1
|
Di Pietro SV, Willinger D, Frei N, Lutz C, Coraj S, Schneider C, Stämpfli P, Brem S. Disentangling influences of dyslexia, development, and reading experience on effective brain connectivity in children. Neuroimage 2023; 268:119869. [PMID: 36639004 DOI: 10.1016/j.neuroimage.2023.119869] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Altered brain connectivity between regions of the reading network has been associated with reading difficulties. However, it remains unclear whether connectivity differences between children with dyslexia (DYS) and those with typical reading skills (TR) are specific to reading impairments or to reading experience. In this functional MRI study, 132 children (M = 10.06 y, SD = 1.46) performed a phonological lexical decision task. We aimed to disentangle (1) disorder-specific from (2) experience-related differences in effective connectivity and to (3) characterize the development of DYS and TR. We applied dynamic causal modeling to age-matched (ndys = 25, nTR = 35) and reading-level-matched (ndys = 25, nTR = 22) groups. Developmental effects were assessed in beginning and advanced readers (TR: nbeg = 48, nadv = 35, DYS: nbeg = 24, nadv = 25). We show that altered feedback connectivity between the inferior parietal lobule and the visual word form area (VWFA) during print processing can be specifically attributed to reading impairments, because these alterations were found in DYS compared to both the age-matched and reading-level-matched TR. In contrast, feedforward connectivity from the VWFA to parietal and frontal regions characterized experience in TR and increased with age and reading skill. These directed connectivity findings pinpoint disorder-specific and experience-dependent alterations in the brain's reading network.
Collapse
Affiliation(s)
- Sarah V Di Pietro
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - David Willinger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Department of Psychology and Psychodynamics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Nada Frei
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Christina Lutz
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Seline Coraj
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Chiara Schneider
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Philipp Stämpfli
- MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland; MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Li J, Yang Y, Viñas-Guasch N, Yang Y, Bi HY. Differences in brain functional networks for audiovisual integration during reading between children and adults. Ann N Y Acad Sci 2023; 1520:127-139. [PMID: 36478220 DOI: 10.1111/nyas.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Building robust letter-to-sound correspondences is a prerequisite for developing reading capacity. However, the neural mechanisms underlying the development of audiovisual integration for reading are largely unknown. This study used functional magnetic resonance imaging in a lexical decision task to investigate functional brain networks that support audiovisual integration during reading in developing child readers (10-12 years old) and skilled adult readers (20-28 years old). The results revealed enhanced connectivity in a prefrontal-superior temporal network (including the right medial frontal gyrus, right superior frontal gyrus, and left superior temporal gyrus) in adults relative to children, reflecting the development of attentional modulation of audiovisual integration involved in reading processing. Furthermore, the connectivity strength of this brain network was correlated with reading accuracy. Collectively, this study, for the first time, elucidates the differences in brain networks of audiovisual integration for reading between children and adults, promoting the understanding of the neurodevelopment of multisensory integration in high-level human cognition.
Collapse
Affiliation(s)
- Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Yinghui Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,China Welfare Institute Information and Research Center, Soong Ching Ling Children Development Center, Shanghai, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Liu YF, Qian Y, Bi HY. Visual motion processing in Chinese children with developmental dyslexia: An fMRI study. DYSLEXIA (CHICHESTER, ENGLAND) 2022; 28:431-447. [PMID: 36329601 DOI: 10.1002/dys.1726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Dorsal stream is an important pathway for visual information transmission. As a part of the dorsal pathway, the middle temporal visual motion areas (V5/MT+) are mainly responsible for visual motion processing and the ability of visual motion processing is closely related to reading. Compared with alphabetic scripts, the visual structure of Chinese characters is more complex and there are no clear grapheme-phoneme correspondence rules. So the ability of visual analysis plays an important role in Chinese character processing. This study first investigated the brain activation of Chinese dyslexic children and children of the same chronological age when they observed coherent motion stimuli. ROI analysis indicated that only the activation of left V5/MT+ was significantly weaker in dyslexics than that in the control group. The activity of the magnocellular-dorsal stream was closely related to orthographic awareness in the combined data (two groups) and the typical children. In dyslexia group, the stronger the activation of V5/MT+ was, the worse the phonological awareness, rapid naming performance and orthographic awareness were. In short, Chinese dyslexic children were deficient in the activation of the left V5/MT+ and the activity of the magnocellular-dorsal pathway was closely related to orthographic awareness in Chinese pupils.
Collapse
Affiliation(s)
- Yu-Fei Liu
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- China Textile and Apparel Press, Beijing, China
| | - Yi Qian
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Wuxi Institute of Technology, Wuxi, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Ebrahimi L, Pouretemad H, Stein J, Alizadeh E, Khatibi A. Enhanced reading abilities is modulated by faster visual spatial attention. ANNALS OF DYSLEXIA 2022; 72:125-146. [PMID: 34510363 DOI: 10.1007/s11881-021-00245-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Research has shown improved reading following visual magnocellular training in individuals with dyslexia. Many studies have demonstrated how the magnocellular pathway controls visual spatial attention. Therefore, we have investigated the relationship between magnocellular pathway and visual spatial attention deficits in dyslexia in order to better understand how magnocellular-based interventions may help children to learn to read. Magnocellular function, visual spatial attention, and reading abilities of thirty elementary school students with dyslexia, aged between 8 and 10, were measured. The experimental group received magnocellular-based visual motion training for 12 sessions, while the control group received neutral sessions. All tests were repeated at the end of the training and after 1 month. The magnocellular functioning, visual spatial attention, and reading abilities of the experimental group improved significantly compared to the controls. Additionally, improvement in reaction time of invalid conditions predicted improvements in saccadic eye movements. We conclude that visual magnocellular training improved saccadic eye movement control, visual spatial orientation, and reading ability.
Collapse
Affiliation(s)
- Leila Ebrahimi
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, 1983969411, EvinTehran, Iran
| | - Hamidreza Pouretemad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, 1983969411, EvinTehran, Iran.
- Department of Psychology, Shahid Beheshti University, Tehran, Iran.
| | - John Stein
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Ebrahim Alizadeh
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Cirino PT, Barnes MA, Roberts G, Miciak J, Gioia A. Visual attention and reading: A test of their relation across paradigms. J Exp Child Psychol 2022; 214:105289. [PMID: 34653633 PMCID: PMC8608740 DOI: 10.1016/j.jecp.2021.105289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023]
Abstract
Relations of visual attention to reading have long been hypothesized; however, findings in this literature are quite mixed. These relations have been investigated using several different visual attention paradigms and with variable controls for other competing reading-related processes. We extended current knowledge by evaluating four of the key visual attention paradigms used in this research-visual attention span, attention blink, visual search, and visuospatial attention-in a single study. We tested the relations of these to reading in 90 middle schoolers at high risk for reading difficulties while considering their effect in the context of known language predictors. Performance on visual-spatial, visual search, and attentional blink paradigms showed weak nonsignificant relations to reading. Visual attention span tasks showed robust relations to reading even when controlling for language, but only when stimuli were alphanumeric. Although further exploration of visual attention in relation to reading may be warranted, the robustness of this relationship appears to be questionable, particularly beyond methodological factors associated with the measurement of visual attention. Findings extend and refine our understanding of the contribution of attention to reading skill and raise questions about the mechanism by which visual attention is purported to affect reading.
Collapse
Affiliation(s)
- Paul T Cirino
- Department of Psychology, University of Houston, Houston, TX 77204, USA.
| | - Marcia A Barnes
- Department of Special Education, Peabody College, Vanderbilt University, Nashville, TN 37235, USA
| | - Greg Roberts
- Meadows Center for Preventing Educational Risk, College of Education, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeremy Miciak
- Department of Psychology, University of Houston, Houston, TX 77204, USA
| | - Anthony Gioia
- Department of Psychology, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
6
|
Short Vestibular and Cognitive Training Improves Oral Reading Fluency in Children with Dyslexia. Brain Sci 2021; 11:brainsci11111440. [PMID: 34827439 PMCID: PMC8615463 DOI: 10.3390/brainsci11111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: This study explored the effect of short vestibular and cognitive training on the reading speed in dyslexic children. (2) Methods: The reading speed was evaluated by using a reading test (Évaluation de la Lecture en FluencE, ELFE) in a crossover design before (baseline) and after vestibular training (post VT) and no vestibular training (post no VT). Nineteen dyslexic children (9.48 ± 0.15 years) participated in the study. The vestibular and cognitive training (software developed by BeonSolution S.r.l.) consisted in four exercises presented on a Wacom tablet 10″ done for 16 min per session two times per week for four weeks; each exercise was composed of eight levels with increased difficulty. (3) Results: Following vestibular and cognitive training, dyslexic children increased their reading speed; interestingly, such an increase persisted at least one month after training. (4) Conclusions: Vestibular and cognitive training could improve the vestibular network, which is well known for being involved in several cognition functions leading to reading improvement in dyslexic children. Adaptive mechanisms could be responsible for maintaining such improvement for at least one month.
Collapse
|
7
|
Action video game training improves text reading accuracy, rate and comprehension in children with dyslexia: a randomized controlled trial. Sci Rep 2021; 11:18584. [PMID: 34545166 PMCID: PMC8452648 DOI: 10.1038/s41598-021-98146-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
Dynamic visual attention training using Action Video Games (AVGs) is a promising intervention for dyslexia. This study investigated the efficacy of 5 h (10 × 30 min) of AVG training in dyslexic children (aged 8–13) using ‘Fruit Ninja’, while exploring whether increasing attentional and eye movement demands enhanced AVG effectiveness. Regular (AVG-R; n = 22) and enhanced AVG training (AVG+; n = 23) were compared to a treatment-as-usual comparison group (n = 19) on reading, rapid naming, eye movements and visuo-temporal processing. Playing ‘Fruit Ninja’ for only 5 h significantly improved reading accuracy, rate, comprehension and rapid naming of both AVG groups, compared to the comparison group, though increasing attentional demands did not enhance AVG efficacy. Participants whose low contrast magnocellular-temporal processing improved most following training also showed significantly greater improvement in reading accuracy. The findings demonstrate a clear role for visual attention in reading and highlight the clinical applicability of AVGs as a fun, motivational and engaging intervention for dyslexia.
Collapse
|
8
|
Liu Y, Shi G, Li M, Xing H, Song Y, Xiao L, Guan Y, Han Z. Early Top-Down Modulation in Visual Word Form Processing: Evidence From an Intracranial SEEG Study. J Neurosci 2021; 41:6102-6115. [PMID: 34011525 PMCID: PMC8276739 DOI: 10.1523/jneurosci.2288-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 11/21/2022] Open
Abstract
Visual word recognition, at a minimum, involves the processing of word form and lexical information. Opinions diverge on the spatiotemporal distribution of and interaction between the two types of information. Feedforward theory argues that they are processed sequentially, whereas interactive theory advocates that lexical information is processed fast and modulates early word form processing. To distinguish between the two theories, we applied stereoelectroencephalography (SEEG) to 33 human adults with epilepsy (25 males and eight females) during visual lexical decisions. The stimuli included real words (RWs), pseudowords (PWs) with legal radical positions, nonwords (NWs) with illegal radical positions, and stroked-changed words (SWs) in Chinese. Word form and lexical processing were measured by the word form effect (PW versus NW) and lexical effect (RW versus PW), respectively. Gamma-band (60 ∼ 140 Hz) SEEG activity was treated as an electrophysiological measure. A word form effect was found in eight left brain regions (i.e., the inferior parietal lobe, insula, fusiform, inferior temporal, middle temporal, middle occipital, precentral and postcentral gyri) from 50 ms poststimulus onset, whereas a lexical effect was observed in five left brain regions (i.e., the calcarine, middle temporal, superior temporal, precentral, and postcentral gyri) from 100 ms poststimulus onset. The two effects overlapped in the precentral (300 ∼ 500 ms) and postcentral (100 ∼ 200 ms and 250 ∼ 600 ms) gyri. Moreover, high-level regions provide early feedback to word form regions. These results demonstrate that lexical processing occurs early and modulates word form recognition, providing vital supportive evidence for interactive theory.SIGNIFICANCE STATEMENT A pivotal unresolved dispute in the field of word processing is whether word form recognition is obligatorily modulated by high-level lexical top-down information. To address this issue, we applied intracranial SEEG to 33 adults with epilepsy to precisely delineate the spatiotemporal dynamics between processing word form and lexical information during visual word recognition. We observed that lexical processing occurred from 100 ms poststimulus presentation and even spatiotemporally overlapped with word form processing. Moreover, the high-order regions provided feedback to the word form regions in the early stage of word recognition. These results revealed the crucial role of high-level lexical information in word form recognition, deepening our understanding of the functional coupling among brain regions in word processing networks.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaofeng Shi
- Faculty of International Education of Chinese Language, Beijing Language and Culture University, Beijing 100083, China
| | - Mingyang Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hongbing Xing
- Faculty of International Education of Chinese Language, Beijing Language and Culture University, Beijing 100083, China
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Luchuan Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Vergara-Martínez M, Gutierrez-Sigut E, Perea M, Gil-López C, Carreiras M. The time course of processing handwritten words: An ERP investigation. Neuropsychologia 2021; 159:107924. [PMID: 34175372 DOI: 10.1016/j.neuropsychologia.2021.107924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
Behavioral studies have shown that the legibility of handwritten script hinders visual word recognition. Furthermore, when compared with printed words, lexical effects (e.g., word-frequency effect) are magnified for less intelligible (difficult) handwriting (Barnhart and Goldinger, 2010; Perea et al., 2016). This boost has been interpreted in terms of greater influence of top-down mechanisms during visual word recognition. In the present experiment, we registered the participants' ERPs to uncover top-down processing effects on early perceptual encoding. Participants' behavioral and EEG responses were recorded to high- and low-frequency words that varied in script's legibility (printed, easy handwritten, difficult handwritten) in a lexical decision experiment. Behavioral results replicated previous findings: word-frequency effects were larger in difficult handwriting than in easy handwritten or printed conditions. Critically, the ERP data showed an early effect of word-frequency in the N170 that was restricted to the difficult-to-read handwritten condition. These results are interpreted in terms of increased attentional deployment when the bottom-up signal is weak (difficult handwritten stimuli). This attentional boost would enhance top-down effects (e.g., lexical effects) in the early stages of visual word processing.
Collapse
Affiliation(s)
| | | | - Manuel Perea
- ERI-Lectura, Universitat de València, Valencia, Spain; Universidad Nebrija, Madrid, Spain; Basque Center of Cognition, Brain, and Language, Donostia, Spain
| | | | - Manuel Carreiras
- Basque Center of Cognition, Brain, and Language, Donostia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
10
|
Mascheretti S, Peruzzo D, Andreola C, Villa M, Ciceri T, Trezzi V, Marino C, Arrigoni F. Selecting the Most Relevant Brain Regions to Classify Children with Developmental Dyslexia and Typical Readers by Using Complex Magnocellular Stimuli and Multiple Kernel Learning. Brain Sci 2021; 11:brainsci11060722. [PMID: 34071649 PMCID: PMC8228080 DOI: 10.3390/brainsci11060722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence supports the presence of deficits in the visual magnocellular (M) system in developmental dyslexia (DD). The M system is related to the fronto-parietal attentional network. Previous neuroimaging studies have revealed reduced/absent activation within the visual M pathway in DD, but they have failed to characterize the extensive brain network activated by M stimuli. We performed a multivariate pattern analysis on a Region of Interest (ROI) level to differentiate between children with DD and age-matched typical readers (TRs) by combining full-field sinusoidal gratings, controlled for spatial and temporal frequencies and luminance contrast, and a coherent motion (CM) sensitivity task at 6%-CML6, 15%-CML15 and 40%-CML40. ROIs spanning the entire visual dorsal stream and ventral attention network (VAN) had higher discriminative weights and showed higher act1ivation in TRs than in children with DD. Of the two tasks, CM had the greatest weight when classifying TRs and children with DD in most of the ROIs spanning these streams. For the CML6, activation within the right superior parietal cortex positively correlated with reading skills. Our approach highlighted the dorsal stream and the VAN as highly discriminative areas between children with DD and TRs and allowed for a better characterization of the "dorsal stream vulnerability" underlying DD.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
- Correspondence: (S.M.); (F.A.)
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
- Laboratoire de Psychologie de Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Université de Paris, 75005 Paris, France
| | - Martina Villa
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
| | - Tommaso Ciceri
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
| | - Cecilia Marino
- The Division of Child and Youth Psychiatry at the Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada;
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
- Correspondence: (S.M.); (F.A.)
| |
Collapse
|
11
|
Kim J, Jung J, Nam K. Neural correlates of confusability in recognition of morphologically complex Korean words. PLoS One 2021; 16:e0249111. [PMID: 33857191 PMCID: PMC8049294 DOI: 10.1371/journal.pone.0249111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/11/2021] [Indexed: 11/30/2022] Open
Abstract
When people confuse and reject a non-word that is created by switching two adjacent letters from an actual word, is called the transposition confusability effect (TCE). The TCE is known to occur at the very early stages of visual word recognition with such unit exchange as letters or syllables, but little is known about the brain mechanisms of TCE. In this study, we examined the neural correlates of TCE and the effect of a morpheme boundary placement on TCE. We manipulated the placement of a morpheme boundary by exchanging places of two syllables embedded in Korean morphologically complex words made up of lexical morpheme and grammatical morpheme. In the two experimental conditions, the transposition syllable within-boundary condition (TSW) involved exchanging two syllables within the same morpheme, whereas the across-boundary condition (TSA) involved the exchange of syllables across the stem and grammatical morpheme boundary. During fMRI, participants performed the lexical decision task. Behavioral results revealed that the TCE was found in TSW condition, and the morpheme boundary, which is manipulated in TSA, modulated the TCE. In the fMRI results, TCE induced activation in the left inferior parietal lobe (IPL) and intraparietal sulcus (IPS). The IPS activation was specific to a TCE and its strength of activation was associated with task performance. Furthermore, two functional networks were involved in the TCE: the central executive network and the dorsal attention network. Morpheme boundary modulation suppressed the TCE by recruiting the prefrontal and temporal regions, which are the key regions involved in semantic processing. Our findings propose the role of the dorsal visual pathway in syllable position processing and that its interaction with other higher cognitive systems is modulated by the morphological boundary in the early phases of visual word recognition.
Collapse
Affiliation(s)
- Jeahong Kim
- Department of Psychology, Korea University, Seoul, Republic of Korea
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Kichun Nam
- Department of Psychology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Manual dexterity predicts phonological decoding speed in typical reading adults. PSYCHOLOGICAL RESEARCH 2021; 85:2882-2891. [PMID: 33404906 DOI: 10.1007/s00426-020-01464-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023]
Abstract
Manual dexterity and phonological decoding involve the posterior parietal cortex, which controls location coding for visually guided actions, as well as a large fronto-cerebellar network. We studied the relationship between manual dexterity and reading ability in adult typical readers. Two measurements of manual dexterity were collected to index the procedural learning effect. A linear regression model demonstrated that phonological short-term memory, manual dexterity at time 1 and procedural learning of manual dexterity predicted phonological decoding speed. Similar results were found when left-hand dexterity at time 1 and procedural learning dexterity were entered last. The better one's phonological decoding skill was, the less fluent their manual dexterity was, suggesting a recycle from object-location to letter-location coding. However, the greater the procedural learning, the faster phonological decoding was, suggesting that larger plasticity of object-location coding was linked to better letter-location coding. An independent role of the interhemispheric connections or of the right posterior parietal cortex is also suggested.
Collapse
|
13
|
Mascheretti S, Riva V, Feng B, Trezzi V, Andreola C, Giorda R, Villa M, Dionne G, Gori S, Marino C, Facoetti A. The Mediation Role of Dynamic Multisensory Processing Using Molecular Genetic Data in Dyslexia. Brain Sci 2020; 10:brainsci10120993. [PMID: 33339203 PMCID: PMC7765588 DOI: 10.3390/brainsci10120993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Although substantial heritability has been reported and candidate genes have been identified, we are far from understanding the etiopathogenetic pathways underlying developmental dyslexia (DD). Reading-related endophenotypes (EPs) have been established. Until now it was unknown whether they mediated the pathway from gene to reading (dis)ability. Thus, in a sample of 223 siblings from nuclear families with DD and 79 unrelated typical readers, we tested four EPs (i.e., rapid auditory processing, rapid automatized naming, multisensory nonspatial attention and visual motion processing) and 20 markers spanning five DD-candidate genes (i.e., DYX1C1, DCDC2, KIAA0319, ROBO1 and GRIN2B) using a multiple-predictor/multiple-mediator framework. Our results show that rapid auditory and visual motion processing are mediators in the pathway from ROBO1-rs9853895 to reading. Specifically, the T/T genotype group predicts impairments in rapid auditory and visual motion processing which, in turn, predict poorer reading skills. Our results suggest that ROBO1 is related to reading via multisensory temporal processing. These findings support the use of EPs as an effective approach to disentangling the complex pathways between candidate genes and behavior.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Bei Feng
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Universitè de Paris, 75005 Paris, France
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Ginette Dionne
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, 24100 Bergamo, Italy;
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- The Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada
- Correspondence: (C.M.); (A.F.)
| | - Andrea Facoetti
- Developmental Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy
- Correspondence: (C.M.); (A.F.)
| |
Collapse
|
14
|
Cheng Y, Huang X, Hu YX, Huang MH, Yang B, Zhou FQ, Wu XR. Comparison of intrinsic brain activity in individuals with low/moderate myopia versus high myopia revealed by the amplitude of low-frequency fluctuations. Acta Radiol 2020; 61:496-507. [PMID: 31398992 DOI: 10.1177/0284185119867633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Previous neuroimaging studies demonstrated that individuals with high myopia are associated with abnormalities in anatomy of the brain. Purpose The purpose of this study was to explore alterations in the intrinsic brain activity by studying the amplitude of low-frequency fluctuations. Material and Methods A total of 64 myopia individuals (41 with high myopia with a refractive error <–600 diopter [D], 23 with low/moderate myopia with a refractive error between –100 and –600 D, and similarly 59 healthy controls with emmetropia closely matched for age) were recruited. The amplitude of low-frequency fluctuations method was conducted to investigate the difference of intrinsic brain activity across three groups. Results Compared with the healthy controls, individuals with low/moderate myopia showed significantly decreased amplitude of low-frequency fluctuation values in the bilateral rectal gyrus, right cerebellum anterior lobe/calcarine, and bilateral thalamus and showed significantly increased amplitude of low-frequency fluctuation values in left white matter (optic radiation), right prefrontal cortex, and left primary motor cortex (M1)/primary somatosensory cortex (S1). In addition, individuals with high myopia showed significantly decreased amplitude of low-frequency fluctuation values in the right cerebellum anterior lobe/calcarine/bilateral parahippocampal gyrus, bilateral posterior cingulate cortex, and bilateral middle cingulate cortex and significantly increased amplitude of low-frequency fluctuation values in left white matter (optic radiation), bilateral frontal parietal cortex, and left M1/S1. Moreover, we found that the amplitude of low-frequency fluctuation values of the different brain areas was closely related to the clinical features in the high myopia group. Conclusion Our results demonstrated that individuals with low/moderate myopia and high myopia had abnormal intrinsic brain activities in various brain regions related to the limbic system, default mode network, and thalamo-occipital pathway.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Yu-Xiang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Mu-Hua Huang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
| | - Bo Yang
- Department of Ophthalmology, The People’s Hospital of Xinjiang, Urumqi, PR China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
| | - Xiao-Rong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| |
Collapse
|
15
|
Franceschini S, Bertoni S, Puccio G, Mancarella M, Gori S, Facoetti A. Local perception impairs the lexical reading route. PSYCHOLOGICAL RESEARCH 2020; 85:1748-1756. [PMID: 32239279 DOI: 10.1007/s00426-020-01326-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/20/2020] [Indexed: 01/30/2023]
Abstract
Human perception of a visual scene is hierarchically organized. Such rapid, albeit coarse, global processing allows people to create a useful context in which local details can be successively allocated. Lack of the typical hierarchical global-to-local visual processing is longitudinally predictive of future reading difficulties in pre-readers, which suggests that an atypical local perception can interfere with reading skill acquisition. Global and local Navon tasks were used to induce a transient perceptual priming before a reading-aloud task. We tested the effect of an atypical local perception on lexical and sublexical reading routes in typical adult readers. Local (vs. global) priming resulted in a slower phonological access to irregular, relative to regular, words. By contrast, pseudoword reading was not affected by local (vs. global) perceptual priming. Our findings demonstrate that, in typical adult readers, local priming impairs the fast processing of the letter string useful for lexical reading.
Collapse
Affiliation(s)
- Sandro Franceschini
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy.
| | - Sara Bertoni
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Giovanna Puccio
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Martina Mancarella
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, 24129, Bergamo, Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| |
Collapse
|
16
|
White AL, Boynton GM, Yeatman JD. The link between reading ability and visual spatial attention across development. Cortex 2019; 121:44-59. [PMID: 31542467 PMCID: PMC6888968 DOI: 10.1016/j.cortex.2019.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Abstract
Interacting with a cluttered and dynamic environment requires making decisions about visual information at relevant locations while ignoring irrelevant locations. Typical adults can do this with covert spatial attention: prioritizing particular visual field locations even without moving the eyes. Deficits of covert spatial attention have been implicated in developmental dyslexia, a specific reading disability. Previous studies of children with dyslexia, however, have been complicated by group differences in overall task ability that are difficult to distinguish from selective spatial attention. Here, we used a single-fixation visual search task to estimate orientation discrimination thresholds with and without an informative spatial cue in a large sample (N = 123) of people ranging in age from 5 to 70 years and with a wide range of reading abilities. We assessed the efficiency of attentional selection via the cueing effect: the difference in log thresholds with and without the spatial cue. Across our whole sample, both absolute thresholds and the cueing effect gradually improved throughout childhood and adolescence. Compared to typical readers, individuals with dyslexia had higher thresholds (worse orientation discrimination) as well as smaller cueing effects (weaker attentional selection). Those differences in dyslexia were especially pronounced prior to age 20, when basic visual function is still maturing. Thus, in line with previous theories, literacy skills are associated with the development of selective spatial attention.
Collapse
Affiliation(s)
- Alex L White
- Institute for Learning & Brain Sciences, University of Washington, Seattle, United States; Department of Speech & Hearing Sciences, University of Washington, Seattle, United States.
| | - Geoffrey M Boynton
- Department of Psychology, University of Washington, Seattle, United States
| | - Jason D Yeatman
- Institute for Learning & Brain Sciences, University of Washington, Seattle, United States; Department of Speech & Hearing Sciences, University of Washington, Seattle, United States
| |
Collapse
|
17
|
The current status of the magnocellular theory of developmental dyslexia. Neuropsychologia 2019; 130:66-77. [DOI: 10.1016/j.neuropsychologia.2018.03.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 01/28/2023]
|
18
|
Moulton E, Bouhali F, Monzalvo K, Poupon C, Zhang H, Dehaene S, Dehaene-Lambertz G, Dubois J. Connectivity between the visual word form area and the parietal lobe improves after the first year of reading instruction: a longitudinal MRI study in children. Brain Struct Funct 2019; 224:1519-1536. [PMID: 30840149 DOI: 10.1007/s00429-019-01855-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/25/2019] [Indexed: 11/30/2022]
Abstract
Shortly after reading instruction, a region in the ventral occipital temporal cortex (vOTC) of the left hemisphere, the Visual Word Form Area (VWFA), becomes specialized for written words. Its reproducible location across scripts suggests important anatomical constraints, such as specific patterns of connectivity, notably to spoken language areas. Here, we explored the structural connectivity of the emerging VWFA in terms of its specificity relative to other ventral visual regions and its stability throughout the process of reading instruction in ten children studied longitudinally over 2 years. Category-specific regions for words, houses, faces, and tools were identified in the left vOTC of each subject with functional MRI. With diffusion MRI and tractography, we reconstructed the connections of these regions at two time points (mean age ± standard deviation: 6.2 ± 0.3, 7.2 ± 0.4 years). We first showed that the regions for each visual category harbor their own specific connectivity, all of which precede reading instruction and remain stable throughout development. The most specific connections of the VWFA were to the dorsal posterior parietal cortex. We then showed that microstructural changes in these connections correlated with improvements in reading scores over the first year of instruction but not 1 year later in a subsample of eight children (age: 8.4 ± 0.3 years). These results suggest that the VWFA location depends on its connectivity to distant regions, in particular, the left inferior parietal region which may play a crucial role in visual field maps and eye movement dynamics in addition to attentional control in letter-by-letter reading and disambiguation of mirror-letters during the first stages of learning to read.
Collapse
Affiliation(s)
- Eric Moulton
- Cognitive Neuroimaging Unit U992, INSERM, CEA DRF/Institut-Joliot/NeuroSpin, Université Paris-Saclay, Université Paris-Sud, 91191, Gif/Yvette, France. .,Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013, Paris, France.
| | - Florence Bouhali
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013, Paris, France
| | - Karla Monzalvo
- Cognitive Neuroimaging Unit U992, INSERM, CEA DRF/Institut-Joliot/NeuroSpin, Université Paris-Saclay, Université Paris-Sud, 91191, Gif/Yvette, France
| | - Cyril Poupon
- CEA DRF/Institut-Joliot/NeuroSpin, UNIRS, Université Paris-Saclay, Université Paris-Sud, 91191, Gif/Yvette, France
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, Gower Street, London, WC1E 6BT, UK
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit U992, INSERM, CEA DRF/Institut-Joliot/NeuroSpin, Université Paris-Saclay, Université Paris-Sud, 91191, Gif/Yvette, France.,Collège de France, Paris, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit U992, INSERM, CEA DRF/Institut-Joliot/NeuroSpin, Université Paris-Saclay, Université Paris-Sud, 91191, Gif/Yvette, France
| | - Jessica Dubois
- Cognitive Neuroimaging Unit U992, INSERM, CEA DRF/Institut-Joliot/NeuroSpin, Université Paris-Saclay, Université Paris-Sud, 91191, Gif/Yvette, France
| |
Collapse
|
19
|
Flint S, Pammer K. It is the egg, not the chicken; dorsal visual deficits present in dyslexia are not present in illiterate adults. DYSLEXIA (CHICHESTER, ENGLAND) 2019; 25:69-83. [PMID: 30592104 DOI: 10.1002/dys.1607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/03/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Some individuals with dyslexia demonstrate deficits in reading, visual attention, and visual processing which can be attributed to a functional failure of the magnocells in the visual system or in the dorsal visual pathway. The study examines the role of magno/dorsal function in dyslexic adults compared with normal, illiterate, and semi-literate readers. Coherent motion and coherent form were used in Experiment 1, and the frequency doubling illusion and static-gratings were used in Experiment 2. If a magno/dorsal deficit is demonstrated for dyslexic readers but not illiterate, semi-literate, and normal reading adults, then the deficit cannot be attributed to reading experience. Illiterate adults performed the same as normal and semi-literate readers in coherent motion and frequency doubling tasks, and all three groups performed better than the dyslexic readers. There was no difference between any of the groups in the coherent form or static grating tasks. Together, these studies show that illiterate and semi-literate adults do not demonstrate a magno/dorsal deficit that is a characteristic of some sufferers of dyslexia. Therefore, magno/dorsal deficits in dyslexia are unlikely to be a consequence of failing to learn to read but rather provides evidence to suggest a causal role for reduced visual magno/dorsal processing.
Collapse
Affiliation(s)
- Sarah Flint
- The Research School of Psychology, The Australian National University, Canberra, Australia
| | - Kristen Pammer
- The School of Psychology, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
20
|
Franceschini S, Mascheretti S, Bertoni S, Trezzi V, Andreola C, Gori S, Facoetti A. Sluggish dorsally-driven inhibition of return during orthographic processing in adults with dyslexia. BRAIN AND LANGUAGE 2018; 179:1-10. [PMID: 29453081 DOI: 10.1016/j.bandl.2018.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/11/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Dyslexia (D) is a neurodevelopmental reading disorder characterized by phonological and orthographic deficits. Before phonological decoding, reading requires a specialized orthographic system for parallel letter processing that assigns letter identities to different spatial locations. The magnocellular-dorsal (MD) stream rapidly process the spatial location of visual stimuli controlling visuo-spatial attention. To investigate the visuo-spatial attention efficiency during orthographic processing, inhibition of return (IOR) was measured in adults with and without D in a lexical decision task. IOR is the delay in responding to stimuli displayed in a cued location after a long cue-target interval. Only adults with D did not showed IOR effect during letter-string recognition, despite the typical left-hemisphere specialization for word identification. A specific deficit in coherent-dot-motion perception confirmed an MD-stream disorder in adults with D. Our results suggest that adults with D might develop an efficient visual word form area, but a dorsal-attentional dysfunction impairs their reading fluency.
Collapse
Affiliation(s)
- S Franceschini
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy; Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy.
| | - S Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - S Bertoni
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - V Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - C Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - S Gori
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy; Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy
| | - A Facoetti
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy; Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| |
Collapse
|
21
|
ERP signatures of conscious and unconscious word and letter perception in an inattentional blindness paradigm. Conscious Cogn 2017; 54:56-71. [DOI: 10.1016/j.concog.2017.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 01/01/2023]
|
22
|
Uno T, Okumura Y, Kasai T. Print-specific N170 involves multiple subcomponents for Japanese Hiragana. Neurosci Lett 2017; 650:77-81. [PMID: 28412533 DOI: 10.1016/j.neulet.2017.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 11/25/2022]
Abstract
Print-specific N170 in event-related potentials is generally considered to reflect relatively automatic processing for letter strings, which is crucial for fluent reading. However, our previous studies demonstrated that print-specific N170 for transparent Japanese Hiragana script consists of at least two subcomponents under rapid stimulus presentation: an attention-related left-lateralized N170 and a bilateral N170 associated with more automatic orthographic processes (Okumura, Kasai & Murohashi, 2014, 2015). The present study aimed to confirm the latter component by controlling presentation frequency of letters and nonlinguistic visual controls (i.e., symbols), but found a quite different pattern of results; an enhanced occipito-temporal positivity for words (80-120ms poststimulus) followed by the typical left-lateralized N170 and an enhanced parietal negativity for nonwords (150-200ms). These results should provide further insights into the interaction processes between attention and early stages of print processing.
Collapse
Affiliation(s)
- Tomoki Uno
- Graduate School of Education, Hokkaido University, Nishi-7, Kita-11, Kita-ku, Sapporo, Hokkaido, Japan.
| | - Yasuko Okumura
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, Japan.
| | - Tetsuko Kasai
- Faculty of Education, Hokkaido University, Nishi-7, Kita-11, Kita-ku, Sapporo, Hokkaido, Japan.
| |
Collapse
|
23
|
Semantic and pragmatic integration in vision for action. Conscious Cogn 2017; 48:40-54. [DOI: 10.1016/j.concog.2016.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/10/2016] [Accepted: 10/23/2016] [Indexed: 11/18/2022]
|
24
|
Magazzini L, Ruhnau P, Weisz N. Alpha suppression and connectivity modulations in left temporal and parietal cortices index partial awareness of words. Neuroimage 2016; 133:279-287. [PMID: 27001501 PMCID: PMC4907686 DOI: 10.1016/j.neuroimage.2016.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/25/2016] [Accepted: 03/12/2016] [Indexed: 11/25/2022] Open
Abstract
The partial awareness hypothesis is a theoretical proposal that recently provided a reconciling solution to graded and dichotomous accounts of consciousness. It suggests that we can become conscious of distinct properties of an object independently, ranging from low-level features to complex forms of representation. We investigated this hypothesis using classic visual word masking adapted to a near-threshold paradigm. The masking intensity was adjusted to the individual perception threshold, at which individual alphabetical letters, but not words, could be perceived in approximately half of the trials. We confined perception to a pre-lexical stage of word processing that corresponded to a clear condition of partial awareness. At this level of representation, the stimulus properties began to emerge within consciousness, yet they did not escalate to full stimulus awareness. In other words, participants were able to perceive individual letters, while remaining unaware of the whole letter strings presented. Cortical activity measured with MEG was compared between physically identical trials that differed in perception (perceived, not perceived). We found that compared to no awareness, partial awareness of words was characterized by suppression of oscillatory alpha power in left temporal and parietal cortices. The analysis of functional connectivity with seeds based on the power effect in these two regions revealed sparse connections for the parietal seed, and strong connections between the temporal seed and other regions of the language network. We suggest that the engagement of language regions indexed by alpha power suppression is responsible for establishing and maintaining conscious representations of individual pre-lexical units. Near-threshold visual masking is used to characterize partial awareness of words. Partial awareness is indexed by left temporal and parietal alpha power suppression. Functional connectivity dissociates nodes in temporal and parietal cortices.
Collapse
Affiliation(s)
- Lorenzo Magazzini
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
| | - Philipp Ruhnau
- Centre for Cognitive Neuroscience, Paris Lodron Universität Salzburg, Salzburg, Austria; Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Nathan Weisz
- Centre for Cognitive Neuroscience, Paris Lodron Universität Salzburg, Salzburg, Austria; Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
25
|
The system neurophysiological basis of backward inhibition. Brain Struct Funct 2016; 221:4575-4587. [DOI: 10.1007/s00429-016-1186-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
|
26
|
Boros M, Anton JL, Pech-Georgel C, Grainger J, Szwed M, Ziegler JC. Orthographic processing deficits in developmental dyslexia: Beyond the ventral visual stream. Neuroimage 2016; 128:316-327. [PMID: 26774610 DOI: 10.1016/j.neuroimage.2016.01.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/29/2015] [Accepted: 01/06/2016] [Indexed: 11/24/2022] Open
Abstract
Fast effortless reading has been associated with the Visual Word Form Area (VWFA), a region in the ventral visual stream that specializes in the recognition of letter strings. Several neuroimaging studies of dyslexia revealed an underactivation of this region. However, most of these studies used reading tasks and/or were carried out on adults. Given that fluent reading is severely impaired in dyslexics, any underactivation might simply reflect a well-established reading deficit in impaired readers and could be the consequence rather than the cause of dyslexia. Here, we designed a task that does not rely on reading per se but that tapped early visual orthographic processing that forms the basis of reading. Dyslexic children aged 8-12years and age-matched controls were asked to search for letters, digits, and symbols in 5-element strings (Experiment 1). This novel task was complemented by a classic task known to activate the VWFA, namely the passive viewing of pseudowords and falsefonts (Experiment 2). We found that in addition to significant group differences in the VWFA, dyslexic children showed a significant underactivation of the middle occipital gyrus (MOG) relative to the control group. Several areas in the MOG are known for their engagement in visuospatial processing, and it has been proposed that the MOG is necessary for ordering the symbols in unfamiliar strings. Our results suggest that the VWFA deficit might be secondary to an impairment of visuospatial processing in the MOG. We argue that efficient processing in MOG in the course of reading acquisition is critical for the development of effortless fast visual word recognition in the VWFA.
Collapse
Affiliation(s)
- Marianna Boros
- Institute Of Psychology, Jagiellonian University, Kraków, Poland
| | - Jean-Luc Anton
- Centre D'IRM Fonctionnelle Cérébrale - Institut De Neurosciences De La Timone, Aix Marseille University, CNRS, Marseille, France
| | - Catherine Pech-Georgel
- Centre De Références Des Troubles D'Apprentissages, Institut du Développement de l'Enfant et de sa Communication (IDEC), Hôpital Salvator, Marseille, France
| | - Jonathan Grainger
- Laboratoire De Psychologie Cognitive, Brain And Language Research Institute, Aix-Marseille University and CNRS, Marseille, France
| | - Marcin Szwed
- Institute Of Psychology, Jagiellonian University, Kraków, Poland.
| | - Johannes C Ziegler
- Laboratoire De Psychologie Cognitive, Brain And Language Research Institute, Aix-Marseille University and CNRS, Marseille, France.
| |
Collapse
|
27
|
Mohl B, Ofen N, Jones L, Robin A, Rosenberg D, Diwadkar V, Casey J, Stanley J. Neural dysfunction in ADHD with Reading Disability during a word rhyming Continuous Performance Task. Brain Cogn 2015; 99:1-7. [DOI: 10.1016/j.bandc.2015.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/29/2022]
|
28
|
Gori S, Seitz AR, Ronconi L, Franceschini S, Facoetti A. Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia. Cereb Cortex 2015; 26:4356-4369. [PMID: 26400914 DOI: 10.1093/cercor/bhv206] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although impaired auditory-phonological processing is the most popular explanation of developmental dyslexia (DD), the literature shows that the combination of several causes rather than a single factor contributes to DD. Functioning of the visual magnocellular-dorsal (MD) pathway, which plays a key role in motion perception, is a much debated, but heavily suspected factor contributing to DD. Here, we employ a comprehensive approach that incorporates all the accepted methods required to test the relationship between the MD pathway dysfunction and DD. The results of 4 experiments show that (1) Motion perception is impaired in children with dyslexia in comparison both with age-match and with reading-level controls; (2) pre-reading visual motion perception-independently from auditory-phonological skill-predicts future reading development, and (3) targeted MD trainings-not involving any auditory-phonological stimulation-leads to improved reading skill in children and adults with DD. Our findings demonstrate, for the first time, a causal relationship between MD deficits and DD, virtually closing a 30-year long debate. Since MD dysfunction can be diagnosed much earlier than reading and language disorders, our findings pave the way for low resource-intensive, early prevention programs that could drastically reduce the incidence of DD.
Collapse
Affiliation(s)
- Simone Gori
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy
| | - Aaron R Seitz
- Department of Psychology, University of California - Riverside, Riverside, CA, USA
| | - Luca Ronconi
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - Sandro Franceschini
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - Andrea Facoetti
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| |
Collapse
|
29
|
Musical expertise is related to altered functional connectivity during audiovisual integration. Proc Natl Acad Sci U S A 2015; 112:12522-7. [PMID: 26371305 DOI: 10.1073/pnas.1510662112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The present study investigated the cortical large-scale functional network underpinning audiovisual integration via magnetoencephalographic recordings. The reorganization of this network related to long-term musical training was investigated by comparing musicians to nonmusicians. Connectivity was calculated on the basis of the estimated mutual information of the sources' activity, and the corresponding networks were statistically compared. Nonmusicians' results indicated that the cortical network associated with audiovisual integration supports visuospatial processing and attentional shifting, whereas a sparser network, related to spatial awareness supports the identification of audiovisual incongruences. In contrast, musicians' results showed enhanced connectivity in regions related to the identification of auditory pattern violations. Hence, nonmusicians rely on the processing of visual clues for the integration of audiovisual information, whereas musicians rely mostly on the corresponding auditory information. The large-scale cortical network underpinning multisensory integration is reorganized due to expertise in a cognitive domain that largely involves audiovisual integration, indicating long-term training-related neuroplasticity.
Collapse
|
30
|
Sun Y, Peng D, Ding G, Qi T, Desroches AS, Liu L. The dynamic nature of assimilation and accommodation procedures in the brains of Chinese-English and English-Chinese bilinguals. Hum Brain Mapp 2015; 36:4144-57. [PMID: 26189500 DOI: 10.1002/hbm.22904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 11/07/2022] Open
Abstract
The framework of assimilation and accommodation has been proposed to explain the brain mechanisms supporting second language reading acquisition (Perfetti et al. [2007]: Bilingual Lang Cogn 10:131). Assimilation refers to using the procedures of the native language network in the acquisition of a new writing system, whereas accommodation refers to using second language procedures for reading the newly acquired writing system. We investigated assimilation and accommodation patterns in the brains of bilingual individuals by recruiting a group of Chinese-English bilinguals and a group of English-Chinese bilinguals to perform lexical decision tasks in both English and Chinese. The key question was whether the assimilation/accommodation procedures supporting second language reading in the brains of Chinese-English and English-Chinese bilinguals were dynamic, i.e., modulated by proficiency in the second language and perceptual features of the second language's script. Perceptual features of the scripts were manipulated through orthographic degradation by inserting spaces between the radicals of a Chinese character or between the syllables of an English word. This manipulation disrupts the visual configuration of the orthography but does not change its more fundamental design principles. We found that for English-Chinese bilinguals, higher proficiency was associated with greater accommodation, suggesting that the accommodation procedure in a bilingual individual's brain is modulated by second language proficiency. Most interestingly, we found that the assimilation/accommodation effects vanished or diminished when orthographically degraded scripts were processed by both Chinese-English and English-Chinese bilinguals, suggesting that the assimilation/accommodation procedures in a bilingual individual's brain are modulated by perceptual features of orthography. This work therefore offers a new, dynamic perspective for our understanding of the assimilation/accommodation framework for second language acquisition.
Collapse
Affiliation(s)
- Yafeng Sun
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China.,School of Educational Science, Shanxi University, Taiyuan, 030006, China
| | - Danling Peng
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Guosheng Ding
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Ting Qi
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Amy S Desroches
- Department of Psychology, the University of Winnipeg, Winnipeg, Canada
| | - Li Liu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China
| |
Collapse
|
31
|
Gilchrist JM, Allen PM. Lexical decisions in adults with low and high susceptibility to pattern-related visual stress: a preliminary investigation. Front Psychol 2015; 6:449. [PMID: 25926810 PMCID: PMC4396132 DOI: 10.3389/fpsyg.2015.00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/30/2015] [Indexed: 11/25/2022] Open
Abstract
Pattern-related visual stress (PRVS) is a form of sensory hypersensitivity that some people experience when viewing high contrast repeating patterns, notably alternating dark and light stripes. Those susceptible to PRVS typically have a strong aversion to such stimuli, and this is often accompanied by experiences of visual discomfort and disturbance. The patterns most likely to elicit symptoms of PRVS have a square-wave grating configuration of spatial frequency ~3 cycles/degree. Such stimuli are characteristic of printed text in which lines of words and the spaces between them present a high contrast grating-like stimulus. Consequently, much printed reading material has the potential to elicit PRVS that may impair reading performance, and this problem appears to be common in individuals with reading difficulties including dyslexia. However, the manner in which PRVS affects reading ability is unknown. One possibility is that the early sensory visual stress may interfere with the later cognitive word recognition stage of the reading process, resulting in reading performance that is slower and/or less accurate. To explore the association of PRVS with word recognition ability, lexical decision performance (speed and accuracy) to words and pronounceable non-words was measured in two groups of adults, having low and high susceptibility to PRVS. Results showed that lexical decisions were generally faster but less accurate in high-PRVS, and also that high-PRVS participants made decisions significantly faster for words than for non-words, revealing a strong lexicality effect that was not present in low-PRVS. These findings are novel and, as yet, unconfirmed by other studies.
Collapse
Affiliation(s)
- James M Gilchrist
- School of Optometry and Vision Science, University of Bradford Bradford, UK
| | - Peter M Allen
- Vision and Eye Research Unit, Department of Vision and Hearing Sciences, Anglia Ruskin University Cambridge, UK
| |
Collapse
|
32
|
Lobier MA, Peyrin C, Pichat C, Le Bas JF, Valdois S. Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction. Front Hum Neurosci 2014; 8:479. [PMID: 25071509 PMCID: PMC4083222 DOI: 10.3389/fnhum.2014.00479] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 06/13/2014] [Indexed: 11/13/2022] Open
Abstract
The visual attention (VA) span deficit hypothesis of developmental dyslexia posits that impaired multiple element processing can be responsible for poor reading outcomes. In VA span impaired dyslexic children, poor performance on letter report tasks is associated with reduced parietal activations for multiple letter processing. While this hints towards a non-specific, attention-based dysfunction, it is still unclear whether reduced parietal activity generalizes to other types of stimuli. Furthermore, putative links between reduced parietal activity and reduced ventral occipito-temporal (vOT) in dyslexia have yet to be explored. Using functional magnetic resonance imaging, we measured brain activity in 12 VA span impaired dyslexic adults and 12 adult skilled readers while they carried out a categorization task on single or multiple alphanumeric or non-alphanumeric characters. While healthy readers activated parietal areas more strongly for multiple than single element processing (right-sided for alphanumeric and bilateral for non-alphanumeric), similar stronger multiple element right parietal activations were absent for dyslexic participants. Contrasts between skilled and dyslexic readers revealed significantly reduced right superior parietal lobule (SPL) activity for dyslexic readers regardless of stimuli type. Using a priori anatomically defined regions of interest, we showed that neural activity was reduced for dyslexic participants in both SPL and vOT bilaterally. Finally, we used multiple regressions to test whether SPL activity was related to vOT activity in each group. In the left hemisphere, SPL activity covaried with vOT activity for both normal and dyslexic readers. In contrast, in the right hemisphere, SPL activity covaried with vOT activity only for dyslexic readers. These results bring critical support to the VA interpretation of the VA Span deficit. In addition, they offer a new insight on how deficits in automatic vOT based word recognition could arise in developmental dyslexia.
Collapse
Affiliation(s)
- Muriel A Lobier
- Laboratoire de Psychologie et NeuroCognition, Université Grenoble Alpes Grenoble, France ; Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Carole Peyrin
- Laboratoire de Psychologie et NeuroCognition, Université Grenoble Alpes Grenoble, France ; CNRS, Laboratoire de Psychologie et NeuroCognition UMR5105, Grenoble, France
| | - Cédric Pichat
- Laboratoire de Psychologie et NeuroCognition, Université Grenoble Alpes Grenoble, France ; CNRS, Laboratoire de Psychologie et NeuroCognition UMR5105, Grenoble, France
| | - Jean-François Le Bas
- INSERM U836/Université Joseph Fourier - Institut des Neurosciences Grenoble, France
| | - Sylviane Valdois
- Laboratoire de Psychologie et NeuroCognition, Université Grenoble Alpes Grenoble, France ; CNRS, Laboratoire de Psychologie et NeuroCognition UMR5105, Grenoble, France
| |
Collapse
|
33
|
Pontillo M, De Luca M, Ellis AW, Marinelli CV, Spinelli D, Zoccolotti P. Failure to learn a new spatial format in children with developmental dyslexia. Sci Rep 2014; 4:4869. [PMID: 24785494 PMCID: PMC4007079 DOI: 10.1038/srep04869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/09/2014] [Indexed: 11/17/2022] Open
Abstract
A general problem in studying children with developmental dyslexia is how to separate inefficiency in learning on the one hand from exposure to written texts on the other. To evaluate dyslexic children's learning abilities with graphemic materials, we tested their improvement in a condition that minimized previous experience with words (i.e., “novel words”) and with the standard, horizontal spatial letter array (i.e., a non-canonical “zigzag” format). We selected five pairs of children with dyslexia and (younger) typically developing readers matched for reading speed and accuracy in these specific conditions. Reading performance on novel words in the zigzag format was measured in 23 sessions; learning curves were fitted by power functions. Similar to typically developing readers, children with dyslexia improved their reading of novel words presented in the new format; however, their rate of learning was slower than that of typically developing readers. Furthermore, their learning to read in the new format did not generalize to novel untrained items, whereas significant generalization was present in typically developing readers. As the failure to generalize learning of the spatial format could not be attributed to reduced experience, it indicates a genuine disability and points to impaired perceptual learning as a factor in developmental dyslexia.
Collapse
Affiliation(s)
- Maria Pontillo
- 1] Neuropsychology Unit, IRCCS Fondazione Santa Lucia, via Ardeatina 306, 00179 Rome, Italy [2] Psychology Department, Sapienza University of Rome, via dei Marsi, 78, 00185 Rome, Italy
| | - Maria De Luca
- Neuropsychology Unit, IRCCS Fondazione Santa Lucia, via Ardeatina 306, 00179 Rome, Italy
| | - Andrew W Ellis
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| | | | - Donatella Spinelli
- 1] Neuropsychology Unit, IRCCS Fondazione Santa Lucia, via Ardeatina 306, 00179 Rome, Italy [2] Department of Human Movement, Social and Health Sciences, University of Rome "Foro Italico", piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Pierluigi Zoccolotti
- 1] Neuropsychology Unit, IRCCS Fondazione Santa Lucia, via Ardeatina 306, 00179 Rome, Italy [2] Psychology Department, Sapienza University of Rome, via dei Marsi, 78, 00185 Rome, Italy
| |
Collapse
|
34
|
Varvara P, Varuzza C, Sorrentino ACP, Vicari S, Menghini D. Executive functions in developmental dyslexia. Front Hum Neurosci 2014; 8:120. [PMID: 24639640 PMCID: PMC3945518 DOI: 10.3389/fnhum.2014.00120] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/18/2014] [Indexed: 11/21/2022] Open
Abstract
The present study was aimed at investigating different aspects of Executive Functions (EF) in children with Developmental Dyslexia (DD). A neuropsychological battery tapping verbal fluency, spoonerism, attention, verbal shifting, short-term and working memory was used to assess 60 children with DD and 65 with typical reading (TR) abilities. Compared to their controls, children with DD showed deficits in several EF domains such as verbal categorical and phonological fluency, visual-spatial and auditory attention, spoonerism, verbal and visual short-term memory, and verbal working memory. Moreover, exploring predictive relationships between EF measures and reading, we found that spoonerism abilities better explained word and non-word reading deficits. Although to a lesser extent, auditory and visual-spatial attention also explained the increased percentage of variance related to reading deficit. EF deficits found in DD are interpreted as an expression of a deficient functioning of the Central Executive System and are discussed in the context of the recent temporal sampling theory.
Collapse
Affiliation(s)
- Pamela Varvara
- Neuroscience Department, Children's Hospital Bambino Gesù Rome, Italy ; Psychology Department, Libera Università Maria Ss. Assunta Rome, Italy
| | - Cristiana Varuzza
- Neuroscience Department, Children's Hospital Bambino Gesù Rome, Italy
| | | | - Stefano Vicari
- Neuroscience Department, Children's Hospital Bambino Gesù Rome, Italy
| | - Deny Menghini
- Neuroscience Department, Children's Hospital Bambino Gesù Rome, Italy
| |
Collapse
|
35
|
Pammer K. Temporal sampling in vision and the implications for dyslexia. Front Hum Neurosci 2014; 7:933. [PMID: 24596549 PMCID: PMC3925989 DOI: 10.3389/fnhum.2013.00933] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/23/2013] [Indexed: 11/17/2022] Open
Abstract
It has recently been suggested that dyslexia may manifest as a deficit in the neural synchrony underlying language-based codes (Goswami, 2011), such that the phonological deficits apparent in dyslexia occur as a consequence of poor synchronisation of oscillatory brain signals to the sounds of language. There is compelling evidence to support this suggestion, and it provides an intriguing new development in understanding the aetiology of dyslexia. It is undeniable that dyslexia is associated with poor phonological coding, however, reading is also a visual task, and dyslexia has also been associated with poor visual coding, particularly visuo-spatial sensitivity. It has been hypothesized for some time that specific frequency oscillations underlie visual perception. Although little research has been done looking specifically at dyslexia and cortical frequency oscillations, it is possible to draw on converging evidence from visual tasks to speculate that similar deficits could occur in temporal frequency oscillations in the visual domain in dyslexia. Thus, here the plausibility of a visual correlate of the Temporal Sampling Framework is considered, leading to specific hypotheses and predictions for future research. A common underlying neural mechanism in dyslexia, may subsume qualitatively different manifestations of reading difficulty, which is consistent with the heterogeneity of the disorder, and may open the door for a new generation of exciting research.
Collapse
Affiliation(s)
- Kristen Pammer
- The Research School of Psychology, The Australian National University Canberra, ACT, Australia
| |
Collapse
|
36
|
Cazzoli D, Müri RM, Kennard C, Rosenthal CR. The Role of the Right Posterior Parietal Cortex in Letter Migration between Words. J Cogn Neurosci 2014; 27:377-86. [DOI: 10.1162/jocn_a_00713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
When briefly presented with pairs of words, skilled readers can sometimes report words with migrated letters (e.g., they report hunt when presented with the words hint and hurt). This and other letter migration phenomena have been often used to investigate factors that influence reading such as letter position coding. However, the neural basis of letter migration is poorly understood. Previous evidence has implicated the right posterior parietal cortex (PPC) in processing visuospatial attributes and lexical properties during word reading. The aim of this study was to assess this putative role by combining an inhibitory TMS protocol with a letter migration paradigm, which was designed to examine the contributions of visuospatial attributes and lexical factors. Temporary interference with the right PPC led to three specific effects on letter migration. First, the number of letter migrations was significantly increased only in the group with active stimulation (vs. a sham stimulation group or a control group without stimulation), and there was no significant effect on other error types. Second, this effect occurred only when letter migration could result in a meaningful word (migration vs. control context). Third, the effect of active stimulation on the number of letter migrations was lateralized to target words presented on the left. Our study thus demonstrates that the right PPC plays a specific and causal role in the phenomenon of letter migration. The nature of this role cannot be explained solely in terms of visuospatial attention, rather it involves an interplay between visuospatial attentional and word reading-specific factors.
Collapse
|
37
|
Basagni B, Patané I, Ferrari V, Bruno N. Impaired reading not due to visual field loss in a patient with a right-hemipsheric lesion. Neurocase 2014; 20:510-23. [PMID: 23984952 DOI: 10.1080/13554794.2013.826684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We describe a right-handed patient (M.B.), who developed left hemianopsia and a severe reading impairment after right occipital-parietal hemorrhage. The pattern of his reading deficit was very similar to that of pure alexia (alexia-without-agraphia): extremely slow reading times with frequent grapheme substitutions and omissions. A test of letter reading while controlling for saccadic eye movements and hemifield of presentation ruled out hemianoptic alexia. Although there have already been reports of reading impairments in right handers following right- hemispheric lesions, ours is, to the best of our knowledge, the first where visual field loss can be definitely excluded as the main cause. Based on a standard neuropsychological assessment and on additional behavioral tests, we argue that M.B.'s difficulties are unlikely to be due to right-hemisphere dominance for language. After considering several candidate explanations, we suggest that M.B.'s symptoms may be related to an impairment in attentional processes related to reading.
Collapse
Affiliation(s)
- Benedetta Basagni
- a Centro S. Maria ai Servi, Fondazione Don Carlo Gnocchi , Parma , Italy
| | | | | | | |
Collapse
|
38
|
Mansour A, Bowyer SM, Richard AE, Moran JE, Erdodi LA, Olszewski A, Pawluk L, Jacobson D, Vogt K, Moore AM, Lajiness-O’Neill R. Magnetoencephalography Coherence Source Imaging in Dyslexia: Activation of Working Memory Pathways. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/psych.2014.516193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Coupling social attention to the self forms a network for personal significance. Proc Natl Acad Sci U S A 2013; 110:7607-12. [PMID: 23610386 DOI: 10.1073/pnas.1221862110] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prior social psychological studies show that newly assigned personal significance can modulate high-level cognitive processes, e.g., memory and social evaluation, with self- and other-related information processed in dissociated prefrontal structure: ventral vs. dorsal, respectively. Here, we demonstrate the impact of personal significance on perception and show the neural network that supports this effect. We used an associative learning procedure in which we "tag" a neutral shape with a self-relevant label. Participants were instructed to associate three neutral shapes with labels for themselves, their best friend, or an unfamiliar other. Functional magnetic resonance imaging data were acquired while participants judged whether the shape-label pairs were maintained or swapped. Behaviorally, participants rapidly tagged a neutral stimulus with self-relevance, showing a robust advantage for self-tagged stimuli. Self-tagging responses were associated with enhanced activity in brain regions linked to self-representation [the ventral medial prefrontal cortex (vmPFC)] and to sensory-driven regions associated with social attention [the left posterior superior temporal sulcus (LpSTS)]. In contrast, associations formed with other people recruited a dorsal frontoparietal control network, with the two networks being inversely correlated. Responses in the vmPFC and LpSTS predicted behavioral self-bias effects. Effective connectivity analyses showed that the vmPFC and the LpSTS were functionally coupled, with the strength of coupling associated with behavioral self-biases. The data show that assignment of personal social significance affects perceptual matching by coupling internal self-representations to brain regions modulating attentional responses to external stimuli.
Collapse
|
40
|
Arciuli J, McMahon K, Zubicaray GD. Probabilistic orthographic cues to grammatical category in the brain. BRAIN AND LANGUAGE 2012; 123:202-210. [PMID: 23117157 DOI: 10.1016/j.bandl.2012.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/14/2012] [Accepted: 09/18/2012] [Indexed: 06/01/2023]
Abstract
What helps us determine whether a word is a noun or a verb, without conscious awareness? We report on cues in the way individual English words are spelled, and, for the first time, identify their neural correlates via functional magnetic resonance imaging (fMRI). We used a lexical decision task with trisyllabic nouns and verbs containing orthographic cues that are either consistent or inconsistent with the spelling patterns of words from that grammatical category. Significant linear increases in response times and error rates were observed as orthography became less consistent, paralleled by significant linear decreases in blood oxygen level dependent (BOLD) signal in the left supramarginal gyrus of the left inferior parietal lobule, a brain region implicated in visual word recognition. A similar pattern was observed in the left superior parietal lobule. These findings align with an emergentist view of grammatical category processing which results from sensitivity to multiple probabilistic cues.
Collapse
Affiliation(s)
- Joanne Arciuli
- Faculty of Health Sciences, University of Sydney, Lidcombe 1825, Australia.
| | | | | |
Collapse
|
41
|
Martínez A, Revheim N, Butler PD, Guilfoyle DN, Dias EC, Javitt DC. Impaired magnocellular/dorsal stream activation predicts impaired reading ability in schizophrenia. Neuroimage Clin 2012; 2:8-16. [PMID: 24179753 PMCID: PMC3777659 DOI: 10.1016/j.nicl.2012.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/01/2012] [Accepted: 09/05/2012] [Indexed: 11/21/2022]
Abstract
In healthy humans, passage reading depends upon a critical organizing role played by the magnocellular/dorsal visual pathway. In a recent study, we found a significant correlation between orthographic reading deficits in schizophrenia and deficits in contrast sensitivity to low spatial frequency stimuli, suggesting an underlying magnocellular processing abnormality. The interrelationship between magnocellular dysfunction and passage reading impairments in schizophrenia was investigated in 21 patients with schizophrenia and 17 healthy control volunteers using behavioral and functional MRI (fMRI) based measures. fMRI activation patterns during passage- and single-word reading were evaluated in relation to cortical areas with differential sensitivity to low versus high spatial frequency cortical regions indentified using a phase-encoded fMRI paradigm. On average, patients with schizophrenia read at the 6th grade level, despite completion of more than 12 years of education and estimated normal pre-morbid IQ. Schizophrenia patients also showed significantly impaired contrast sensitivity to low spatial frequencies and abnormal neural activity in response to stimulation with low spatial frequencies, consistent with dysfunction of magnocellular processing. Further, these magnocellular deficits were predictive of poor performance on a standardized psychoeducational test of passage reading. These findings suggest that reading is an important index of cognitive dysfunction in schizophrenia and highlight the contribution of magnocellular dysfunction to overall cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, USA
- University of California, San Diego, USA
| | | | - Pamela D. Butler
- Nathan Kline Institute for Psychiatric Research, USA
- New York University Langone School of Medicine, USA
| | | | - Elisa C. Dias
- Nathan Kline Institute for Psychiatric Research, USA
| | - Daniel C. Javitt
- Nathan Kline Institute for Psychiatric Research, USA
- New York University Langone School of Medicine, USA
| |
Collapse
|
42
|
Lobier M, Peyrin C, Le Bas JF, Valdois S. Pre-orthographic character string processing and parietal cortex: A role for visual attention in reading? Neuropsychologia 2012; 50:2195-204. [PMID: 22659111 DOI: 10.1016/j.neuropsychologia.2012.05.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 11/16/2022]
Affiliation(s)
- Muriel Lobier
- Laboratoire de Psychologie et NeuroCognition (UMR 5105 CNRS), Université Pierre-Mendès-France, BP 47, 38040 Grenoble Cedex 9, France.
| | | | | | | |
Collapse
|
43
|
Decoding ability makes waves in reading: Deficient interactions between attention and phonological analysis in developmental dyslexia. Neuropsychologia 2012; 50:1553-64. [DOI: 10.1016/j.neuropsychologia.2012.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 02/23/2012] [Accepted: 03/06/2012] [Indexed: 11/21/2022]
|
44
|
Deng Y, Guo R, Ding G, Peng D. Top-down modulations from dorsal stream in lexical recognition: an effective connectivity FMRI study. PLoS One 2012; 7:e33337. [PMID: 22428022 PMCID: PMC3302835 DOI: 10.1371/journal.pone.0033337] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 02/14/2012] [Indexed: 11/18/2022] Open
Abstract
Both the ventral and dorsal visual streams in the human brain are known to be involved in reading. However, the interaction of these two pathways and their responses to different cognitive demands remains unclear. In this study, activation of neural pathways during Chinese character reading was acquired by using a functional magnetic resonance imaging (fMRI) technique. Visual-spatial analysis (mediated by the dorsal pathway) was disassociated from lexical recognition (mediated by the ventral pathway) via a spatial-based lexical decision task and effective connectivity analysis. Connectivity results revealed that, during spatial processing, the left superior parietal lobule (SPL) positively modulated the left fusiform gyrus (FG), while during lexical processing, the left SPL received positive modulatory input from the left inferior frontal gyrus (IFG) and sent negative modulatory output to the left FG. These findings suggest that the dorsal stream is highly involved in lexical recognition and acts as a top-down modulator for lexical processing.
Collapse
Affiliation(s)
- Yuan Deng
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Science, Beijing, China
| | - Ruifang Guo
- State Key Lab of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Changzhi Medical College, Changzhi, Shanxi, China
| | - Guosheng Ding
- State Key Lab of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Danling Peng
- State Key Lab of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
45
|
Sun Y, Yang Y, Desroches AS, Liu L, Peng D. The role of the ventral and dorsal pathways in reading Chinese characters and English words. BRAIN AND LANGUAGE 2011; 119:80-88. [PMID: 21546073 DOI: 10.1016/j.bandl.2011.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 03/07/2011] [Accepted: 03/25/2011] [Indexed: 05/30/2023]
Abstract
Previous literature in alphabetic languages suggests that the occipital-temporal region (the ventral pathway) is specialized for automatic parallel word recognition, whereas the parietal region (the dorsal pathway) is specialized for serial letter-by-letter reading (Cohen et al., 2008; Ho et al., 2002). However, few studies have directly examined the role of the ventral and dorsal pathways in Chinese reading compared to English reading. To investigate this issue, we adopted the degraded word processing paradigm used by Cohen et al. (2008) and compared brain regions involved in the processing of degraded Chinese characters and English words during lexical decision, using functional magnetic resonance imaging (fMRI). The degraded characters/words were created by inserting blank spaces between radicals of Chinese characters or syllables of English polysyllabic words. Generally, the current study replicated the effects of Cohen et al. (2008), showing that in Chinese - like in alphabetic languages - character spacing modulates both ventral (bilateral cuneus, left middle occipital gyrus) and dorsal (left superior parietal lobule and middle frontal gyrus) pathways. In addition, the current study showed greater activation in bilateral cuneus and right lingual gyrus for Chinese versus English when comparing spaced to normal stimuli, suggesting that Chinese character recognition relies more on ventral visual-spatial processing than English word recognition. Interestingly, bilateral cuneus showed monotonic patterns in response to increasing spacing, while the rest of the regions of interest showed non-monotonic patterns, indicating different profiles for these regions in visual-spatial processing.
Collapse
Affiliation(s)
- Yafeng Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, PR China
| | | | | | | | | |
Collapse
|
46
|
Peyrin C, Démonet JF, N'Guyen-Morel MA, Le Bas JF, Valdois S. Superior parietal lobule dysfunction in a homogeneous group of dyslexic children with a visual attention span disorder. BRAIN AND LANGUAGE 2011; 118:128-38. [PMID: 20739053 DOI: 10.1016/j.bandl.2010.06.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 06/14/2010] [Accepted: 06/30/2010] [Indexed: 05/07/2023]
Abstract
A visual attention (VA) span disorder has been reported in dyslexic children as potentially responsible for their poor reading outcome. The purpose of the current paper was to identify the cerebral correlates of this VA span disorder. For this purpose, 12 French dyslexic children with severe reading and VA span disorders and 12 age-matched control children were engaged in a categorisation task under fMRI. Two flanked and isolated conditions were designed which both involved multiple-element simultaneous visual processing but taxed visual attention differently. For skilled readers, flanked stimuli processing activated a large bilateral cortical network comprising the superior and inferior parietal cortex, the inferior temporal cortex, the striate and extrastriate visual cortex, the middle frontal cortex and the anterior cingulate cortex while the less attention-demanding task of isolated stimuli only activated the inferior occipito-temporal cortex bilaterally. With respect to controls, the dyslexic children showed significantly reduced activation within bilateral parietal and temporal areas during flanked processing, but no difference during the isolated condition. The neural correlates of the processes involved in attention-demanding multi-element processing tasks were more specifically addressed by contrasting the flanked and the isolated conditions. This contrast elicited activation of the left precuneus/superior parietal lobule in the controls, but not in the dyslexic children. These findings provide new insights on the role of parietal regions, in particular the left superior parietal lobule, in the visual attention span and in developmental dyslexia.
Collapse
Affiliation(s)
- C Peyrin
- Laboratoire de Psychologie et NeuroCognition (UMR 5105 CNRS), Université Pierre Mendès France, 38040 Grenoble Cedex 09, France
| | | | | | | | | |
Collapse
|
47
|
Barca L, Cornelissen P, Simpson M, Urooj U, Woods W, Ellis AW. The neural basis of the right visual field advantage in reading: an MEG analysis using virtual electrodes. BRAIN AND LANGUAGE 2011; 118:53-71. [PMID: 20932563 DOI: 10.1016/j.bandl.2010.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 08/12/2010] [Accepted: 09/04/2010] [Indexed: 05/30/2023]
Abstract
Right-handed participants respond more quickly and more accurately to written words presented in the right visual field (RVF) than in the left visual field (LVF). Previous attempts to identify the neural basis of the RVF advantage have had limited success. Experiment 1 was a behavioral study of lateralized word naming which established that the words later used in Experiment 2 showed a reliable RVF advantage which persisted over multiple repetitions. In Experiment 2, the same words were interleaved with scrambled words and presented in the LVF and RVF to right-handed participants seated in an MEG scanner. Participants read the real words silently and responded "pattern" covertly to the scrambled words. A beamformer analysis created statistical maps of changes in oscillatory power within the brain. Those whole-brain maps revealed activation of the reading network by both LVF and RVF words. Virtual electrode analyses used the same beamforming method to reconstruct the responses to real and scrambled words in three regions of interest in both hemispheres. The middle occipital gyri showed faster and stronger responses to contralateral than to ipsilateral stimuli, with evidence of asymmetric channeling of information into the left hemisphere. The left mid fusiform gyrus at the site of the 'visual word form area' responded more strongly to RVF than to LVF words. Activity in speech-motor cortex was lateralized to the left hemisphere, and stronger to RVF than LVF words, which is interpreted as representing the proximal cause of the RVF advantage for naming written words.
Collapse
Affiliation(s)
- Laura Barca
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Laycock R, Cross AJ, Lourenco T, Crewther SG. Dorsal stream involvement in recognition of objects with transient onset but not with ramped onset. Behav Brain Funct 2011; 7:34. [PMID: 21843368 PMCID: PMC3163526 DOI: 10.1186/1744-9081-7-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 08/16/2011] [Indexed: 12/03/2022] Open
Abstract
Background Although the ventral visual stream is understood to be responsible for object recognition, it has been proposed that the dorsal stream may contribute to object recognition by rapidly activating parietal attention mechanisms, prior to ventral stream object processing. Methods To investigate the relative contribution of the dorsal visual stream to object recognition a group of tertiary students were divided into good and poor motion coherence groups and assessed on tasks classically assumed to rely on ventral stream processing. Participants were required to identify simple line drawings in two tasks, one where objects were presented abruptly for 50 ms followed by a white-noise mask, the other where contrast was linearly ramped on and off over 325 ms and replaced with a mask. Results Although both groups only differed in motion coherence performance (a dorsal stream measure), the good motion coherence group showed superior contrast sensitivity for object recognition on the abrupt, but not the ramped presentation tasks. Conclusions We propose that abrupt presentation of objects activated attention mechanisms fed by the dorsal stream, whereas the ramped presentation had reduced transience and thus did not activate dorsal attention mechanisms as well. The results suggest that rapid dorsal stream activation may be required to assist with ventral stream object processing.
Collapse
Affiliation(s)
- Robin Laycock
- School of Psychological Science, La Trobe University, Melbourne, Australia.
| | | | | | | |
Collapse
|
49
|
Pammer K, Connell E, Kevan A. Spelling and reading: using visual sensitivity to explore shared or separate orthographic representations. Perception 2010; 39:387-406. [PMID: 20465174 DOI: 10.1068/p6077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Do we use the same neurocognitive mechanisms to spell that we do to read? There is a considerable number of conflicting findings, such that evidence has been provided to support common mechanisms for reading and spelling, while other research supports the proposal that reading and spelling utilise unique neurocognitive resources. Sensitivity to visual spatial-frequency doubling (FD) has been demonstrated to correlate with and specifically predict orthographic processing when reading; therefore, if spelling and reading share some elements of orthographic representation, sensitivity to FD should similarly correlate with, and predict, spelling ability by virtue of this shared association. A double dissociation between reading and spelling was found such that sensitivity to the FD task, as mediated by the visual dorsal stream, predicted reading ability but not spelling, while the visual control task predicted spelling but not reading ability, in poor readers/spellers. The results support a dual-orthographic model with separate orthographic representations for reading and spelling.
Collapse
Affiliation(s)
- Kristen Pammer
- School of Psychology, Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
50
|
Schurz M, Sturm D, Richlan F, Kronbichler M, Ladurner G, Wimmer H. A dual-route perspective on brain activation in response to visual words: evidence for a length by lexicality interaction in the visual word form area (VWFA). Neuroimage 2009; 49:2649-61. [PMID: 19896538 DOI: 10.1016/j.neuroimage.2009.10.082] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/23/2009] [Accepted: 10/29/2009] [Indexed: 12/01/2022] Open
Abstract
Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., "Does xxx sound like an existing word?") presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes.
Collapse
Affiliation(s)
- Matthias Schurz
- Department of Psychology and Center for Neurocognitive Research, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | | | | | | | | | | |
Collapse
|