1
|
Smith GC, Griffith KR, Sicher AR, Brockway DF, Proctor EA, Crowley NA. Alcohol consumption confers lasting impacts on prefrontal cortical neuron intrinsic excitability and spontaneous neurotransmitter signaling in the aging brain in mice. Neurobiol Aging 2025; 145:42-54. [PMID: 39476434 PMCID: PMC11725176 DOI: 10.1016/j.neurobiolaging.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Both alcohol use disorder (AUD) and cognitive decline include disruption in the balance of excitation and inhibition in the cortex, but the potential role of alcohol use on excitation and inhibition on the aging brain is unclear. We examined the effect of moderate voluntary binge alcohol consumption on the aged, pre-disease neuronal environment by measuring intrinsic excitability and spontaneous neurotransmission on prefrontal cortical pyramidal (excitatory, glutamatergic) and non-pyramidal (inhibitory, GABAergic) neurons following a prolonged period of abstinence from alcohol in mice. Results highlight that binge alcohol consumption has lasting impacts on the electrophysiological properties of prefrontal cortical neurons. A profound increase in excitatory events onto layer 2/3 non-pyramidal neurons following alcohol consumption was seen, along with altered intrinsic excitability of pyramidal neurons, which could have a range of effects on cognitive disorder progression, such as Alzheimer's Disease, in humans. These results indicate that moderate voluntary alcohol influences the pre-disease environment in aging and highlight the need for further mechanistic investigation into this risk factor.
Collapse
Affiliation(s)
- Grace C Smith
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, University Park, PA 16802, USA
| | - Keith R Griffith
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, University Park, PA 16802, USA
| | - Avery R Sicher
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, University Park, PA 16802, USA
| | - Dakota F Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, University Park, PA 16802, USA
| | - Elizabeth A Proctor
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, University Park, PA 16802, USA; Departments of Neurosurgery Penn State College of Medicine, University Park, PA 16802, USA; Penn State Neuroscience Institute, University Park, PA 16802, USA; Departments of Neurosurgery Penn State College of Medicine, Hershey, PA 17033, USA
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Departments of Neurosurgery Penn State College of Medicine, University Park, PA 16802, USA; Penn State Neuroscience Institute, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Brockway DF, Crowley NA. Emerging pharmacological targets for alcohol use disorder. Alcohol 2024; 121:103-114. [PMID: 39069210 PMCID: PMC11638729 DOI: 10.1016/j.alcohol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Alcohol Use Disorder (AUD) remains a challenging condition with limited effective treatment options; however new technology in drug delivery and advancements in pharmacology have paved the way for discovery of novel therapeutic targets. This review explores emerging pharmacological targets that offer new options for the management of AUD, focusing on the potential of somatostatin (SST), vasoactive intestinal peptide (VIP), glucagon-like peptide-1 (GLP-1), nociceptin (NOP), and neuropeptide S (NPS). These targets have been selected based on recent advancements in preclinical and clinical research, which suggest their significant roles in modulating alcohol consumption and related behaviors. SST dampens cortical circuits, and targeting both the SST neurons and the SST peptide itself presents promise for treating AUD and various related comorbidities. VIP neurons are modulated by alcohol and targeting the VIP system presents an unexplored avenue for addressing alcohol exposure at various stages of development. GLP-1 interacts with the dopaminergic reward system and reduces alcohol intake. Nociceptin modulates mesolimbic circuitry and agonism and antagonism of nociceptin receptor offers a complex but promising approach to reducing alcohol consumption. NPS stands out for its anxiolytic-like effects, particularly relevant for the anxiety associated with AUD. This review aims to synthesize the current understanding of these targets, highlighting their potential in developing more effective and personalized AUD therapies, and underscores the importance of continued research in identifying and validating novel targets for treatment of AUD and comorbid conditions.
Collapse
Affiliation(s)
- Dakota F Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
3
|
Quadir SG, Danyal Zaidi S, Cone MG, Patel S. Alcohol Withdrawal Alters the Inhibitory Landscape of the Prelimbic Cortex in an Interneuron- and Sex-specific Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624401. [PMID: 39605607 PMCID: PMC11601661 DOI: 10.1101/2024.11.19.624401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Alcohol use disorder (AUD) is highly prevalent and associated with substantial morbidity and high mortality among substance use disorders. While there are currently three FDA-approved medications for treating AUDs, none specifically target the withdrawal/negative affect stage of AUD, underscoring the need to understand the underlying neurobiology during this critical stage of the addiction cycle. One key region involved in alcohol withdrawal and negative affect is the prelimbic cortex, a subregion of the medial prefrontal cortex. While previous studies have examined alcohol-related adaptations in prefrontal cortical principal glutamatergic neurons, here we used male and female PV:Ai14, SOM:Ai14 and VIP:Ai14 mice to examine synaptic adaptations in all three major classes of prelimbic cortex interneurons following 72 hour withdrawal from a continuous access to two bottle choice model of EtOH drinking in male and female mice. We found that alcohol withdrawal increased excitability of prelimbic PV interneurons in males, but decreased excitability in prelimbic VIP interneurons in females. Additionally, alcohol withdrawal reduced GABA release onto PV interneurons in males while increasing glutamate release onto VIP interneurons in females. In SOM interneurons, alcohol withdrawal had no effect on excitability, but decreased glutamate release onto SOM interneurons in males. Together, our studies identified sex-specific alcohol withdrawal-induced synaptic plasticity in three different types of interneurons and could provide insight into the cellular substrates of negative affective states associated with alcohol withdrawal.
Collapse
|
4
|
Domi A, Cadeddu D, Lucente E, Gobbo F, Edvardsson C, Petrella M, Jerlhag E, Ericson M, Söderpalm B, Adermark L. Pre- and postsynaptic signatures in the prelimbic cortex associated with "alcohol use disorder" in the rat. Neuropsychopharmacology 2024; 49:1851-1860. [PMID: 38755284 PMCID: PMC11473806 DOI: 10.1038/s41386-024-01887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The transition to alcohol use disorder (AUD) involves persistent neuroadaptations in executive control functions primarily regulated by the medial prefrontal cortex. However, the neurophysiological correlates to behavioral manifestations of AUD are not fully defined. The association between cortical neuroadaptations and behavioral manifestations of addiction was studied using a multi-symptomatic operant model based on the DSM-5 diagnostic criteria for AUD. This model aimed to characterize an AUD-vulnerable and AUD-resistant subpopulation of outbred male Wistar rats and was combined with electrophysiological measurements in the prelimbic cortex (PL). Mirroring clinical observations, rats exhibited individual variability in their vulnerability to develop AUD-like behavior, including motivation to seek for alcohol (crit 1), increased effort to obtain the substance (crit 2), and continued drinking despite negative consequences (crit 3). Only a small subset of rats met all the aforementioned AUD criteria (3 crit, AUD-vulnerable), while a larger fraction was considered AUD-resilient (0 crit). The development of AUD-like behavior was characterized by disruptions in glutamatergic synaptic activity, involving decreased frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and heightened intrinsic excitability in layers 2/3 PL pyramidal neurons. These alterations were concomitant with a significant impairment in the ability of mGlu2/3 receptors to negatively regulate glutamate release in the PL but not in downstream regions like the basolateral amygdala or nucleus accumbens core. In conclusion alterations in PL synaptic activity were strongly associated with individual addiction scores, indicating their role as potential markers of the behavioral manifestations linked to AUD psychopathology.
Collapse
Affiliation(s)
- Ana Domi
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden.
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden.
| | - Davide Cadeddu
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
| | - Erika Lucente
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Christian Edvardsson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
| | - Michele Petrella
- Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences, Linköping, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
| | - Mia Ericson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden
- The Clinic for Addiction and Dependency, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Adermark
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden
| |
Collapse
|
5
|
Colom-Rocha C, Bis-Humbert C, García-Fuster MJ. Cannabidiol or ketamine for preventing the impact of adolescent early drug initiation on voluntary ethanol consumption in adulthood. Front Pharmacol 2024; 15:1448170. [PMID: 39257392 PMCID: PMC11384591 DOI: 10.3389/fphar.2024.1448170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
Background Few studies have previously evaluated the long-term impact of initiating the combined use of alcohol and cocaine early-in-life during adolescence. Our preclinical study characterized changes in affective-like behavior and/or voluntary ethanol consumption emerging later on in adulthood induced by a prior adolescent drug exposure, as well as tested therapeutical interventions (i.e., cannabidiol or ketamine) to prevent the observed effects. Methods We performed three independent studies with male and female Sprague-Dawley rats, treated in adolescence (postnatal days, PND 29-38) with non-contingent paradigms of ethanol, cocaine, their combination or vehicle. Later on, adult rats were (1) scored for their affective-like state (forced-swim, elevated-plus maze, novelty-suppressed feeding, sucrose preference), (2) allowed to freely drink ethanol for 6 weeks (two-bottle choice), or (3) treated with cannabidiol or ketamine before given access to ethanol in adulthood. Results No signs of increased negative affect were observed in adulthood following the adolescent treatments. However, adolescent ethanol exposure was a risk-factor for later developing an increased voluntary ethanol consumption in adulthood, both for male and female rats. This risk was similar when ethanol was combined with adolescent cocaine exposure, since cocaine alone showed no effects on later ethanol intake. Finally, rats exposed to adolescent ethanol and pretreated in adulthood with cannabidiol (and/or ketamine, but just for females) reduced their ethanol voluntary consumption. Conclusion Our data provided two therapeutical options capable of preventing the impact of an early drug initiation during adolescence by decreasing voluntary ethanol consumption in adult rats.
Collapse
Affiliation(s)
- Carles Colom-Rocha
- University Research Institute of Health Sciences, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - Cristian Bis-Humbert
- University Research Institute of Health Sciences, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- University Research Institute of Health Sciences, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| |
Collapse
|
6
|
Hilal FF, Jeanblanc J, Deschamps C, Naassila M, Pierrefiche O, Ben Hamida S. Epigenetic drugs and psychedelics as emerging therapies for alcohol use disorder: insights from preclinical studies. J Neural Transm (Vienna) 2024; 131:525-561. [PMID: 38554193 DOI: 10.1007/s00702-024-02757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
Alcohol use disorder (AUD) is a public health issue that affects millions of people worldwide leading to physical, mental and socio-economic consequences. While current treatments for AUD have provided relief to individuals, their effectiveness on the long term is often limited, leaving a number of affected individuals without sustainable solutions. In this review, we aim to explore two emerging approaches for AUD: psychedelics and epigenetic drugs (i.e., epidrugs). By examining preclinical studies, different animal species and procedures, we delve into the potential benefits of each of these treatments in terms of addictive behaviors (alcohol drinking and seeking, motivation to drink alcohol and prevention of relapse). Because psychedelics and epidrugs may share common and complementary mechanisms of action, there is an exciting opportunity for exploring synergies between these approaches and their parallel effectiveness in treating AUD and the diverse associated psychiatric conditions.
Collapse
Affiliation(s)
- Fahd François Hilal
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Jerome Jeanblanc
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Chloé Deschamps
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Mickael Naassila
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| | - Olivier Pierrefiche
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Sami Ben Hamida
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| |
Collapse
|
7
|
Smith GC, Griffith KR, Sicher AR, Brockway DF, Proctor EA, Crowley NA. MODERATE ALCOHOL CONSUMPTION INDUCES LASTING IMPACTS ON PREFRONTAL CORTICAL SIGNALING IN MICE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587955. [PMID: 38617243 PMCID: PMC11014573 DOI: 10.1101/2024.04.03.587955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Both alcohol use disorder (AUD) and Alzheimer's Disease and Related Dementias (ADRD) appear to include disruption in the balance of excitation and inhibition in the cortex, but their potential interactions are unclear. We examined the effect of moderate voluntary binge alcohol consumption on the aged, pre-disease neuronal environment by measuring intrinsic excitability and spontaneous neurotransmission on prefrontal cortical pyramidal (excitatory, glutamatergic) and non-pyramidal (inhibitory, GABAergic) neurons following a prolonged period of abstinence from alcohol in mice. Results highlight that binge alcohol consumption has lasting impacts on the electrophysiological properties of prefrontal cortical neurons. A profound increase in excitatory events onto layer 2/3 non-pyramidal neurons following alcohol consumption was seen, along with altered intrinsic excitability of pyramidal neurons, which could have a range of effects on Alzheimer's Disease progression in humans. These results indicate that moderate voluntary alcohol influences the pre-disease environment in aging and highlight the need for further mechanistic investigation into this risk factor.
Collapse
Affiliation(s)
- Grace C Smith
- Department of Biology, The Pennsylvania State University, University Park, PA, USA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA 16802
| | - Keith R Griffith
- Department of Biology, The Pennsylvania State University, University Park, PA, USA 16802
| | - Avery R Sicher
- Department of Biology, The Pennsylvania State University, University Park, PA, USA 16802
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA 16802
| | - Dakota F Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA, USA 16802
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA 16802
| | - Elizabeth A Proctor
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA 16802
- Departments of Neurosurgery Penn State College of Medicine, Hershey PA, USA 17033; and Engineering Science and Mechanics, University Park, PA, USA 16802
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, USA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA 16802
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
8
|
Liu W, Wang Z, Wang W, Wang Z, Xing Y, Hölscher C. Liraglutide Reduces Alcohol Consumption, Anxiety, Memory Impairment, and Synapse Loss in Alcohol Dependent Mice. Neurochem Res 2024; 49:1061-1075. [PMID: 38267691 DOI: 10.1007/s11064-023-04093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Glucagon-like peptide 1 (GLP-1) analogues have been commercialized for the management of type 2 diabetes. Recent studies have underscored GLP-1's role as a modulator of alcohol-related behavior. However, the role of the GLP-1 analogue liraglutide on alcohol-withdrawal responses have not been fully elucidated. Liraglutide binds to the G-protein-coupled receptor and activates an adenylyl cyclase and the associated classic growth factor signaling pathway, which acts growth factor-like and neuroprotective properties. The underlying neurobiological mechanisms of liraglutide on alcohol withdrawal remains unknown. This study endeavored to explore the effects of liraglutide on the emotion and memory ability of alcohol-withdrawal mice, and synaptic morphology in the medial prefrontal cortex (mPFC) and the hippocampus (HP), and thus affects the relapse-like drinking of alcohol-withdrawal mice. The alcohol-withdrawal group was reintroduced to a 20% v/v alcohol and water through the two-bottle choice for four consecutive days, a period referred to as alcohol re-drinking. Male C57BL/6J mice were exposed to a regimen of 20% alcohol and water for a duration of 6 weeks. This regimen established the two-bottle choice model of alcohol exposure. Learning capabilities, memory proficiency, and anxiety-like behavior were evaluated using the Morris water maze, open field, and elevated plus maze paradigms. Furthermore, synaptic morphology and the levels of synaptic transport-related proteins were assessed via Golgi staining and Western Blot analysis after a two-week alcohol deprivation period. Alcohol re-drinking of alcohol-withdrawal mice was also evaluated using a two-bottle choice paradigm. Our findings indicate that liraglutide can substantially decrease alcohol consumption and preference (p < 0.05) in the alcohol group and enhance learning and memory performance (p < 0.01), as well as alleviate anxiety-like behavior (p < 0.01) of alcohol-withdrawal mice. Alcohol consumption led to a reduction in dendritic spine density in the mPFC and HP, which was restored to normal levels by liraglutide (p < 0.001). Furthermore, liraglutide was found to augment the levels of synaptic transport-related proteins in mice subjected to alcohol withdrawal (p < 0.01). The study findings corroborate that liraglutide has the potential to mitigate alcohol consumption and ameliorate the memory impairments and anxiety induced by alcohol withdrawal. The therapeutic efficacy of liraglutide might be attributed to its role in counteracting synapse loss in the mPFC and HP regions and thus prevented relapse-like drinking in alcohol-withdrawal mice.
Collapse
Affiliation(s)
- Weizhen Liu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ziliang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhiju Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Christian Hölscher
- Henan Academy of Innovation in Medical Science, XinZheng, 451100, Henan, China.
| |
Collapse
|
9
|
Siddiqi MT, Podder D, Pahng AR, Athanason AC, Nadav T, Cates-Gatto C, Kreifeldt M, Contet C, Roberts AJ, Edwards S, Roberto M, Varodayan FP. Prefrontal cortex glutamatergic adaptations in a mouse model of alcohol use disorder. ADDICTION NEUROSCIENCE 2023; 9:100137. [PMID: 38152067 PMCID: PMC10752437 DOI: 10.1016/j.addicn.2023.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Alcohol use disorder (AUD) produces cognitive deficits, indicating a shift in prefrontal cortex (PFC) function. PFC glutamate neurotransmission is mostly mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic receptors (AMPARs); however preclinical studies have mostly focused on other receptor subtypes. Here we examined the impact of early withdrawal from chronic ethanol on AMPAR function in the mouse medial PFC (mPFC). Dependent male C57BL/6J mice were generated using the chronic intermittent ethanol vapor-two bottle choice (CIE-2BC) paradigm. Non-dependent mice had access to water and ethanol bottles but did not receive ethanol vapor. Naïve mice had no ethanol exposure. We used patch-clamp electrophysiology to measure glutamate neurotransmission in layer 2/3 prelimbic mPFC pyramidal neurons. Since AMPAR function can be impacted by subunit composition or plasticity-related proteins, we probed their mPFC expression levels. Dependent mice had higher spontaneous excitatory postsynaptic current (sEPSC) amplitude and kinetics compared to the Naïve/Non-dependent mice. These effects were seen during intoxication and after 3-8 days withdrawal, and were action potential-independent, suggesting direct enhancement of AMPAR function. Surprisingly, 3 days withdrawal decreased expression of genes encoding AMPAR subunits (Gria1/2) and synaptic plasticity proteins (Dlg4 and Grip1) in Dependent mice. Further analysis within the Dependent group revealed a negative correlation between Gria1 mRNA levels and ethanol intake. Collectively, these data establish a role for mPFC AMPAR adaptations in the glutamatergic dysfunction associated with ethanol dependence. Future studies on the underlying AMPAR plasticity mechanisms that promote alcohol reinforcement, seeking, drinking and relapse behavior may help identify new targets for AUD treatment.
Collapse
Affiliation(s)
- Mahum T. Siddiqi
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Dhruba Podder
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Amanda R. Pahng
- Department of Physiology, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA, 70112, USA
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, 11F, New Orleans, LA, 70119, USA
| | - Alexandria C. Athanason
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Tali Nadav
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Max Kreifeldt
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Candice Contet
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA, 70112, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Florence P. Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
10
|
Hilal F, Jeanblanc J, Naassila M. [Interest and mechanisms of action of ketamine in alcohol addiction- A review of clinical and preclinical studies]. Biol Aujourdhui 2023; 217:161-182. [PMID: 38018944 DOI: 10.1051/jbio/2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 11/30/2023]
Abstract
Alcohol Use Disorder (AUD) is a psychiatric condition characterized by chronic and excessive drinking despite negative consequences on overall health and social or occupational functioning. There are currently limited treatment options available for AUD, and the effects size and the response rates to these treatments are often low to moderate. The World Health Organization has identified the development of medications to treat AUD as one of its 24 priorities. This past decade was marked by a renewed interest in psychedelic use in psychiatry. At the centre of this renaissance, ketamine, an atypical psychedelic already used in the treatment of major depression, is an NMDA receptor antagonist that exists as a racemic compound made of two enantiomers, S-ketamine, and R-ketamine. Each form can be metabolized into different metabolites, some of which having antidepressant properties. In this article, we review both clinical and preclinical studies on ketamine and its metabolites in the treatment of AUD. Preclinical as well as clinical studies have revealed that ketamine is effective in reducing withdrawal symptoms and alcohol craving. Convergent data showed that antidepressant properties of ketamine largely contribute to the decreased likelihood of alcohol relapse, especially in patients undergoing ketamine-assisted psychotherapies. Its effectiveness is believed to be linked with its ability to regulate the glutamatergic pathway, enhance neuroplasticity, rewire brain resting state network functional connectivity and decrease depressive-like states. However, it remains to further investigate (i) why strong differences exist between male and female responses in preclinical studies and (ii) the respective roles of each of the metabolites in the ketamine effects in both genders. Interestingly, current studies are also focusing on ketamine addiction and the comorbidity between alcohol addiction and depression occurring more frequently in females.
Collapse
Affiliation(s)
- Fahd Hilal
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| | - Jérôme Jeanblanc
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| | - Mickaël Naassila
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| |
Collapse
|
11
|
da Silveira CCM, Cartágenes SDC, Kobayashi NHC, Farias SV, de Souza-Junior FJC, Fernandes LMP, do Prado AF, Aragão WAB, Lima RR, Ferreira WAS, de Oliveira EHC, Mello Júnior FAR, Burbano RMR, Fontes-Júnior EA, Maia CDSF. One binge-type cycle of alcohol plus ketamine exposure induces emotional-like disorders associated with oxidative damage in adolescent female rats. Biomed Pharmacother 2023; 162:114641. [PMID: 37023622 DOI: 10.1016/j.biopha.2023.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/19/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Drug abuse is a global public health problem among adolescents, with alcohol often used in association with other psychotropic drugs, such as ketamine. Considering the scarcity of evidence, this study aimed to investigate emotional behavioral effects induced by ethanol plus ketamine co-abuse, as well as oxidative biochemistry, and neurotrophic mediator in the prefrontal cortex and hippocampus in the early withdrawal of adolescent female rats. Animals were divided into control, ethanol, ketamine, and ethanol plus ketamine groups. The protocol administration was performed for 3 consecutive days (binge-like pattern). Behavioral assays of open field, elevated plus maze, and forced swim test were performed. After that, the prefrontal cortex and hippocampus were collected to evaluate oxidative biochemistry (reactive oxygen species-ROS; Antioxidant capacity against peroxyl radicals-ACAP; and lipid peroxidation). We found that isolated or combined ethanol and ketamine exposure displayed anxiety- and depressive-like profile, in a non-synergistically manner during early withdrawal. However, oxidative damage was aggravated in the co-administered animals than in isolated exposed subjects. We concluded that ethanol plus ketamine co-abuse may intensify oxidative damage in the hippocampus and prefrontal cortex in the early withdrawal of adolescent female rats, which was not reflected in the emotional behavioral phenotype. DATA AVAILABILITY STATEMENT: The datasets used and/or analyzed during the current investigation are available upon reasonable request from the corresponding author.
Collapse
Affiliation(s)
- Cinthia Cristina Menezes da Silveira
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Sabrina de Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Natália Harumi Corrêa Kobayashi
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Sarah Viana Farias
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Fábio José Coelho de Souza-Junior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | | | - Alejandro Ferraz do Prado
- Laboratory of Pharmacology and Toxicology of Cardiovascular System, Institute of Biological Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Wallax Augusto Silva Ferreira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Pará 67030-000, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Pará 67030-000, Brazil
| | | | | | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil.
| |
Collapse
|
12
|
Elsilä LV, Harkki J, Enberg E, Martti A, Linden AM, Korpi ER. Effects of acute lysergic acid diethylamide on intermittent ethanol and sucrose drinking and intracranial self-stimulation in C57BL/6 mice. J Psychopharmacol 2022; 36:860-874. [PMID: 35695174 PMCID: PMC9247434 DOI: 10.1177/02698811221104641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Psychedelics, like lysergic acid diethylamide (LSD), are again being studied as potential therapies for many neuropsychiatric disorders, including addictions. At the same time, the acute effects of psychedelics on rewarding behaviours have been scarcely studied. AIMS The current study aimed to clarify if LSD decreases binge-like ethanol drinking in mice, and whether the observed acute effects on ethanol consumption are generalizable to a natural reinforcer, sucrose, and if the effects resulted from aversive or reward-attenuating effects caused by LSD. METHODS The effects of acute LSD were examined using 2-bottle choice intermittent ethanol (20%) and sucrose drinking (10%), discrete-trial current-intensity threshold method of intracranial self-stimulation and short-term feeding behaviour assay in C57BL/6 male mice. RESULTS The results showed that acute 0.1 mg/kg, but not 0.05 mg/kg, dose (i.p.) of LSD reduced 2-h intermittent ethanol drinking transiently without any prolonged effects. No effects were seen in intermittent 2-h sucrose drinking. The tested LSD doses had neither effect on the intracranial self-stimulation current-intensity thresholds, nor did LSD affect the threshold-lowering, or rewarding, effects of simultaneous amphetamine treatment. Furthermore, LSD had small, acute diminishing effects on 2-h food and water intake. CONCLUSIONS Based on these results, LSD decreases binge-like ethanol drinking in mice, but only acutely. This effect is not likely to stem from reward-attenuating effects but could be in part due to reduced consummatory behaviour.
Collapse
Affiliation(s)
- Lauri V Elsilä
- Lauri V Elsilä, Department of
Pharmacology, Faculty of Medicine, University of Helsinki, P.O. Box 63
(Haartmaninkatu 8), Biomedicum Helsinki, Helsinki FI-00014, Finland.
| | | | | | | | | | | |
Collapse
|
13
|
Contó MB, Pautassi RM, Camarini R. Rewarding and Antidepressant Properties of Ketamine and Ethanol: Effects on the Brain-Derived Neurotrophic Factor and TrkB and p75 NTR Receptors. Neuroscience 2022; 493:1-14. [PMID: 35469972 DOI: 10.1016/j.neuroscience.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
There is a high level of comorbidity between depression and alcohol use disorder. Subanesthetic doses of ketamine induce short-acting and enduring antidepressant effects after a single or a few administrations. Considering such comorbidity, we assessed, in Swiss male mice, if ketamine-induced antidepressant-like effects would alter ethanol's rewarding effects; and, if ethanol pretreatment would alter the rewarding and antidepressant effects of ketamine. The role of the brain-derived neurotrophic factor (BDNF) and its high and low affinity receptors TrkB and p75NTR, respectively, in both reward and depression-related behaviors is well established. The present study assessed, in outbred Swiss male mice, the expression of these proteins in the prefrontal cortex and hippocampus. Ketamine did not alter the development of ethanol-induced conditioned place preference (CPP), yet ethanol inhibited the expression of CPP induced by 50 mg/kg ketamine. The antidepressant action of 50 mg/kg ketamine was attenuated after repeated treatment (i.e., developed tolerance), an effect blocked by ethanol preexposure; ethanol also inhibited the antidepressant effect of 30 mg/kg ketamine. Ketamine (50 mg/kg) and Ethanol-Ketamine (50 mg/kg) groups showed lower levels of 145 kDa TrkB in the hippocampus than Saline-treated group. Ethanol-Ketamine (50 mg/kg) decreased the hippocampal expression of p75NTR compared to Saline-Saline and Saline-Ethanol groups. Ketamine (50 mg/kg) induced hippocampal downregulation of 145 kDa TrkB may contribute to ketamine-induced antidepressant tolerance. Likewise, a relationship between low hippocampal levels of p75NTR in the Ethanol-Ketamine (50 mg/kg) and ketamine-induced CPP blockade may be considered. The findings underscore potential ethanol-ketamine interactions likely to undermine ketamine putative antidepressant effects.
Collapse
Affiliation(s)
- Marcos Brandão Contó
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brasil.
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba C.P. 5000 Argentina
| | - Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brasil.
| |
Collapse
|
14
|
Lawson K, Scarlata MJ, Cho WC, Mangan C, Petersen D, Thompson HM, Ehnstrom S, Mousley AL, Bezek JL, Bergstrom HC. Adolescence alcohol exposure impairs fear extinction and alters medial prefrontal cortex plasticity. Neuropharmacology 2022; 211:109048. [PMID: 35364101 PMCID: PMC9067297 DOI: 10.1016/j.neuropharm.2022.109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
After experiencing a traumatic event people often turn to alcohol to cope with symptoms. In those with post-traumatic stress disorder (PTSD) and a co-occurring alcohol use disorder (AUD), PTSD symptoms can worsen, suggesting that alcohol changes how traumatic memory is expressed. The objective of this series of experiments is to identify how alcohol drinking (EtOH), following cued fear conditioning and extinction, impacts fear expression in mice. Molecular (activity-regulated cytoskeleton-associated protein, Arc/arg3.1) and structural (dendrite and spine morphometry) markers of neuronal plasticity were measured following remote extinction retrieval. Mouse age (adolescent and adult) and sex were included as interacting variables in a full factorial design. Females drank more EtOH than males and adolescents drank more EtOH than adults. Adolescent females escalated EtOH intake across drinking days. Adolescent drinkers exhibited more conditioned freezing during extinction retrieval, an effect that persisted for at least 20 days. Heightened cued freezing in the adolescent group was associated with greater Arc/arg3.1 expression in layer (L) 2/3 prelimbic (PL) cortex, greater spine density, and reduced basal dendrite complexity. In adults, drinking was associated with reduced L2/3 infralimbic (IL) Arc expression but no behavioral differences. Few sex interactions were uncovered throughout. Overall, these data identify prolonged age-related differences in alcohol-induced fear extinction impairment and medial prefrontal cortex neuroadaptations.
Collapse
Affiliation(s)
- K Lawson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - M J Scarlata
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - W C Cho
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - C Mangan
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - D Petersen
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - H M Thompson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - S Ehnstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - A L Mousley
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - J L Bezek
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - H C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA.
| |
Collapse
|
15
|
Nair MS, Dao NC, Melean DL, Griffith KR, Starnes WD, Moyer JB, Sicher AR, Brockway DF, Meeks KD, Crowley NA. Somatostatin Neurons in the Bed Nucleus of the Stria Terminalis Play a Sex-Dependent Role in Binge Drinking. Brain Res Bull 2022; 186:38-46. [DOI: 10.1016/j.brainresbull.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022]
|
16
|
Ardinger CE, Winkler G, Lapish CC, Grahame NJ. Effect of ketamine on binge drinking patterns in crossed high alcohol-preferring (cHAP) mice. Alcohol 2021; 97:31-39. [PMID: 34547429 PMCID: PMC9832374 DOI: 10.1016/j.alcohol.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND Previous research has demonstrated the utility of subanesthetic doses of ketamine in decreasing binge (Drinking-in-the-Dark, or DID) 20% alcohol intake in female inbred (C57BL/6J) mice when administered 12 hours prior to alcohol access (Crowley et al., 2019). In the current study, we assess the efficacy of a similar ketamine pretreatment using male and female selectively bred, crossed High Alcohol Preferring (cHAP) mice, which also drink to intoxication, but are not inbred. We hypothesized that ketamine would decrease binge alcohol intake without impacting locomotor activity. METHODS AND RESULTS Subjects were 28 adult cHAP mice. Mice first received a 2-week DID drinking history using 2-h/day alcohol access. On day 12, prior to ketamine treatment, the average blood ethanol concentration (BEC) was 130 mg/dL, confirming that mice reliably reached intoxicating BECs. On day 15, mice were given 0, 3, or 10 mg/kg of ketamine 12 hours prior to the DID session. Ketamine did not decrease total (2-h) alcohol consumption or locomotion. Interestingly, the 10 mg/kg dose of ketamine did alter the drinking pattern in male mice, decreasing front-loading for a single day. We opted to then increase the doses to 32 or 100 mg/kg (i.e., an anesthetic dose) two days after the initial treatment, keeping the saline control. Mice of both sexes decreased total binge alcohol intake at the 100 mg/kg dose only, but again, the effect only lasted one day. CONCLUSIONS The current study found that cHAP mice reached more than double the BECs observed in C57BL/6J mice during DID, but did not respond to subanesthetic ketamine. Modest efficacy was found for ketamine pretreatment at anesthetic doses. Differences in findings may be due to differential intake during DID, or genetic differences between C57Bl/6J mice and cHAP mice. Drug efficacy in multiple models is important for discovering reliable pharmacotherapies for alcoholism.
Collapse
Affiliation(s)
- Cherish E Ardinger
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, United States.
| | - Garrett Winkler
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, United States
| | - Christopher C Lapish
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, United States; Indiana University School of Medicine Stark Neuroscience Institute, Indianapolis, IN, 46202, United States
| | - Nicholas J Grahame
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, United States
| |
Collapse
|
17
|
Dao NC, Brockway DF, Suresh Nair M, Sicher AR, Crowley NA. Somatostatin neurons control an alcohol binge drinking prelimbic microcircuit in mice. Neuropsychopharmacology 2021; 46:1906-1917. [PMID: 34112959 PMCID: PMC8429551 DOI: 10.1038/s41386-021-01050-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023]
Abstract
Somatostatin (SST) neurons have been implicated in a variety of neuropsychiatric disorders such as depression and anxiety, but their role in substance use disorders, including alcohol use disorder (AUD), is not fully characterized. Here, we found that repeated cycles of alcohol binge drinking via the Drinking-in-the-Dark (DID) model led to hypoactivity of SST neurons in the prelimbic (PL) cortex by diminishing their action potential firing capacity and excitatory/inhibitory transmission dynamic. We examined their role in regulating alcohol consumption via bidirectional chemogenetic manipulation. Both hM3Dq-induced excitation and KORD-induced silencing of PL SST neurons reduced alcohol binge drinking in males and females, with no effect on sucrose consumption. Alcohol binge drinking disinhibited pyramidal neurons by augmenting SST neurons-mediated GABA release and synaptic strength onto other GABAergic populations and reducing spontaneous inhibitory transmission onto pyramidal neurons. Pyramidal neurons additionally displayed increased intrinsic excitability. Direct inhibition of PL pyramidal neurons via hM4Di was sufficient to reduce alcohol binge drinking. Together these data revealed an SST-mediated microcircuit in the PL that modulates the inhibitory dynamics of pyramidal neurons, a major source of output to subcortical targets to drive reward-seeking behaviors and emotional response.
Collapse
Affiliation(s)
- Nigel C Dao
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Dakota F Brockway
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, USA
| | - Malini Suresh Nair
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Avery R Sicher
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, USA
| | - Nicole A Crowley
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
18
|
Therapeutic potential of ketamine for alcohol use disorder. Neurosci Biobehav Rev 2021; 126:573-589. [PMID: 33989669 DOI: 10.1016/j.neubiorev.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/02/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Excessive alcohol consumption is involved in 1/10 of deaths of U.S. working-age adults and costs the country around $250,000,000 yearly. While Alcohol Use Disorder (AUD) pathology is complex and involves multiple neurotransmitter systems, changes in synaptic plasticity, hippocampal neurogenesis, and neural connectivity have been implicated in the behavioral characteristics of AUD. Depressed mood and stress are major determinants of relapse in AUD, and there is significant comorbidity between AUD, depression, and stress disorders, suggesting potential for overlap in their treatments. Disulfiram, naltrexone, and acamprosate are current pharmacotherapies for AUD, but these treatments have limitations, highlighting the need for novel therapeutics. Ketamine is a N-methyl-D-Aspartate receptor antagonist, historically used in anesthesia, but also affects other neurotransmitters systems, synaptic plasticity, neurogenesis, and neural connectivity. Currently under investigation for treating AUDs and other Substance Use Disorders (SUDs), ketamine has strong support for efficacy in treating clinical depression, recently receiving FDA approval. Ketamine's effect in treating depression and stress disorders, such as PTSD, and preliminary evidence for treating SUDs further suggests a role for treating AUDs. This review explores the behavioral and neural evidence for treating AUDs with ketamine and clinical data on ketamine therapy for AUDs and SUDs.
Collapse
|
19
|
Ancedy D, Sebti M, Postaire M, Vidal F, Cisternino S, Schlatter J. Stability of 10-mg/mL and 50-mg/mL ketamine oral solutions. Am J Health Syst Pharm 2021; 78:825-831. [PMID: 33611378 DOI: 10.1093/ajhp/zxab066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Ketamine is an anesthetic agent commonly used for the induction of anesthesia. Ketamine is also given to control pain, for treatment of posttraumatic stress disorder, and to induce bronchodilation in refractory asthma. Moreover, ketamine therapy is gaining ground as an intervention for patients with treatment-resistant depression and individuals who have depression with serious suicidal ideation. Recently, the drug has been used to disrupt maladaptive reward memories in individuals with harmful alcohol consumption behaviors. The stability of 10-mg/mL and 50-mg/mL ketamine solutions stored at ambient and refrigeration temperatures was assessed over 90 days. METHODS Three batches of 10-mg/mL and 50-mg/mL ketamine solutions were stored for 90 days under two temperature conditions (2°C-8°C and 22°C-25°C) in amber plastic bottles. Chemical stability was assessed using a stability-indicating high-performance liquid chromatography assay. At each study time, visual inspection and pH assessments of ketamine concentration and pH were conducted. RESULTS For all solutions tested at each condition, the ketamine concentration remaining was at least 98% of the initial concentration over 90 days of storage. Throughout the study period, solution pH remained stable and the color and odor of the suspensions remained unchanged. CONCLUSION Extemporaneously compounded 10-mg/mL and 50-mg/mL oral solutions of ketamine prepared in a flavored suspending excipient and stored in amber polypropylene plastic bottles were stable for at least 90 days at both ambient and refrigeration temperatures.
Collapse
Affiliation(s)
- Dimitri Ancedy
- Pharmacie, Hôpital Universitaire Necker - Enfants Malades, APHP.CUP, Paris, France
| | - Maria Sebti
- Pharmacie, Hôpital Universitaire Necker - Enfants Malades, APHP.CUP, Paris, France
| | - Martine Postaire
- Pharmacie, Hôpital Universitaire Necker - Enfants Malades, APHP.CUP, Paris, France
| | - Fabrice Vidal
- Pharmacie, Hôpital Universitaire Necker - Enfants Malades, APHP.CUP, Paris, France
| | - Salvatore Cisternino
- Pharmacie, Hôpital Universitaire Necker - Enfants Malades, APHP.CUP, Paris, France.,Université de Paris, Faculté de Santé, Paris, France
| | - Joël Schlatter
- Pharmacie, Hôpital Universitaire Necker - Enfants Malades, APHP.CUP, Paris, France
| |
Collapse
|
20
|
Joffe ME, Winder DG, Conn PJ. Increased Synaptic Strength and mGlu 2/3 Receptor Plasticity on Mouse Prefrontal Cortex Intratelencephalic Pyramidal Cells Following Intermittent Access to Ethanol. Alcohol Clin Exp Res 2021; 45:518-529. [PMID: 33434325 DOI: 10.1111/acer.14546] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND The medial prefrontal cortex (PFC) is crucial for regulating craving and alcohol seeking in alcohol use disorder (AUD) patients and alcohol seeking in animal models. Maladaptive changes in volitional ethanol (EtOH) intake have been associated with PFC function, yet synaptic adaptations within PFC have not been consistently detected in voluntary drinking rodent models. At least 80% of the neurons in PFC are glutamatergic pyramidal cells. Pyramidal cells provide the predominant cortical output to several brain regions relevant to AUD, including structures within the telencephalon (IT: e.g., basal ganglia, amygdala, other neocortical regions) and outside the telencephalon (ET: e.g., lateral hypothalamus, midbrain monoaminergic structures, thalamus). METHODS In addition to their anatomical distinctions, studies from several laboratories have revealed that prefrontal cortical IT and ET pyramidal cells may be differentiated by specific electrophysiological parameters. These distinguishable parameters make it possible to readily classify pyramidal cells into separable subtypes. Here, we employed and validated the hyperpolarization sag ratio as a diagnostic proxy for separating ET (type A) and IT (type B) neurons. We recorded from deep-layer prelimbic PFC pyramidal cells of mice 1 day after 4 to 5 weeks of intermittent access (IA) EtOH exposure. RESULTS Membrane properties were not altered by IA EtOH, but excitatory postsynaptic strength onto IT type B neurons was selectively enhanced in slices from IA EtOH mice. The increased excitatory drive was accompanied by enhanced mGlu2/3 receptor plasticity on IT type B neurons, providing a potential translational approach to mitigate cognitive and motivational changes to PFC function related to binge drinking. CONCLUSIONS Together, these studies provide insight into the specific PFC neurocircuits altered by voluntary drinking. In addition, the findings provide an additional rationale for developing compounds that potentiate mGlu2 and/or mGlu3 receptor function as potential treatments for AUD.
Collapse
Affiliation(s)
- Max E Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Nashville, TN, USA
| | - Danny G Winder
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Nashville, TN, USA
| |
Collapse
|
21
|
Abstract
Bislang sind nur wenige Medikamente zur pharmakologischen Rückfallprophylaxe der Alkoholabhängigkeit zugelassen. Neben dem in Deutschland nicht mehr vertriebenen Disulfiram sind es die Opioidantagonisten Naltrexon und Nalmefen sowie das vermutlich über glutamaterge Neurone wirkende Acamprosat. Baclofen und γ‑Hydroxybutyrat (GHB) sind in einzelnen Ländern zugelassen. Wirkstoffe wie z. B. Vareniclin, Gabapentin und Topiramat können für die Rückfallprophylaxe der Alkoholabhängigkeit von Interesse sein, jedoch ist bislang keine Zulassung erfolgt. Vor dem Hintergrund der zur Revision anstehenden S3-Leitlinie zur Diagnose und Behandlung alkoholbezogener Störungen wird der heutige Kenntnisstand zur Pharmakotherapie der Alkoholabhängigkeit dargestellt.
Collapse
|
22
|
Abstract
Sex differences may play a critical role in modulating how chronic or heavy alcohol use impacts the brain to cause the development of alcohol use disorder (AUD). AUD is a multifaceted and complex disorder driven by changes in key neurobiological structures that regulate executive function, memory, and stress. A three-stage framework of addiction (binge/intoxication; withdrawal/negative affect; preoccupation/anticipation) has been useful for conceptualizing the complexities of AUD and other addictions. Initially, alcohol drinking causes short-term effects that involve signaling mediated by several neurotransmitter systems such as dopamine, corticotropin releasing factor, and glutamate. With continued intoxication, alcohol leads to dysfunctional behaviors that are thought to be due in part to alterations of these and other neurotransmitter systems, along with alterations in neural pathways connecting prefrontal and limbic structures. Using the three-stage framework, this review highlights examples of research examining sex differences in drinking and differential modulation of neural systems contributing to the development of AUD. New insights addressing the role of sex differences in AUD are advancing the field forward by uncovering the complex interactions that mediate vulnerability.
Collapse
Affiliation(s)
| | - Heather N Richardson
- Department of Psychological and Brain Sciences at the University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
23
|
Smith LC, Kimbrough A. Leveraging Neural Networks in Preclinical Alcohol Research. Brain Sci 2020; 10:E578. [PMID: 32825739 PMCID: PMC7565429 DOI: 10.3390/brainsci10090578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022] Open
Abstract
Alcohol use disorder is a pervasive healthcare issue with significant socioeconomic consequences. There is a plethora of neural imaging techniques available at the clinical and preclinical level, including magnetic resonance imaging and three-dimensional (3D) tissue imaging techniques. Network-based approaches can be applied to imaging data to create neural networks that model the functional and structural connectivity of the brain. These networks can be used to changes to brain-wide neural signaling caused by brain states associated with alcohol use. Neural networks can be further used to identify key brain regions or neural "hubs" involved in alcohol drinking. Here, we briefly review the current imaging and neurocircuit manipulation methods. Then, we discuss clinical and preclinical studies using network-based approaches related to substance use disorders and alcohol drinking. Finally, we discuss how preclinical 3D imaging in combination with network approaches can be applied alone and in combination with other approaches to better understand alcohol drinking.
Collapse
Affiliation(s)
- Lauren C. Smith
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
| | - Adam Kimbrough
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
24
|
Dao NC, Suresh Nair M, Magee SN, Moyer JB, Sendao V, Brockway DF, Crowley NA. Forced Abstinence From Alcohol Induces Sex-Specific Depression-Like Behavioral and Neural Adaptations in Somatostatin Neurons in Cortical and Amygdalar Regions. Front Behav Neurosci 2020; 14:86. [PMID: 32536856 PMCID: PMC7266989 DOI: 10.3389/fnbeh.2020.00086] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
Forced abstinence (FA) from alcohol has been shown to produce a variety of anxiety- and depression-like symptoms in animal models. Somatostatin (SST) neurons, a subtype of GABAergic neurons found throughout the brain, are a novel neural target with potential treatment implications in affective disorders, yet their role in alcohol use disorders (AUD) remains to be explored. Here, we examined the neuroadaptations of SST neurons during forced abstinence from voluntary alcohol consumption. Following 6 weeks of two-bottle choice alcohol consumption and protracted forced abstinence, male and female C57BL/6J mice exhibited a heightened, but sex-specific, depressive-like behavioral profile in the sucrose preference test (SPT) and forced swim test (FST), without changes in anxiety-like behaviors in the elevated plus maze (EPM) and open field test (OFT). FST-induced cFos expressions in the prefrontal cortex (PFC) and ventral bed nucleus of the stria terminalis (vBNST) were altered in FA-exposed female mice only, suggesting a sex-specific effect of forced abstinence on the neural response to acute stress. SST immunoreactivity in these regions was unaffected by forced abstinence, while differences were seen in SST/cFos co-expression in the vBNST. No differences in cFos or SST immunoreactivity were seen in the lateral central nucleus of the amygdala (CEA) and the basolateral amygdala (BLA). Additionally, SST neurons in female mice displayed opposing alterations in the PFC and vBNST, with heightened intrinsic excitability in the PFC and diminished intrinsic excitability in the vBNST. These findings provide an overall framework of forced abstinence-induced neuroadaptations in these key brain regions involved in emotional regulation and processing.
Collapse
Affiliation(s)
- Nigel C Dao
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
| | - Malini Suresh Nair
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States.,Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Sarah N Magee
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - J Brody Moyer
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Veronica Sendao
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Dakota F Brockway
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States.,Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States
| | - Nicole A Crowley
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States.,Department of Biology, Pennsylvania State University, University Park, PA, United States.,Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|