1
|
Sable HJK, Paige NB, Nalan PA, Pace RL, Hicks CB, Regan SL, Williams MT, Vorhees CV, Lester DB. Phasic dopamine release in two different rat models of attention-deficit/hyperactivity disorder: Spontaneously hypertensive rats (SHR) versus Lphn3 knockout rats. Neuroscience 2025; 567:150-162. [PMID: 39756609 DOI: 10.1016/j.neuroscience.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
We examined DA activity in the medial prefrontal cortex (mPFC) and nucleus accumbens core (NAcc) in two Different Rat Models of Attention-Deficit/Hyperactivity Disorder: Spontaneously Hypertensive Rats (SHR) Versus Lphn3 Knockout Rats. We examined baseline stimulation-evoked phasic DA release, half-life, and DA autoreceptor (DAR) functioning in the mPFC and NAcc, as well as the response to nomifensine (10 mg/kg, IP), a DA transporter (DAT) blocker, on these measures in the NAcc. Both rat models were hypodopaminergic, with notable regional and mechanistic differences. The SHRs displayed decreased DA release in the NAcc compared to their control strain (i.e., WKY rats), with no differences in the mPFC, leading a much lower NAcc-to-PFC DA release ratio in SHRs compared to controls suggesting an imbalance in DA transmission between these regions. The Lphn3 KO rats were considered hypodopaminergic based on the reduced summed DA release in the mPFC and NAcc compared to WT controls, although differences were not observed when examining each site independently. Lphn3 KOs displayed increased DA half-life in the mPFC compared with Lphn3 WT rats, an indication of decreased DAT reuptake, with no differences in the NAcc. DAT blockade by nomifensine had a similar effect on DA release in the NAcc of SHRs and WKYs, but increased DA release in the NAcc of Lphn3 KOs to a greater extent than in WTs. These results suggest that the efficacy of pharmacotherapies used to treat externalizing disorders such as ADHD and/or SUD, likely differ between SHRs and Lphn3 KO rats.
Collapse
Affiliation(s)
| | | | | | | | | | - Samantha L Regan
- University of Cincinnati College of Medicine, Dept. of Pediatrics, USA; Cincinnati Children's Hospital Medical Center, Division of Neurology, USA
| | - Michael T Williams
- University of Cincinnati College of Medicine, Dept. of Pediatrics, USA; Cincinnati Children's Hospital Medical Center, Division of Neurology, USA
| | - Charles V Vorhees
- University of Cincinnati College of Medicine, Dept. of Pediatrics, USA; Cincinnati Children's Hospital Medical Center, Division of Neurology, USA
| | | |
Collapse
|
2
|
Ding L, Colman ER, Wang Y, Ramachandran M, Maloney SK, Chen N, Yin J, Chen L, Lier EV, Blache D, Wang M. Novel pathways linked to the expression of temperament in Merino sheep: a genome-wide association study. Animal 2024; 18:101279. [PMID: 39396416 DOI: 10.1016/j.animal.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 10/15/2024] Open
Abstract
Animal temperament refers to the inherent behavioural and emotional characteristics of an animal, influencing how it interacts with its environment. The selection of sheep for temperament can change the temperament traits of the selected line and improve the welfare and production (reproduction, growth, immunity) of those animals. To understand the genetics that underly variation in temperament in sheep, and how selection on temperament can affect other production traits, a genome-wide association study was carried out. Merino sheep from lines selected for traits of calm and nervous temperament, and a commercial population, on which the temperament traits had never been assessed, were used. Blood samples from the three populations were genotyped using an Illumina GGP Ovine 50 K Genotyping BeadChip. The calm and nervous populations in the selected lines presented as distinct genetic populations, and 2 729 of the 45 761 single nucleotide polymorphisms (SNPs) had significantly different proportions between the two lines. Of those 2 729 SNPs, 2 084 were also associated with temperament traits in the commercial population. A genomic annotation identified 81 candidate genes for temperament, nearly half of which are associated with disorders of social behaviour in humans. Five of those 81 candidate genes are related to production traits in sheep. Two genes were associated with personality disorders in humans and with production traits in sheep. We identified significant enrichment in genes involved in nervous system processes such as the regulation of systemic arterial blood pressure, ventricular myocyte action, multicellular organismal signalling, ion transmembrane transport, and calcium ion binding, suggesting that temperament is underpinned by variation in multiple biological systems. Our results contribute to understanding of the genetic basis of animal temperament which could be applied to the genetic evaluation of temperament in sheep and other farm animals.
Collapse
Affiliation(s)
- L Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia
| | - E R Colman
- Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay
| | - Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - M Ramachandran
- School of Human Sciences, The University of Western Australia, Perth 6009, WA, Australia
| | - S K Maloney
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Human Sciences, The University of Western Australia, Perth 6009, WA, Australia
| | - N Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - J Yin
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - L Chen
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China; Department of Cardiology, Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - E V Lier
- Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay
| | - D Blache
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia
| | - M Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
3
|
Valladão SC, França AP, Pandolfo P, Dos Santos-Rodrigues A. Adenosinergic system and nucleoside transporters in attention deficit hyperactivity disorder: Current findings. Neurosci Biobehav Rev 2024; 164:105771. [PMID: 38880409 DOI: 10.1016/j.neubiorev.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heterogeneity that can affect individuals of any age. It is characterized by three main symptoms: inattention, hyperactivity, and impulsivity. These neurobehavioral alterations and neurochemical and pharmacological findings are mainly attributed to unbalanced catecholaminergic signaling, especially involving dopaminergic pathways within prefrontal and striatal areas. Dopamine receptors and transporters are not solely implicated in this imbalance, as evidence indicates that the dopaminergic signaling is modulated by adenosine activity. To this extent, alterations in adenosinergic signaling are probably involved in ADHD. Here, we review the current knowledge about adenosine's role in the modulation of chemical, behavioral and cognitive parameters of ADHD, especially regarding dopaminergic signaling. Current literature usually links adenosine receptors signaling to the dopaminergic imbalance found in ADHD, but there is evidence that equilibrative nucleoside transporters (ENTs) could also be implicated as players in dopaminergic signaling alterations seen in ADHD, since their involvement in other neurobehavioral impairments.
Collapse
Affiliation(s)
- Sofia Corrêa Valladão
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Angela Patricia França
- Graduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Brazil; Graduate Program in Medical Sciences, Centre of Health Sciences, Federal University of Santa Catarina, Brazil.
| | - Pablo Pandolfo
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Alexandre Dos Santos-Rodrigues
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
4
|
Ferranti AS, Luessen DJ, Niswender CM. Novel pharmacological targets for GABAergic dysfunction in ADHD. Neuropharmacology 2024; 249:109897. [PMID: 38462041 DOI: 10.1016/j.neuropharm.2024.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopment disorder that affects approximately 5% of the population. The disorder is characterized by impulsivity, hyperactivity, and deficits in attention and cognition, although symptoms vary across patients due to the heterogenous and polygenic nature of the disorder. Stimulant medications are the standard of care treatment for ADHD patients, and their effectiveness has led to the dopaminergic hypothesis of ADHD in which deficits in dopaminergic signaling, especially in cortical brain regions, mechanistically underly ADHD pathophysiology. Despite their effectiveness in many individuals, almost one-third of patients do not respond to stimulant treatments and the long-term negative side effects of these medications remain unclear. Emerging clinical evidence is beginning to highlight an important role of dysregulated excitatory/inhibitory (E/I) balance in ADHD. These deficits in E/I balance are related to functional abnormalities in glutamate and Gamma-Aminobutyric Acid (GABA) signaling in the brain, with increasing emphasis placed on GABAergic interneurons driving specific aspects of ADHD pathophysiology. Recent genome-wide association studies (GWAS) have also highlighted how genes associated with GABA function are mutated in human populations with ADHD, resulting in the generation of several new genetic mouse models of ADHD. This review will discuss how GABAergic dysfunction underlies ADHD pathophysiology, and how specific receptors/proteins related to GABAergic interneuron dysfunction may be pharmacologically targeted to treat ADHD in subpopulations with specific comorbidities and symptom domains. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
5
|
Zhong BL, Lee CE, Vachharajani VT, Bauer MS, Südhof TC, Dunn AR. Piconewton Forces Mediate GAIN Domain Dissociation of the Latrophilin-3 Adhesion GPCR. NANO LETTERS 2023; 23:9187-9194. [PMID: 37831891 DOI: 10.1021/acs.nanolett.3c03171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Latrophilins are adhesion G-protein coupled receptors (aGPCRs) that control excitatory synapse formation. Most aGPCRs, including latrophilins, are autoproteolytically cleaved at their GPCR-autoproteolysis inducing (GAIN) domain, but the two resulting fragments remain noncovalently associated on the cell surface. Force-mediated dissociation of the fragments is thought to activate G-protein signaling, but how this mechanosensitivity arises is poorly understood. Here, we use magnetic tweezer assays to show that physiologically relevant forces in the 1-10 pN range lead to dissociation of the latrophilin-3 GAIN domain on the seconds-to-minutes time scale, compared to days in the absence of force. In addition, we find that the GAIN domain undergoes large changes in length in response to increasing mechanical load. These data are consistent with a model in which a force-sensitive equilibrium between compact and extended GAIN domain states precedes dissociation, suggesting a mechanism by which latrophilins and other aGPCRs may mediate mechanically induced signal transduction.
Collapse
Affiliation(s)
- Brian L Zhong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Christina E Lee
- Graduate Program in Biophysics, Stanford University, Stanford, California 94305, United States
| | - Vipul T Vachharajani
- Graduate Program in Biophysics, Stanford University, Stanford, California 94305, United States
| | - Magnus S Bauer
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Fontana BD, Reichmann F, Tilley CA, Lavlou P, Shkumatava A, Alnassar N, Hillman C, Karlsson KÆ, Norton WHJ, Parker MO. adgrl3.1-deficient zebrafish show noradrenaline-mediated externalizing behaviors, and altered expression of externalizing disorder-candidate genes, suggesting functional targets for treatment. Transl Psychiatry 2023; 13:304. [PMID: 37783687 PMCID: PMC10545713 DOI: 10.1038/s41398-023-02601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Externalizing disorders (ED) are a cause of concern for public health, and their high heritability makes genetic risk factors a priority for research. Adhesion G-Protein-Coupled Receptor L3 (ADGRL3) is strongly linked to several EDs, and loss-of-function models have shown the impacts of this gene on several core ED-related behaviors. For example, adgrl3.1-/- zebrafish show high levels of hyperactivity. However, our understanding of the mechanisms by which this gene influences behavior is incomplete. Here we characterized, for the first time, externalizing behavioral phenotypes of adgrl3.1-/- zebrafish and found them to be highly impulsive, show risk-taking in a novel environment, have attentional deficits, and show high levels of hyperactivity. All of these phenotypes were rescued by atomoxetine, demonstrating noradrenergic mediation of the externalizing effects of adgrl3.1. Transcriptomic analyses of the brains of adgrl3.1-/- vs. wild-type fish revealed several differentially expressed genes and enriched gene clusters that were independent of noradrenergic manipulation. This suggests new putative functional pathways underlying ED-related behaviors, and potential targets for the treatment of ED.
Collapse
Affiliation(s)
- Barbara D Fontana
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ceinwen A Tilley
- Department of Genetics and Genome Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK
| | - Perrine Lavlou
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Alena Shkumatava
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Nancy Alnassar
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| | - Karl Ægir Karlsson
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- Biomedical Center, University of Iceland, Reykjavik, Iceland
- 3Z, Reykjavik, Iceland
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK.
- Institute of Biology, Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| |
Collapse
|
7
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Carbajal MS, Bounmy AJC, Harrison OB, Nolen HG, Regan SL, Williams MT, Vorhees CV, Sable HJK. Impulsive choice in two different rat models of ADHD-Spontaneously hypertensive and Lphn3 knockout rats. Front Neurosci 2023; 17:1094218. [PMID: 36777639 PMCID: PMC9909198 DOI: 10.3389/fnins.2023.1094218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Impulsivity is a symptom of attention-deficit/hyperactivity disorder (ADHD) and variants in the Lphn3 (Adgrl3) gene (OMIM 616417) have been linked to ADHD. This project utilized a delay-discounting (DD) task to examine the impact of Lphn3 deletion in rats on impulsive choice. "Positive control" measures were also collected in spontaneously hypertensive rats (SHRs), another animal model of ADHD. Methods For Experiment I, rats were given the option to press one lever for a delayed reward of 3 food pellets or the other lever for an immediate reward of 1 pellet. Impulsive choice was measured as the tendency to discount the larger, delayed reward. We hypothesized that impulsive choice would be greater in the SHR and Lphn3 knockout (KO) rats relative to their control strains - Wistar-Kyoto (WKY) and Lphn3 wildtype (WT) rats, respectively. Results The results did not completely support the hypothesis, as only the SHRs (but not the Lphn3 KO rats) demonstrated a decrease in the percent choice for the larger reward. Because subsequent trials did not begin until the end of the delay period regardless of which lever was selected, rats were required to wait for the next trial to start even if they picked the immediate lever. Experiment II examined whether the rate of reinforcement influenced impulsive choice by using a DD task that incorporated a 1 s inter-trial interval (ITI) immediately after delivery of either the immediate (1 pellet) or delayed (3 pellet) reinforcer. The results of Experiment II found no difference in the percent choice for the larger reward between Lphn3 KO and WT rats, demonstrating reinforcement rate did not influence impulsive choice in Lphn3 KO rats. Discussion Overall, there were impulsivity differences among the ADHD models, as SHRs exhibited deficits in impulsive choice, while the Lphn3 KO rats did not.
Collapse
Affiliation(s)
- Monica S. Carbajal
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Asiah J. C. Bounmy
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Olivia B. Harrison
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Hunter G. Nolen
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Samantha L. Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Helen J. K. Sable
- Department of Psychology, University of Memphis, Memphis, TN, United States,*Correspondence: Helen J. K. Sable,
| |
Collapse
|
9
|
Zhong BL, Lee CE, Vachharajani VT, Südhof TC, Dunn AR. Piconewton forces mediate GAIN domain dissociation of the latrophilin-3 adhesion GPCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523854. [PMID: 36711622 PMCID: PMC9882233 DOI: 10.1101/2023.01.12.523854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Latrophilins are adhesion G-protein coupled receptors (aGPCRs) that control excitatory synapse formation. aGPCRs, including latrophilins, are autoproteolytically cleaved at their GPCR-Autoproteolysis Inducing (GAIN) domain, but the two resulting fragments remain associated on the cell surface. It is thought that force-mediated dissociation of the fragments exposes a peptide that activates G-protein signaling of aGPCRs, but whether GAIN domain dissociation can occur on biologically relevant timescales and at physiological forces is unknown. Here, we show using magnetic tweezers that physiological forces dramatically accelerate the dissociation of the latrophilin-3 GAIN domain. Forces in the 1-10 pN range were sufficient to dissociate the GAIN domain on a seconds-to-minutes timescale, and the GAIN domain fragments reversibly reassociated after dissociation. Thus, mechanical force may be a key driver of latrophilin signaling during synapse formation, suggesting a physiological mechanism by which aGPCRs may mediate mechanically-induced signal transduction.
Collapse
|
10
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
11
|
Perry-Hauser NA, VanDyck MW, Lee KH, Shi L, Javitch JA. Disentangling autoproteolytic cleavage from tethered agonist-dependent activation of the adhesion receptor ADGRL3. J Biol Chem 2022; 298:102594. [PMID: 36244455 PMCID: PMC9674912 DOI: 10.1016/j.jbc.2022.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Adhesion G protein-coupled receptor latrophilin 3 (ADGRL3), a cell adhesion molecule highly expressed in the central nervous system, acts in synapse formation through trans interactions with its ligands. It is largely unknown if these interactions serve a purely adhesive function or can modulate G protein signaling. To assess how different structural elements of ADGRL3 (e.g., the adhesive domains, autoproteolytic cleavage site, or tethered agonist (TA)) impact receptor function, we require constructs that disrupt specific receptor features without impacting others. While we showed previously that mutating conserved Phe and Met residues in the TA of ADGRL3-C-terminal fragment (CTF), a CTF truncated to the G protein-coupled receptor proteolysis site, abolishes receptor-mediated G protein activation, we now find that autoproteolytic cleavage is disrupted in the full-length version of this construct. To identify a construct that disrupts TA-dependent activity without impacting proteolysis, we explored other mutations in the TA. We found that mutating the sixth and seventh residues of the TA, Leu and Met, to Ala impaired activity in a serum response element activity assay for both full-length and CTF constructs. We confirmed this activity loss results from impaired G protein coupling using an assay that acutely exposes the TA through controlled proteolysis. The ADGRL3 mutant expresses normally at the cell surface, and immunoblotting shows that it undergoes normal autoproteolysis. Thus, we found a construct that disrupts tethered agonism while retaining autoproteolytic cleavage, providing a tool to disentangle these functions in vivo. Our approach and specific findings are likely to be broadly applicable to other adhesion receptors.
Collapse
Affiliation(s)
- Nicole A Perry-Hauser
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Max W VanDyck
- Department of Biochemistry, Vassar College, Poughkeepsie, New York, USA
| | - Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA.
| |
Collapse
|
12
|
Dougnon G, Matsui H. Modelling Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) Using Mice and Zebrafish. Int J Mol Sci 2022; 23:ijms23147550. [PMID: 35886894 PMCID: PMC9319972 DOI: 10.3390/ijms23147550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two debilitating neurodevelopmental disorders. The former is associated with social impairments whereas the latter is associated with inattentiveness, hyperactivity, and impulsivity. There is recent evidence that both disorders are somehow related and that genes may play a large role in these disorders. Despite mounting human and animal research, the neurological pathways underlying ASD and ADHD are still not well understood. Scientists investigate neurodevelopmental disorders by using animal models that have high similarities in genetics and behaviours with humans. Mice have been utilized in neuroscience research as an excellent animal model for a long time; however, the zebrafish has attracted much attention recently, with an increasingly large number of studies using this model. In this review, we first discuss ASD and ADHD aetiology from a general point of view to their characteristics and treatments. We also compare mice and zebrafish for their similarities and discuss their advantages and limitations in neuroscience. Finally, we summarize the most recent and existing research on zebrafish and mouse models of ASD and ADHD. We believe that this review will serve as a unique document providing interesting information to date about these models, thus facilitating research on ASD and ADHD.
Collapse
|
13
|
Kanarik M, Grimm O, Mota NR, Reif A, Harro J. ADHD co-morbidities: A review of implication of gene × environment effects with dopamine-related genes. Neurosci Biobehav Rev 2022; 139:104757. [PMID: 35777579 DOI: 10.1016/j.neubiorev.2022.104757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023]
Abstract
ADHD is a major burden in adulthood, where co-morbid conditions such as depression, substance use disorder and obesity often dominate the clinical picture. ADHD has substantial shared heritability with other mental disorders, contributing to comorbidity. However, environmental risk factors exist but their interaction with genetic makeup, especially in relation to comorbid disorders, remains elusive. This review for the first time summarizes present knowledge on gene x environment (GxE) interactions regarding the dopamine system. Hitherto, mainly candidate (GxE) studies were performed, focusing on the genes DRD4, DAT1 and MAOA. Some evidence suggest that the variable number tandem repeats in DRD4 and MAOA may mediate GxE interactions in ADHD generally, and comorbid conditions specifically. Nevertheless, even for these genes, common variants are bound to suggest risk only in the context of gender and specific environments. For other polymorphisms, evidence is contradictory and less convincing. Particularly lacking are longitudinal studies testing the interaction of well-defined environmental with polygenic risk scores reflecting the dopamine system in its entirety.
Collapse
Affiliation(s)
- Margus Kanarik
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia
| | - Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Nina Roth Mota
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Jaanus Harro
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia; Psychiatry Clinic, North Estonia Medical Centre, Paldiski Road 52, 10614 Tallinn, Estonia.
| |
Collapse
|
14
|
Taylor MR, Carrasco K, Carrasco A, Basu A. Tobacco and ADHD: A Role of MAO-Inhibition in Nicotine Dependence and Alleviation of ADHD Symptoms. Front Neurosci 2022; 16:845646. [PMID: 35495050 PMCID: PMC9039335 DOI: 10.3389/fnins.2022.845646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a relatively commonly occurring neurodevelopmental disorder affecting approximately 5% of children and young people. The neurobiological mechanisms of ADHD are proposed to particularly center around increased dopamine receptor availability related to associated symptoms of reduced attention regulation and impulsivity. ADHD is also persistent across the lifespan and associated with a raft of impulsive and health-risk behaviors including substance abuse and smoking. Research highlighting the potentially significant levels of monoamine oxidase (MAO) inhibitory properties in tobacco smoke and e-cigarettes may provide a mechanism for increased tobacco smoke dependence among those with ADHD, in addition to the role of nicotine.AimThis scoping review aimed to establish evidence for the above neurobiological pathway between smoking and ADHD symptom-alleviation or “self-medication” with the inclusion of the mechanism of MAO-inhibitors indirect increasing dopamine in the brain.MethodologyScoping review methodologies were employed in this review selected to synthesize multiple sources of empirical research to identify current gaps in the knowledge base and identify key characteristics of research data related to a phenomenon. Databases searched included OVID MEDLINE(R), Embase, Cochrane, PsycINFO and SCOPUS limited to 2000 onward and empirically validated, peer-reviewed research.FindingsThere is support for the role of MAO-inhibition on greater reinforcement of smoking for individuals with ADHD through a greater impact on dopaminergic availability than nicotine; potentially moderating ADHD symptoms.ConclusionGreater support for a “self-medication” model of ADHD and smoking includes not only nicotine but also MAO-inhibitors as dopamine agonists contained in cigarettes and e-cigarettes.
Collapse
Affiliation(s)
- Mairin Rose Taylor
- School of Health Sciences, University of Canterbury, Christchurch, New Zealand
- *Correspondence: Mairin Rose Taylor,
| | - Kelly Carrasco
- School of Education, Victoria University of Wellington, Wellington, New Zealand
| | - Andres Carrasco
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Arindam Basu
- School of Health Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
15
|
Kantak KM. Rodent models of attention-deficit hyperactivity disorder: An updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav 2022; 216:173378. [DOI: 10.1016/j.pbb.2022.173378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
|
16
|
Convergent selective signaling impairment exposes the pathogenicity of latrophilin-3 missense variants linked to inheritable ADHD susceptibility. Mol Psychiatry 2022; 27:2425-2438. [PMID: 35393556 PMCID: PMC9135631 DOI: 10.1038/s41380-022-01537-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Latrophilin-3 (Lphn3; also known as ADGRL3) is a member of the adhesion G Protein Coupled Receptor subfamily, which participates in the stabilization and maintenance of neuronal networks by mediating intercellular adhesion through heterophilic interactions with transmembrane ligands. Polymorphisms modifying the Lphn3 gene are associated with attention-deficit/hyperactivity disorder (ADHD) in children and its persistence into adulthood. How these genetic alterations affect receptor function remains unknown. Here, we conducted the functional validation of distinct ADHD-related Lphn3 variants bearing mutations in the receptor's adhesion motif-containing extracellular region. We found that all variants tested disrupted the ability of Lphn3 to stabilize intercellular adhesion in a manner that was distinct between ligands classes, but which did not depend on ligand-receptor interaction parameters, thus pointing to altered intrinsic receptor signaling properties. Using G protein signaling biosensors, we determined that Lphn3 couples to Gαi1, Gαi2, Gαs, Gαq, and Gα13. However, all ADHD-related receptor variants consistently lacked intrinsic as well as ligand-dependent Gα13 coupling efficiency while maintaining unaltered coupling to Gαi, Gαs, and Gαq. Consistent with these alterations, actin remodeling functions as well as actin-relevant RhoA signaling normally displayed by the constitutively active Lphn3 receptor were impeded by select receptor variants, thus supporting additional signaling defects. Taken together, our data point to Gα13 selective signaling impairments as representing a disease-relevant pathogenicity pathway that can be inherited through Lphn3 gene polymorphisms. This study highlights the intricate interplay between Lphn3 GPCR functions and the actin cytoskeleton in modulating neurodevelopmental cues related to ADHD etiology.
Collapse
|
17
|
Regan SL, Williams MT, Vorhees CV. Review of rodent models of attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2022; 132:621-637. [PMID: 34848247 PMCID: PMC8816876 DOI: 10.1016/j.neubiorev.2021.11.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a polygenic neurodevelopmental disorder that affects 8-12 % of children and >4 % of adults. Environmental factors are believed to interact with genetic predispositions to increase susceptibility to ADHD. No existing rodent model captures all aspects of ADHD, but several show promise. The main genetic models are the spontaneous hypertensive rat, dopamine transporter knock-out (KO) mice, dopamine receptor subtype KO mice, Snap-25 KO mice, guanylyl cyclase-c KO mice, and latrophilin-3 KO mice and rats. Environmental factors thought to contribute to ADHD include ethanol, nicotine, PCBs, lead (Pb), ionizing irradiation, 6-hydroxydopamine, neonatal hypoxia, some pesticides, and organic pollutants. Model validation criteria are outlined, and current genetic models evaluated against these criteria. Future research should explore induced multiple gene KOs given that ADHD is polygenic and epigenetic contributions. Furthermore, genetic models should be combined with environmental agents to test for interactions.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Corresponding author: Charles V. Vorhees, Ph.D., Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA:
| |
Collapse
|
18
|
Sable HJK, Lester DB, Potter JL, Nolen HG, Cruthird DM, Estes LM, Johnson AD, Regan SL, Williams MT, Vorhees CV. An assessment of executive function in two different rat models of attention-deficit hyperactivity disorder: Spontaneously hypertensive versus Lphn3 knockout rats. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12767. [PMID: 34427038 PMCID: PMC10114166 DOI: 10.1111/gbb.12767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 01/21/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) a common neurodevelopmental disorder of childhood and often comorbid with other externalizing disorders (EDs). There is evidence that externalizing behaviors share a common genetic etiology. Recently, a genome-wide, multigenerational sample linked variants in the Lphn3 gene to ADHD and other externalizing behaviors. Likewise, limited research in animal models has provided converging evidence that Lphn3 plays a role in EDs. This study examined the impact of Lphn3 deletion (i.e., Lphn3-/- ) in rats on measures of behavioral control associated with externalizing behavior. Impulsivity was assessed for 30 days via a differential reinforcement of low rates (DRL) task and working memory evaluated for 25 days using a delayed spatial alternation (DSA) task. Data from both tasks were averaged into 5-day testing blocks. We analyzed overall performance, as well as response patterns in just the first and last blocks to assess acquisition and steady-state performance, respectively. "Positive control" measures on the same tasks were measured in an accepted animal model of ADHD-the spontaneously hypertensive rat (SHR). Compared with wildtype controls, Lphn3-/- rats exhibited deficits on both the DRL and DSA tasks, indicative of deficits in impulsive action and working memory, respectively. These deficits were less severe than those in the SHRs, who were profoundly impaired on both tasks compared with their control strain, Wistar-Kyoto rats. The results provide evidence supporting a role for Lphn3 in modulating inhibitory control and working memory, and suggest additional research evaluating the role of Lphn3 in the manifestation of EDs more broadly is warranted.
Collapse
Affiliation(s)
- Helen J. K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Deranda B. Lester
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Joshua L. Potter
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Hunter G. Nolen
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | | | - Lauren M. Estes
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Alyssa D. Johnson
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Samantha L. Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
19
|
Regan SL, Pitzer EM, Hufgard JR, Sugimoto C, Williams MT, Vorhees CV. A novel role for the ADHD risk gene latrophilin-3 in learning and memory in Lphn3 knockout rats. Neurobiol Dis 2021; 158:105456. [PMID: 34352385 PMCID: PMC8440465 DOI: 10.1016/j.nbd.2021.105456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Latrophilins (LPHNs) are adhesion G protein-coupled receptors with three isoforms but only LPHN3 is brain specific (caudate, prefrontal cortex, dentate, amygdala, and cerebellum). Variants of LPHN3 are associated with ADHD. Null mutations of Lphn3 in rat, mouse, zebrafish, and Drosophila result in hyperactivity, but its role in learning and memory (L&M) is largely unknown. Using our Lphn3 knockout (KO) rats we examined the cognitive abilities, long-term potentiation (LTP) in CA1, NMDA receptor expression, and neurohistology from heterozygous breeding pairs. KO rats were impaired in egocentric L&M in the Cincinnati water maze, spatial L&M and cognitive flexibility in the Morris water maze (MWM), with no effects on conditioned freezing, novel object recognition, or temporal order recognition. KO-associated locomotor hyperactivity had no effect on swim speed. KO rats had reduced early-LTP but not late-LTP and had reduced hippocampal NMDA-NR1 expression. In a second experiment, KO rats responded to a light prepulse prior to an acoustic startle pulse, reflecting visual signal detection. In a third experiment, KO rats given extra MWM pretraining and hidden platform overtraining showed no evidence of reaching WT rats' levels of learning. Nissl histology revealed no structural abnormalities in KO rats. LPHN3 has a selective effect on egocentric and allocentric L&M without effects on conditioned freezing or recognition memory.
Collapse
Affiliation(s)
- Samantha L Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Emily M Pitzer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Jillian R Hufgard
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Chiho Sugimoto
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
20
|
Regan SL, Williams MT, Vorhees CV. Latrophilin-3 disruption: Effects on brain and behavior. Neurosci Biobehav Rev 2021; 127:619-629. [PMID: 34022279 DOI: 10.1016/j.neubiorev.2021.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/22/2022]
Abstract
Latrophilin-3 (LPHN3), a G-protein-coupled receptor belonging to the adhesion subfamily, is a regulator of synaptic function and maintenance in brain regions that mediate locomotor activity, attention, and memory for location and path. Variants of LPHN3 are associated with increased risk for attention deficit hyperactivity disorder (ADHD) in some patients. Here we review the role of LPHN3 in the central nervous system (CNS). We describe synaptic localization of LPHN3, its trans-synaptic binding partners, links to neurodevelopmental disorders, animal models of Lphn3 disruption in different species, and evidence that LPHN3 is involved in cognition as well as activity and attention. The evidence shows that LPHN3 plays a more significant role in neuroplasticity than previously appreciated.
Collapse
Affiliation(s)
- Samantha L Regan
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Charles V Vorhees
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
21
|
Rahi V, Kumar P. Animal models of attention-deficit hyperactivity disorder (ADHD). Int J Dev Neurosci 2021; 81:107-124. [PMID: 33428802 DOI: 10.1002/jdn.10089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a heterogeneous neuropsychiatric disorder characterized by three primary symptoms hyperactivity, attention deficit, and impulsiveness, observed in both children and adults. In childhood, this disorder is more common in boys than in girls, and at least 75% will continue to suffer from the disorder until adulthood. Individuals with ADHD generally have poor academic, occupational, and social functioning resulting from developmentally inappropriate levels of hyperactivity and impulsivity, as well as impaired ability to maintain attention on motivationally relevant tasks. Very few drugs available in clinical practice altogether abolish the symptoms of ADHD, therefore, to find new drugs and target it is essential to understand the neuropathological, neurochemical, and genetic alterations that lead to the progression of ADHD. With this contrast, an animal study is the best approach because animal models provide relatively fast invasive manipulation, rigorous hypothesis testing, as well as it provides a better angle to understand the pathological mechanisms involved in disease progression. Moreover, animal models, especially for ADHD, serve with good predictive validity would allow the assessment and development of new therapeutic interventions, with this aim, the present review collect the various animal models on a single platform so that the research can select an appropriate model to pursue his study.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
22
|
Matsunaga H, Aruga J. Trans-Synaptic Regulation of Metabotropic Glutamate Receptors by Elfn Proteins in Health and Disease. Front Neural Circuits 2021; 15:634875. [PMID: 33790745 PMCID: PMC8005653 DOI: 10.3389/fncir.2021.634875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Trans-regulation of G protein-coupled receptors (GPCRs) by leucine-rich repeat (LRR) transmembrane proteins has emerged as a novel type of synaptic molecular interaction in the last decade. Several studies on LRR–GPCR interactions have revealed their critical role in synapse formation and in establishing synaptic properties. Among them, LRR–GPCR interactions between extracellular LRR fibronectin domain-containing family proteins (Elfn1 and Elfn2) and metabotropic glutamate receptors (mGluRs) are particularly interesting as they can affect a broad range of synapses through the modulation of signaling by glutamate, the principal excitatory transmitter in the mammalian central nervous system (CNS). Elfn–mGluR interactions have been investigated in hippocampal, cortical, and retinal synapses. Postsynaptic Elfn1 in the hippocampus and cerebral cortex mediates the tonic regulation of excitatory input onto somatostatin-positive interneurons (INs) through recruitment of presynaptic mGluR7. In the retina, presynaptic Elfn1 binds to mGluR6 and is necessary for synapse formation between rod photoreceptor cells and rod-bipolar cells. The repertoire of binding partners for Elfn1 and Elfn2 includes all group III mGluRs (mGluR4, mGluR6, mGluR7, and mGluR8), and both Elfn1 and Elfn2 can alter mGluR-mediated signaling through trans-interaction. Importantly, both preclinical and clinical studies have provided support for the involvement of the Elfn1–mGluR7 interaction in attention-deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), and epilepsy. In fact, Elfn1–mGluR7-associated disorders may reflect the altered function of somatostatin-positive interneuron inhibitory neural circuits, the mesolimbic and nigrostriatal dopaminergic pathway, and habenular circuits, highlighting the need for further investigation into this interaction.
Collapse
Affiliation(s)
- Hayato Matsunaga
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Jun Aruga
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
23
|
Alberca CD, Papale LA, Madrid A, Gianatiempo O, Cánepa ET, Alisch RS, Chertoff M. Perinatal protein malnutrition results in genome-wide disruptions of 5-hydroxymethylcytosine at regions that can be restored to control levels by an enriched environment. Epigenetics 2020; 16:1085-1101. [PMID: 33172347 DOI: 10.1080/15592294.2020.1841871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maternal malnutrition remains one of the major adversities affecting brain development and long-term mental health outcomes, increasing the risk to develop anxiety and depressive disorders. We have previously shown that malnutrition-induced anxiety-like behaviours can be rescued by a social and sensory stimulation (enriched environment) in male mice. Here, we expand these findings to adult female mice and profiled genome-wide ventral hippocampal 5hmC levels related to malnutrition-induced anxiety-like behaviours and their rescue by an enriched environment. This approach revealed 508 differentially hydroxymethylated genes associated with protein malnutrition and that several genes (N = 34) exhibited a restored 5hmC abundance to control levels following exposure to an enriched environment, including genes involved in neuronal functions like dendrite outgrowth, axon guidance, and maintenance of neuronal circuits (e.g. Fltr3, Itsn1, Lman1, Lsamp, Nav, and Ror1) and epigenetic mechanisms (e.g. Hdac9 and Dicer1). Sequence motif predictions indicated that 5hmC may be modulating the binding of transcription factors for several of these transcripts, suggesting a regulatory role for 5hmC in response to perinatal malnutrition and exposure to an enriched environment. Together, these findings establish a role for 5hmC in early-life malnutrition and reveal genes linked to malnutrition-induced anxious behaviours that are mitigated by an enriched environment.
Collapse
Affiliation(s)
- Carolina D Alberca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Octavio Gianatiempo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Mariela Chertoff
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
24
|
Cerniglia L, Cimino S, Bevilacqua A, Ballarotto G, Marzilli E, Adriani W, Tambelli R. Patterns of DNA methylation at specific loci of the dopamine transporter 1 gene and psychopathological risk in trios of mothers, fathers and children. EUROPEAN JOURNAL OF DEVELOPMENTAL PSYCHOLOGY 2020. [DOI: 10.1080/17405629.2020.1816166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Luca Cerniglia
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Silvia Cimino
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | - Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
- Research Center in Neurobiology Daniel Bovet” (Crin), Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Giulia Ballarotto
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | - Eleonora Marzilli
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | - Walter Adriani
- Center for Behavioral Sciences and Mental Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Renata Tambelli
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Attention deficit hyperactivity disorder (ADHD) shows high heritability in formal genetic studies. In our review article, we provide an overview on common and rare genetic risk variants for ADHD and their link to clinical practice. RECENT FINDINGS The formal heritability of ADHD is about 80% and therefore higher than most other psychiatric diseases. However, recent studies estimate the proportion of heritability based on singlenucleotide variants (SNPs) at 22%. It is a matter of debate which genetic mechanisms explain this huge difference. While frequent variants in first mega-analyses of genome-wideassociation study data containing several thousand patients give the first genome-wide results, explaining only little variance, the methodologically more difficult analyses of rare variants are still in their infancy. Some rare genetic syndromes show higher prevalence for ADHD indicating a potential role for a small number of patients. In contrast, polygenic risk scores (PRS) could potentially be applied to every patient. We give an overview how PRS explain different behavioral phenotypes in ADHD and how they could be used for diagnosis and therapy prediction. Knowledge about a patient's genetic makeup is not yet mandatory for ADHD therapy or diagnosis. PRS however have been introduced successfully in other areas of clinical medicine, and their application in psychiatry will begin within the next years. In order to ensure competent advice for patients, knowledge of the current state of research is useful forpsychiatrists.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Thorsten M Kranz
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany.
| |
Collapse
|
26
|
Slattery DA, Young JW. Current status of the neurobiology of aggression and impulsivity. Neuropharmacology 2019; 156:107665. [PMID: 31176758 DOI: 10.1016/j.neuropharm.2019.107665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA; Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
27
|
Vester AI, Chen M, Marsit CJ, Caudle WM. A Neurodevelopmental Model of Combined Pyrethroid and Chronic Stress Exposure. TOXICS 2019; 7:toxics7020024. [PMID: 31052489 PMCID: PMC6630986 DOI: 10.3390/toxics7020024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders of childhood and previous studies indicate the dopamine system plays a major role in ADHD pathogenesis. Two environmental exposures independently associated with dopaminergic dysfunction and ADHD risk include exposure to deltamethrin, a pyrethroid insecticide, and chronic stress. We hypothesized that combined neurodevelopmental exposure to both deltamethrin and corticosterone (CORT), the major stress hormone in rodents, would result in additive changes within the dopamine system. To study this, we developed a novel dual exposure paradigm and exposed pregnant C57BL/6 dams to 3 mg/kg deltamethrin through gestation and weaning, and their offspring to 25 μg/mL CORT dissolved in the drinking water through adulthood. Midbrain RNA expression as well as striatal and cortical protein expression of key dopaminergic components were investigated, in addition to ADHD-like behavioral tasks and electrochemical dopamine dynamics via fast-scan cyclic voltammetry. Given the well-described sexual dimorphism of ADHD, males and females were assessed separately. Males exposed to deltamethrin had significantly decreased midbrain Pitx3 expression, decreased cortical tyrosine hydroxylase (TH) expression, increased activity in the Y maze, and increased dopamine uptake rate in the dorsal striatum. These effects did not occur in males exposed to CORT only, or in males exposed to both deltamethrin and CORT, suggesting that CORT may attenuate these effects. Additionally, deltamethrin- and CORT-exposed females did not display these dopaminergic features, which indicates these changes are sex-specific. Our results show dopaminergic changes from the RNA through the functional level. Moreover, these data illustrate the importance of testing multiple environmental exposures together to better understand how combined exposures that occur in certain vulnerable populations could affect similar neurodevelopmental systems, as well as the importance of studying sex differences of these alterations.
Collapse
Affiliation(s)
- Aimée I Vester
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
| | - Merry Chen
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
| | - Carmen J Marsit
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
| | - W Michael Caudle
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|