intake) are highly interdependent.
Collapse
Affiliation(s)
- Luca Todini
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Via della Circonvallazione 93/95, 62024, Matelica, MC, Italy.
| | - Francesco Fantuz
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Via della Circonvallazione 93/95, 62024, Matelica, MC, Italy
| |
Collapse
|
4
|
Rossi MA. Control of energy homeostasis by the lateral hypothalamic area. Trends Neurosci 2023; 46:738-749. [PMID: 37353461 PMCID: PMC10524917 DOI: 10.1016/j.tins.2023.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023]
Abstract
The lateral hypothalamic area (LHA) is a subcortical brain region that exerts control over motivated behavior, feeding, and energy balance across species. Recent single-cell sequencing studies have defined at least 30 distinct LHA neuron types. Some of these influence specific aspects of energy homeostasis; however, the functions of many LHA cell types remain unclear. This review addresses the rapidly emerging evidence from cell-type-specific investigations that the LHA leverages distinct neuron populations to regulate energy balance through complex connections with other brain regions. It will highlight recent findings demonstrating that LHA control of energy balance extends beyond mere food intake and propose outstanding questions to be addressed by future research.
Collapse
Affiliation(s)
- Mark A Rossi
- Child Health Institute of New Jersey, New Brunswick, NJ, USA; Department of Psychiatry, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
5
|
Barretto-de-Souza L, Joseph SA, Lynch FM, Ng AJ, Crestani CC, Christianson JP. Melanin-concentrating hormone and orexin shape social affective behavior via action in the insular cortex of rat. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06408-5. [PMID: 37369782 DOI: 10.1007/s00213-023-06408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
RATIONALE In a social context, individuals are able to detect external information from others and coordinate behavioral responses according to the situation, a phenomenon called social decision-making. Social decision-making is multifaceted, influenced by emotional and motivational factors like stress, sickness, and hunger. However, the neurobiological basis for motivational state competition and interaction is not well known. OBJECTIVE We investigated possible neural mechanisms through which internal states could shape social behavior in a social affective preference (SAP) test. In the SAP test, experimental rats given a choice to interact with naïve or stressed conspecifics exhibit an age-dependent preference to interact with stressed juvenile conspecifics, but avoid stressed adult conspecifics. First, we assessed the effect of food and water deprivation on SAP behavior. Behavior in the SAP test requires the insular cortex, which receives input from the ingestion-related peptides melanin-concentrating hormone (MCH) and orexin neurons of the lateral hypothalamus (LH). This study aimed to evaluate the role of LH and insular MCH and orexin in SAP test. METHODS SAP tests were conducted in rats that were sated, food and water deprived or allowed 1 h of access to food and water after 14 h of deprivation (relieved condition). Separate cohorts of sated rats received cannula implants for microinjection of drugs to inhibit the LH or to block or stimulate MCH or orexin receptors in the insula prior to SAP tests or social interaction tests. RESULTS Food and water deprivation prior to SAP tests with juvenile rats caused a shift in preference away from the stressed rat toward the naïve juveniles. Pharmacological inhibition of LH with muscimol (100 ng/side) abolished the preference for the juvenile-stressed conspecific, as well as the preference for the adult naïve conspecific. The blockade of MCH receptor 1or orexin receptors in the insular cortex with SNAP94847 (50 μM) or TCS1102 (1 μM), respectively, also abolished the preference for the stressed juvenile conspecific, but only the antagonism of orexin receptors was able to abolish the preference for the adult naïve conspecific. Microinjection of increasing doses (50 or 500 nM) of MCH or orexin-A in the insular cortex increased the interaction time in the one-on-one social interaction test with juvenile conspecifics; however, only the microinjection of orexin-A increased the interaction time with adult naïve conspecifics. CONCLUSIONS Taken together, these results suggest that lateral hypothalamus peptides shape the direction of social approach or avoidance via actions MCH and orexin neurotransmission in the insular cortex.
Collapse
Affiliation(s)
- Lucas Barretto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Shemar A Joseph
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Francesca M Lynch
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
6
|
Petzold A, van den Munkhof HE, Figge-Schlensok R, Korotkova T. Complementary lateral hypothalamic populations resist hunger pressure to balance nutritional and social needs. Cell Metab 2023; 35:456-471.e6. [PMID: 36827985 PMCID: PMC10028225 DOI: 10.1016/j.cmet.2023.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/03/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Animals continuously weigh hunger and thirst against competing needs, such as social contact and mating, according to state and opportunity. Yet neuronal mechanisms of sensing and ranking nutritional needs remain poorly understood. Here, combining calcium imaging in freely behaving mice, optogenetics, and chemogenetics, we show that two neuronal populations of the lateral hypothalamus (LH) guide increasingly hungry animals through behavioral choices between nutritional and social rewards. While increased food consumption was marked by increasing inhibition of a leptin receptor-expressing (LepRLH) subpopulation at a fast timescale, LepRLH neurons limited feeding or drinking and promoted social interaction despite hunger or thirst. Conversely, neurotensin-expressing LH neurons preferentially encoded water despite hunger pressure and promoted water seeking, while relegating social needs. Thus, hunger and thirst gate both LH populations in a complementary manner to enable the flexible fulfillment of multiple essential needs.
Collapse
Affiliation(s)
- Anne Petzold
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Hanna Elin van den Munkhof
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Rebecca Figge-Schlensok
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Tatiana Korotkova
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.
| |
Collapse
|
7
|
Tanno Y, Matsudaira T, Usui N, Ogawa H, Tokumoto K, Kawaguchi N, Kondo A, Nishida T, Takahashi Y. Periictal water drinking revisited: Occurrence and lateralizing value in surgically confirmed patients with focal epilepsy. Epilepsia Open 2023; 8:173-182. [PMID: 36648337 PMCID: PMC9977749 DOI: 10.1002/epi4.12690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Periictal water drinking (PIWD), which is a rare seizure-related autonomic behavior, has been reported in temporal lobe epilepsy (TLE) but only rarely in extra-TLE. Additionally, the lateralizing value of PIWD is controversial. We aimed to clarify the occurrence and lateralizing value of PIWD in patients with focal epilepsy. METHODS This retrospective study included 240 focal epilepsy patients aged >10 years with a favorable postoperative seizure outcome (Engel class I). PIWD was defined as water drinking behavior during a seizure or within 2 min in the postictal phase. The occurrence of PIWD documented on video-electroencephalogram monitoring was assessed. The lateralizing value of PIWD was analyzed among patients whose language dominant hemisphere was identified. RESULTS Twenty-three (9.5%) patients exhibited PIWD. PIWD occurred more frequently in frontal lobe epilepsy (FLE; eight of 41 patients, 19.5%) than in TLE (15 of 188 patients, 8%). The occurrence of PIWD was significantly different between FLE and extra-FLE (P = 0.035), with a low positive predictive value (34.8%). In FLE with PIWD, all but one patient underwent resective surgery involving the medial frontal lobe. In 194 patients whose language dominant hemisphere was determined, the lateralizing value of PIWD in FLE and TLE showed no statistical significance (P = 0.69 and P = 0.27, respectively). SIGNIFICANCE Periictal water drinking occurred more often in FLE than TLE. Thus, PIWD might not be a specific periictal symptom in TLE. There was no evidence for the lateralizing value of PIWD in FLE and TLE. These findings can provide useful clinical clues for preoperative evaluations to estimate the epileptogenic zone based on seizure semiology and allow for a better understanding of pathophysiological insights into PIWD.
Collapse
Affiliation(s)
- Yuhei Tanno
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Takashi Matsudaira
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Naotaka Usui
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Hiroshi Ogawa
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Kentaro Tokumoto
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Norihiko Kawaguchi
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Akihiko Kondo
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Takuji Nishida
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Yukitoshi Takahashi
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| |
Collapse
|
8
|
Shu Q, Wang SY, Chen PP, Zhang F, Wang QY, Wei X, Zhou J, Zhou X, Yu Q, Cai RL. Glutamatergic neurons in lateral hypothalamus play a vital role in acupuncture preconditioning to alleviate MIRI. J Neurophysiol 2023; 129:320-332. [PMID: 36541603 DOI: 10.1152/jn.00424.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) has high morbidity and mortality worldwide. Increasing evidence has shown that electroacupuncture (EA) plays a critical role in alleviating MIRI. The aim of this study is to investigate whether glutamatergic neurons in the lateral hypothalamus (LH) have vital effect on MIRI as well as the underlying mechanism during the EA pretreatment. The MIRI model was established by ligating the left anterior descending (LAD) coronary artery for 30 min followed by reperfusion for 2 h. Chemogenetics, electrocardiogram (ECG) recording, ELISA, multichannel physiology recording, and immunofluorescence staining methods were combined to demonstrate that firing frequencies of neurons in the LH and expression of c-Fos decreased by EA pretreatment. Meanwhile, EA preconditioning significantly reduced the percentage of infarct size and the levels of cardiac troponin I (cTnI) and creatine kinase isoenzymes (CK-MB) were similar to inhibition of glutamatergic neurons in LH, also attenuated morphology of myocardial tissue was induced by MIRI. However, activation of glutamatergic neurons in LH weakened the above effects of EA pretreatment.NEW & NOTEWORTHY This study demonstrates that EA preconditioning can attenuate myocardial injury for MIRI, which is similar to inhibition of glutamatergic neurons in LH. However, chemical activation of glutamatergic neurons in LH attenuates the protective effect of EA pretreatment. These findings help better understand the mechanisms of EA to regulate cardiac function.
Collapse
Affiliation(s)
- Qi Shu
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Shuai-Ya Wang
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Pian-Pian Chen
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Fan Zhang
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Qian-Yi Wang
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Xia Wei
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Jie Zhou
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Zhou
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Yu
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Rong-Lin Cai
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Perez-Bonilla P, Ramirez-Virella J, Menon P, Troyano-Rodriguez E, Arriaga SK, Makela A, Bugescu R, Beckstead MJ, Leinninger GM. Developmental or adult-onset deletion of neurotensin receptor-1 from dopamine neurons differentially reduces body weight. Front Neurosci 2022; 16:874316. [PMID: 36213756 PMCID: PMC9537700 DOI: 10.3389/fnins.2022.874316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Central neurotensin signaling via neurotensin receptor-1 (NtsR1) modulates various aspects of physiology, including suppressing feeding and promoting locomotor activity that can support weight loss. However, it remains unclear when and where NtsR1 expression contributes to control of body weight vs. other effects. We previously showed that activating ventral tegmental area (VTA) dopamine (DA) neurons that express NtsR1 promotes weight loss. We therefore hypothesized that deleting NtsR1 from DA neurons would promote weight gain by increasing food intake and decreasing physical activity. In contrast, developmental deletion of NtsR1 from DA neurons (by crossing DATCre mice with NtsR1flox/flox mice) had no impact on the feeding or body weight of mice fed a chow diet, though it augmented locomotor activity. Developmental deletion of NtsR1 from DA neurons protected mice from diet-induced obesity, but not via altering feeding, physical activity, or energy expenditure. Given that NtsR1 may exert distinct roles within development vs. adulthood, we then examined the impact of adult-onset deletion of NtsR1 from VTA DA neurons. We injected adult NtsR1flox/flox mice in the VTA with adeno associated virus to Cre-dependently delete NtsR1 in the VTA (VTAR1Null mice) and compared them to mice with intact NtsR1 (Controls). Again, in contrast to our hypothesis, VTAR1Null mice gained less weight than Controls while on normal chow or high fat diets. Moreover, VTAR1Null mice exhibited blunted feeding after fasting, suggesting a role for NtsR1 in adult VTA DA neurons in coordinating energy need and intake. Altogether, these data suggest that intact expression of NtsR1 in DA neurons is necessary for appropriate regulation of body weight, but a lack of NtsR1 in the developing vs. adult DA system protects from weight gain via different mechanisms. These findings emphasize the need for temporal and site-specific resolution to fully understand the role of NtsR1 within the brain.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jariel Ramirez-Virella
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Pooja Menon
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Eva Troyano-Rodriguez
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Sydney K. Arriaga
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Anna Makela
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Michael J. Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, United States
| | - Gina M. Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
10
|
Kurt G, Kodur N, Quiles CR, Reynolds C, Eagle A, Mayer T, Brown J, Makela A, Bugescu R, Seo HD, Carroll QE, Daniels D, Robison AJ, Mazei-Robison M, Leinninger G. Time to drink: Activating lateral hypothalamic area neurotensin neurons promotes intake of fluid over food in a time-dependent manner. Physiol Behav 2022; 247:113707. [PMID: 35063424 PMCID: PMC8844224 DOI: 10.1016/j.physbeh.2022.113707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/24/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
The lateral hypothalamic area (LHA) is essential for ingestive behavior but has primarily been studied in modulating feeding, with comparatively scant attention on drinking. This is partly because most LHA neurons simultaneously promote feeding and drinking, suggesting that ingestive behaviors track together. A notable exception are LHA neurons expressing neurotensin (LHANts neurons): activating these neurons promotes water intake but modestly restrains feeding. Here we investigated the connectivity of LHANts neurons, their necessity and sufficiency for drinking and feeding, and how timing and resource availability influence their modulation of these behaviors. LHANts neurons project broadly throughout the brain, including to the lateral preoptic area (LPO), a brain region implicated in modulating drinking behavior. LHANts neurons also receive inputs from brain regions implicated in sensing hydration and energy status. While activation of LHANts neurons is not required to maintain homeostatic water or food intake, it selectively promotes drinking during the light cycle, when ingestive drive is low. Activating LHANts neurons during this period also increases willingness to work for water or palatable fluids, regardless of their caloric content. By contrast, LHANts neuronal activation during the dark cycle does not promote drinking, but suppresses feeding during this time. Finally, we demonstrate that the activation of the LHANts → LPO projection is sufficient to mediate drinking behavior, but does not suppress feeding as observed after generally activating all LHANts neurons. Overall, our work suggests how and when LHANts neurons oppositely modulate ingestive behaviors.
Collapse
Key Words
- ARC, Arcuate nucleus
- CEA, Central amygdala
- CNO, Clozapine N-Oxide
- CPP, Conditioned place preference
- DR, Dorsal raphe
- DREADD
- DREADD, Designer receptor exclusively activated by designer drugs
- FR-1, Fixed ratio-1
- LHA
- LHA(Nts), Lateral hypothalamic area neuotensin-expressing
- LHA, Lateral hypothalamic area
- LPO, Lateral preoptic area
- LT, Lateral terminalis
- LepRb, Long form of the leptin receptor
- MnPO, Median preoptic area
- ModRabies, Genetically modified rabies virus, EnvA-∆G-Rabies-mCherry
- NTS, Nucleus of solitary tract
- Nts, Neurotensin
- NtsR1, Neurotensin receptor-1
- NtsR2, Neurotensin receptor-2
- OVLT, Organum vasculosum lamina terminalis
- PAG, Periaqueductal gray
- PB, Parabrachial area
- PR, Progressive ratio
- PVH, Paraventricular nucleus of hypothalamus
- SFO, Subfornical organ
- SNc, Substantia nigra compacta
- SO, Supraoptic nucleus
- TVA, avian viral receptor protein
- VEH, Vehicle
- VTA, Ventral tegmental area
- WT, Wild type
- Water
- aCSF, Artificial cerebrospinal fluid
- body weight
- feeding
- homeostasis
- lHb, Lateral habenula
- lateral preoptic area (LPO)
- neurotensin receptor
- reward
Collapse
Affiliation(s)
- Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Nandan Kodur
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Chelsea Reynolds
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew Eagle
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Tom Mayer
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Juliette Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna Makela
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Harim Delgado Seo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Quinn E Carroll
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo, NY 14226, USA
| | - Derek Daniels
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo, NY 14226, USA
| | - A J Robison
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Gina Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
11
|
Wang Y, Eddison M, Fleishman G, Weigert M, Xu S, Wang T, Rokicki K, Goina C, Henry FE, Lemire AL, Schmidt U, Yang H, Svoboda K, Myers EW, Saalfeld S, Korff W, Sternson SM, Tillberg PW. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 2021; 184:6361-6377.e24. [PMID: 34875226 DOI: 10.1016/j.cell.2021.11.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/22/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey computational pipeline to rapidly process large EASI-FISH image datasets. EASI-FISH was optimized for thick brain sections (300 μm) to facilitate reconstruction of spatio-molecular domains that generalize across brains. Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens of molecularly defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined anatomical organization. Mapping cell types in the LHA revealed nine spatially and molecularly defined subregions. EASI-FISH also facilitates iterative reanalysis of scRNA-seq datasets to determine marker-genes that further dissociated spatial and morphological heterogeneity. The EASI-FISH pipeline democratizes mapping molecularly defined cell types, enabling discoveries about brain organization.
Collapse
Affiliation(s)
- Yuhan Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Mark Eddison
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Greg Fleishman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Martin Weigert
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Shengjin Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tim Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Konrad Rokicki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Cristian Goina
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Fredrick E Henry
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Uwe Schmidt
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Hui Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Scott M Sternson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Paul W Tillberg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
12
|
Oesch LT, Adamantidis AR. How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 2021; 44:990-1003. [PMID: 34663506 DOI: 10.1016/j.tins.2021.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
The electrical activity of diverse brain cells is modulated across states of vigilance, namely wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Enhanced activity of neuronal circuits during NREM sleep impacts on subsequent awake behaviors, yet the significance of their activation, or lack thereof, during REM sleep remains unclear. This review focuses on feeding-promoting cells in the lateral hypothalamus (LH) that express the vesicular GABA and glycine transporter (vgat) as a model to further understand the impact of REM sleep on neural encoding of goal-directed behavior. It emphasizes both spatial and temporal aspects of hypothalamic cell dynamics across awake behaviors and REM sleep, and discusses a role for REM sleep in brain plasticity underlying energy homeostasis and behavioral optimization.
Collapse
Affiliation(s)
- Lukas T Oesch
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland; Department of Neurobiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Mietlicki-Baase EG, Santollo J, Daniels D. Fluid intake, what's dopamine got to do with it? Physiol Behav 2021; 236:113418. [PMID: 33838203 DOI: 10.1016/j.physbeh.2021.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Maintaining fluid balance is critical for life. The central components that control fluid intake are only partly understood. This contribution to the collection of papers highlighting work by members of the Society for the Study of Ingestive Behavior focuses on the role that dopamine has on fluid intake and describes the roles that various bioregulators can have on thirst and sodium appetite by influencing dopamine systems in the brain. The goal of the review is to highlight areas in need of more research and to propose a framework to guide that research. We hope that this framework will inspire researchers in the field to investigate these interesting questions in order to form a more complete understanding of how fluid intake is controlled.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, United States; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| | - Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Derek Daniels
- Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States; Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| |
Collapse
|
14
|
Perez-Bonilla P, Santiago-Colon K, Matasovsky J, Ramirez-Virella J, Khan R, Garver H, Fink G, Dorrance AM, Leinninger GM. Activation of ventral tegmental area neurotensin Receptor-1 neurons promotes weight loss. Neuropharmacology 2021; 195:108639. [PMID: 34116109 DOI: 10.1016/j.neuropharm.2021.108639] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 01/31/2023]
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) modulate physical activity and feeding behaviors that are disrupted in obesity. Yet, the heterogeneity of VTA DA neurons has hindered determination of which ones might be leveraged to support weight loss. We hypothesized that increased activity in the subset of VTA DA neurons expressing neurotensin receptor-1 (NtsR1) might promote weight loss behaviors. To test this, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to activate VTA NtsR1 neurons in normal weight and diet-induced obese mice. Acute activation of VTA NtsR1 neurons (24hr) significantly decreased body weight in normal weight and obese mice by reducing food intake and increasing physical activity. Moreover, daily activation of VTA NtsR1 neurons in obese mice sustained weight loss over 7 days. Activating VTA NtsR1 neurons also suppressed how much mice worked to obtain sucrose rewards, even when there was high motivation to consume. However, VTA NtsR1 neural activation was not reinforcing, nor did it invoke liabilities associated with whole-body NtsR1 agonism such as anxiety, vasodepressor response or hypothermia. Activating VTA NtsR1 neurons therefore promotes dual behaviors that support weight loss without causing adverse effects, and is worth further exploration for managing obesity.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, 48114, USA; Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA
| | | | - Jillian Matasovsky
- Department of Physiology and College of Natural Science, Michigan State University, East Lansing, MI, 48114, USA
| | - Jariel Ramirez-Virella
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, 48114, USA; Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA
| | - Rabail Khan
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, 48114, USA
| | - Hannah Garver
- Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA
| | - Gregory Fink
- Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA; College of Osteopathic Medicine, East Lansing, MI, 48114, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA; College of Osteopathic Medicine, East Lansing, MI, 48114, USA
| | - Gina M Leinninger
- Department of Physiology and College of Natural Science, Michigan State University, East Lansing, MI, 48114, USA.
| |
Collapse
|
15
|
Ramirez-Virella J, Leinninger GM. The Role of Central Neurotensin in Regulating Feeding and Body Weight. Endocrinology 2021; 162:6144574. [PMID: 33599716 PMCID: PMC7951050 DOI: 10.1210/endocr/bqab038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/16/2022]
Abstract
The small peptide neurotensin (Nts) is implicated in myriad processes including analgesia, thermoregulation, reward, arousal, blood pressure, and modulation of feeding and body weight. Alterations in Nts have recently been described in individuals with obesity or eating disorders, suggesting that disrupted Nts signaling may contribute to body weight disturbance. Curiously, Nts mediates seemingly opposing regulation of body weight via different tissues. Peripherally acting Nts promotes fat absorption and weight gain, whereas central Nts signaling suppresses feeding and weight gain. Thus, because Nts is pleiotropic, a location-based approach must be used to understand its contributions to disordered body weight and whether the Nts system might be leveraged to improve metabolic health. Here we review the role of Nts signaling in the brain to understand the sites, receptors, and mechanisms by which Nts can promote behaviors that modify body weight. New techniques permitting site-specific modulation of Nts and Nts receptor-expressing cells suggest that, even in the brain, not all Nts circuitry exerts the same function. Intriguingly, there may be dedicated brain regions and circuits via which Nts specifically suppresses feeding behavior and weight gain vs other Nts-attributed physiology. Defining the central mechanisms by which Nts signaling modifies body weight may suggest strategies to correct disrupted energy balance, as needed to address overweight, obesity, and eating disorders.
Collapse
Affiliation(s)
- Jariel Ramirez-Virella
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
- Correspondence: Gina M. Leinninger, PhD, Department of Physiology, Michigan State University, 5400 ISTB, 766 Service Rd, East Lansing, MI 48824, USA.
| |
Collapse
|
16
|
Garcia A, Coss A, Luis-Islas J, Puron-Sierra L, Luna M, Villavicencio M, Gutierrez R. Lateral Hypothalamic GABAergic Neurons Encode and Potentiate Sucrose's Palatability. Front Neurosci 2021; 14:608047. [PMID: 33551725 PMCID: PMC7859279 DOI: 10.3389/fnins.2020.608047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Sucrose is attractive to most species in the animal kingdom, not only because it induces a sweet taste sensation but also for its positive palatability (i.e., oromotor responses elicited by increasing sucrose concentrations). Although palatability is such an important sensory attribute, it is currently unknown which cell types encode and modulate sucrose's palatability. Studies in mice have shown that activation of GABAergic LHAVgat+ neurons evokes voracious eating; however, it is not known whether these neurons would be driving consumption by increasing palatability. Using optrode recordings, we measured sucrose's palatability while VGAT-ChR2 transgenic mice performed a brief access sucrose test. We found that a subpopulation of LHAVgat+ neurons encodes palatability by increasing (or decreasing) their activity as a function of the increment in licking responses evoked by sucrose concentrations. Optogenetic gain of function experiments, where mice were able to choose among available water, 3% and 18% sucrose solutions, uncovered that opto-stimulation of LHAVgat+ neurons consistently promoted higher intake of the most palatable stimulus (18% sucrose). In contrast, if they self-stimulated near the less palatable stimulus, some VGAT-ChR2 mice preferred water over 18% sucrose. Unexpectedly, activation of LHAVgat+ neurons increased quinine intake but only during water deprivation, since in sated animals, they failed to promote quinine intake or tolerate an aversive stimulus. Conversely, these neurons promoted overconsumption of sucrose when it was the nearest stimulus. Also, experiments with solid foods further confirmed that these neurons increased food interaction time with the most palatable food available. We conclude that LHAVgat+ neurons increase the drive to consume, but it is potentiated by the palatability and proximity of the tastant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City, Mexico
| |
Collapse
|
17
|
Harris T, Bugescu R, Kelly J, Makela A, Sotzen M, Sisk C, Atkin G, Pratt R, Crockett E, Leinninger G. DLK1 Expressed in Mouse Orexin Neurons Modulates Anxio-Depressive Behavior but Not Energy Balance. Brain Sci 2020; 10:brainsci10120975. [PMID: 33322758 PMCID: PMC7764426 DOI: 10.3390/brainsci10120975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Lateral hypothalamic area (LHA) neurons expressing the neuropeptide orexin (OX) are implicated in obesity and anxio-depression. However, these neurons release OX as well as a host of other proteins that might contribute to normal physiology and disease states. We hypothesized that delta-like homolog 1 (DLK1), a protein reported to be co-expressed by all OX neurons, contributes to the regulation of energy balance and/or anxio-depression. Consistent with previous reports, we found that all rat OX neurons co-express DLK1. Yet, in mice and humans only a subset of OX neurons co-expressed DLK1. Since human OX-DLK1 distribution is more similar to mice than rats, mice are a comparable model to assess the human physiologic role of DLK1. We therefore used a viral lesion strategy to selectively delete DLK1 within the LHA of adult mice (DLK1Null) to reveal its role in body weight and behavior. Adult-onset DLK1 deletion had no impact on body weight or ingestive behavior. However, DLK1Null mice engaged in more locomotor activity than control mice and had decreased anxiety and depression measured via the elevated plus maze and forced swim tests. These data suggest that DLK1 expression via DLK1-expressing OX neurons primarily contributes to anxio-depression behaviors without impacting body weight.
Collapse
Affiliation(s)
- Tatiyana Harris
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (T.H.); (R.B.); (J.K.); (A.M.); (M.S.)
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (T.H.); (R.B.); (J.K.); (A.M.); (M.S.)
| | - Jaylyn Kelly
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (T.H.); (R.B.); (J.K.); (A.M.); (M.S.)
| | - Anna Makela
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (T.H.); (R.B.); (J.K.); (A.M.); (M.S.)
| | - Morgan Sotzen
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (T.H.); (R.B.); (J.K.); (A.M.); (M.S.)
| | - Cheryl Sisk
- Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI 48824, USA;
| | - Graham Atkin
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Rebecca Pratt
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA;
| | - Elahé Crockett
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Gina Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (T.H.); (R.B.); (J.K.); (A.M.); (M.S.)
- Correspondence:
| |
Collapse
|
18
|
Abstract
Thirst is a highly potent drive that motivates organisms to seek out and consume balance-restoring stimuli. The detection of dehydration is well understood and involves signals of peripheral origin and the sampling of internal milieu by first order homeostatic neurons within the lamina terminalis-particularly glutamatergic neurons of the subfornical organ expressing CaMKIIa (SFOCaMKIIa). However, it remains unknown whether mesolimbic dopamine pathways that are critical for motivation and reinforcement integrate information from these "early" dehydration signals. We used in vivo fiber photometry in the ventral tegmental area and measured phasic dopamine responses to a water-predictive cue. Thirst, but not hunger, potentiated the phasic dopamine response to the water cue. In euvolemic rats, the dipsogenic hormone angiotensin II, but not the orexigenic hormone ghrelin, potentiated the dopamine response similarly to that observed in water-deprived rats. Chemogenetic manipulations of SFOCaMKIIa revealed bidirectional control of phasic dopamine signaling during cued water reward. Taking advantage of within-subject designs, we found predictive relationships between changes in cue-evoked dopamine response and changes in behavioral responses-supporting a role for dopamine in motivation induced by homeostatic need. Collectively, we reveal a putative mechanism for the invigoration of goal-directed behavior: internal milieu communicates to first order, need state-selective circuits to potentiate the mesolimbic dopamine system's response to cues predictive of restorative stimuli.
Collapse
|
19
|
Song SY, Li Y, Zhai XM, Li YH, Bao CY, Shan CJ, Hong J, Cao JL, Zhang LC. Monosynaptic Input Mapping of Diencephalic Projections to the Cerebrospinal Fluid-Contacting Nucleus in the Rat. Front Neuroanat 2020; 14:7. [PMID: 32180709 PMCID: PMC7059736 DOI: 10.3389/fnana.2020.00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Objective: To investigate the projections the cerebrospinal fluid-contacting (CSF-contacting) nucleus receives from the diencephalon and to speculate on the functional significance of these connections. Methods: The retrograde tracer cholera toxin B subunit (CB) was injected into the CSF-contacting nucleus in SD rats according to the experimental formula of the stereotaxic coordinates. Animals were perfused 7–10 days after the injection, and the diencephalon was sliced at 40 μm with a freezing microtome. CB-immunofluorescence was performed on all diencephalic sections. The features of CB-positive neuron distribution in the diencephalon were observed with a fluorescence microscope. Results: The retrograde labeled CB-positive neurons were found in the epithalamus, subthalamus, and hypothalamus. Three functional diencephalic areas including 43 sub-regions revealed projections to the CSF-contacting nucleus. The CB-positive neurons were distributed in different density ranges: sparse, moderate, and dense. Conclusion: Based on the connectivity patterns of the CSF-contacting nucleus that receives anatomical inputs from the diencephalon, we preliminarily assume that the CSF-contacting nucleus participates in homeostasis regulation, visceral activity, stress, emotion, pain and addiction, and sleeping and arousal. The present study firstly illustrates the broad projections of the CSF-contacting nucleus from the diencephalon, which implies the complicated functions of the nucleus especially for the unique roles of coordination in neural and body fluids regulations.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Meng Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Hao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Yi Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Jing Shan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia Hong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
20
|
Livneh Y, Sugden AU, Madara JC, Essner RA, Flores VI, Sugden LA, Resch JM, Lowell BB, Andermann ML. Estimation of Current and Future Physiological States in Insular Cortex. Neuron 2020; 105:1094-1111.e10. [PMID: 31955944 PMCID: PMC7083695 DOI: 10.1016/j.neuron.2019.12.027] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023]
Abstract
Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. We imaged mouse InsCtx neurons during two physiological deficiency states: hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis but not changes in behavior. Accordingly, while artificial induction of hunger or thirst in sated mice via activation of specific hypothalamic neurons (AgRP or SFOGLUT) restored cue-evoked food- or water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger or thirst, food or water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger or thirst, food or water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory signals of current physiological state with hypothalamus-gated amygdala inputs that signal upcoming ingestion of food or water to compute a prediction of future physiological state.
Collapse
Affiliation(s)
- Yoav Livneh
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rachel A Essner
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Vanessa I Flores
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lauren A Sugden
- Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, PA 15232, USA
| | - Jon M Resch
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Neurotensin in reward processes. Neuropharmacology 2020; 167:108005. [PMID: 32057800 DOI: 10.1016/j.neuropharm.2020.108005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Neurotensin (NTS) is a neuropeptide neurotransmitter expressed in the central and peripheral nervous systems. Many studies over the years have revealed a number of roles for this neuropeptide in body temperature regulation, feeding, analgesia, ethanol sensitivity, psychosis, substance use, and pain. This review provides a general survey of the role of neurotensin with a focus on modalities that we believe to be particularly relevant to the study of reward. We focus on NTS signaling in the ventral tegmental area, nucleus accumbens, lateral hypothalamus, bed nucleus of the stria terminalis, and central amygdala. Studies on the role of NTS outside of the ventral tegmental area are still in their relative infancy, yet they reveal a complex role for neurotensinergic signaling in reward-related behaviors that merits further study. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
22
|
Torruella-Suárez ML, Vandenberg JR, Cogan ES, Tipton GJ, Teklezghi A, Dange K, Patel GK, McHenry JA, Hardaway JA, Kantak PA, Crowley NA, DiBerto JF, Faccidomo SP, Hodge CW, Stuber GD, McElligott ZA. Manipulations of Central Amygdala Neurotensin Neurons Alter the Consumption of Ethanol and Sweet Fluids in Mice. J Neurosci 2020; 40:632-647. [PMID: 31744862 PMCID: PMC6961987 DOI: 10.1523/jneurosci.1466-19.2019] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
The central nucleus of the amygdala plays a significant role in alcohol use and other affective disorders; however, the genetically-defined neuronal subtypes and projections that govern these behaviors are not well known. Here we show that neurotensin neurons in the central nucleus of the amygdala of male mice are activated by in vivo ethanol consumption and that genetic ablation of these neurons decreases ethanol consumption and preference in non-ethanol-dependent animals. This ablation did not impact preference for sucrose, saccharin, or quinine. We found that the most robust projection of the central amygdala neurotensin neurons was to the parabrachial nucleus, a brain region known to be important in feeding behaviors, conditioned taste aversion, and alarm. Optogenetic stimulation of projections from these neurons to the parabrachial nucleus is reinforcing, and increases ethanol drinking as well as consumption of sucrose and saccharin solutions. These data suggest that this central amygdala to parabrachial nucleus projection influences the expression of reward-related phenotypes and is a novel circuit promoting consumption of ethanol and palatable fluids.SIGNIFICANCE STATEMENT Alcohol use disorder (AUD) is a major health burden worldwide. Although ethanol consumption is required for the development of AUD, much remains unknown regarding the underlying neural circuits that govern initial ethanol intake. Here we show that ablation of a population of neurotensin-expressing neurons in the central amygdala decreases intake of and preference for ethanol in non-dependent animals, whereas the projection of these neurons to the parabrachial nucleus promotes consumption of ethanol as well as other palatable fluids.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - J Andrew Hardaway
- Bowles Center for Alcohol Studies
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | | | | | - Jeffrey F DiBerto
- Bowles Center for Alcohol Studies
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | | | - Clyde W Hodge
- Bowles Center for Alcohol Studies
- Department of Psychiatry
| | - Garret D Stuber
- Bowles Center for Alcohol Studies
- Department of Psychiatry
- Neuroscience Center, and
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies,
- Department of Psychiatry
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| |
Collapse
|
23
|
Ichiki T, Augustine V, Oka Y. Neural populations for maintaining body fluid balance. Curr Opin Neurobiol 2019; 57:134-140. [PMID: 30836260 PMCID: PMC7006364 DOI: 10.1016/j.conb.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 01/03/2023]
Abstract
Fine balance between loss-of water and gain-of water is essential for maintaining body fluid homeostasis. The development of neural manipulation and mapping tools has opened up new avenues to dissect the neural circuits underlying body fluid regulation. Recent studies have identified several nodes in the brain that positively and negatively regulate thirst. The next step forward would be to elucidate how neural populations interact with each other to control drinking behavior.
Collapse
Affiliation(s)
- Takako Ichiki
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd Mail Code: 216-76, Pasadena, CA 91125, USA
| | - Vineet Augustine
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd Mail Code: 216-76, Pasadena, CA 91125, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd Mail Code: 216-76, Pasadena, CA 91125, USA.
| |
Collapse
|
24
|
|
25
|
de Vrind VA, Rozeboom A, Wolterink‐Donselaar IG, Luijendijk‐Berg MC, Adan RA. Effects of GABA and Leptin Receptor-Expressing Neurons in the Lateral Hypothalamus on Feeding, Locomotion, and Thermogenesis. Obesity (Silver Spring) 2019; 27:1123-1132. [PMID: 31087767 PMCID: PMC6617814 DOI: 10.1002/oby.22495] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/28/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The lateral hypothalamus (LH) is known for its role in feeding, and it also regulates other aspects of energy homeostasis. How genetically defined LH neuronal subpopulations mediate LH effects on energy homeostasis remains poorly understood. The behavioral effects of chemogenetically activating LH gamma-aminobutyric acid (GABA) and the more selective population of LH GABA neurons that coexpress the leptin receptor (LepR) were compared. METHODS LepR-cre and VGAT-cre mice were injected with AAV5-hSyn-DIO-hM3DGq-mCherry in the LH. The behavioral effects of LH GABA or LH LepR neuronal activation on feeding, locomotion, thermogenesis, and body weight were assessed. RESULTS The activation of LH GABA neurons increased body temperature (P ≤ 0.008) and decreased body weight (P ≤ 0.01) despite decreased locomotor activity (P = 0.03) and transiently increased chow intake (P ≤ 0.009). Also, similar to other studies, this study found that activation of LH GABA neurons induced gnawing on both food and nonfood (P = 0.001) items. Activation of LH LepR neurons decreased body weight (P ≤ 0.01) and chow intake when presented on the cage floor (P ≤ 0.04) but not when presented in the cage top and increased locomotor activity (P = 0.002) and body temperature (P = 0.03). CONCLUSIONS LH LepR neurons are a subset of LH GABA neurons, and LH LepR activation more specifically regulates energy homeostasis to promote a negative energy balance.
Collapse
Affiliation(s)
- Véronne A.J. de Vrind
- Brain Center Rudolf Magnus, Department of Translational NeuroscienceUniversity Medical Center Utrecht and University UtrechtUtrechtThe Netherlands
| | - Annemieke Rozeboom
- Brain Center Rudolf Magnus, Department of Translational NeuroscienceUniversity Medical Center Utrecht and University UtrechtUtrechtThe Netherlands
| | - Inge G. Wolterink‐Donselaar
- Brain Center Rudolf Magnus, Department of Translational NeuroscienceUniversity Medical Center Utrecht and University UtrechtUtrechtThe Netherlands
| | - Mieneke C.M. Luijendijk‐Berg
- Brain Center Rudolf Magnus, Department of Translational NeuroscienceUniversity Medical Center Utrecht and University UtrechtUtrechtThe Netherlands
| | - Roger A.H. Adan
- Brain Center Rudolf Magnus, Department of Translational NeuroscienceUniversity Medical Center Utrecht and University UtrechtUtrechtThe Netherlands
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| |
Collapse
|