1
|
Coemans S, De Aguiar V, Paquier P, Tsapkini K, Engelborghs S, Struys E, Keulen S. Effects of Cerebellar Transcranial Direct Current Stimulation in Bilingual Logopenic Primary Progressive Aphasia. J Alzheimers Dis Rep 2024; 8:1253-1273. [PMID: 39434819 PMCID: PMC11491977 DOI: 10.3233/adr-240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 10/23/2024] Open
Abstract
Background Primary progressive aphasia (PPA) is a language-based dementia, causing progressive decline of language functions. Transcranial direct current stimulation (tDCS) can augment effects of speech-and language therapy (SLT). However, this has not been investigated in bilingual patients with PPA. Objective We evaluated the case of Mr. G., a French (native language, L1)/Dutch (second language, L2)-speaking 59-year-old male, with logopenic PPA, associated with Alzheimer's disease pathology. We aimed to characterize his patterns of language decline and evaluate the effects of tDCS applied to the right posterolateral cerebellum on his language abilities and executive control circuits. Methods In a within-subject controlled design, Mr. G received 9 sessions of sham and anodal tDCS combined with semantic and phonological SLT in L2. Changes were evaluated with an oral naming task in L2, the Boston Naming Task and subtests of the Bilingual Aphasia Test in in L2 and L1, the Stroop Test and Attention Network Test, before and after each phase of stimulation (sham/tDCS) and at 2-month follow-up. Results After anodal tDCS, but not after sham, results improved significantly on oral naming in L2, with generalization to untrained tasks and cross-language transfer (CLT) to L1: picture naming in both languages, syntactic comprehension and repetition in L2, and response times in the incongruent condition of the Attention Network Test, indicating increased inhibitory control. Conclusions Our preliminary results are the first to indicate that tDCS applied to the cerebellum may be a valuable tool to enhance the effects of SLT in bilingual patients with logopenic PPA.
Collapse
Affiliation(s)
- Silke Coemans
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Vânia De Aguiar
- Groningen Center for Language and Cognition (CLCG), University of Groningen, Groningen, The Netherlands
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Philippe Paquier
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastiaan Engelborghs
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Biomedical Sciences, Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Esli Struys
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
2
|
Parker Jones O, Geva S, Prejawa S, Hope TMH, Oberhuber M, Seghier ML, Green DW, Price CJ. Dissociating Cerebellar Regions Involved in Formulating and Articulating Words and Sentences. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:795-817. [PMID: 39175783 PMCID: PMC11338308 DOI: 10.1162/nol_a_00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/03/2024] [Indexed: 08/24/2024]
Abstract
We investigated which parts of the cerebellum are involved in formulating and articulating sentences using (i) a sentence production task that involved describing simple events in pictures; (ii) an auditory sentence repetition task involving the same sentence articulation but not sentence formulation; and (iii) an auditory sentence-to-picture matching task that involved the same pictorial events and no overt articulation. Activation for each of these tasks was compared to the equivalent word processing tasks: noun production, verb production, auditory noun repetition, and auditory noun-to-picture matching. We associate activation in bilateral cerebellum lobule VIIb with sequencing words into sentences because it increased for sentence production compared to all other conditions and was also activated by word production compared to word matching. We associate a paravermal part of right cerebellar lobule VIIIb with overt motor execution of speech, because activation was higher during (i) production and repetition of sentences compared to the corresponding noun conditions and (ii) noun and verb production compared to all matching tasks, with no activation relative to fixation during any silent (nonspeaking) matching task. We associate activation within right cerebellar Crus II with covert articulatory activity because it activated for (i) all speech production more than matching tasks and (ii) sentences compared to nouns during silent (nonspeaking) matching as well as sentence production and sentence repetition. Our study serendipitously segregated, for the first time, three distinct functional roles for the cerebellum in generic speech production, and it demonstrated how sentence production enhanced the demands on these cerebellar regions.
Collapse
Affiliation(s)
- Oiwi Parker Jones
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
- Jesus College, University of Oxford, Oxford, UK
| | - Sharon Geva
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Centre for Mind and Behaviour, Anglia Ruskin University, Cambridge, UK
| | - Susan Prejawa
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Thomas M. H. Hope
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Marion Oberhuber
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Mohamed L. Seghier
- Healthcare Engineering Innovation Center (HEIC), Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - David W. Green
- Experimental Psychology, University College London, London, UK
| | - Cathy J. Price
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
3
|
Chen JR, Lin CJ, Chang FC, Lee IH, Lu CF. Territory-Related Functional Connectivity Changes Associated with Verbal Memory Decline in Patients with Unilateral Asymptomatic Internal Carotid Stenosis. AJNR Am J Neuroradiol 2024; 45:934-942. [PMID: 38871370 DOI: 10.3174/ajnr.a8248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND AND PURPOSE Verbal memory decline is a common complaint of patients with severe asymptomatic stenosis of the internal carotid artery (aICS). Previous publications explored the associations between verbal memory decline and altered functional connectivity (FC) after aICS. Patients with severe aICS may show reduced perfusion in the ipsilateral territory and redistribution of cerebral blood flow to compensate for the deficient regions, including expansion of the posterior and contralateral ICA territories via the circle of Willis. However, aICS-related FC changes in anterior and posterior territories and the impact of the sides of stenosis were less explored. This study aims to investigate the altered FC in anterior and posterior circulation territories of patients with left or right unilateral aICS and its association with verbal memory decline. MATERIALS AND METHODS We enrolled 15 healthy controls (HCs), 22 patients with left aICS (aICSL), and 33 patients with right aICS (aICSR) to receive fMRI, Mini-Mental State Examination (MMSE), the Digit Span Test (DST), and the 12-item Chinese version of Verbal Learning Tests. We selected brain regions associated with verbal memory within anterior and posterior circulation territories. Territory-related FC alterations and verbal memory decline were identified by comparing the aICSL and aICSR groups with HC groups (P < .05, corrected for multiple comparisons), respectively. Furthermore, the association between altered FC and verbal memory decline was tested with the Pearson correlation analysis. RESULTS Compared with HCs, patients with aICSL or aICSR had significant impairment in delayed recall of verbal memory. Decline in delayed recall of verbal memory was significantly associated with altered FC between the right cerebellum and right middle temporal pole in the posterior circulation territory (r = 0.40, P = .03) in the aICSR group and was significantly associated with altered FC between the right superior medial frontal gyrus and left lingual gyrus in the anterior circulation territory (r = 0.56, P = .01) in the aICSL group. CONCLUSIONS Patients with aICSL and aICSR showed different patterns of FC alterations in both anterior and posterior circulation territories, which suggests that the side of aICS influences the compensatory mechanism for decline in delayed recall of verbal memory.
Collapse
Affiliation(s)
- Jyun-Ru Chen
- From the Department of Biomedical Imaging and Radiological Sciences (J.-R.C., C.-F.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Jen Lin
- School of Medicine (C.-J.L., F.-C.C., I.-H.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
- Neurological Institute (C.-J.L., I.-H.L.), Taipei Veterans General Hospital, Taipei, Taiwan
| | - Feng-Chi Chang
- School of Medicine (C.-J.L., F.-C.C., I.-H.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology (F.-C.C.), Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Hui Lee
- School of Medicine (C.-J.L., F.-C.C., I.-H.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
- Neurological Institute (C.-J.L., I.-H.L.), Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science (I.-H.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Feng Lu
- From the Department of Biomedical Imaging and Radiological Sciences (J.-R.C., C.-F.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Maehara N, Nakamizo A, Arimura K, Yoshimoto K. Memory, Executive, and Intellectual Functions in Adults with Moyamoya Disease. World Neurosurg 2023; 180:e474-e483. [PMID: 37777176 DOI: 10.1016/j.wneu.2023.09.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
OBJECTIVE Cognitive function can decline in adults with moyamoya disease (MMD). Memory, which is an essential but complex and multifaceted function, underpins executive and intellectual functions. However, the relationship between memory and executive or intellectual functions in adults with MMD has not been well studied. The relationship between memory and cerebral blood flow has also not been elucidated. This study investigated correlations between memory, executive function, and intellectual function, and associations between cerebral blood flow and memory in adults with MMD. METHODS Memory, executive function, and intellectual function were assessed using the Wechsler Memory Scale-Revised (WMS-R), Frontal Assessment Battery (FAB), and Wechsler Adult Intelligence Scale (WAIS) third or fourth edition, respectively, in 31 adults with MMD. Cerebral blood flow was measured with iodine 123I-iodoamphetamine single-photon emission computed tomography. RESULTS WMS-R scores correlated significantly with total FAB and WAIS scores before and after revascularization. Cerebral blood flow in the left posterior cerebral artery territory correlated positively with WMS-R and WAIS scores pre- and postoperatively. Postoperative cerebrovascular reserves of the right cerebellum, pons, and vermis were positively associated with visual memory, and postoperative cerebrovascular reserve of the pons was also associated with general memory. CONCLUSIONS Memory function correlates with executive and intellectual functions in adults with MMD. The FAB, which requires about 10 min to administer, might be useful to screen for memory dysfunction. Memory might be vulnerable to hypoperfusion in the posterior cerebral artery territory among adults with MMD. Postoperative cerebrovascular reserve might help predict memory dysfunction in adults with MMD.
Collapse
Affiliation(s)
- Naoki Maehara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Paitel ER, Nielson KA. Cerebellar EEG source localization reveals age-related compensatory activity moderated by genetic risk for Alzheimer's disease. Psychophysiology 2023; 60:e14395. [PMID: 37493042 DOI: 10.1111/psyp.14395] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The apolipoprotein-E (APOE) ε4 allele is the greatest genetic risk factor for late-onset Alzheimer's disease (AD), but alone it is not sufficiently predictive. Because neuropathological changes associated with AD begin decades before cognitive symptoms, neuroimaging of healthy, cognitively intact ε4 carriers (ε4+) may enable early characterization of patterns associated with risk for future decline. Research in the cerebral cortex highlights a period of compensatory recruitment in elders and ε4+, which serves to maintain cognitive functioning. Yet, AD-related changes may occur even earlier in the cerebellum. Advances in electroencephalography (EEG) source localization now allow effective modeling of cerebellar activity. Importantly, healthy aging and AD are associated with declines in both cerebellar functions and executive functioning (EF). However, it is not known whether cerebellar activity can detect pre-symptomatic AD risk. Thus, the current study analyzed cerebellar EEG source localization during an EF-dependent stop-signal task (i.e., inhibitory control) in healthy, intact older adults (Mage = 80 years; 20 ε4+, 25 ε4-). Task performance was comparable between groups. Older age predicted greater activity in left crus II and lobule VIIb during the P300 window (i.e., performance evaluation), consistent with age-related compensation. Age*ε4 moderations specifically showed that compensatory patterns were evident only in ε4-, suggesting that cerebellar compensatory resources may already be depleted in healthy ε4+ elders. Thus, the posterolateral cerebellum is sensitive to AD-related neural deficits in healthy elders. Characterization of these patterns may be essential for the earliest possible detection of AD risk, which would enable critical early intervention prior to symptom onset.
Collapse
Affiliation(s)
- Elizabeth R Paitel
- Department of Psychology, Marquette University, Milwaukee, Wisconsin, USA
| | - Kristy A Nielson
- Department of Psychology, Marquette University, Milwaukee, Wisconsin, USA
- Department of Neurology, Center for Imaging Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Hirata R, Yoshimura S, Kobayashi K, Aki M, Shibata M, Ueno T, Miyagi T, Oishi N, Murai T, Fujiwara H. Differences between subclinical attention-deficit/hyperactivity and autistic traits in default mode, salience, and frontoparietal network connectivities in young adult Japanese. Sci Rep 2023; 13:19724. [PMID: 37957246 PMCID: PMC10643712 DOI: 10.1038/s41598-023-47034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are associated with attentional impairments, with both commonalities and differences in the nature of their attention deficits. This study aimed to investigate the neural correlates of ADHD and ASD traits in healthy individuals, focusing on the functional connectivity (FC) of attention-related large-scale brain networks (LSBNs). The participants were 61 healthy individuals (30 men; age, 21.9 ± 1.9 years). The Adult ADHD Self-Report Scale (ASRS) and Autism Spectrum Quotient (AQ) were administered as indicators of ADHD and ASD traits, respectively. Performance in the continuous performance test (CPT) was used as a behavioural measure of sustained attentional function. Functional magnetic resonance imaging scans were performed during the resting state (Rest) and auditory oddball task (Odd). Considering the critical role in attention processing, we focused our analyses on the default mode (DMN), frontoparietal (FPN), and salience (SN) networks. Region of interest (ROI)-to-ROI analyses (false discovery rate < 0.05) were performed to determine relationships between psychological measures with within-network FC (DMN, FPN, and SN) as well as with between-network FC (DMN-FPN, DMN-SN, and FPN-SN). ASRS scores, but not AQ scores, were correlated with less frequent commission errors and shorter reaction times in the CPT. During Odd, significant positive correlations with ASRS were demonstrated in multiple FCs within DMN, while significant positive correlations with AQ were demonstrated in multiple FCs within FPN. AQs were negatively correlated with FPN-SN FCs. During Rest, AQs were negatively and positively correlated with one FC within the SN and multiple FCs between the DMN and SN, respectively. These findings of the ROI-to-ROI analysis were only partially replicated in a split-half replication analysis, a replication analysis with open-access data sets, and a replication analysis with a structure-based atlas. The better CPT performance by individuals with subclinical ADHD traits suggests positive effects of these traits on sustained attention. Differential associations between LSBN FCs and ASD/ADHD traits corroborate the notion of differences in sustained and selective attention between clinical ADHD and ASD.
Collapse
Affiliation(s)
- Risa Hirata
- Department of Neuropsychiatry, Kyoto University Hospital, 54 Shogoinkawaracho, Sakyo-ku, Kyoto, 6068397, Japan
| | - Sayaka Yoshimura
- Faculty of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Organization for Promotion of Neurodevelopmental Disorder Research, Kyoto, Japan
| | - Key Kobayashi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Morio Aki
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Mami Shibata
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Tsukasa Ueno
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
- Integrated Clinical Education Center, Kyoto University Hospital, Kyoto, Japan
| | - Takashi Miyagi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- Department of Neuropsychiatry, Kyoto University Hospital, 54 Shogoinkawaracho, Sakyo-ku, Kyoto, 6068397, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Hironobu Fujiwara
- Department of Neuropsychiatry, Kyoto University Hospital, 54 Shogoinkawaracho, Sakyo-ku, Kyoto, 6068397, Japan.
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan.
- Artificial Intelligence Ethics and Society Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.
- The General Research Division, Osaka University Research Center on Ethical, Legal and Social Issues, Kyoto, Japan.
| |
Collapse
|
7
|
Liang S, Huang L, Zhan S, Zeng Y, Zhang Q, Zhang Y, Wang X, Peng L, Lin B, Xu H. Altered morphological characteristics and structural covariance connectivity associated with verbal working memory performance in ADHD children. Br J Radiol 2023; 96:20230409. [PMID: 37750842 PMCID: PMC10607391 DOI: 10.1259/bjr.20230409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVES Deficits in verbal working memory (VWM) observed in attention deficit hyperactivity disorder (ADHD) children can persist into adulthood. Although previous studies have identified brain regions that are activated during VWM tasks, the neural mechanisms underlying the relationship between VWM deficits remain unclear. The objective of this study was to investigate the structural covariance network connectivity and brain morphology changes that are associated with VWM performance in ADHD children. METHODS For this study, we selected 26 ADHD children and 26 healthy control (HC) participants. Participants were instructed to perform an n-back VWM task and their accuracy and response times were subsequently recorded. This research utilised voxel-based morphometry to measure the grey matter (GM) volume and conducted structural covariance connectivity network analysis to explore the changes of brain in ADHD. RESULTS Voxel-based morphometry analysis showed that lower GM volume in the right cerebellum lobule VI and the left parahippocampal gryus in ADHD children. Moreover, a positive correlation was found between the GM volume in the right cerebellum lobule VI and the accuracy of 2-back VWM task with verbal, small reward, and delayed feedback (VSD). Structural covariance network analysis found decreased structural connectivity between right cerebellum lobule VI and right precentral gyrus, right postcentral gyrus, left paracentral lobule, right superior parietal gyrus, and left hippocampus in ADHD children. CONCLUSIONS The low GM volume and altered structural covariance connectivity in the right cerebellum lobule VI might potentially affect VWM performance in ADHD children. ADVANCES IN KNOWLEDGE The innovation of this study lies in its more focused discussion on the morphological characteristics and structural covariance connectivity of VWM deficits in ADHD children, and the innovative finding of a positive correlation between grey matter volume in the right cerebellum lobule VI and accuracy in completing the 2-back VWM task with verbal instructions, small reward, and delayed feedback (VSD). This expands upon previous research by elucidating the specific brain structures involved in VWM deficits in ADHD children and highlights the potential importance of the cerebellum in this cognitive process. Overall, these innovative findings advance our understanding of the neural basis of ADHD and may have important implications for the development of targeted interventions for VWM deficits.
Collapse
Affiliation(s)
| | - Li Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shiqi Zhan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi Zeng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yusi Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiuxiu Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixin Peng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bohong Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Jackson TB, Bernard JA. Cerebello-basal Ganglia Networks and Cortical Network Global Efficiency. CEREBELLUM (LONDON, ENGLAND) 2023; 22:588-600. [PMID: 35661099 PMCID: PMC11223677 DOI: 10.1007/s12311-022-01418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The cerebellum (CB) and basal ganglia (BG) each have topographically distinct functional subregions that are functionally and anatomically interconnected with cortical regions through discrete thalamic loops and with each other via disynaptic connections, with previous work detailing high levels of functional connectivity between these phylogenetically ancient regions. It was posited that this CB-BG network provides support for cortical systems processing, spanning cognitive, emotional, and motor domains, implying that subcortical network measures are strongly related to cortical network measures (Bostan & Strick, 2018); however, it is currently unknown how network measures within distinct CB-BG networks relate to cortical network measures. Here, 122 regions of interest comprising cognitive and motor CB-BG networks and 7 canonical cortical resting-state were used to investigate whether the integration (quantified using global efficiency, GE) of cognitive CB-BG network (CCBN) nodes and their segregation from motor CB-BG network (MCBN) nodes is related to cortical network GE and segregation in 233 non-related, right-handed participants (Human Connectome Project-1200). CCBN GE positively correlated with GE in the default mode, motor, and auditory networks and MCBN GE positively correlated with GE in all networks, except the default mode and emotional. MCBN segregation was related to motor network segregation. These findings highlight the CB-BG network's potential role in cortical networks associated with executive function, task switching, and verbal working memory. This work has implications for understanding cortical network organization and cortical-subcortical interactions in healthy adults and may help in determining biomarkers and deciphering subcortical differences seen in disease states.
Collapse
Affiliation(s)
- T Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA.
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
9
|
Viñas-Guasch N, Ng THB, Heng JG, Chan YC, Chew E, Desmond JE, Chen SHA. Cerebellar Transcranial Magnetic Stimulation (TMS) Impairs Visual Working Memory. CEREBELLUM (LONDON, ENGLAND) 2023; 22:332-347. [PMID: 35355219 PMCID: PMC9522915 DOI: 10.1007/s12311-022-01396-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
An increasing body of evidence points to the involvement of the cerebellum in cognition. Specifically, previous studies have shown that the superior and inferior portions of the cerebellum are involved in different verbal working memory (WM) mechanisms as part of two separate cerebro-cerebellar loops for articulatory rehearsal and phonological storage mechanisms. In comparison, our understanding of the involvement of the cerebellum in visual WM remains limited. We have previously shown that performance in verbal WM is disrupted by single-pulse transcranial magnetic stimulation (TMS) of the right superior cerebellum. The present study aimed to expand on this notion by exploring whether the inferior cerebellum is similarly involved in visual WM. Here, we used fMRI-guided, double-pulse TMS to probe the necessity of left superior and left inferior cerebellum in visual WM. We first conducted an fMRI localizer using the Sternberg visual WM task, which yielded targets in left superior and inferior cerebellum. Subsequently, TMS stimulation of these regions at the end of the encoding phase resulted in decreased accuracy in the visual WM task. Differences in the visual WM deficits caused by stimulation of superior and inferior left cerebellum raise the possibility that these regions are involved in different stages of visual WM.
Collapse
Affiliation(s)
- Nestor Viñas-Guasch
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Tommy Hock Beng Ng
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Jiamin Gladys Heng
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yee Cheun Chan
- Division of Neurology, University Medicine Cluster, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Effie Chew
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Rehabilitation Medicine, Department of Medicine, National University Health System, Singapore, Singapore
| | - John E Desmond
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - S H Annabel Chen
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore.
- National Institute of Education, Nanyang Technological University, Singapore, Singapore.
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
10
|
Marvel CL, Alm KH, Bhattacharya D, Rebman AW, Bakker A, Morgan OP, Creighton JA, Kozero EA, Venkatesan A, Nadkarni PA, Aucott JN. A multimodal neuroimaging study of brain abnormalities and clinical correlates in post treatment Lyme disease. PLoS One 2022; 17:e0271425. [PMID: 36288329 PMCID: PMC9604010 DOI: 10.1371/journal.pone.0271425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
Lyme disease is the most common vector-borne infectious disease in the United States. Post-treatment Lyme disease (PTLD) is a condition affecting 10-20% of patients in which symptoms persist despite antibiotic treatment. Cognitive complaints are common among those with PTLD, suggesting that brain changes are associated with the course of the illness. However, there has been a paucity of evidence to explain the cognitive difficulties expressed by patients with PTLD. This study administered a working memory task to a carefully screened group of 12 patients with well-characterized PTLD and 18 healthy controls while undergoing functional MRI (fMRI). A subset of 12 controls and all 12 PTLD participants also received diffusion tensor imaging (DTI) to measure white matter integrity. Clinical variables were also assessed and correlated with these multimodal MRI findings. On the working memory task, the patients with PTLD responded more slowly, but no less accurately, than did controls. FMRI activations were observed in expected regions by the controls, and to a lesser extent, by the PTLD participants. The PTLD group also hypoactivated several regions relevant to the task. Conversely, novel regions were activated by the PTLD group that were not observed in controls, suggesting a compensatory mechanism. Notably, three activations were located in white matter of the frontal lobe. DTI measures applied to these three regions of interest revealed that higher axial diffusivity correlated with fewer cognitive and neurological symptoms. Whole-brain DTI analyses revealed several frontal lobe regions in which higher axial diffusivity in the patients with PTLD correlated with longer duration of illness. Together, these results show that the brain is altered by PTLD, involving changes to white matter within the frontal lobe. Higher axial diffusivity may reflect white matter repair and healing over time, rather than pathology, and cognition appears to be dynamically affected throughout this repair process.
Collapse
Affiliation(s)
- Cherie L. Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| | - Kylie H. Alm
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Deeya Bhattacharya
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Alison W. Rebman
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Owen P. Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jason A. Creighton
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Erica A. Kozero
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Prianca A. Nadkarni
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - John N. Aucott
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
11
|
Ballard HK, Jackson TB, Hicks TH, Bernard JA. The association of reproductive stage with lobular cerebellar network connectivity across female adulthood. Neurobiol Aging 2022; 117:139-150. [PMID: 35738086 PMCID: PMC10149146 DOI: 10.1016/j.neurobiolaging.2022.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023]
Abstract
Sex-specific differences in the aging cerebellum may be related to hormone changes with menopause. We evaluated the association between reproductive stage and lobular cerebellar network connectivity using data from the Cambridge Centre for Ageing and Neuroscience repository. We used raw structural and resting state neuroimaging data and information regarding age, sex, and menopause-related variables. Crus I and II and Lobules V and VI were our cerebellar seeds of interest. We characterized reproductive stage using the Stages of Reproductive Aging Workshop criteria. Results show that postmenopausal females have lower cerebello-striatal and cerebello-cortical connectivity, particularly in frontal regions, along with lower connectivity within the cerebellum, compared to reproductive females. Postmenopausal females also exhibit greater connectivity in some brain areas as well. Differences begin to emerge across transitional stages of menopause. Further, results reveal sex-specific differences in connectivity between female reproductive groups and age-matched male control groups. This suggests that menopause may be associated with cerebellar network connectivity in aging females, and sex differences in the aging brain may be related to this biological process.
Collapse
Affiliation(s)
- Hannah K Ballard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| | - T Bryan Jackson
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Tracey H Hicks
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Jessica A Bernard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
12
|
Marvel CL, Chen L, Joyce MR, Morgan OP, Iannuzzelli KG, LaConte SM, Lisinski JM, Rosenthal LS, Li X. Quantitative susceptibility mapping of basal ganglia iron is associated with cognitive and motor functions that distinguish spinocerebellar ataxia type 6 and type 3. Front Neurosci 2022; 16:919765. [PMID: 36061587 PMCID: PMC9433989 DOI: 10.3389/fnins.2022.919765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background In spinocerebellar ataxia type 3 (SCA3), volume loss has been reported in the basal ganglia, an iron-rich brain region, but iron content has not been examined. Recent studies have reported that patients with SCA6 have markedly decreased iron content in the cerebellar dentate, coupled with severe volume loss. Changing brain iron levels can disrupt cognitive and motor functions, yet this has not been examined in the SCAs, a disease in which iron-rich regions are affected. Methods In the present study, we used quantitative susceptibility mapping (QSM) to measure tissue magnetic susceptibility (indicating iron concentration), structural volume, and normalized susceptibility mass (indicating iron content) in the cerebellar dentate and basal ganglia in people with SCA3 (n = 10) and SCA6 (n = 6) and healthy controls (n = 9). Data were acquired using a 7T Philips MRI scanner. Supplemental measures assessed motor, cognitive, and mood domains. Results Putamen volume was lower in both SCA groups relative to controls, replicating prior findings. Dentate susceptibility mass and volume in SCA6 was lower than in SCA3 or controls, also replicating prior findings. The novel finding was that higher basal ganglia susceptibility mass in SCA6 correlated with lower cognitive performance and greater motor impairment, an association that was not observed in SCA3. Cerebellar dentate susceptibility mass, however, had the opposite relationship with cognition and motor function in SCA6, suggesting that, as dentate iron is depleted, it relocated to the basal ganglia, which contributed to cognitive and motor decline. By contrast, basal ganglia volume loss, rather than iron content, appeared to drive changes in motor function in SCA3. Conclusion The associations of higher basal ganglia iron with lower motor and cognitive function in SCA6 but not in SCA3 suggest the potential for using brain iron deposition profiles beyond the cerebellar dentate to assess disease states within the cerebellar ataxias. Moreover, the role of the basal ganglia deserves greater attention as a contributor to pathologic and phenotypic changes associated with SCA.
Collapse
Affiliation(s)
- Cherie L. Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michelle R. Joyce
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Owen P. Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine G. Iannuzzelli
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stephen M. LaConte
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Jonathan M. Lisinski
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
| | - Liana S. Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Age-related differences in the neural network interactions underlying the predictability gain. Cortex 2022; 154:269-286. [DOI: 10.1016/j.cortex.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
|
14
|
Al-Harrasi A, Behl T, Upadhyay T, Chigurupati S, Bhatt S, Sehgal A, Bhatia S, Singh S, Sharma N, Vijayabalan S, Palanimuthu VR, Das S, Kaur R, Aleya L, Bungau S. Targeting natural products against SARS-CoV-2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42404-42432. [PMID: 35362883 PMCID: PMC8972763 DOI: 10.1007/s11356-022-19770-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/13/2022] [Indexed: 06/01/2023]
Abstract
The human coronavirus disease (COVID-19) pandemic is caused by a novel coronavirus; the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Natural products, secondary metabolites show positive leads with antiviral and immunotherapy treatments using genomic studies in silico docking. In addition, it includes the action of a mechanism targeting the SARS-CoV-2. In this literature, we aimed to evaluate the antiviral movement of the NT-VRL-1 unique terpene definition to Human coronavirus (HCoV-229E). The effects of 19 hydrolysable tannins on the SARS-CoV-2 were therefore theoretically reviewed and analyzed utilising the molecular operating surroundings for their C-Like protease 3CLpro catalytic dyad residues Angiotensin converting enzyme-2 (MOE 09). Pedunculagin, tercatan, and castalin were detected as interacting strongly with SARS-receptor Cov-2's binding site and catalytic dyad (Cys145 and His41). SARS-CoV-2 methods of subunit S1 (ACE2) inhibit the interaction of the receiver with the s-protein once a drug molecule is coupled to the s-protein and prevent it from infecting the target cells in alkaloids. Our review strongly demonstrates the evidence that natural compounds and their derivatives can be used against the human coronavirus and serves as an area of research for future perspective.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Birkat Al Mawz, Oman
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tanuj Upadhyay
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Birkat Al Mawz, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shantini Vijayabalan
- Faculty of Health and Medical Sciences, School of Pharmacy, Taylor's University, Subang Jaya, Kuala Lumpur, Malaysia
| | - Vasanth Raj Palanimuthu
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Suprava Das
- Department of Pharmacology, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah, Malaysia
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
15
|
Ge Y, Zheng W, Li Y, Dou W, Ren S, Chen Z, Wang Z. Altered Brain Volume, Microstructure Metrics and Functional Connectivity Features in Multiple System Atrophy. Front Aging Neurosci 2022; 14:799251. [PMID: 35663568 PMCID: PMC9162384 DOI: 10.3389/fnagi.2022.799251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/22/2022] [Indexed: 11/14/2022] Open
Abstract
In order to deeply understand the specific patterns of volume, microstructure, and functional changes in Multiple System Atrophy patients with cerebellar ataxia syndrome (MSA-c), we perform the current study by simultaneously applying structural (T1-weighted imaging), Diffusion tensor imaging (DTI), functional (BOLD fMRI) and extended Network-Based Statistics (extended-NBS) analysis. Twenty-nine MSA-c type patients and twenty-seven healthy controls (HCs) were involved in this study. First, we analyzed the whole brain changes of volume, microstructure, and functional connectivity (FC) in MSA-c patients. Then, we explored the correlations between significant multimodal MRI features and the total Unified Multiple System Atrophy Rating Scale (UMSARS) scores. Finally, we searched for sensitive imaging biomarkers for the diagnosis of MSA-c using support vector machine (SVM) classifier. Results showed significant grey matter atrophy in cerebellum and white matter microstructural abnormalities in cerebellum, left fusiform gyrus, right precentral gyrus and lingual gyrus. Extended-NBS analysis found two significant different connected components, featuring altered functional connectivity related to left and right cerebellar sub-regions, respectively. Moreover, the reduced fiber bundle counts at right Cerebellum_3 (Cbe3) and decreased fractional anisotropy (FA) values at bilateral Cbe9 were negatively associated with total UMSARS scores. Finally, the significant features at left Cbe9, Cbe1, and Cbe7b were found to be useful as sensitive biomarkers to differentiate MSA-c from HCs according to the SVM analysis. These findings advanced our understanding of the neural pathophysiological mechanisms of MSA from the perspective of multimodal neuroimaging.
Collapse
Affiliation(s)
- Yunxiang Ge
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Weimin Zheng
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Yujia Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Weibei Dou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
- *Correspondence: Weibei Dou,
| | - Shan Ren
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Chen
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Zhigang Chen,
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
- Zhiqun Wang,
| |
Collapse
|
16
|
Cui L, Li H, Li JB, Zeng H, Zhang Y, Deng W, Zhou W, Cao L. Altered cerebellar gray matter and cerebellar-cortex resting-state functional connectivity in patients with bipolar disorder Ⅰ. J Affect Disord 2022; 302:50-57. [PMID: 35074460 DOI: 10.1016/j.jad.2022.01.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bipolar disorder (BP) is a common psychiatric disorder characterized by extreme fluctuations in mood. Recent studies have indicated the involvement of cerebellum in the pathogenesis of BP. However, no study has focused on the precise role of cerebellum exclusively in patients with bipolar I disorder (BP-I). METHODS Forty-five patients with BP-I and 40 healthy controls were recruited. All subjects underwent clinical evaluation and Magnetic Resonance diffusion Tension Imaging scans. For structural images, we used a spatially unbiased infratentorial template toolbox to isolate the cerebellum and then preformed voxel-based morphometry (VBM) analyses to assess the difference in cerebellar gray matter volume (GMV) between the two groups. For the functional images, we chose the clusters that survived from VBM analysis as seeds and performed functional connectivity (FC) analysis. Between-group differences were assessed using the independent Students t test or the nonparametric Mann-Whitney U Test. For multiple comparisons, the results were further corrected with Gaussian random field (GRF) approach (voxel-level P < 0.001, cluster-level P < 0.05). RESULTS Compared with healthy controls, BP-I patients showed significantly decreased GMV in left lobule V and left lobule VI (P < 0.05, GRF corrected). The FC of cerebellum with bilateral superior temporal gyrus, bilateral insula, bilateral rolandic operculum, right putamen, and left precentral gyrus was disrupted in BP-I patients (P < 0.05, GRF corrected). CONCLUSIONS BP-I patients showed decreased cerebellar GMV and disrupted cerebellar-cortex resting-state FC. This suggests that cerebellar abnormalities may play an important role in the pathogenesis of BP-I.
Collapse
Affiliation(s)
- Liqian Cui
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| | - Hao Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Jin Biao Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Huixing Zeng
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yizhi Zhang
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Wenhao Deng
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Wenjin Zhou
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Liping Cao
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China.
| |
Collapse
|
17
|
Deng R, Yang X, Meng YJ, Tao YJ, Wang HY, Li XJ, Wei W, Yu H, Wang Q, Deng W, Zhao LS, Ma XH, Li ML, Xu JJ, Li J, Liu YS, Tang Z, Du XD, Coid JW, Greenshaw AJ, Li T, Guo WJ. Data-driven study on resting-state functional magnetic resonance imaging during early abstinence of alcohol dependence in male patients and its predictive value for relapse. BMC Psychiatry 2022; 22:143. [PMID: 35193538 PMCID: PMC8862392 DOI: 10.1186/s12888-022-03782-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/15/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alcohol dependence is a mental disorder with a high relapse rate. However, specific neuroimaging biomarkers have not been determined for alcohol dependence and its relapse. We conducted data-driven research to investigate resting-state functional magnetic resonance imaging (rs-fMRI) during early abstinence from alcohol dependence and its potential ability to predict relapse. METHODS Participants included 68 alcohol-dependent patients and 68 healthy controls (HCs). The regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFF) were compared between the alcohol dependence group and the HCs and between the relapse group and the nonrelapse group. The brain regions that presented significantly different ReHo and/or fALFF between the alcohol-dependent patients and HCs and/or between the relapsed and nonrelapsed patients were selected as the seeds to calculate the functional connectivities (FCs). RESULTS During a 6-month follow-up period, 52.24% of alcohol-dependent patients relapsed. A regression model for differentiating alcohol-dependent patients and HCs showed that reductions in ReHo in the left postcentral region, fALFF in the right fusiform region, and FC in the right fusiform region to the right middle cingulum were independently associated with alcohol dependence, with an area under the receiver operating characteristic curve (AUC) of 0.841. The baseline FC of the left precentral to the left cerebellum of the relapse group was significantly lower than that of the nonrelapse group. The AUC of this FC to predict relapse was 0.774. CONCLUSIONS Our findings contribute to advancing research on the neurobiological etiology and predictive biomarkers for relapse associated with alcohol dependence.
Collapse
Affiliation(s)
- Renhao Deng
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Xia Yang
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Ya-jing Meng
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Yu-jie Tao
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Hui-yao Wang
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Xiao-jing Li
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Wei Wei
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Hua Yu
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Qiang Wang
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Wei Deng
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Lian-sheng Zhao
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Xiao-hong Ma
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Ming-li Li
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Jia-jun Xu
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Jing Li
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Yan-song Liu
- grid.263761.70000 0001 0198 0694Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu China
| | - Zhen Tang
- grid.263761.70000 0001 0198 0694Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu China
| | - Xiang-dong Du
- grid.263761.70000 0001 0198 0694Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu China
| | - Jeremy W. Coid
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Andrew J. Greenshaw
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada
| | - Tao Li
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China ,grid.13291.380000 0001 0807 1581Center for Educational and Health Psychology, Sichuan University, Chengdu, People’s Republic of China
| | - Wan-jun Guo
- grid.412901.f0000 0004 1770 1022Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| |
Collapse
|
18
|
Hoddinott JD, Schuit D, Grahn JA. Comparisons between short-term memory systems for verbal and rhythmic stimuli. Neuropsychologia 2021; 163:108080. [PMID: 34728240 DOI: 10.1016/j.neuropsychologia.2021.108080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
Auditory short-term memory is often conceived of as a unitary capacity, with memory for different auditory materials (such as syllables, pitches, rhythms) posited to rely on similar neural mechanisms. One spontaneous behavior observed in short-term memory studies is 'chunking'. For example, individuals often recount digit sequences in groups, or chunks, of 3-4 digits, and chunking is associated with better performance. Chunking may also operate in musical rhythm, with beats acting as potential chunk boundaries for tones in rhythmic sequences. Similar to chunking, beat-based structure in rhythms also improves performance. Thus, it is possible that beat processing relies on the same mechanisms that underlie chunking of verbal material. The current fMRI study examined whether beat perception is indeed a type of chunking, measuring brain responses to chunked and 'unchunked' letter sequences relative to beat-based and non-beat-based rhythmic sequences. Participants completed a sequence discrimination task, and comparisons between stimulus encoding, maintenance, and discrimination were made for both rhythmic and verbal sequences. Overall, rhythm and verbal short-term memory networks overlapped substantially. When contrasting rhythmic and verbal conditions, rhythms activated basal ganglia, supplementary motor area, and anterior insula more than letter strings did, during both encoding and discrimination. Verbal letter strings activated bilateral auditory cortex more than rhythms did during encoding, and parietal cortex, precuneus, and middle frontal gyri more than rhythms did during discrimination. Importantly, there was a significant interaction in the basal ganglia during encoding: activation for beat-based rhythms was greater than for non-beat-based rhythms, but verbal chunked and unchunked conditions did not differ. The interaction indicates that beat perception is not simply a case of chunking, suggesting a dissociation between beat processing and chunking-based grouping mechanisms.
Collapse
Affiliation(s)
- Joshua D Hoddinott
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada; Neuroscience Program, University of Western Ontario, London, Ontario, Canada
| | - Dirk Schuit
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Jessica A Grahn
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario Canada.
| |
Collapse
|
19
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
20
|
Lorca-Puls DL, Gajardo-Vidal A, Oberhuber M, Prejawa S, Hope TMH, Leff AP, Green DW, Price CJ. Brain regions that support accurate speech production after damage to Broca's area. Brain Commun 2021; 3:fcab230. [PMID: 34671727 PMCID: PMC8523882 DOI: 10.1093/braincomms/fcab230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Broca’s area in the posterior half of the left inferior frontal gyrus has traditionally been considered an important node in the speech production network. Nevertheless, recovery of speech production has been reported, to different degrees, within a few months of damage to Broca’s area. Importantly, contemporary evidence suggests that, within Broca’s area, its posterior part (i.e. pars opercularis) plays a more prominent role in speech production than its anterior part (i.e. pars triangularis). In this study, we therefore investigated the brain activation patterns that underlie accurate speech production following stroke damage to the opercular part of Broca’s area. By combining functional MRI and 13 tasks that place varying demands on speech production, brain activation was compared in (i) seven patients of interest with damage to the opercular part of Broca’s area; (ii) 55 neurologically intact controls; and (iii) 28 patient controls with left-hemisphere damage that spared Broca’s area. When producing accurate overt speech responses, the patients with damage to the left pars opercularis activated a substantial portion of the normal bilaterally distributed system. Within this system, there was a lesion-site-dependent effect in a specific part of the right cerebellar Crus I where activation was significantly higher in the patients with damage to the left pars opercularis compared to both neurologically intact and patient controls. In addition, activation in the right pars opercularis was significantly higher in the patients with damage to the left pars opercularis relative to neurologically intact controls but not patient controls (after adjusting for differences in lesion size). By further examining how right Crus I and right pars opercularis responded across a range of conditions in the neurologically intact controls, we suggest that these regions play distinct roles in domain-general cognitive control. Finally, we show that enhanced activation in the right pars opercularis cannot be explained by release from an inhibitory relationship with the left pars opercularis (i.e. dis-inhibition) because right pars opercularis activation was positively related to left pars opercularis activation in neurologically intact controls. Our findings motivate and guide future studies to investigate (i) how exactly right Crus I and right pars opercularis support accurate speech production after damage to the opercular part of Broca’s area and (ii) whether non-invasive neurostimulation to one or both of these regions boosts speech production recovery after damage to the opercular part of Broca’s area.
Collapse
Affiliation(s)
- Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | | | - Marion Oberhuber
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Susan Prejawa
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Alexander P Leff
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - David W Green
- Department of Experimental Psychology, University College London, London, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
21
|
Taing AS, Mundy ME, Ponsford JL, Spitz G. Aberrant modulation of brain activity underlies impaired working memory following traumatic brain injury. Neuroimage Clin 2021; 31:102777. [PMID: 34343728 PMCID: PMC8350067 DOI: 10.1016/j.nicl.2021.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/19/2022]
Abstract
Impaired working memory is a common and disabling consequence of traumatic brain injury (TBI) that is caused by aberrant brain processing. However, little is known about the extent to which deficits are perpetuated by specific working memory subprocesses. Using a combined functional magnetic resonance imaging (fMRI) and working memory paradigm, we tested the hypothesis that the pattern of brain activation subserving working memory following TBI would interact with both task demands and specific working memory subcomponents: encoding, maintenance, and retrieval. Forty-three patients with moderate-severe TBI, of whom 25 were in the acute phase of recovery (M = 2.16 months, SD = 1.48 months, range = 0.69 - 6.64 months) and 18 in the chronic phase of recovery (M = 23.44 months, SD = 6.76 months, range = 13.35 - 34.82 months), were compared with 38 demographically similar healthy controls. Behaviourally, we found that working memory deficits were confined to the high cognitive load trials in both acute (P = 0.006) and chronic (P = 0.024) cohorts. Furthermore, results for a subset of the sample (18 chronic TBI and 17 healthy controls) who underwent fMRI revealed that the TBI group showed reduced brain activation when simply averaged across all task trials (regardless of cognitive load or subcomponent). However, interrogation of the subcomponents of working memory revealed a more nuanced pattern of activation. When examined more closely, patterns of brain activity following TBI were found to interact with both task demands and the working memory subcomponent: increased activation was observed during encoding in the left inferior occipital gyrus whereas decreased activation was apparent during maintenance in the bilateral cerebellum and left calcarine sulcus. Taken together, findings indicate an inability to appropriately modulate brain activity according to task demand that is specific to working memory encoding and maintenance.
Collapse
Affiliation(s)
- Abbie S Taing
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia; Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia.
| | - Matthew E Mundy
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jennie L Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia; Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - Gershon Spitz
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia; Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| |
Collapse
|
22
|
Skipper JI, Lametti DR. Speech Perception under the Tent: A Domain-general Predictive Role for the Cerebellum. J Cogn Neurosci 2021; 33:1517-1534. [PMID: 34496370 DOI: 10.1162/jocn_a_01729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The role of the cerebellum in speech perception remains a mystery. Given its uniform architecture, we tested the hypothesis that it implements a domain-general predictive mechanism whose role in speech is determined by connectivity. We collated all neuroimaging studies reporting cerebellar activity in the Neurosynth database (n = 8206). From this set, we found all studies involving passive speech and sound perception (n = 72, 64% speech, 12.5% sounds, 12.5% music, and 11% tones) and speech production and articulation (n = 175). Standard and coactivation neuroimaging meta-analyses were used to compare cerebellar and associated cortical activations between passive perception and production. We found distinct regions of perception- and production-related activity in the cerebellum and regions of perception-production overlap. Each of these regions had distinct patterns of cortico-cerebellar connectivity. To test for domain-generality versus specificity, we identified all psychological and task-related terms in the Neurosynth database that predicted activity in cerebellar regions associated with passive perception and production. Regions in the cerebellum activated by speech perception were associated with domain-general terms related to prediction. One hallmark of predictive processing is metabolic savings (i.e., decreases in neural activity when events are predicted). To test the hypothesis that the cerebellum plays a predictive role in speech perception, we examined cortical activation between studies reporting cerebellar activation and those without cerebellar activation during speech perception. When the cerebellum was active during speech perception, there was far less cortical activation than when it was inactive. The results suggest that the cerebellum implements a domain-general mechanism related to prediction during speech perception.
Collapse
Affiliation(s)
| | - Daniel R Lametti
- University College London.,Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
23
|
Effect of blast-related mTBI on the working memory system: a resting state fMRI study. Brain Imaging Behav 2021; 14:949-960. [PMID: 30519997 DOI: 10.1007/s11682-018-9987-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reduced working memory is frequently reported by Veterans with a history of blast-related mild traumatic brain injury (mTBI), but can be difficult to quantify on neuropsychological measures. This study aimed to improve our understanding of the impact of blast-related mTBI on the working memory system by using resting state functional magnetic resonance imaging (fMRI) to explore differences in functional connectivity between OEF/OIF/OND Veterans with and without a history of mTBI. Participants were twenty-four Veterans with a history of blast-related mTBI and 17 Veterans who were deployed but had no lifetime history of TBI. Working memory ability was evaluated with the Auditory Consonants Trigrams (ACT) task. Resting state fMRI was used to evaluate intrinsic functional connectivity from frontal seed regions that are known components of the working memory network. No significant group differences were found on the ACT, but the imaging analyses revealed widespread hyper-connectivity from the frontal seed regions in the Veterans with a history of mTBI relative to the deployed control group. Further, within the mTBI group, but not the control group, better performance on the ACT was associated with increased functional connectivity to multiple brain regions, including cerebellar components of the working memory network. These results were present after controlling for age, PTSD symptoms, and estimated premorbid IQ, and suggest that long-term alterations in the functional connectivity of the working memory network following blast-related mTBI may reflect a compensatory change that contributes to intact performance on an objective measure of working memory.
Collapse
|
24
|
Peterburs J, Liang Y, Cheng DT, Desmond JE. Sensory acquisition functions of the cerebellum in verbal working memory. Brain Struct Funct 2021; 226:833-844. [PMID: 33481104 PMCID: PMC7981326 DOI: 10.1007/s00429-020-02212-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 12/30/2020] [Indexed: 11/03/2022]
Abstract
Several fMRI studies have shown that the superior cerebellum exhibits load-dependent activations during encoding of letters in a Sternberg verbal working memory (VWM) task. It has been hypothesized that the cerebellum regulates the acquisition of sensory data across all modalities, and thus, that VWM load activations may reflect high- vs low-load differences in sensory acquisition demands. Therefore, increased difficulty in sensory data acquisition should elicit greater activation in the cerebellum. The present fMRI study manipulated sensory acquisition in VWM by presenting visually degraded and non-degraded stimuli with high and low memory loads, thereby identifying load-dependent regions of interest in the cerebellum, and then testing if these regions showed greater activation for degraded stimuli. Results yielded partial support for the sensory acquisition hypothesis in a load-dependent region of the vermis, which showed significantly greater activation for degraded relative to non-degraded stimuli. Because eye movements did not differ for these stimulus types, and degradation-related activations were present after co-varying eye movements, this activation appears to be related to perceptual rather than oculomotor demands. In contrast to the vermis, load-sensitive regions of the cerebellar hemispheres did not show increased activation for degraded stimuli. These findings point to an overall function of association-based prediction that may underlie general cerebellar function, with perceptual prediction of stimuli from partial representations occurring in the vermis, and articulatory prediction occurring in the hemispheres.
Collapse
Affiliation(s)
- Jutta Peterburs
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Psychology, Heinrich-Heine-University, Institute of Experimental Psychology, Düsseldorf, Germany.
- Department of Medicine, Medical Psychology, MSH Medical School Hamburg, Hamburg, Germany.
| | - Yu Liang
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dominic T Cheng
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychology, Auburn University, Auburn, AL, USA
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Brissenden JA, Tobyne SM, Halko MA, Somers DC. Stimulus-Specific Visual Working Memory Representations in Human Cerebellar Lobule VIIb/VIIIa. J Neurosci 2021; 41:1033-1045. [PMID: 33214320 PMCID: PMC7880273 DOI: 10.1523/jneurosci.1253-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/21/2022] Open
Abstract
fMRI research has revealed that cerebellar lobule VIIb/VIIIa exhibits load-dependent activity that increases with the number of items held in visual working memory (VWM). However, it remains unclear whether these cerebellar responses reflect processes specific to VWM or more general visual attentional mechanisms. To investigate this question, we examined whether cerebellar activity during the delay period of a VWM task is selective for stimuli held in working memory. A sample of male and female human subjects performed a VWM continuous report task in which they were retroactively cued to remember the direction of motion of moving dot stimuli. Cerebellar lobule VIIb/VIIIa delay-period activation accurately decoded the direction of the remembered stimulus, as did frontal and parietal regions of the dorsal attention network. Arguing against a motor explanation, no other cerebellar area exhibited stimulus specificity, including the oculomotor vermis, a key area associated with eye movement control. Finer-scale analysis revealed that the medial portion of lobule VIIb and to a lesser degree the lateral most portion of lobules VIIb and VIIIa, which exhibit robust resting state connectivity with frontal and parietal regions of the dorsal attention network, encoded the identity of the remembered stimulus, while intermediate portions of lobule VIIb/VIIIa did not. These findings of stimulus-specific coding of VWM within lobule VIIb/VIIIa indicate for the first time that the distributed network responsible for the encoding and maintenance of mnemonic representations extends to the cerebellum.SIGNIFICANCE STATEMENT There is considerable debate concerning where in the brain the contents of visual working memory (VWM) are stored. To date, this literature has primarily focused on the role of regions located within cerebral cortex. There is growing evidence for cerebellar involvement in higher-order cognitive functions including working memory. While the cerebellum has been previously shown to be recruited by VWM paradigms, it is unclear whether any portion of cerebellum actively encodes and maintains mnemonic representations. The present study demonstrates that cerebellar lobule VIIb/VIIIa activity patterns are selective for remembered stimuli and that this selectivity persists in the absence of perceptual input. These findings provide novel evidence for the participation of cerebellar structures in the persistent storage of visual information.
Collapse
Affiliation(s)
- James A Brissenden
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
| | - Sean M Tobyne
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Mark A Halko
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, 02478; Harvard Medical School, Boston, MA, 02115
| | - David C Somers
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
26
|
Boyraz RK, Kirpinar I, Yilmaz O, Özyurt O, Kiliçarslan T, Aralasmak A. A Treatment-Response Comparison Study of Resting-State Functional Magnetic Resonance Imaging Between Standard Treatment of SSRI and Standard Treatment of SSRI Plus Non-dominant Hand-Writing Task in Patients With Major Depressive Disorder. Front Psychiatry 2021; 12:698954. [PMID: 34539460 PMCID: PMC8446543 DOI: 10.3389/fpsyt.2021.698954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Researches have recently shifted from functional/structural imaging studies to functional connectivity (FC) studies in major depressive disorder (MDD). We aimed to compare treatment response of two treatment groups before and after treatment, in terms of both with psychiatric evaluation scales and resting-state functional connectivity (RSFC) changes in order to objectively demonstrate the possible contribution of the non-dominant hand-writing exercise (NHE) effect on depression treatment. Methods: A total of 26 patients who were right-handed women with similar sociodemographic characteristics were enrolled. Their pre-treatment resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychiatric tests were recorded, and then, patients were divided into two groups randomly. A standard treatment (ST) (fix sertraline 50 mg/day) was given to both groups. One randomly selected group was given the NHE in addition to the ST. After 8 weeks of treatment, all patients were reevaluated with rs-fMRI and neuropsychiatric tests. Pre- and post-treatment FC changes within the groups and post-treatment connectivity changes between groups were evaluated. Results: Post-treatment neuropsychiatric tests were significantly different in both groups. Post-treatment, two brain regions' connectivity changed in the ST group, whereas 10 brain regions' connectivity changed significantly in the ST + NHE group. When treatment groups were compared with each other after the treatment, the FC of 13 regions changed in the ST + NHE group compared to the ST group (p-unc/p-PFD <0.05). The density of connectivity changes in the frontal and limbic regions, especially connectivities shown to change in depression treatment, in the ST + NHE group indicates a positive contribution to depression treatment, which is also supported by neuropsychiatric scale changes. Conclusion: NHE, which we developed with inspiration from the Eye Movement Desensitization and Reprocessing (EMDR) method, showed significantly more connecitivity changes related with MDD treatment. Beyond offering a new additional treatment method, our study will also contribute to the current literature with our efforts to evaluate all brain regions and networks that may be related to MDD and its treatment together, without being limited to a few regions. Trial Registration: The rs-fMRI and treatment registers were recorded in the BizMed system, which is the patient registration system of Bezmialem Vakif University Medicine Faculty, under the BAP support project approval code and the registration number 3.2018/8.
Collapse
Affiliation(s)
- Rabia Kevser Boyraz
- Bezmialem VAKIF University, Department of Psychiatry, School of Medicine, Istanbul, Turkey
| | - Ismet Kirpinar
- Bezmialem VAKIF University, Department of Psychiatry, School of Medicine, Istanbul, Turkey
| | - Onur Yilmaz
- Bezmialem VAKIF University, Department of Psychiatry, School of Medicine, Istanbul, Turkey
| | - Onur Özyurt
- Bogaziçi University, Bogaziçi Engineering Institute, Istanbul, Turkey
| | - Tezer Kiliçarslan
- Bezmialem VAKIF University, Department of Psychiatry, School of Medicine, Istanbul, Turkey
| | - Ayse Aralasmak
- Bezmialem Vakıf University, Department of Radiology, School of Medicine, Istanbul, Turkey
| |
Collapse
|
27
|
Tse NY, Chen Y, Irish M, Cordato NJ, Landin-Romero R, Hodges JR, Piguet O, Ahmed RM. Cerebellar contributions to cognition in corticobasal syndrome and progressive supranuclear palsy. Brain Commun 2021; 2:fcaa194. [PMID: 33381758 PMCID: PMC7753056 DOI: 10.1093/braincomms/fcaa194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023] Open
Abstract
Mounting evidence suggests an association between cerebellar atrophy and cognitive impairment in the main frontotemporal dementia syndromes. In contrast, whether cerebellar atrophy is present in the motor syndromes associated with frontotemporal lobar degeneration (corticobasal syndrome and progressive supranuclear palsy) and the extent of its contribution to their cognitive profile remain poorly understood. The current study aimed to comprehensively chart profiles of cognitive impairment in relation to cerebellar atrophy in 49 dementia patients (corticobasal syndrome = 33; progressive supranuclear palsy = 16) compared to 33 age-, sex- and education-matched healthy controls. Relative to controls, corticobasal syndrome and progressive supranuclear palsy patients demonstrated characteristic cognitive impairment, spanning the majority of cognitive domains including attention and processing speed, language, working memory, and executive function with relative preservation of verbal and nonverbal memory. Voxel-based morphometry analysis revealed largely overlapping patterns of cerebellar atrophy in corticobasal syndrome and progressive supranuclear palsy relative to controls, primarily involving bilateral Crus II extending into adjacent lobules VIIb and VIIIa. After controlling for overall cerebral atrophy and disease duration, exploratory voxel-wise general linear model analysis revealed distinct cerebellar subregions differentially implicated across cognitive domains in each patient group. In corticobasal syndrome, reduction in grey matter intensity in the left Crus I was significantly correlated with executive dysfunction. In progressive supranuclear palsy, integrity of the vermis and adjacent right lobules I-IV was significantly associated with language performance. These results are consistent with the well-established role of Crus I in executive functions and provide further supporting evidence for vermal involvement in cognitive processing. The current study presents the first detailed exploration of the role of cerebellar atrophy in cognitive deficits in corticobasal syndrome and progressive supranuclear palsy, offering insights into the cerebellum's contribution to cognitive processing even in neurodegenerative syndromes characterized by motor impairment.
Collapse
Affiliation(s)
- Nga Yan Tse
- Central Sydney Medical School and Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Yu Chen
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Muireann Irish
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Nicholas J Cordato
- Faculty of Medicine, The University of New South Wales, Sydney, Australia.,The Department of Aged Care, St George Hospital, Kogarah, Australia.,Calvary Health Care Sydney, Kogarah, Australia
| | - Ramon Landin-Romero
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - John R Hodges
- Central Sydney Medical School and Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Olivier Piguet
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Rebekah M Ahmed
- Central Sydney Medical School and Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
28
|
Morgan OP, Slapik MB, Iannuzzelli KG, LaConte SM, Lisinski JM, Nopoulos PC, Cochran AM, Kronemer SI, Rosenthal LS, Marvel CL. The Cerebellum and Implicit Sequencing: Evidence from Cerebellar Ataxia. THE CEREBELLUM 2020; 20:222-245. [PMID: 33123963 DOI: 10.1007/s12311-020-01206-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
The cerebellum recognizes sequences from prior experiences and uses this information to generate internal models that predict future outcomes in a feedforward manner [Front Hum Neurosci 8: 475, 2014; Cortex 47: 137-44, 2011; Cerebellum 7: 611-5, 2008; J Neurosci 26: 9107-16, 2006]. This process has been well documented in the motor domain, but the cerebellum's role in cognitive sequencing, within the context of implicit versus explicit processes, is not well characterized. In this study, we tested individuals with cerebellar ataxia and healthy controls to clarify the role of the cerebellum sequencing using variations on implicit versus explicit and motor versus cognitive demands across five experiments. Converging results across these studies suggest that cerebellar feedforward mechanisms may be necessary for sequencing in the implicit domain only. In the ataxia group, rhythmic tapping, rate of motor learning, and implicit sequence learning were impaired. However, for cognitive sequencing that could be accomplished using explicit strategies, the cerebellar group performed normally, as though they shifted to extra-cerebellar mechanisms to compensate. For example, when cognitive and motor functions relied on cerebellar function simultaneously, the ataxia group's motor function was unaffected, in contrast to that of controls whose motor performance declined as a function of cognitive load. These findings indicated that the cerebellum is not critical for all forms of sequencing per se. Instead, it plays a fundamental role for sequencing within the implicit domain, whether functions are motor or cognitive. Moreover, individuals with cerebellar ataxia are generally able to compensate for cognitive sequencing when explicit strategies are available in order to preserve resources for motor function.
Collapse
Affiliation(s)
- Owen P Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mitchell B Slapik
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Stephen M LaConte
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Jonathan M Lisinski
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Peg C Nopoulos
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ashley M Cochran
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sharif I Kronemer
- Interdepartmental Neuroscience Program and the Department of Neurology, Yale University, New Haven, CT, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cherie L Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- , Baltimore, MD, 21205, USA.
| |
Collapse
|
29
|
Using rat operant delayed match-to-sample task to identify neural substrates recruited with increased working memory load. ACTA ACUST UNITED AC 2020; 27:467-476. [PMID: 33060284 PMCID: PMC7571269 DOI: 10.1101/lm.052134.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/17/2020] [Indexed: 11/25/2022]
Abstract
The delayed match-to-sample task (DMS) is used to probe working memory (WM) across species. While the involvement of the PFC in this task has been established, limited information exists regarding the recruitment of broader circuitry, especially under the low- versus high-WM load. We sought to address this question by using a variable-delay operant DMS task. Male Sprague-Dawley rats were trained and tested to determine their baseline WM performance across all (0- to 24-sec) delays. Next, rats were tested in a single DMS test with either 0- or 24-sec fixed delay, to assess low-/high-load WM performance. c-Fos mRNA expression was quantified within cortical and subcortical regions and correlated with WM performance. High WM load up-regulated overall c-Fos mRNA expression within the PrL, as well as within a subset of mGlu5+ cells, with load-dependent, local activation of protein kinase C (PKC) as the proposed underlying molecular mechanism. The PrL activity negatively correlated with choice accuracy during high load WM performance. A broader circuitry, including several subcortical regions, was found to be activated under low and/or high load conditions. These findings highlight the role of mGlu5- and/or PKC-dependent signaling within the PrL, and corresponding recruitment of subcortical regions during high-load WM performance.
Collapse
|
30
|
Dellatolas G, Câmara-Costa H. The role of cerebellum in the child neuropsychological functioning. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:265-304. [PMID: 32958180 DOI: 10.1016/b978-0-444-64150-2.00023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter proposes a review of neuropsychologic and behavior findings in pediatric pathologies of the cerebellum, including cerebellar malformations, pediatric ataxias, cerebellar tumors, and other acquired cerebellar injuries during childhood. The chapter also contains reviews of the cerebellar mutism/posterior fossa syndrome, reported cognitive associations with the development of the cerebellum in typically developing children and subjects born preterm, and the role of the cerebellum in neurodevelopmental disorders such as autism spectrum disorders and developmental dyslexia. Cognitive findings in pediatric cerebellar disorders are considered in the context of known cerebellocerebral connections, internal cellular organization of the cerebellum, the idea of a universal cerebellar transform and computational internal models, and the role of the cerebellum in specific cognitive and motor functions, such as working memory, language, timing, or control of eye movements. The chapter closes with a discussion of the strengths and weaknesses of the cognitive affective syndrome as it has been described in children and some conclusions and perspectives.
Collapse
Affiliation(s)
- Georges Dellatolas
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France.
| | - Hugo Câmara-Costa
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France; Centre d'Etudes en Santé des Populations, INSERM U1018, Paris, France
| |
Collapse
|
31
|
Jackson TB, Maldonado T, Eakin SM, Orr JM, Bernard JA. Cerebellar and prefrontal-cortical engagement during higher-order rule learning in older adulthood. Neuropsychologia 2020; 148:107620. [PMID: 32920030 DOI: 10.1016/j.neuropsychologia.2020.107620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022]
Abstract
To date most aging research has focused on cortical systems and networks, ignoring the cerebellum which has been implicated in both cognitive and motor function. Critically, older adults (OA) show marked differences in cerebellar volume and functional networks, suggesting it may play a key role in the behavioral differences observed in advanced age. OA may be less able to recruit cerebellar resources due to network and structural differences. Here, 26 young adults (YA) and 25 OA performed a second-order learning task, known to activate the cerebellum in the fMRI environment. Behavioral results indicated that YA performed significantly better and learned more quickly compared to OA. Functional imaging detailed robust parietal and cerebellar activity during learning (compared to control) blocks within each group. OA showed increased activity (relative to YA) in the left inferior parietal lobe in response to instruction cues during learning (compared to control); whereas, YA showed increased activity (relative to OA) in the left anterior cingulate to feedback cues during learning, potentially explaining age-related performance differences. Visual interpretation of effect size maps showed more bilateral posterior cerebellar activation in OA compared to YA during learning blocks, but early learning showed widespread cerebellar activation in YA compared to OA. There were qualitatively large age-related differences in cerebellar recruitment in terms of effect sizes, yet no statistical difference. These findings serve to further elucidate age-related differences and similarities in cerebellar and cortical brain function and implicate the cerebellum and its networks as regions of interest in aging research.
Collapse
Affiliation(s)
- T Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA.
| | - Ted Maldonado
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Sydney M Eakin
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Joseph M Orr
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, USA
| |
Collapse
|
32
|
D'Mello AM, Centanni TM, Gabrieli JDE, Christodoulou JA. Cerebellar contributions to rapid semantic processing in reading. BRAIN AND LANGUAGE 2020; 208:104828. [PMID: 32688288 PMCID: PMC7501994 DOI: 10.1016/j.bandl.2020.104828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Anila M D'Mello
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, 46-4033 Cambridge, MA 02139, USA.
| | - Tracy M Centanni
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, 46-4033 Cambridge, MA 02139, USA; Department of Psychology, Texas Christian University, 2800 South University Drive, Fort Worth, TX 76129, USA.
| | - John D E Gabrieli
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, 46-4033 Cambridge, MA 02139, USA; Harvard Graduate School of Education, 14 Appian Way, Cambridge, MA 02138, USA.
| | - Joanna A Christodoulou
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, 46-4033 Cambridge, MA 02139, USA; MGH Institute of Health Professions, Department of Communication Sciences and Disorders, 36 First Avenue, Boston, MA 02129, USA; Harvard Graduate School of Education, 14 Appian Way, Cambridge, MA 02138, USA.
| |
Collapse
|
33
|
Buaron B, Reznik D, Gilron R, Mukamel R. Voluntary Actions Modulate Perception and Neural Representation of Action-Consequences in a Hand-Dependent Manner. Cereb Cortex 2020; 30:6097-6107. [PMID: 32607565 DOI: 10.1093/cercor/bhaa156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Evoked neural activity in sensory regions and perception of sensory stimuli are modulated when the stimuli are the consequence of voluntary movement, as opposed to an external source. It has been suggested that such modulations are due to motor commands that are sent to relevant sensory regions during voluntary movement. However, given the anatomical-functional laterality bias of the motor system, it is plausible that the pattern of such behavioral and neural modulations will also exhibit a similar bias, depending on the effector triggering the stimulus (e.g., right/left hand). Here, we examined this issue in the visual domain using behavioral and neural measures (fMRI). Healthy participants judged the relative brightness of identical visual stimuli that were either self-triggered (using right/left hand button presses), or triggered by the computer. Stimuli were presented either in the right or left visual field. Despite identical physical properties of the visual consequences, we found stronger perceptual modulations when the triggering hand was ipsi- (rather than contra-) lateral to the stimulated visual field. Additionally, fMRI responses in visual cortices differentiated between stimuli triggered by right/left hand. Our findings support a model in which voluntary actions induce sensory modulations that follow the anatomical-functional bias of the motor system.
Collapse
Affiliation(s)
- Batel Buaron
- Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Daniel Reznik
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Ro'ee Gilron
- Department of Neurological Surgery, UCSF School of Medicine, UCSF, San Francisco, CA 94115, USA
| | - Roy Mukamel
- Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
34
|
Yamashita M. Potential Role of Neuroactive Tryptophan Metabolites in Central Fatigue: Establishment of the Fatigue Circuit. Int J Tryptophan Res 2020; 13:1178646920936279. [PMID: 32647476 PMCID: PMC7325545 DOI: 10.1177/1178646920936279] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Central fatigue leads to reduced ability to perform mental tasks, disrupted social life, and impaired brain functions from childhood to old age. Regarding the neurochemical mechanism, neuroactive tryptophan metabolites are thought to play key roles in central fatigue. Previous studies have supported the “tryptophan-serotonin enhancement hypothesis” in which tryptophan uptake into extensive brain regions enhances serotonin production in the rat model of exercise-induced fatigue. However, serotonin was transiently released after 30 minutes of treadmill running to exhaustion, but this did not reflect the duration of fatigue. In addition, as the vast majority of tryptophan is metabolized along the kynurenine pathway, possible involvement of the tryptophan-kynurenine pathway in the mechanism of central fatigue induction has been pointed out. More recently, our study demonstrated that uptake of tryptophan and kynurenine derived from the peripheral circulation into the brain enhances kynurenic acid production in rat brain in sleep deprivation–induced central fatigue, but without change in serotonin activity. In particular, dynamic change in glial-neuronal interactive processes within the hypothalamus-hippocampal circuit causes central fatigue. Furthermore, increased tryptophan-kynurenine pathway activity in this circuit causes reduced memory function. This indicates a major potential role for the endogenous tryptophan-kynurenine pathway in central fatigue, which supports the “tryptophan-kynurenine enhancement hypothesis.” Here, we review research on the basic neuronal mechanism underlying central fatigue induced by neuroactive tryptophan metabolites. Notably, these basic findings could contribute to our understanding of latent mental problems associated with central fatigue.
Collapse
Affiliation(s)
- Masatoshi Yamashita
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Seese RR. Working Memory Impairments in Cerebellar Disorders of Childhood. Pediatr Neurol 2020; 107:16-23. [PMID: 32276741 DOI: 10.1016/j.pediatrneurol.2020.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
The cerebellum is a crucial center for motor control and integration. Increasing evidence supports the notion that the cerebellum is also involved in nonmotor functions. Along these lines, multiple cerebellar disorders of childhood and adulthood are associated with behavioral and cognitive symptoms, including impairments in memory. One form of memory commonly affected in cerebellar disorders is working memory, which uses attention to manipulate information that is immediately available to execute cognitive tasks. This article reviews the literature illustrating that working memory impairments are frequently observed in acquired, congenital, and genetic/developmental cerebellar disorders of childhood. Functional neuroimaging studies demonstrate that working memory tasks engage many posterior regions of the cerebellar hemispheres and vermis. Thus, the cerebellum acts as one important node in the working memory circuit, and when the cerebellum is involved in childhood disorders, deficits in working memory commonly occur.
Collapse
Affiliation(s)
- Ronald R Seese
- Division of Child Neurology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
36
|
Bezdicek O, Ballarini T, Albrecht F, Libon DJ, Lamar M, Růžička F, Roth J, Hurlstone MJ, Mueller K, Schroeter ML, Jech R. SERIAL-ORDER recall in working memory across the cognitive spectrum of Parkinson's disease and neuroimaging correlates. J Neuropsychol 2020; 15:88-111. [PMID: 32394540 DOI: 10.1111/jnp.12208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/26/2019] [Indexed: 02/06/2023]
Abstract
We sought to determine if Parkinson's disease (PD) with mild cognitive impairment (MCI) is associated with a greater SERIAL-ORDER (mental manipulation) than ANY-ORDER (auditory span, storage) deficit in working memory (WM). We investigated WM combining neuropsychological measures with the study of brain functional connectivity. A cohort of 160 patients with idiopathic PD, classified as PD-MCI (n = 87) or PD with normal cognition (PD-NC; n = 73), and 70 matched healthy controls were studied. Verbal WM was assessed with the Backward Digit Span Task (BDT; Lamar et al., 2007, Neuropsychologia, 45, 245), measuring SERIAL-ORDER and ANY-ORDER recall. Resting-state MRI data were collected for 15 PD-MCI, 15 PD-NC and 30 controls. Hypothesis-driven seed-based functional connectivity of the dorsolateral prefrontal cortex (DLPFC) was compared between the three groups and correlated with BDT performance. We found the main effect of the test (impairment in SERIAL ORDER > ANY ORDER) and group ((NC = PD-NC) > PD-MCI) in BDT performance that was even more pronounced in SERIAL ORDER when controlling for ANY ORDER variability but not vice versa. Furthermore, PD-MCI compared to other groups were characterized by the functional disconnection between the bilateral DLPFC and the cerebellum. In functional correlations, DLPFC connectivity was positively related to both SERIAL- and ANY-ORDER performance. In conclusion, PD-MCI patients evidenced greater SERIAL-ORDER (manipulation and cognitive control) than ANY-ORDER (storage) working memory impairment than PD-NC and controls with a disrupted DLPFC resting-state connectivity that was also related to the verbal WM performance.
Collapse
Affiliation(s)
- Ondrej Bezdicek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Franziska Albrecht
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - David J Libon
- School of Osteopathic Medicine, New Jersey Institute for Successful Aging, Departments of Geriatric, Gerontology, and Psychology, Rowan University, Stratford, New Jersey, USA
| | - Melissa Lamar
- Rush Alzheimer's Disease Center, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Filip Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Mark J Hurlstone
- School of Psychology, University of Western Australia, Crawley, Western Australia, Australia
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Clinic, Leipzig, Germany.,FTLD Consortium, Ulm, Germany
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| |
Collapse
|
37
|
Desmond JE, Rice LC, Cheng DT, Hua J, Qin Q, Rilee JJ, Faulkner ML, Sheu YS, Mathena JR, Wand GS, McCaul ME. Changes in Hemodynamic Response Function Resulting From Chronic Alcohol Consumption. Alcohol Clin Exp Res 2020; 44:1099-1111. [PMID: 32339317 DOI: 10.1111/acer.14327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/12/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Functional MRI (fMRI) task-related analyses rely on an estimate of the brain's hemodynamic response function (HRF) to model the brain's response to events. Although changes in the HRF have been found after acute alcohol administration, the effects of heavy chronic alcohol consumption on the HRF have not been explored, and the potential benefits or pitfalls of estimating each individual's HRF on fMRI analyses of chronic alcohol use disorder (AUD) are not known. METHODS Participants with AUD and controls (CTL) received structural, functional, and vascular scans. During fMRI, participants were cued to tap their fingers, and averaged responses were extracted from the motor cortex. Curve fitting on these HRFs modeled them as a difference between 2 gamma distributions, and the temporal occurrence of the main peak and undershoot of the HRF was computed from the mean of the first and second gamma distributions, respectively. RESULTS ANOVA and regression analyses found that the timing of the HRF undershoot increased significantly as a function of total lifetime drinking. Although gray matter volume in the motor cortex decreased with lifetime drinking, this was not sufficient to explain undershoot timing shifts, and vascular factors measured in the motor cortex did not differ among groups. Comparison of random-effects analyses using custom-fitted and canonical HRFs for CTL and AUD groups showed better results throughout the brain for custom-fitted versus canonical HRFs for CTL subjects. For AUD subjects, the same was true except for the basal ganglia. CONCLUSIONS These findings suggest that excessive alcohol consumption is associated with changes in the HRF undershoot. HRF changes could provide a possible biomarker for the effects of lifetime drinking on brain function. Changes in HRF topography affect fMRI activation measures, and subject-specific HRFs generally improve fMRI activation results.
Collapse
Affiliation(s)
- John E Desmond
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura C Rice
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dominic T Cheng
- Johns Hopkins University School of Medicine, Baltimore, Maryland.,Auburn University, Auburn, Alabama
| | - Jun Hua
- Johns Hopkins University School of Medicine, Baltimore, Maryland.,Kennedy Krieger Institute, Baltimore, Maryland
| | - Qin Qin
- Johns Hopkins University School of Medicine, Baltimore, Maryland.,Kennedy Krieger Institute, Baltimore, Maryland
| | - Jessica J Rilee
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Yi-Shin Sheu
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joanna R Mathena
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gary S Wand
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary E McCaul
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
Wang Y, Xu Q, Zuo C, Zhao L, Hao L. Longitudinal Changes of Cerebellar Thickness in Autism Spectrum Disorder. Neurosci Lett 2020; 728:134949. [PMID: 32278028 DOI: 10.1016/j.neulet.2020.134949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Many studies have reported abnormal cerebellar volume in patients with autism spectrum disorder (ASD) and that this abnormal volume can change with age. In the present study, we used CERES, an automated and reliable quantitative analysis tool, and adopted a longitudinal design to examine developmental changes in the cerebellar lobular thickness in ASD and quantified the relationship between cerebellar thickness development and clinical symptoms. Nineteen individuals with ASD (16 males; age, 12.53 ± 2.34 years at baseline, interval: 2.33 years) and 14 typically developing controls (TD; 12 males; age, 13.50 ± 1.77 years at baseline, interval: 2.31 years) underwent T1-weighted magnetic resonance imaging at two time points. To explore the relationship between cerebellar lobular thickness and the symptoms of ASD, the correlation of Autism Diagnostic Observation Schedule (ADOS) score with lobular thickness data was calculated. The cerebellar lobule thickness decreased in the right Crus II and the Crus II asymmetry was reduced in individuals with ASD. The reduction in lobular thickness and the asymmetry in Crus II were associated with the severity of stereotyped behavior symptoms. Structural differences and behavioral correlations were concentrated in the right cerebellar Crus II. These results emphasize the importance of the potential functional effect of structural differences in cerebellar subregions on ASD and suggest that the changes of thickness in the right cerebellar Crus II are related to the core profile of ASD.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Jiangsu Provincial Key Laboratory of Special Children's Impairment and Intervention, Nanjing Normal University of Special Education, Nanjing, China
| | - Qinfang Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Jiangsu Provincial Key Laboratory of Special Children's Impairment and Intervention, Nanjing Normal University of Special Education, Nanjing, China.
| | - Chenyi Zuo
- College of Educational Science, Anhui Normal University, Wuhu, China
| | - Liying Zhao
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Lei Hao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| |
Collapse
|
39
|
Uchino H, Kazumata K, Ito M, Nakayama N, Kuroda S, Houkin K. Crossed cerebellar diaschisis as an indicator of severe cerebral hyperperfusion after direct bypass for moyamoya disease. Neurosurg Rev 2020; 44:599-605. [PMID: 32076897 DOI: 10.1007/s10143-020-01265-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
Cerebral hyperperfusion (HP) complicates the postoperative course of patients with moyamoya disease (MMD) after direct revascularization surgery. Crossed cerebellar diaschisis (CCD) has been considered to be rarely associated with HP after revascularization surgery. This study aimed to describe the clinical features and factors associated with CCD secondary to cerebral HP after revascularization surgery for MMD. We analyzed 150 consecutive hemispheres including 101 in adults and 49 in pediatric patients who underwent combined direct and indirect bypass for MMD. Using single-photon emission computed tomography (SPECT), serial cerebral blood flow (CBF) was measured immediately after the surgery and on postoperative days 2 and 7. Pre- and postoperative voxel-based analysis of SPECT findings was performed to compare the changes in regional CBF. Multivariate logistic regression analysis was performed to test the effect of multiple variables on CCD. Asymptomatic and symptomatic HP was observed in 41.3% (62/150) and 16.7% (25/150) of the operated hemispheres, respectively. CCD was observed in 18.4% (16/87) of these hemispheres with radiological HP. Multivariate analysis revealed that the occurrence of CCD was significantly associated with symptomatic HP (p = 0.0015). Voxel-based analysis showed that the CBF increase in the operated frontal cortex, and the CBF reduction in the contralateral cerebellar hemisphere on day 7 were significantly larger in symptomatic HP than in asymptomatic HP (median 11.3% vs 7.5%; - 6.0% vs - 1.7%, respectively). CCD secondary to postoperative HP is more common than anticipated in MMD. CCD could potentially be used as an indicator of severe postoperative HP in patients with MMD.
Collapse
Affiliation(s)
- Haruto Uchino
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, University of Toyama, Toyama, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
40
|
Cardenas VA, Hough CM, Durazzo TC, Meyerhoff DJ. Cerebellar Morphometry and Cognition in the Context of Chronic Alcohol Consumption and Cigarette Smoking. Alcohol Clin Exp Res 2020; 44:102-113. [PMID: 31730240 PMCID: PMC6980879 DOI: 10.1111/acer.14222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebellar atrophy (especially involving the superior-anterior cerebellar vermis) is among the most salient and clinically significant effects of chronic hazardous alcohol consumption on brain structure. Smaller cerebellar volumes are also associated with chronic cigarette smoking. The present study investigated effects of both chronic alcohol consumption and cigarette smoking on cerebellar structure and its relation to performance on select cognitive/behavioral tasks. METHODS Using T1-weighted Magnetic Resonance Images (MRIs), the Cerebellar Analysis Tool Kit segmented the cerebellum into bilateral hemispheres and 3 vermis parcels from 4 participant groups: smoking (s) and nonsmoking (ns) abstinent alcohol-dependent treatment seekers (ALC) and controls (CON) (i.e., sALC, nsALC, sCON, and nsCON). Cognitive and behavioral data were also obtained. RESULTS We found detrimental effects of chronic drinking on all cerebellar structural measures in ALC participants, with largest reductions seen in vermis areas. Furthermore, both smoking groups had smaller volumes of cerebellar hemispheres but not vermis areas compared to their nonsmoking counterparts. In exploratory analyses, smaller cerebellar volumes were related to lower measures of intelligence. In sCON, but not sALC, greater smoking severity was related to smaller cerebellar volume and smaller superior-anterior vermis area. In sALC, greater abstinence duration was associated with larger cerebellar and superior-anterior vermis areas, suggesting some recovery with abstinence. CONCLUSIONS Our results show that both smoking and alcohol status are associated with smaller cerebellar structural measurements, with vermal areas more vulnerable to chronic alcohol consumption and less affected by chronic smoking. These morphometric cerebellar deficits were also associated with lower intelligence and related to duration of abstinence in sALC only.
Collapse
Affiliation(s)
- Valerie A. Cardenas
- Center for Imaging of Neurodegenerative Diseases (CIND),
San Francisco VA Medical Center, San Francisco, CA, USA
| | - Christina M. Hough
- Center for Imaging of Neurodegenerative Diseases (CIND),
San Francisco VA Medical Center, San Francisco, CA, USA
- Department of Psychiatry, UCSF Weill Institute for
Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Psychology, University of California, Los
Angeles, Los Angeles, CA
| | - Timothy C. Durazzo
- VA Palo Alto Health Care System, Mental Illness Research
and Education Clinical Centers, Sierra-Pacific War Related Illness and Injury Study
Center, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford
University School of Medicine, Stanford, CA, USA
| | - Dieter J. Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND),
San Francisco VA Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Gerver CR, Neely KA, Kurkela KA, Diaz MT, Goodman JT, Blouch S, Samimy S, Dennis NA. Shared neural recruitment across working memory and motor control tasks as a function of task difficulty and age. AGING NEUROPSYCHOLOGY AND COGNITION 2019; 27:864-879. [PMID: 31877068 DOI: 10.1080/13825585.2019.1700898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Past research suggests that working memory (WM) and motor control may engage similar cognitive and neural mechanisms in older adults, particularly when task difficulty increases. However, much of this evidence arises from comparisons across behavioral and imaging studies that test only one of the foregoing functional domains. The current study used fMRI within the same group of older adults to investigate whether WM and motor control recruit common mechanisms, and whether recruitment increased with task demand and age. A conjunction analysis across WM and motor tasks revealed engagement of several frontoparietal regions as a function of increasing task demand. A separate conjunction analysis which included age as a predictor showed comparable regions exhibit increased recruitment with both increasing task demand and age. Results suggest that the recruitment of common frontoparietal regions across WM and motor tasks in response to task difficulty is maintained across the older adult lifespan.
Collapse
Affiliation(s)
- Courtney R Gerver
- Department of Psychology, Pennsylvania State University , State College, PA, USA
| | | | - Kyle A Kurkela
- Department of Psychology, Pennsylvania State University , State College, PA, USA
| | - Michele T Diaz
- Department of Psychology, Pennsylvania State University , State College, PA, USA
| | - Jordan T Goodman
- Department of Psychology, Pennsylvania State University , State College, PA, USA
| | - Samantha Blouch
- Department of Kinesiology, Pennsylvania State University , State College, PA, USA
| | - Shaadee Samimy
- Department of Psychology, Pennsylvania State University , State College, PA, USA
| | - Nancy A Dennis
- Department of Psychology, Pennsylvania State University , State College, PA, USA
| |
Collapse
|
42
|
Brissenden JA, Somers DC. Cortico-cerebellar networks for visual attention and working memory. Curr Opin Psychol 2019; 29:239-247. [PMID: 31202085 PMCID: PMC7256875 DOI: 10.1016/j.copsyc.2019.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
Cerebellar cortex, which is cytoarchitectonically homogenous, can be functionally differentiated by connectivity differences across the cerebral cortex. The cerebral cortical dorsal attention network exhibits strong, selective connectivity with a set of cerebellar circuits, including lobule VIIb/VIIIa. Recent findings demonstrate that lobule VIIb/VIIIa exhibits functional properties characteristic of the cortical dorsal attention network: task-specific activation; working memory load-dependent responses; and the representation of visuospatial location. Moreover, functional cortico-cerebellar subnetworks exhibit topographic specialization for different aspects of visual attentional processing. Thus, cerebellar lobule VIIb/VIIIa, rather than simply supporting motor functions, appears to be an integral part of the brain's visual attentional circuitry. More generally, these findings suggest that parallel cortico-cerebellar networks may play highly specific functional roles in a broad range of cognitive processes.
Collapse
Affiliation(s)
- James A Brissenden
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, United States
| | - David C Somers
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, United States.
| |
Collapse
|
43
|
Pini L, Jacquemot C, Cagnin A, Meneghello F, Semenza C, Mantini D, Vallesi A. Aberrant brain network connectivity in presymptomatic and manifest Huntington's disease: A systematic review. Hum Brain Mapp 2019; 41:256-269. [PMID: 31532053 PMCID: PMC7268025 DOI: 10.1002/hbm.24790] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Resting‐state functional magnetic resonance imaging (rs‐fMRI) has the potential to shed light on the pathophysiological mechanisms of Huntington's disease (HD), paving the way to new therapeutic interventions. A systematic literature review was conducted in three online databases according to PRISMA guidelines, using keywords for HD, functional connectivity, and rs‐fMRI. We included studies investigating connectivity in presymptomatic (pre‐HD) and manifest HD gene carriers compared to healthy controls, implementing seed‐based connectivity, independent component analysis, regional property, and graph analysis approaches. Visual network showed reduced connectivity in manifest HD, while network/areas underpinning motor functions were consistently altered in both manifest HD and pre‐HD, showing disease stage‐dependent changes. Cognitive networks underlying executive and attentional functions showed divergent anterior–posterior alterations, possibly reflecting compensatory mechanisms. The involvement of these networks in pre‐HD is still unclear. In conclusion, aberrant connectivity of the sensory‐motor network is observed in the early stage of HD while, as pathology spreads, other networks might be affected, such as the visual and executive/attentional networks. Moreover, sensory‐motor and executive networks exhibit hyper‐ and hypo‐connectivity patterns following different spatiotemporal trajectories. These findings could potentially help to implement future huntingtin‐lowering interventions.
Collapse
Affiliation(s)
- Lorenzo Pini
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Charlotte Jacquemot
- Département d'Etudes Cognitives, Ecole Normale Supérieure-PSL University, Paris, France.,Laboratoire de NeuroPsychologie Interventionnelle, Institut Mondor de Recherche Biomédicale, Institut National de la Santé et Recherche Médical (INSERM) U955, Equipe 01, Créteil, France.,Faculté de Médecine, Université Paris Est Créteil, Créteil, France
| | - Annachiara Cagnin
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Francesca Meneghello
- Cognitive Neuroscience Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Carlo Semenza
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy.,Cognitive Neuroscience Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
44
|
Kim H. Neural activity during working memory encoding, maintenance, and retrieval: A network-based model and meta-analysis. Hum Brain Mapp 2019; 40:4912-4933. [PMID: 31373730 DOI: 10.1002/hbm.24747] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
It remains unclear whether and to what extent working memory (WM) temporal subprocesses (i.e., encoding, maintenance, and retrieval) involve shared or distinct intrinsic networks. To address this issue, I constructed a model of intrinsic network contributions to different WM phases and then evaluated the validity of the model by performing a quantitative meta-analysis of relevant functional neuroimaging data. The model suggests that the transition from the encoding to maintenance and to retrieval stages involves progressively decreasing involvement of the dorsal attention network (DAN), but progressively increasing involvement of the frontoparietal control network (FPCN). Separate meta-analysis of each phase effect and direct comparisons between them yielded results that were largely consistent with the model. This evidence included between-phase double dissociations that were consistent with the model, such as encoding > maintenance contrast showing some DAN, but no FPCN, regions, and maintenance > encoding contrast showing the reverse, that is, some FPCN, but no DAN, regions. Two closely juxtaposed regions that are members of the DAN and FPCN, such as inferior frontal junction versus caudal prefrontal cortex and superior versus inferior intraparietal sulcus, showed a high degree of functional differentiation. Although all regions identified in the present study were already identified in previous WM studies, this study uniquely enhances our understating of their roles by clarifying their network membership and specific associations with different WM phases.
Collapse
Affiliation(s)
- Hongkeun Kim
- Department of Rehabilitation Psychology, Daegu University, Gyeongsan-si, Republic of Korea
| |
Collapse
|
45
|
Ashida R, Cerminara NL, Edwards RJ, Apps R, Brooks JCW. Sensorimotor, language, and working memory representation within the human cerebellum. Hum Brain Mapp 2019; 40:4732-4747. [PMID: 31361075 PMCID: PMC6865458 DOI: 10.1002/hbm.24733] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
The cerebellum is involved in a wide range of behaviours. A key organisational principle from animal studies is that somatotopically corresponding sensory input and motor output reside in the same cerebellar cortical areas. However, compelling evidence for a similar arrangement in humans and whether it extends to cognitive functions is lacking. To address this, we applied cerebellar optimised whole‐brain functional MRI in 20 healthy subjects. To assess spatial overlap within the sensorimotor and cognitive domains, we recorded activity to a sensory stimulus (vibrotactile) and a motor task; the Sternberg verbal working memory (VWM) task; and a verb generation paradigm. Consistent with animal data, sensory and motor activity overlapped with a somatotopic arrangement in ipsilateral areas of the anterior and posterior cerebellum. During the maintenance phase of the Sternberg task, a positive linear relationship between VWM load and activity was observed in right Lobule VI, extending into Crus I bilaterally. Articulatory movement gave rise to bilateral activity in medial Lobule VI. A conjunction of two independent language tasks localised activity during verb generation in right Lobule VI‐Crus I, which overlapped with activity during VWM. These results demonstrate spatial compartmentalisation of sensorimotor and cognitive function in the human cerebellum, with each area involved in more than one aspect of a given behaviour, consistent with an integrative function. Sensorimotor localisation was uniform across individuals, but the representation of cognitive tasks was more variable, highlighting the importance of individual scans for mapping higher order functions within the cerebellum.
Collapse
Affiliation(s)
- Reiko Ashida
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.,Neurosurgery Department, Southmead Hospital, North Bristol Trust, Bristol, UK.,Neurosurgery Department, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Nadia L Cerminara
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard J Edwards
- Neurosurgery Department, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK.,Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | |
Collapse
|
46
|
Marvel CL, Morgan OP, Kronemer SI. How the motor system integrates with working memory. Neurosci Biobehav Rev 2019; 102:184-194. [PMID: 31039359 PMCID: PMC6604620 DOI: 10.1016/j.neubiorev.2019.04.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Working memory is vital for basic functions in everyday life. During working memory, one holds a finite amount of information in mind until it is no longer required or when resources to maintain this information are depleted. Convergence of neuroimaging data indicates that working memory is supported by the motor system, and in particular, by regions that are involved in motor planning and preparation, in the absence of overt movement. These "secondary motor" regions are physically located between primary motor and non-motor regions, within the frontal lobe, cerebellum, and basal ganglia, creating a functionally organized gradient. The contribution of secondary motor regions to working memory may be to generate internal motor traces that reinforce the representation of information held in mind. The primary aim of this review is to elucidate motor-cognitive interactions through the lens of working memory using the Sternberg paradigm as a model and to suggest origins of the motor-cognitive interface. In addition, we discuss the implications of the motor-cognitive relationship for clinical groups with motor network deficits.
Collapse
Affiliation(s)
- Cherie L Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Owen P Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharif I Kronemer
- Department of Neurology, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
47
|
Ren Y, Guo L, Guo CC. A connectivity-based parcellation improved functional representation of the human cerebellum. Sci Rep 2019; 9:9115. [PMID: 31235754 PMCID: PMC6591283 DOI: 10.1038/s41598-019-45670-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/06/2019] [Indexed: 11/23/2022] Open
Abstract
The cerebellum is traditionally well known for its role in motor learning and coordination. Recently, it is recognized that the function of the cerebellum is highly diverse and extends to non-motor domains, such as working memory, emotion and language. The diversity of the cerebellum can be appreciated by examining its extensive connectivity to the cerebral regions selective for both motor and cognitive functions. Importantly, the pattern of cerebro-cerebellar connectivity is specific and distinct to different cerebellar subregions. Therefore, to understand the cerebellum and the various functions it involves, it is essential to identify and differentiate its subdivisions. However, most studies are still referring the cerebellum as one brain structure or by its gross anatomical subdivisions, which does not necessarily reflect the functional mapping of the cerebellum. We here employed a data-driven method to generate a functional connectivity-based parcellation of the cerebellum. Our results demonstrated that functional connectivity-based atlas is superior to existing atlases in regards to cluster homogeneity, accuracy of functional connectivity representation and individual identification. Furthermore, our functional atlas improves statistical results of task fMRI analyses, as compared to the standard voxel-based approach and existing atlases. Our detailed functional parcellation provides a valuable tool for elucidating the functional diversity and connectivity of the cerebellum as well as its network relationships with the whole brain.
Collapse
Affiliation(s)
- Yudan Ren
- School of Automation, Northwestern Polytechnical University, Xi'an, China.,QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Information Science and Technology, Northwest University, Xi'an, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | | |
Collapse
|
48
|
Argyropoulos GPD, Watkins KE, Belton-Pagnamenta E, Liégeois F, Saleem KS, Mishkin M, Vargha-Khadem F. Neocerebellar Crus I Abnormalities Associated with a Speech and Language Disorder Due to a Mutation in FOXP2. CEREBELLUM (LONDON, ENGLAND) 2019; 18:309-319. [PMID: 30460543 PMCID: PMC6517346 DOI: 10.1007/s12311-018-0989-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bilateral volume reduction in the caudate nucleus has been established as a prominent brain abnormality associated with a FOXP2 mutation in affected members of the 'KE family', who present with developmental orofacial and verbal dyspraxia in conjunction with pervasive language deficits. Despite the gene's early and prominent expression in the cerebellum and the evidence for reciprocal cerebellum-basal ganglia connectivity, very little is known about cerebellar abnormalities in affected KE members. Using cerebellum-specific voxel-based morphometry (VBM) and volumetry, we provide converging evidence from subsets of affected KE members scanned at three time points for grey matter (GM) volume reduction bilaterally in neocerebellar lobule VIIa Crus I compared with unaffected members and unrelated controls. We also show that right Crus I volume correlates with left and total caudate nucleus volumes in affected KE members, and that right and total Crus I volumes predict the performance of affected members in non-word repetition and non-verbal orofacial praxis. Crus I also shows bilateral hypo-activation in functional MRI in the affected KE members relative to controls during non-word repetition. The association of Crus I with key aspects of the behavioural phenotype of this FOXP2 point mutation is consistent with recent evidence of cerebellar involvement in complex motor sequencing. For the first time, specific cerebello-basal ganglia loops are implicated in the execution of complex oromotor sequences needed for human speech.
Collapse
Affiliation(s)
- G P D Argyropoulos
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - K E Watkins
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - E Belton-Pagnamenta
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - F Liégeois
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - K S Saleem
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, USA
| | - M Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, USA
| | - F Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
- Great Ormond Street Hospital for Children National Health Foundation Trust, London, UK.
| |
Collapse
|
49
|
Mancuso L, Costa T, Nani A, Manuello J, Liloia D, Gelmini G, Panero M, Duca S, Cauda F. The homotopic connectivity of the functional brain: a meta-analytic approach. Sci Rep 2019; 9:3346. [PMID: 30833662 PMCID: PMC6399443 DOI: 10.1038/s41598-019-40188-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/05/2019] [Indexed: 01/21/2023] Open
Abstract
Homotopic connectivity (HC) is the connectivity between mirror areas of the brain hemispheres. It can exhibit a marked and functionally relevant spatial variability, and can be perturbed by several pathological conditions. The voxel-mirrored homotopic connectivity (VMHC) is a technique devised to enquire this pattern of brain organization, based on resting state functional connectivity. Since functional connectivity can be revealed also in a meta-analytical fashion using co-activations, here we propose to calculate the meta-analytic homotopic connectivity (MHC) as the meta-analytic counterpart of the VMHC. The comparison between the two techniques reveals their general similarity, but also highlights regional differences associated with how HC varies from task to rest. Two main differences were found from rest to task: (i) regions known to be characterized by global hubness are more similar than regions displaying local hubness; and (ii) medial areas are characterized by a higher degree of homotopic connectivity, while lateral areas appear to decrease their degree of homotopic connectivity during task performance. These findings show that MHC can be an insightful tool to study how the hemispheres functionally interact during task and rest conditions.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Gabriele Gelmini
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Melissa Panero
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
50
|
Sheu YS, Liang Y, Desmond JE. Disruption of Cerebellar Prediction in Verbal Working Memory. Front Hum Neurosci 2019; 13:61. [PMID: 30846935 PMCID: PMC6393359 DOI: 10.3389/fnhum.2019.00061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence suggests that the right cerebellum contributes to verbal working memory, but the functional role of this contribution remains unclear. In an established theory of motor control, the cerebellum is thought to predict sensory consequences of movements through an internal "forward model." Here, we hypothesize a similar predictive process can generalize to cerebellar non-motor function, and that the right cerebellum plays a predictive role that is beneficial for rapidly engaging the phonological loop in verbal working memory. To test this hypothesis, double-pulse transcranial magnetic stimulation (TMS) was administered over either the right cerebellum or right occipital lobe (control site), on half the trials, to interrupt the rehearsal of a 6-letter sequence. We found that cerebellar stimulation resulted in greater errors in participants' report of the letter in the current position. Additional analyses revealed that immediately after cerebellar TMS, participants were more likely to use out of date information to predict the next letter in the sequence. This pattern of errors is consistent with TMS causing a temporary disruption of state estimation and cerebellar forward model function, leading to prediction errors in the phonological loop.
Collapse
Affiliation(s)
- Yi-Shin Sheu
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu Liang
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|