1
|
Scotto CR, Bernardo M, Tisserand R, Casiez G, Blandin Y. Reliability of online visual and proprioceptive feedback: impact on learning and sensorimotor coding. PSYCHOLOGICAL RESEARCH 2024; 89:12. [PMID: 39535610 DOI: 10.1007/s00426-024-02041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Multisensory integration is essential for learning and sensorimotor coding, facilitating learners' adaptation to environmental changes. Recent findings confirm that introducing unreliability into visual feedback enhances the use of motor coding, probably because proprioceptive cues are given greater weight. The present study was designed to test this hypothesis and, more generally, to explore the impact of visual versus proprioceptive cue reliability on learning processes. Participants performed a 12-target pointing sequence 100 times with different combinations of visual and proprioceptive feedback: reliable versus unreliable. Retention tests and intermanual transfer tests were administered 24 h later. Results showed that learning and sensorimotor coding were both affected by the different combinations of visual and proprioceptive cue reliability. Fully reliable feedback allowed for the best retention, while fully unreliable feedback resulted in the worst retention. Visual reliability alone mediated the level of visuospatial coding performance in visuospatial transfer, regardless of the level of proprioceptive reliability, and conversely, reliable proprioception combined with unreliable vision provided the optimum sensory environment for motor coding in the motor transfer test. Overall, our study highlighted the essential role of both visual cue reliability and proprioceptive cue reliability -and their interactions- in motor learning and its generalization.
Collapse
Affiliation(s)
- Cécile R Scotto
- Université de Poitiers, Université de Tours, CNRS, CERCA, Poitiers, France.
| | - Marie Bernardo
- Université de Poitiers, Université de Tours, CNRS, CERCA, Poitiers, France
| | - Romain Tisserand
- Université de Poitiers, Université de Tours, CNRS, CERCA, Poitiers, France
- Université de Poitiers, ISAE-ENSMA, CNRS, PPRIME, Poitiers, France
| | - Géry Casiez
- Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, Lille, F-59000, France
- Institut Universitaire de France (IUF), Paris, France
| | - Yannick Blandin
- Université de Poitiers, Université de Tours, CNRS, CERCA, Poitiers, France
| |
Collapse
|
2
|
Therrien AS. Parsing proprioception's contribution to adaptation. J Neurophysiol 2024; 132:1235-1237. [PMID: 39319789 DOI: 10.1152/jn.00417.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024] Open
Affiliation(s)
- Amanda S Therrien
- Jefferson Moss Rehabilitation Research Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
3
|
Jayasinghe SAL, Sainburg RL, Sarlegna FR. Role of proprioception in corrective visually-guided movements: larger movement errors in both arms of a deafferented individual compared to control participants. Exp Brain Res 2024; 242:2329-2340. [PMID: 39110161 DOI: 10.1007/s00221-024-06901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024]
Abstract
Proprioception plays an important role in both feedforward and feedback processes underlying movement control. This has been shown with individuals who suffered a profound proprioceptive loss and use vision to partially compensate for the sensory loss. The purpose of this study was to specifically examine the role of proprioception in feedback motor responses to visual perturbations by examining voluntary arm movements in an individual with a rare case of selective peripheral deafferentation (GL). We compared her left and right hand movements with those of age-matched female control participants (70.0 years ± 0.2 SEM) during a reaching task. Participants were asked to move their unseen hand, represented by a cursor on the screen, quickly and accurately to reach a visual target. A visual perturbation could be pseudorandomly applied, at movement onset, to either the target position (target jump) or the cursor position (cursor jump). Results showed that despite the continuous visual feedback that was provided, GL produced larger errors in final position accuracy compared to control participants, with her left nondominant hand being more erroneous after a cursor jump. We also found that the proprioceptively-deafferented individual produced less spatially efficient movements than the control group. Overall, these results provide evidence of a heavier reliance on proprioceptive feedback for movements of the nondominant hand relative to the dominant hand, supporting the view of a lateralization of the feedback processes underlying motor control.
Collapse
Affiliation(s)
- Shanie A L Jayasinghe
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, MN, USA.
| | - Robert L Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Kinesiology, Pennsylvania State University, State College, University Park, PA, USA
| | | |
Collapse
|
4
|
Bonnet C, Poulin-Charronnat B, Michel-Colent C. Aftereffects of visuomanual prism adaptation in auditory modality: Review and perspectives. Neurosci Biobehav Rev 2024; 164:105814. [PMID: 39032842 DOI: 10.1016/j.neubiorev.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Visuomanual prism adaptation (PA), which consists of pointing to visual targets while wearing prisms that shift the visual field, is one of the oldest experimental paradigms used to investigate sensorimotor plasticity. Since the 2000's, a growing scientific interest emerged for the expansion of PA to cognitive functions in several sensory modalities. The present work focused on the aftereffects of PA within the auditory modality. Recent studies showed changes in mental representation of auditory frequencies and a shift of divided auditory attention following PA. Moreover, one study demonstrated benefits of PA in a patient suffering from tinnitus. According to these results, we tried to shed light on the following question: How could this be possible to modulate audition by inducing sensorimotor plasticity with glasses? Based on the literature, we suggest a bottom-up attentional mechanism involving cerebellar, parietal, and temporal structures to explain crossmodal aftereffects of PA. This review opens promising new avenues of research about aftereffects of PA in audition and its implication in the therapeutic field of auditory troubles.
Collapse
Affiliation(s)
- Clémence Bonnet
- LEAD - CNRS UMR5022, Université de Bourgogne, Pôle AAFE, 11 Esplanade Erasme, Dijon 21000, France.
| | | | - Carine Michel-Colent
- CAPS, Inserm U1093, Université de Bourgogne, UFR des Sciences du Sport, Dijon F-21000, France
| |
Collapse
|
5
|
Tsay JS, Chandy AM, Chua R, Miall RC, Cole J, Farnè A, Ivry RB, Sarlegna FR. Minimal impact of chronic proprioceptive loss on implicit sensorimotor adaptation and perceived movement outcome. J Neurophysiol 2024; 132:770-780. [PMID: 39081210 PMCID: PMC11427059 DOI: 10.1152/jn.00096.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
Implicit sensorimotor adaptation keeps our movements well calibrated amid changes in the body and environment. We have recently postulated that implicit adaptation is driven by a perceptual error: the difference between the desired and perceived movement outcome. According to this perceptual realignment model, implicit adaptation ceases when the perceived movement outcome-a multimodal percept determined by a prior belief conveying the intended action, the motor command, and feedback from proprioception and vision-is aligned with the desired movement outcome. Here, we examined the role of proprioception in implicit motor adaptation and perceived movement outcome by examining individuals who experience deafferentation (i.e., individuals with impaired proprioception and touch). We used a modified visuomotor rotation task designed to isolate implicit adaptation and probe perceived movement outcomes throughout the experiment. Surprisingly, both implicit adaptation and perceived movement outcome were minimally impacted by chronic deafferentation, posing a challenge to the perceptual realignment model of implicit adaptation.NEW & NOTEWORTHY We tested six individuals with chronic somatosensory deafferentation on a novel task that isolates implicit sensorimotor adaptation and probes perceived movement outcome. Strikingly, both implicit motor adaptation and perceptual movement outcome were not significantly impacted by chronic deafferentation, posing a challenge for theoretical models of adaptation that involve proprioception.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, University of California, Berkeley, California, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States
- Department of Psychology, University of Carnegie Mellon, Pittsburgh, Pennsylvania, United States
| | - Anisha M Chandy
- Department of Psychology, University of California, Berkeley, California, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States
| | - Romeo Chua
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan Cole
- University Hospitals, Dorset and Bournemouth University, Bournemouth, United Kingdom
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Lyon, France
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, California, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States
| | | |
Collapse
|
6
|
Moore RT, Piitz MA, Singh N, Dukelow SP, Cluff T. The independence of impairments in proprioception and visuomotor adaptation after stroke. J Neuroeng Rehabil 2024; 21:81. [PMID: 38762552 PMCID: PMC11102216 DOI: 10.1186/s12984-024-01360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/18/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Proprioceptive impairments are common after stroke and are associated with worse motor recovery and poor rehabilitation outcomes. Motor learning may also be an important factor in motor recovery, and some evidence in healthy adults suggests that reduced proprioceptive function is associated with reductions in motor learning. It is unclear how impairments in proprioception and motor learning relate after stroke. Here we used robotics and a traditional clinical assessment to examine the link between impairments in proprioception after stroke and a type of motor learning known as visuomotor adaptation. METHODS We recruited participants with first-time unilateral stroke and controls matched for overall age and sex. Proprioceptive impairments in the more affected arm were assessed using robotic arm position- (APM) and movement-matching (AMM) tasks. We also assessed proprioceptive impairments using a clinical scale (Thumb Localization Test; TLT). Visuomotor adaptation was assessed using a task that systematically rotated hand cursor feedback during reaching movements (VMR). We quantified how much participants adapted to the disturbance and how many trials they took to adapt to the same levels as controls. Spearman's rho was used to examine the relationship between proprioception, assessed using robotics and the TLT, and visuomotor adaptation. Data from healthy adults were used to identify participants with stroke who were impaired in proprioception and visuomotor adaptation. The independence of impairments in proprioception and adaptation were examined using Fisher's exact tests. RESULTS Impairments in proprioception (58.3%) and adaptation (52.1%) were common in participants with stroke (n = 48; 2.10% acute, 70.8% subacute, 27.1% chronic stroke). Performance on the APM task, AMM task, and TLT scores correlated weakly with measures of visuomotor adaptation. Fisher's exact tests demonstrated that impairments in proprioception, assessed using robotics and the TLT, were independent from impairments in visuomotor adaptation in our sample. CONCLUSION Our results suggest impairments in proprioception may be independent from impairments in visuomotor adaptation after stroke. Further studies are needed to understand factors that influence the relationship between motor learning, proprioception and other rehabilitation outcomes throughout stroke recovery.
Collapse
Affiliation(s)
- Robert T Moore
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Mark A Piitz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Nishita Singh
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada
| | - Tyler Cluff
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada.
- Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada.
| |
Collapse
|
7
|
Oh K, Rymer WZ, Choi J. A pilot study: effect of somatosensory loss on motor corrections in response to unknown loads in a reaching task by chronic stroke survivors. Biomed Eng Lett 2024; 14:523-535. [PMID: 38645583 PMCID: PMC11026319 DOI: 10.1007/s13534-024-00348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 04/23/2024] Open
Abstract
Despite recent studies indicating a significant correlation between somatosensory deficits and rehabilitation outcomes, how prevailing somatosensory deficits affect stroke survivors' ability to correct their movements and recover overall remains unclear. To explore how major deficits in somatosensory systems impede stroke survivors' motor correction to various external loads, we conducted a study with 13 chronic stroke survivors who had hemiparesis. An inertial, elastic, or viscous load, which was designed to impose perturbing forces with various force profiles, was introduced unexpectedly during the reaching task using a programmable haptic robot. Participants' proprioception and cutaneous sensation were also assessed using passive movement detection, finger-to-nose, mirror, repositioning, and Weinstein pressure tests. These measures were then analyzed to determine whether the somatosensory measures significantly correlated with the estimated reaching performance parameters, such as initial directional error, positional deviation, velocity deviations, and speed of motor correction were measured. Of 13 participants, 5 had impaired proprioception, as they could not recognize the passive movement of their elbow joint, and they kept showing larger initial directional errors even after the familiarization block. Such continuously found inaccurate initial movement direction might be correlated with the inability to develop the spatial body map especially for calculating the initial joint torques when starting the reaching movement. Regardless of whether proprioception was impaired or not, all participants could show the stabilized, constant reaching movement trajectories. This highlights the role of proprioception especially in the execution of a planned movement at the early stage of reaching movement.
Collapse
Affiliation(s)
- Keonyoung Oh
- School of Mechanical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - William Zev Rymer
- Arms & Hands Lab, Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Junho Choi
- Bionics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea
| |
Collapse
|
8
|
Tsay JS, Chandy AM, Chua R, Miall RC, Cole J, Farnè A, Ivry RB, Sarlegna FR. Minimal impact of proprioceptive loss on implicit sensorimotor adaptation and perceived movement outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.19.524726. [PMID: 36711691 PMCID: PMC9882375 DOI: 10.1101/2023.01.19.524726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Implicit sensorimotor adaptation keeps our movements well-calibrated amid changes in the body and environment. We have recently postulated that implicit adaptation is driven by a perceptual error: the difference between the desired and perceived movement outcome. According to this perceptual re-alignment model, implicit adaptation ceases when the perceived movement outcome - a multimodal percept determined by a prior belief conveying the intended action, the motor command, and feedback from proprioception and vision - is aligned with the desired movement outcome. Here, we examined the role of proprioception in implicit motor adaptation and perceived movement outcome by examining individuals who lack proprioception. We used a modified visuomotor rotation task designed to isolate implicit adaptation and probe perceived outcome throughout the experiment. Surprisingly, implicit adaptation and perceived outcome were minimally impacted by deafferentation, posing a challenge to the perceptual re-alignment model of implicit adaptation.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, University of California, Berkeley
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Anisha M Chandy
- Department of Psychology, University of California, Berkeley
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Romeo Chua
- School of Kinesiology, University of British Columbia
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Jonathan Cole
- University Hospitals, Dorset and Bournemouth University, Bournemouth, UK
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team - ImpAct, INSERM U1028, CNRS UMR5292, Neuroscience Research Center (CRNL), Lyon, France
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | | |
Collapse
|
9
|
Kitchen NM, Yuk J, Przybyla A, Scheidt RA, Sainburg RL. Bilateral arm movements are coordinated via task-dependent negotiations between independent and codependent control, but not by a "coupling" control policy. J Neurophysiol 2023; 130:497-515. [PMID: 37529832 PMCID: PMC10655823 DOI: 10.1152/jn.00501.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023] Open
Abstract
Prior research has shown that coordination of bilateral arm movements might be attributed to either control policies that minimize performance and control costs regardless of bilateral symmetry or by control coupling, which activates bilaterally homologous muscles as a single unit to achieve symmetric performance. We hypothesize that independent bimanual control (movements of one arm are performed without influence on the other) and codependent bimanual control (two arms are constrained to move together with high spatiotemporal symmetry) are two extremes on a coordination spectrum that can be negotiated to meet infinite variations in task demands. To better understand and distinguish between these views, we designed a task where minimization of either control costs or asymmetry would yield different patterns of coordination. Participants made bilateral reaches with a shared visual cursor to a midline target. We then covertly varied the gain contribution of either hand to the shared cursor's horizontal position. Across two experiments, we show that bilateral coordination retains high task-dependent sensitivity to subtle visual feedback gain asymmetries applied to the shared cursor. Specifically, we found a change from strong spatial covariation between hands during equal gains to more independent control during asymmetric gains, which occurred rapidly and with high specificity to the dimension of gain manipulation. Furthermore, the extent of spatial covariation was graded to the magnitude of perpendicular gain asymmetry between hands. These findings suggest coordination of bilateral arm movements flexibly maneuvers along a continuous coordination spectrum in a task-dependent manner that cannot be explained by bilateral control coupling.NEW & NOTEWORTHY Minimization of performance and control costs and efferent coupling between bilaterally homologous muscle groups have been separately hypothesized to describe patterns of bimanual coordination. Here, we address whether the mechanisms mediating independent and codependent control between limbs can be weighted for successful task performance. Using bilaterally asymmetric visuomotor gain perturbations, we show bimanual coordination can be characterized as a negotiation along a spectrum between extremes of independent and codependent control, but not efferent control coupling.
Collapse
Affiliation(s)
- Nick M Kitchen
- Department of Neurology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States
- Department of Kinesiology, Pennsylvania State University, State College, Pennsylvania, United States
| | - Jisung Yuk
- Department of Kinesiology, Pennsylvania State University, State College, Pennsylvania, United States
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, Georgia, United States
| | - Robert A Scheidt
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert L Sainburg
- Department of Neurology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States
- Department of Kinesiology, Pennsylvania State University, State College, Pennsylvania, United States
| |
Collapse
|
10
|
Hoffmann AH, Crevecoeur F. Task Instructions and the Need for Feedback Correction Influence the Contribution of Visual Errors to Reach Adaptation. eNeuro 2023; 10:ENEURO.0068-23.2023. [PMID: 37596049 PMCID: PMC10481641 DOI: 10.1523/eneuro.0068-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Previous research has questioned whether motor adaptation is shaped by an optimal combination of multisensory error signals. Here, we expanded on this work by investigating how the use of visual and somatosensory error signals during online correction influences single-trial adaptation. To this end, we exposed participants to a random sequence of force-field perturbations and recorded their corrective responses as well as the after-effects exhibited during the subsequent unperturbed movement. In addition to the force perturbation, we artificially decreased or increased visual errors by multiplying hand deviations by a gain smaller or larger than one. Corrective responses to the force perturbation clearly scaled with the size of the visual error, but this scaling did not transfer one-to-one to motor adaptation and we observed no consistent interaction between limb and visual errors on adaptation. However, reducing visual errors during perturbation led to a small reduction of after-effects and this residual influence of visual feedback was eliminated when we instructed participants to control their hidden hand instead of the visual hand cursor. Taken together, our results demonstrate that task instructions and the need to correct for errors during perturbation are important factors to consider if we want to understand how the sensorimotor system uses and combines multimodal error signals to adapt movements.
Collapse
Affiliation(s)
- Anne H Hoffmann
- Institute for Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels 1200, Belgium
| | - Frédéric Crevecoeur
- Institute for Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels 1200, Belgium
| |
Collapse
|
11
|
Proske U, Weber BM. Proprioceptive disturbances in weightlessness revisited. NPJ Microgravity 2023; 9:64. [PMID: 37567869 PMCID: PMC10421854 DOI: 10.1038/s41526-023-00318-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The senses of limb position and movement become degraded in low gravity. One explanation is a gravity-dependent loss of fusimotor activity. In low gravity, position and movement sense accuracy can be recovered if elastic bands are stretched across the joint. Recent studies using instrumented joysticks have confirmed that aiming and tracking accuracy can be recovered in weightlessness by changing viscous and elastic characteristics of the joystick. It has been proposed that the muscle spindle signal, responsible for generating position sense in the mid-range of joint movement, is combined with input from joint receptors near the limits of joint movement to generate a position signal that covers the full working range of the joint. Here it is hypothesised that in low gravity joint receptors become unresponsive because of the loss of forces acting on the joint capsule. This leads to a loss of position and movement sense which can be recovered by imposing elastic forces across the joint.
Collapse
Affiliation(s)
- Uwe Proske
- School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Bernhard M Weber
- Institute of Robotics and Mechatronics, German Aerospace Center, 82234, Wessling, Germany.
| |
Collapse
|
12
|
Abi Chebel NM, Gaunet F, Chavet P, Assaiante C, Bourdin C, Sarlegna FR. Does visual experience influence arm proprioception and its lateralization? Evidence from passive matching performance in congenitally-blind and sighted adults. Neurosci Lett 2023; 810:137335. [PMID: 37321387 DOI: 10.1016/j.neulet.2023.137335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
In humans, body segments' position and movement can be estimated from multiple senses such as vision and proprioception. It has been suggested that vision and proprioception can influence each other and that upper-limb proprioception is asymmetrical, with proprioception of the non-dominant arm being more accurate and/or precise than proprioception of the dominant arm. However, the mechanisms underlying the lateralization of proprioceptive perception are not yet understood. Here we tested the hypothesis that early visual experience influences the lateralization of arm proprioceptive perception by comparing 8 congenitally-blind and 8 matched, sighted right-handed adults. Their proprioceptive perception was assessed at the elbow and wrist joints of both arms using an ipsilateral passive matching task. Results support and extend the view that proprioceptive precision is better at the non-dominant arm for blindfolded sighted individuals. While this finding was rather systematic across sighted individuals, proprioceptive precision of congenitally-blind individuals was not lateralized as systematically, suggesting that lack of visual experience during ontogenesis influences the lateralization of arm proprioception.
Collapse
|
13
|
Elbaz MA, Demers M, Kleinfeld D, Ethier C, Deschênes M. Interchangeable Role of Motor Cortex and Reafference for the Stable Execution of an Orofacial Action. J Neurosci 2023; 43:5521-5536. [PMID: 37400255 PMCID: PMC10376937 DOI: 10.1523/jneurosci.2089-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Animals interact with their environment through mechanically active, mobile sensors. The efficient use of these sensory organs implies the ability to track their position; otherwise, perceptual stability or prehension would be profoundly impeded. The nervous system may keep track of the position of a sensorimotor organ via two complementary feedback mechanisms-peripheral reafference (external, sensory feedback) and efference copy (internal feedback). Yet, the potential contributions of these mechanisms remain largely unexplored. By training male rats to place one of their vibrissae within a predetermined angular range without contact, a task that depends on knowledge of vibrissa position relative to their face, we found that peripheral reafference is not required. The presence of motor cortex is not required either, except in the absence of peripheral reafference to maintain motor stability. Finally, the red nucleus, which receives descending inputs from motor cortex and cerebellum and projects to facial motoneurons, is critically involved in the execution of the vibrissa positioning task. All told, our results point toward the existence of an internal model that requires either peripheral reafference or motor cortex to optimally drive voluntary motion.SIGNIFICANCE STATEMENT How does an animal know where a mechanically active, mobile sensor lies relative to its body? We address this basic question in sensorimotor integration using the motion of the vibrissae in rats. We show that rats can learn to reliably position their vibrissae in the absence of sensory feedback or in the absence of motor cortex. Yet, when both sensory feedback and motor cortex are absent, motor precision is degraded. This suggests the existence of an internal model able to operate in closed- and open-loop modes, requiring either motor cortex or sensory feedback to maintain motor stability.
Collapse
Affiliation(s)
- Michaël A Elbaz
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - Maxime Demers
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - David Kleinfeld
- Departments of Physics
- Neurobiology, University of California, San Diego, La Jolla, California 92093
| | - Christian Ethier
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - Martin Deschênes
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| |
Collapse
|
14
|
Sanmartin-Senent A, Pena-Perez N, Burdet E, Eden J. Redundancy Resolution in Trimanual vs. Bimanual Tracking Tasks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083745 DOI: 10.1109/embc40787.2023.10340722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Supernumerary limbs promise to allow users to perform complex tasks that would otherwise require the actions of teams. However, how the user's capability for multimanual coordination compares to bimanual coordination, and how the motor system decides to configure its limb contributions given task redundancy is unclear. We conducted bimanual and trimanual (with the foot as a third-hand controller) virtual reality visuomotor tracking experiments to study how 32 healthy participants changed their limb coordination in response to uninstructed cursor mapping changes. This used a shared cursor mapped to the average limbs' position for different limb combinations. The results show that most participants correctly identified the different mappings during bimanual tracking, and accordingly minimized task-irrelevant motion. Instead during trimanual coordination, participants consistently moved all three limbs concurrently, showing weaker ipsilateral hand-foot coordination. These findings show how redundancy resolution and the resulting coordination patterns differ between similar bimanual and trimanual tasks. Further research is needed to consider the effect of learning on coordination behaviour.
Collapse
|
15
|
Takai A, Fu Q, Doibata Y, Lisi G, Tsuchiya T, Mojtahedi K, Yoshioka T, Kawato M, Morimoto J, Santello M. Learning acquisition of consistent leader-follower relationships depends on implicit haptic interactions. Sci Rep 2023; 13:3476. [PMID: 36859436 PMCID: PMC9977766 DOI: 10.1038/s41598-023-29722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Are leaders made or born? Leader-follower roles have been well characterized in social science, but they remain somewhat obscure in sensory-motor coordination. Furthermore, it is unknown how and why leader-follower relationships are acquired, including innate versus acquired controversies. We developed a novel asymmetrical coordination task in which two participants (dyad) need to collaborate in transporting a simulated beam while maintaining its horizontal attitude. This experimental paradigm was implemented by twin robotic manipulanda, simulated beam dynamics, haptic interactions, and a projection screen. Clear leader-follower relationships were learned only when strong haptic feedback was introduced. This phenomenon occurred despite participants not being informed that they were interacting with each other and the large number of equally-valid alternative dyadic coordination strategies. We demonstrate the emergence of consistent leader-follower relationships in sensory-motor coordination, and further show that haptic interaction is essential for dyadic co-adaptation. These results provide insights into neural mechanisms responsible for the formation of leader-follower relationships in our society.
Collapse
Affiliation(s)
- Asuka Takai
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Seika, Japan
- Graduate School of Engineering Division of Mechanical Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Qiushi Fu
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, USA
| | - Yuzuru Doibata
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Seika, Japan
| | - Giuseppe Lisi
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Seika, Japan
| | - Toshiki Tsuchiya
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, USA
| | - Keivan Mojtahedi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, USA
| | - Toshinori Yoshioka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Seika, Japan
- XNef, Kyoto, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Seika, Japan
| | - Jun Morimoto
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Seika, Japan.
- Graduate School of Informatics, Department of Systems Science, Kyoto University, Kyoto, Japan.
| | - Marco Santello
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, USA.
| |
Collapse
|
16
|
West AM, Huber ME, Hogan N. Role of path information in visual perception of joint stiffness. PLoS Comput Biol 2022; 18:e1010729. [PMID: 36441792 PMCID: PMC9731484 DOI: 10.1371/journal.pcbi.1010729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/08/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Humans have an astonishing ability to extract hidden information from the movement of others. In previous work, subjects observed the motion of a simulated stick-figure, two-link planar arm and estimated its stiffness. Fundamentally, stiffness is the relation between force and displacement. Given that subjects were unable to physically interact with the simulated arm, they were forced to make their estimates solely based on observed kinematic information. Remarkably, subjects were able to correctly correlate their stiffness estimates with changes in the simulated stiffness, despite the lack of force information. We hypothesized that subjects were only able to do this because the controller used to produce the simulated arm's movement, composed of oscillatory motions driving mechanical impedances, resembled the controller humans use to produce their own movement. However, it is still unknown what motion features subjects used to estimate stiffness. Human motion exhibits systematic velocity-curvature patterns, and it has previously been shown that these patterns play an important role in perceiving and interpreting motion. Thus, we hypothesized that manipulating the velocity profile should affect subjects' ability to estimate stiffness. To test this, we changed the velocity profile of the simulated two-link planar arm while keeping the simulated joint paths the same. Even with manipulated velocity signals, subjects were still able to estimate changes in simulated joint stiffness. However, when subjects were shown the same simulated path with different velocity profiles, they perceived motions that followed a veridical velocity profile to be less stiff than that of a non-veridical profile. These results suggest that path information (displacement) predominates over temporal information (velocity) when humans use visual observation to estimate stiffness.
Collapse
Affiliation(s)
- A. Michael West
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Meghan E. Huber
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Neville Hogan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Departments of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
17
|
Geller D, Nilsen DM, Quinn L, Van Lew S, Bayona C, Gillen G. Home mirror therapy: a randomized controlled pilot study comparing unimanual and bimanual mirror therapy for improved arm and hand function post-stroke. Disabil Rehabil 2022; 44:6766-6774. [PMID: 34538193 DOI: 10.1080/09638288.2021.1973121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE To compare home-based unimanual mirror therapy (UMT) and bimanual mirror therapy (BMT) for upper limb recovery in subacute/chronic stroke individuals with moderate-to-severe arm impairment. METHOD Twenty-two participants were randomized into 1 of 3 groups: UMT, BMT or traditional occupational therapy (TOT) home-based programs. The intervention was 6-weeks and consisted of OT 2 days a week, weekly sessions with the research OT, and 30-minutes of the home-based program 5 days a week, according to group allocation. The Action Research Arm Test (ARAT), ABILHAND, Fugl-Meyer Assessment (FMA), grip strength, and Stroke Impact Scale (SIS) were used for outcome measures. RESULTS All groups significantly improved over time on all outcome measures and adhered to the prescribed dosage regardless of group (p<0.05). While there were no between-group differences, effect size and 95% confidence interval data suggest a clinical significance in favor of UMT as compared to the other groups. CONCLUSIONS All participants, regardless of home-based program, adhered to the prescribed dosage and significantly improved over time. Despite no between-group differences, effect size and 95% confidence interval data suggest that UMT may be more beneficial for individuals with moderate-to-severe arm impairment as compared to BMT or TOT. ClinicalTrials.gov: #NCT02780440Implications for RehabilitationHome-based unimanual mirror therapy (UMT), bimanual mirror therapy (BMT), and traditional occupational therapy (TOT), when administered in conjunction with outpatient OT, are helpful for improving upper limb recovery post-stroke.Home-based UMT may be more beneficial than BMT or TOT for improvement in upper limb motor function and activities of daily living of patients with moderate to severe arm impairment post-stroke.
Collapse
Affiliation(s)
- Daniel Geller
- Department of Occupational Therapy, New York University Langone Health, Rusk Rehabilitation, New York, NY, USA.,Department of Rehabilitation and Regenerative Medicine (Occupational Therapy), Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dawn M Nilsen
- Department of Rehabilitation and Regenerative Medicine (Occupational Therapy), Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lori Quinn
- Department of Behavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| | - Stephen Van Lew
- Department of Occupational Therapy, New York University Langone Health, Rusk Rehabilitation, New York, NY, USA
| | - Claribell Bayona
- Department of Occupational Therapy, New York University Langone Health, Rusk Rehabilitation, New York, NY, USA
| | - Glen Gillen
- Department of Rehabilitation and Regenerative Medicine (Occupational Therapy), Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
18
|
Lucchese A, Digiesi S, Mummolo C. Analytical-stochastic model of motor difficulty for three-dimensional manipulation tasks. PLoS One 2022; 17:e0276308. [PMID: 36260600 PMCID: PMC9581359 DOI: 10.1371/journal.pone.0276308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Multiple models exist for the evaluation of human motor performance; some of these rely on the Index of Difficulty (ID), a measure to evaluate the difficulty associated to simple reaching tasks. Despite the numerous applications of the ID in reaching movements, the existing formulations are functions of the geometrical features of the task and do not consider the motor behaviour of subjects performing repetitive movements in interaction with the environment. Variability of movements, length of trajectories, subject-specific strength and skill, and required interaction with the environment are all factors that contribute to the motor difficulty experienced by a moving agent (e.g., human, robot) as it repeatedly interacts with the environment during a given task (e.g., target-reaching movement, locomotion, etc.). A novel concept of motor difficulty experienced by an agent executing repetitive end-effector movements is presented in this study. A stochastic ID formulation is proposed that captures the abovementioned factors and applies to general three-dimensional motor tasks. Natural motor variability, inherent in the proposed model, is representative of the flexibility in motor synergies for a given agent-environment interaction: the smaller the flexibility, the greater the experienced difficulty throughout the movement. The quantification of experienced motor difficulty is demonstrated for the case of young healthy subjects performing three-dimensional arm movements during which different objects are manipulated. Results show that subjects’ experienced motor difficulty is influenced by the type of object. In particular, a difference in motor difficulty is observed when manipulating objects with different grasp types. The proposed model can be employed as a novel tool to evaluate the motor performance of agents involved in repetitive movements, such as in pick and place and manipulation, with application in both industrial and rehabilitation contexts.
Collapse
Affiliation(s)
- Andrea Lucchese
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, Italy
- * E-mail:
| | - Salvatore Digiesi
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, Italy
| | - Carlotta Mummolo
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, Italy
| |
Collapse
|
19
|
Risso G, Bassolino M. Assess and rehabilitate body representations via (neuro)robotics: An emergent perspective. Front Neurorobot 2022; 16:964720. [PMID: 36160286 PMCID: PMC9498221 DOI: 10.3389/fnbot.2022.964720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
The perceptions of our own body (e.g., size and shape) do not always coincide with its real characteristics (e.g., dimension). To track the complexity of our perception, the concept of mental representations (model) of the body has been conceived. Body representations (BRs) are stored in the brain and are maintained and updated through multiple sensory information. Despite being altered in different clinical conditions and being tightly linked with self-consciousness, which is one of the most astonishing features of the human mind, the BRs and, especially, the underlying mechanisms and functions are still unclear. In this vein, here we suggest that (neuro)robotics can make an important contribution to the study of BRs. The first section of the study highlights the potential impact of robotics devices in investigating BRs. Far to be exhaustive, we illustrate major examples of its possible exploitation to further improve the assessment of motor, haptic, and multisensory information building up the BRs. In the second section, we review the main evidence showing the contribution of neurorobotics-based (multi)sensory stimulation in reducing BRs distortions in various clinical conditions (e.g., stroke, amputees). The present study illustrates an emergent multidisciplinary perspective combining the neuroscience of BRs and (neuro)robotics to understand and modulate the perception and experience of one's own body. We suggest that (neuro)robotics can enhance the study of BRs by improving experimental rigor and introducing new experimental conditions. Furthermore, it might pave the way for the rehabilitation of altered body perceptions.
Collapse
Affiliation(s)
- Gaia Risso
- School of Health Sciences, Haute École spécialisée de Suisse occidentale (HES-SO) Valais-Wallis, Sion, Switzerland
- The Sense Innovation and Research Center, Sion, Switzerland
- Robotics, Brain and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, Genoa, Italy
| | - Michela Bassolino
- School of Health Sciences, Haute École spécialisée de Suisse occidentale (HES-SO) Valais-Wallis, Sion, Switzerland
- The Sense Innovation and Research Center, Sion, Switzerland
- Laboratoire MySpace, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Tsay JS, Kim H, Haith AM, Ivry RB. Understanding implicit sensorimotor adaptation as a process of proprioceptive re-alignment. eLife 2022; 11:e76639. [PMID: 35969491 PMCID: PMC9377801 DOI: 10.7554/elife.76639] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/13/2022] [Indexed: 01/11/2023] Open
Abstract
Multiple learning processes contribute to successful goal-directed actions in the face of changing physiological states, biomechanical constraints, and environmental contexts. Amongst these processes, implicit sensorimotor adaptation is of primary importance, ensuring that movements remain well-calibrated and accurate. A large body of work on reaching movements has emphasized how adaptation centers on an iterative process designed to minimize visual errors. The role of proprioception has been largely neglected, thought to play a passive role in which proprioception is affected by the visual error but does not directly contribute to adaptation. Here, we present an alternative to this visuo-centric framework, outlining a model in which implicit adaptation acts to minimize a proprioceptive error, the distance between the perceived hand position and its intended goal. This proprioceptive re-alignment model (PReMo) is consistent with many phenomena that have previously been interpreted in terms of learning from visual errors, and offers a parsimonious account of numerous unexplained phenomena. Cognizant that the evidence for PReMo rests on correlational studies, we highlight core predictions to be tested in future experiments, as well as note potential challenges for a proprioceptive-based perspective on implicit adaptation.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Hyosub Kim
- Department of Physical Therapy, University of DelawareNewarkUnited States
- Department of Psychological and Brain Sciences, University of DelawareNewarkUnited States
| | - Adrian M Haith
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Richard B Ivry
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
21
|
Abi Chebel NM, Roussillon NA, Bourdin C, Chavet P, Sarlegna FR. Joint Specificity and Lateralization of Upper Limb Proprioceptive Perception. Percept Mot Skills 2022; 129:431-453. [PMID: 35543706 DOI: 10.1177/00315125221089069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Proprioception is the sense of position and movement of body segments. The widespread distribution of proprioceptors in human anatomy raises questions about proprioceptive uniformity across different body parts. For the upper limbs, previous research, using mostly active and/or contralateral matching tasks, has suggested better proprioception of the non-preferred arm, and at the elbow rather than the wrist. Here we assessed proprioceptive perception through an ipsilateral passive matching task by comparing the elbow and wrist joints of the preferred and non-preferred arms. We hypothesized that upper limb proprioception would be better at the elbow of the non-preferred arm. We found signed errors to be less variable at the non-preferred elbow than at the preferred elbow and both wrists. Signed errors at the elbow were also more stable than at the wrist. Across individuals, signed errors at the preferred and non-preferred elbows were correlated. Also, variable signed errors at the preferred wrist, non-preferred wrist, and preferred elbow were correlated. These correlations suggest that an individual with relatively consistent matching errors at one joint may have relatively consistent matching errors at another joint. Our findings also support the view that proprioceptive perception varies across upper limb joints, meaning that a single joint assessment is insufficient to provide a general assessment of an individual's proprioception.
Collapse
Affiliation(s)
| | - Nadege A Roussillon
- Aix Marseille Univ, CNRS, ISM, Marseille, France
- Institut Supérieur de Rééducation Psychomotrice, Marseille, France
- SAMSAH ARRADV, Marseille / Avignon, France
| | | | | | | |
Collapse
|
22
|
Leclere NX, Sarlegna FR, Coello Y, Bourdin C. Gradual exposure to Coriolis force induces sensorimotor adaptation with no change in peripersonal space. Sci Rep 2022; 12:922. [PMID: 35042915 PMCID: PMC8766485 DOI: 10.1038/s41598-022-04961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
The space immediately surrounding the body is crucial for the organization of voluntary motor actions and seems to be functionally represented in the brain according to motor capacities. However, despite extensive research, little is known about how the representation of peripersonal space is adjusted to new action capacities. Abrupt exposure to a new force field has been shown to cause the representation of peripersonal space to shrink, possibly reflecting a conservative spatial strategy triggered by consciously-perceived motor errors. The present study assessed whether the representation of peripersonal space is influenced by gradual exposure of reaching movements to a new force field, produced by a stepwise acceleration of a rotating platform. We hypothesized that such gradual exposure would induce progressive sensorimotor adaptation to motor errors, albeit too small to be consciously perceived. In contrast, we hypothesized that reachability judgments, used as a proxy of peripersonal space representation, would not be significantly affected. Results showed that gradual exposure to Coriolis force produced a systematic after-effect on reaching movements but no significant change in reachability judgments. We speculate that the conscious experience of large motor errors may influence the updating of the representation of peripersonal space.
Collapse
Affiliation(s)
| | | | - Yann Coello
- Univ. Lille, CNRS, Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, Lille, France
| | | |
Collapse
|
23
|
Schaffer JE, Sarlegna FR, Sainburg RL. A rare case of deafferentation reveals an essential role of proprioception in bilateral coordination. Neuropsychologia 2021; 160:107969. [PMID: 34310971 PMCID: PMC9055994 DOI: 10.1016/j.neuropsychologia.2021.107969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Loss of proprioception has been shown to produce deficits in intralimb coordination and in the ability to stabilize limb posture in the absence of visual feedback. However, the role of proprioceptive signals in the feedforward and feedback control of interlimb coordination remains unclear. To address this issue, we examined bimanual coordination in a deafferented participant (DP) with large-fiber sensory neuropathy, which resulted in the loss of proprioception and touch in both arms, and in age-matched control participants. The task required participants to move a single virtual bar with both hands to a rectangular target with horizontal orientation. The participants received visual feedback of the virtual bar, but not of the hand positions along the bar-axis. Although the task required symmetrical movement between the arms, there were significant differences in the trajectories of the dominant and non-dominant hands in the deafferented participant, and thus more final errors and impaired coordination compared to controls. Deafferentation was also associated with an asymmetric deficit in stabilizing the hand at the end of motion, where the dominant arm showed more drift than the non-dominant arm. While the findings with DP may reflect a unique adaptation to deafferentation, they suggest that 1) Bilateral coordination depends on proprioceptive feedback, and 2) Postural stability at the end of motion can be specified through feedforward mechanisms, in the absence of proprioceptive feedback, but this process appears to be asymmetric, with better stability in the non-dominant arm.
Collapse
Affiliation(s)
- Jacob E Schaffer
- the Pennsylvania State University, Department of Kinesiology, United States.
| | | | - Robert L Sainburg
- the Pennsylvania State University, Department of Kinesiology, United States; Penn State Milton S. Hershey College of Medicine, Department of Neurology, United States
| |
Collapse
|
24
|
Parry R, Sarlegna FR, Jarrassé N, Roby-Brami A. Anticipation and compensation for somatosensory deficits in object handling: evidence from a patient with large fiber sensory neuropathy. J Neurophysiol 2021; 126:575-590. [PMID: 34232757 DOI: 10.1152/jn.00517.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the contributions of feedforward and feedback processes on grip force regulation and object orientation during functional manipulation tasks. One patient with massive somatosensory loss resulting from large fiber sensory neuropathy and 10 control participants were recruited. Three experiments were conducted: 1) perturbation to static holding; 2) discrete vertical movement; and 3) functional grasp and place. The availability of visual feedback was also manipulated to assess the nature of compensatory mechanisms. Results from experiment 1 indicated that both the deafferented patient and controls used anticipatory grip force adjustments before self-induced perturbation to static holding. The patient exhibited increased grip response time, but the magnitude of grip force adjustments remained correlated with perturbation forces in the self-induced and external perturbation conditions. In experiment 2, the patient applied peak grip force substantially in advance of maximum load force. Unlike controls, the patient's ability to regulate object orientation was impaired without visual feedback. In experiment 3, the duration of unloading, transport, and release phases were longer for the patient, with increased deviation of object orientation at phase transitions. These findings show that the deafferented patient uses distinct modes of anticipatory control according to task constraints and that responses to perturbations are mediated by alternative afferent information. The loss of somatosensory feedback thus appears to impair control of object orientation, whereas variation in the temporal organization of functional tasks may reflect strategies to mitigate object instability associated with changes in movement dynamics.NEW & NOTEWORTHY This study evaluates the effects of sensory neuropathy on the scaling and timing of grip force adjustments across different object handling tasks (i.e., holding, vertical movement, grasping, and placement). In particular, these results illustrate how novel anticipatory and online control processes emerge to compensate for the loss of somatosensory feedback. In addition, we provide new evidence on the role of somatosensory feedback for regulating object orientation during functional prehensile movement.
Collapse
Affiliation(s)
- Ross Parry
- LINP2 - Laboratoire Interdisciplinaire en Neurosciences, Physiologie et Psychologie: Activité Physique, Santé et Apprentissages, UPL, Université Paris Nanterre, Nanterre, France.,ISIR (Institute of Intelligent systems and robotics), Sorbonne Université UMR CNRS 7222, AGATHE team INSERM U 1150, Paris, France
| | | | - Nathanaël Jarrassé
- ISIR (Institute of Intelligent systems and robotics), Sorbonne Université UMR CNRS 7222, AGATHE team INSERM U 1150, Paris, France
| | - Agnès Roby-Brami
- ISIR (Institute of Intelligent systems and robotics), Sorbonne Université UMR CNRS 7222, AGATHE team INSERM U 1150, Paris, France
| |
Collapse
|
25
|
Spitzley KA, Karduna AR. Joint Position Accuracy Is Influenced by Visuoproprioceptive Congruency in Virtual Reality. J Mot Behav 2021; 54:92-101. [PMID: 34121630 DOI: 10.1080/00222895.2021.1916425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Weighted integration of visual and proprioceptive information is important in movement planning and execution. The present study used a virtual reality system to determine how upper limb movement consistency and accuracy are altered when (a) vision of the limb is removed and (b) proprioception and vision of the limb are misaligned. A one degree of freedom upper limb movement task was performed under three visual conditions of the limb; accurate vision, no vision, and offset vision. Movement consistency was unaltered by the change in visual condition. Compared to the accurate vision condition, movement accuracy was unchanged in the no vision condition but decreased with a visual offset. When available, vision was relied upon more heavily than proprioception for task completion.
Collapse
Affiliation(s)
- Kate A Spitzley
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Andrew R Karduna
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
26
|
Miall RC, Afanasyeva D, Cole JD, Mason P. Perception of body shape and size without touch or proprioception: evidence from individuals with congenital and acquired neuropathy. Exp Brain Res 2021; 239:1203-1221. [PMID: 33580292 PMCID: PMC8068692 DOI: 10.1007/s00221-021-06037-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/09/2021] [Indexed: 12/26/2022]
Abstract
The degree to which mental representations of the body can be established and maintained without somatosensory input remains unclear. We contrast two "deafferented" adults, one who acquired large fibre sensory loss as an adult (IW) and another who was born without somatosensation (KS). We compared their responses to those of matched controls in three perceptual tasks: first accuracy of their mental image of their hands (assessed by testing recognition of correct hand length/width ratio in distorted photographs and by locating landmarks on the unseen hand); then accuracy of arm length judgements (assessed by judgement of reaching distance), and finally, we tested for an attentional bias towards peri-personal space (assessed by reaction times to visual target presentation). We hypothesised that IW would demonstrate responses consistent with him accessing conscious knowledge, whereas KS might show evidence of responses dependent on non-conscious mechanisms. In the first two experiments, both participants were able to give consistent responses about hand shape and arm length, but IW displayed a better awareness of hand shape than KS (and controls). KS demonstrated poorer spatial accuracy in reporting hand landmarks than both IW and controls, and appears to have less awareness of her hands. Reach distance was overestimated by both IW and KS, as it was for controls; the precision of their judgements was slightly lower than that of the controls. In the attentional task, IW showed no reaction time differences across conditions in the visual detection task, unlike controls, suggesting that he has no peri-personal bias of attention. In contrast, KS did show target location-dependent modulation of reaction times, when her hands were visible. We suggest that both IW and KS can access a conscious body image, although its accuracy may reflect their different experience of hand action. Acquired sensory loss has deprived IW of any subconscious body awareness, but the congenital absence of somatosensation may have led to its partial replacement by a form of visual proprioception in KS.
Collapse
Affiliation(s)
| | - Daria Afanasyeva
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jonathan D Cole
- Centre of Postgraduate Research and Education, Bournemouth University, Bournemouth, UK
| | - Peggy Mason
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Jayasinghe SA, Sarlegna FR, Scheidt RA, Sainburg RL. Somatosensory deafferentation reveals lateralized roles of proprioception in feedback and adaptive feedforward control of movement and posture. CURRENT OPINION IN PHYSIOLOGY 2021; 19:141-147. [PMID: 36569335 PMCID: PMC9788652 DOI: 10.1016/j.cophys.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proprioception provides crucial information necessary for determining limb position and movement, and plausibly also for updating internal models that might underlie the control of movement and posture. Seminal studies of upper-limb movements in individuals living with chronic, large fiber deafferentation have provided evidence for the role of proprioceptive information in the hypothetical formation and maintenance of internal models to produce accurate motor commands. Vision also contributes to sensorimotor functions but cannot fully compensate for proprioceptive deficits. More recent work has shown that posture and movement control processes are lateralized in the brain, and that proprioception plays a fundamental role in coordinating the contributions of these processes to the control of goal-directed actions. In fact, the behavior of each limb in a deafferented individual resembles the action of a controller in isolation. Proprioception, thus, provides state estimates necessary for the nervous system to efficiently coordinate multiple motor control processes.
Collapse
Affiliation(s)
- Shanie A.L. Jayasinghe
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, U.S.A
| | | | - Robert A. Scheidt
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, U.S.A.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Robert L. Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, U.S.A.,Department of Kinesiology, Pennsylvania State University, State College, PA, U.S.A
| |
Collapse
|
28
|
Cerebellar contribution to sensorimotor adaptation deficits in humans with spinal cord injury. Sci Rep 2021; 11:2507. [PMID: 33510183 PMCID: PMC7843630 DOI: 10.1038/s41598-020-77543-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
Humans with spinal cord injury (SCI) show deficits in associating motor commands and sensory feedback. Do these deficits affect their ability to adapt movements to new demands? To address this question, we used a robotic exoskeleton to examine learning of a sensorimotor adaptation task during reaching movements by distorting the relationship between hand movement and visual feedback in 22 individuals with chronic incomplete cervical SCI and 22 age-matched control subjects. We found that SCI individuals showed a reduced ability to learn from movement errors compared with control subjects. Sensorimotor areas in anterior and posterior cerebellar lobules contribute to learning of movement errors in intact humans. Structural brain imaging showed that sensorimotor areas in the cerebellum, including lobules I-VI, were reduced in size in SCI compared with control subjects and cerebellar atrophy increased with increasing time post injury. Notably, the degree of spared tissue in the cerebellum was positively correlated with learning rates, indicating participants with lesser atrophy showed higher learning rates. These results suggest that the reduced ability to learn from movement errors during reaching movements in humans with SCI involves abnormalities in the spinocerebellar structures. We argue that this information might help in the rehabilitation of people with SCI.
Collapse
|
29
|
Martel M, Finos L, Koun E, Farnè A, Roy AC. The long developmental trajectory of body representation plasticity following tool use. Sci Rep 2021; 11:559. [PMID: 33436755 PMCID: PMC7804961 DOI: 10.1038/s41598-020-79476-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
Humans evolution is distinctly characterized by their exquisite mastery of tools, allowing them to shape their environment in more elaborate ways compared to other species. This ability is present ever since infancy and most theories indicate that children become proficient with tool use very early. In adults, tool use has been shown to plastically modify metric aspects of the arm representation, as indexed by changes in movement kinematics. To date, whether and when the plastic capability of updating the body representation develops during childhood remains unknown. This question is particularly important since body representation plasticity could be impacted by the fact that the human body takes years to achieve a stable metric configuration. Here we assessed the kinematics of 90 young participants (8-21 years old) required to reach for an object before and after tool use, as a function of their pubertal development. Results revealed that tool incorporation, as indexed by the adult typical kinematic pattern, develops very slowly and displays a u-shaped developmental trajectory. From early to mid puberty, the changes in kinematics following tool use seem to reflect a shortened arm representation, opposite to what was previously reported in adults. This pattern starts reversing after mid puberty, which is characterized by the lack of any kinematics change following tool use. The typical adult-like pattern emerges only at late puberty, when body size is stable. These findings reveal the complex dynamics of tool incorporation across development, possibly indexing the transition from a vision-based to a proprioception-based body representation plasticity.
Collapse
Affiliation(s)
- Marie Martel
- Laboratoire Dynamique Du Langage, CNRS UMR5596, Lyon, France.
- University of Lyon II, Lyon, France.
- Integrative Multisensory Perception Action and Cognition Team - ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, Lyon, France.
- University UCBL Lyon 1, University of Lyon, Villeurbanne, France.
- Department of Psychology, Royal Holloway University of London, Egham Hill, Surrey, Egham, TW20 0EX, UK.
| | - Livio Finos
- Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Eric Koun
- Integrative Multisensory Perception Action and Cognition Team - ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, Lyon, France
- University UCBL Lyon 1, University of Lyon, Villeurbanne, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action and Cognition Team - ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, Lyon, France
- University UCBL Lyon 1, University of Lyon, Villeurbanne, France
- Hospices Civils de Lyon, Mouvement Et Handicap and Neuro-Immersion, Lyon, France
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Alice Catherine Roy
- Laboratoire Dynamique Du Langage, CNRS UMR5596, Lyon, France
- University of Lyon II, Lyon, France
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
30
|
Kitchen NM, Miall RC. Adaptation of reach action to a novel force-field is not predicted by acuity of dynamic proprioception in either older or younger adults. Exp Brain Res 2020; 239:557-574. [PMID: 33315127 PMCID: PMC7936968 DOI: 10.1007/s00221-020-05997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Healthy ageing involves degeneration of the neuromuscular system which impacts movement control and proprioception. Yet the relationship between these sensory and motor deficits in upper limb reaching has not been examined in detail. Recently, we reported that age-related proprioceptive deficits were unrelated to accuracy in rapid arm movements, but whether this applied in motor tasks more heavily dependent on proprioceptive feedback was not clear. To address this, we have tested groups of younger and older adults on a force-field adaptation task under either full or limited visual feedback conditions and examined how performance was related to dynamic proprioceptive acuity. Adaptive performance was similar between the age groups, regardless of visual feedback condition, although older adults showed increased after-effects. Physically inactive individuals made larger systematic (but not variable) proprioceptive errors, irrespective of age. However, dynamic proprioceptive acuity was unrelated to adaptation and there was no consistent evidence of proprioceptive recalibration with adaptation to the force-field for any group. Finally, in spite of clear age-dependent loss of spatial working memory capacity, we found no relationship between memory capacity and adaptive performance or proprioceptive acuity. Thus, non-clinical levels of deficit in dynamic proprioception, due to age or physical inactivity, do not affect force-field adaptation, even under conditions of limited visual feedback that might require greater proprioceptive control.
Collapse
Affiliation(s)
- Nick M Kitchen
- School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
31
|
Chomienne L, Blouin J, Bringoux L. Online corrective responses following target jump in altered gravitoinertial force field point to nested feedforward and feedback control. J Neurophysiol 2020; 125:154-165. [PMID: 33174494 DOI: 10.1152/jn.00268.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies on goal-directed arm movements have shown a close link between feedforward and feedback control in protocols where both planning and online control processes faced a similar type of perturbation, either mechanical or visual. This particular context might have facilitated the use of an adapted internal model by feedforward and feedback control. Here, we considered this link in a context where, after feedforward control was adapted through proprioception-based processes, feedback control was tested under visual perturbation. We analyzed the response of the reaching hand to target displacements following adaptation to an altered force field induced by rotating participants at constant velocity. Reaching corrections were assessed through variables related to the accuracy (lateral and longitudinal end point errors) and kinematics (movement time, peak velocity) of the corrective movements. The electromyographic activity of different arm muscles (pectoralis, posterior deltoid, biceps brachii, and triceps brachii) was analyzed. Statistical analyses revealed that accuracy and kinematics of corrective movements were strikingly alike between normal and altered gravitoinertial force fields. However, pectoralis and biceps muscle activities recorded during corrective movements were significantly modified to counteract the effect of rotation-induced Coriolis and centrifugal forces on the arm. Remarkably, feedback control was functional from the very first time participants encountered a target jump in the altered force field. Overall, the present results demonstrate that feedforward control enables immediate functional feedback control even when applied to distinct sensorimotor processes.NEW & NOTEWORTHY We investigated the link between feedforward and feedback control when applying a double-step perturbation (visual target jump) during reaching movements performed in modified gravitoinertial environments. Altogether, kinematics and EMG analyses showed that movement corrections were highly effective in the different force fields, suggesting that, although feedforward and feedback control were driven by different sensory inputs, feedback control was remarkably functional from the very first time participants encountered a target jump in the altered force field.
Collapse
Affiliation(s)
- L Chomienne
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| | - J Blouin
- Aix-Marseille Univ, CNRS, LNC, Marseille, France
| | - L Bringoux
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| |
Collapse
|
32
|
Opposing force fields induce direction-specific sensorimotor adaptation but a non-specific perceptual shift consistent with a contraction of peripersonal space representation. Exp Brain Res 2020; 239:31-46. [PMID: 33097985 DOI: 10.1007/s00221-020-05945-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
Most of our daily interactions with objects occur in the space immediately surrounding the body, i.e. the peripersonal space. The peripersonal space is characterized by multisensory processing of objects which are coded in terms of potential actions, specifying for instance whether objects are within reach or not. Our recent work suggested a link between exposure to a new force field, which changed the effector dynamics, and the representation of peripersonal space. To better understand the interplay between the plasticity of the motor system and peripersonal space representation, the present study examined whether changing the direction of the force field specifically modified the perception of action boundaries. Participants seated at the centre of an experimental platform estimated visual targets' reachability before and after adapting upper-limb reaching movements to the Coriolis force generated by either clockwise or counter clockwise rotation of the platform (120°/s). Opposite spatial after-effects were observed, showing that force-field adaptation depends on the direction of the rotation. In contrast, perceived action boundaries shifted leftward following exposure to the new force field, regardless of the direction of the rotation. Overall, these findings support the idea that abrupt exposure to a new force field results in a direction-specific updating of the central sensorimotor representations underlying the control of arm movements. Abrupt exposure to a new force field also results in a nonspecific shift in the perception of action boundaries, which is consistent with a contraction of the peripersonal space. Such effect, which does not appear to be related to state anxiety, could be related to the protective role of the peripersonal space in response to the uncertainty of the sensorimotor system induced by the abrupt modification of the environment.
Collapse
|
33
|
Cappello L, Alghilan W, Gabardi M, Leonardis D, Barsotti M, Frisoli A, Cipriani C. Continuous supplementary tactile feedback can be applied (and then removed) to enhance precision manipulation. J Neuroeng Rehabil 2020; 17:120. [PMID: 32859222 PMCID: PMC7456017 DOI: 10.1186/s12984-020-00736-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022] Open
Abstract
Background Human sensorimotor control of dexterous manipulation relies on afferent sensory signals. Explicit tactile feedback is generally not available to prosthetic hand users, who have to rely on incidental information sources to partly close the control loop, resulting in suboptimal performance and manipulation difficulty. Recent studies on non-invasive supplementary sensory feedback indicated that time-discrete vibrational feedback delivered upon relevant mechanical events outperforms continuous tactile feedback. However, we hypothesize that continuous tactile feedback can be more effective in non-routine manipulation tasks (i.e., tasks where the grip force is modified reactively in response to the sensory feedback due to the unpredictable behavior of the manipulated object, such as picking and holding a virtual fragile object) if delivered to highly sensitive areas. We further hypothesize that this continuous tactile feedback is not necessary during all the duration of the manipulation task, since adaptation occurs. Methods We investigated the effectiveness of continuous tactile feedback in precision manipulation, together with a new sensory feedback policy, where the continuous tactile feedback is gradually removed when the grasp reaches a steady state (namely, transient tactile feedback). We carried out an experiment in a virtual-reality setting with custom tactile feedback devices, which can apply continuous pressure and vibrations, attached to the thumb and index finger. We enrolled 24 healthy participants and instructed them to pick and hold a fragile virtual cube without breaking it. We compared their manipulation performance when using four different sensory feedback methods, i.e., no tactile feedback, discrete vibrations, continuous tactile feedback, and transient tactile feedback. The latter consisted of gradually removing the continuous feedback in the static phase of the grasp. Results Continuous tactile feedback leads to a significantly larger number of successful trials than discrete vibrational cues and no feedback conditions, yet the gradual removal of the continuous feedback yields to comparable outcomes. Moreover, the participants preferred the continuous stimuli over the vibrational cues and the removal in the static phase did not significantly impact their appreciation of the continuous tactile feedback. Conclusions These results advocate for the use of continuous supplementary tactile feedback for fine manipulation control and indicate that it can seamlessly be removed in the static phase of the grasp, possibly due to the mechanism of sensory adaptation. This encourages the development of energy-efficient supplementary feedback devices for prosthetic and telemanipulation applications, where encumbrance and power consumption are burdensome constraints.
Collapse
Affiliation(s)
- Leonardo Cappello
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Pisa, Italy. .,Scuola Superiore Sant'Anna, Department of Excellence in Robotics & AI, Pisa, Italy.
| | - Waleed Alghilan
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Pisa, Italy.,Scuola Superiore Sant'Anna, Department of Excellence in Robotics & AI, Pisa, Italy
| | - Massimiliano Gabardi
- Scuola Superiore Sant'Anna, Department of Excellence in Robotics & AI, Pisa, Italy.,Scuola Superiore Sant'Anna, TeCIP Institute, PERCRO Laboratory, Pisa, Italy
| | - Daniele Leonardis
- Scuola Superiore Sant'Anna, Department of Excellence in Robotics & AI, Pisa, Italy.,Scuola Superiore Sant'Anna, TeCIP Institute, PERCRO Laboratory, Pisa, Italy
| | - Michele Barsotti
- Scuola Superiore Sant'Anna, Department of Excellence in Robotics & AI, Pisa, Italy.,Scuola Superiore Sant'Anna, TeCIP Institute, PERCRO Laboratory, Pisa, Italy
| | - Antonio Frisoli
- Scuola Superiore Sant'Anna, Department of Excellence in Robotics & AI, Pisa, Italy.,Scuola Superiore Sant'Anna, TeCIP Institute, PERCRO Laboratory, Pisa, Italy
| | - Christian Cipriani
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Pisa, Italy.,Scuola Superiore Sant'Anna, Department of Excellence in Robotics & AI, Pisa, Italy
| |
Collapse
|
34
|
Jayasinghe SAL, Sarlegna FR, Scheidt RA, Sainburg RL. The neural foundations of handedness: insights from a rare case of deafferentation. J Neurophysiol 2020; 124:259-267. [PMID: 32579409 DOI: 10.1152/jn.00150.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of proprioceptive feedback on motor lateralization remains unclear. We asked whether motor lateralization is dependent on proprioceptive feedback by examining a rare case of proprioceptive deafferentation (GL). Motor lateralization is thought to arise from asymmetries in neural organization, particularly at the cortical level. For example, we have previously provided evidence that the left hemisphere mediates optimal motor control that allows execution of smooth and efficient arm trajectories, while the right hemisphere mediates impedance control that can achieve stable and accurate final arm postures. The role of proprioception in both of these processes has previously been demonstrated empirically, bringing into question whether loss of proprioception will disrupt lateralization of motor performance. In this study, we assessed whether the loss of online sensory information produces deficits in integrating specific control contributions from each hemisphere by using a reaching task to examine upper limb kinematics in GL and five age-matched controls. Behavioral findings revealed differential deficits in the control of the left and right hands in GL and performance deficits in each of GL's hands compared with controls. Computational simulations can explain the behavioral results as a disruption in the integration of postural and trajectory control mechanisms when no somatosensory information is available. This rare case of proprioceptive deafferentation provides insights into developing a more accurate understanding of handedness that emphasizes the role of proprioception in both predictive and feedback control mechanisms.NEW & NOTEWORTHY The role of proprioceptive feedback on the lateralization of motor control mechanisms is unclear. We examined upper limb kinematics in a rare case of peripheral deafferentation to determine the role of sensory information in integrating motor control mechanisms from each hemisphere. Our empirical findings and computational simulations showed that the loss of somatosensory information results in an impaired integration of control mechanisms, thus providing support for a complementary dominance hypothesis of handedness.
Collapse
Affiliation(s)
- S A L Jayasinghe
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - F R Sarlegna
- Aix Marseille Université, CNRS, ISM, Marseille, France
| | - R A Scheidt
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - R L Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Department of Kinesiology, Pennsylvania State University, State College, Pennsylvania
| |
Collapse
|
35
|
Norouzi E, Gerber M, Pühse U, Vaezmosavi M, Brand S. Combined virtual reality and physical training improved the bimanual coordination of women with multiple sclerosis. Neuropsychol Rehabil 2020; 31:552-569. [PMID: 31971071 DOI: 10.1080/09602011.2020.1715231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As their illness progresses, patients with Multiple Sclerosis (MS) may suffer from motor impairments. In the present study, we examined the effectiveness of three interventions for learning a bimanual coordination task: Virtual reality training (VRT), conventional physical training (CPT), and the combination of VRT and CPT (COMB). A total of 45 women with MS were randomly assigned to one of the following study conditions: VRT, CPT or COMB. Bimanual coordination was assessed at baseline, eight weeks later at study completion, and 4 weeks after that at follow-up. Bimanual coordination improved over time from baseline to study completion and to follow-up. Compared to the VRT and CPT conditions, the COMB condition led to higher coordination accuracy and consistency. The combination thus appears to have the potential to speed up the recovery of motor control and rehabilitation of women with MS.
Collapse
Affiliation(s)
| | - Markus Gerber
- Department of Sport, Exercise and Health, Division of Sport and Psychosocial Health, University of Basel, Basel, Switzerland
| | - Uwe Pühse
- Department of Sport, Exercise and Health, Division of Sport and Psychosocial Health, University of Basel, Basel, Switzerland
| | - Mohammad Vaezmosavi
- Department of Physical Education, Faculty of social Science, Imam Hossien University, Tehran, Iran
| | - Serge Brand
- Department of Sport, Exercise and Health, Division of Sport and Psychosocial Health, University of Basel, Basel, Switzerland.,Psychiatric Clinics, Centre for Affective, Stress, and Sleep, Disorders, Psychiatric University Hospitals, University of Basel, Basel, Switzerland.,Kermanshah University of Medical Sciences (KUMS), Substance Abuse Prevention Research Center, Kermanshah, Iran.,Kermanshah University of Medical Sciences (KUMS), Sleep Disorders Research Centre, Kermanshah, Iran
| |
Collapse
|
36
|
Fleury L, Prablanc C, Priot AE. Do prism and other adaptation paradigms really measure the same processes? Cortex 2019; 119:480-496. [DOI: 10.1016/j.cortex.2019.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/11/2018] [Accepted: 07/28/2019] [Indexed: 01/06/2023]
|
37
|
Sexton BM, Liu Y, Block HJ. Increase in weighting of vision vs. proprioception associated with force field adaptation. Sci Rep 2019; 9:10167. [PMID: 31308399 PMCID: PMC6629615 DOI: 10.1038/s41598-019-46625-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/02/2019] [Indexed: 11/30/2022] Open
Abstract
Hand position can be estimated by vision and proprioception (position sense). The brain is thought to weight and integrate these percepts to form a multisensory estimate of hand position with which to guide movement. Force field adaptation, a type of cerebellum-dependent motor learning, is associated with both motor and proprioceptive changes. The cerebellum has connections with multisensory parietal regions; however, it is unknown if force adaptation is associated with changes in multisensory perception. If force adaptation affects all relevant sensory modalities similarly, the brain’s weighting of vision vs. proprioception should be maintained. Alternatively, if force perturbation is interpreted as somatosensory unreliability, vision may be up-weighted relative to proprioception. We assessed visuo-proprioceptive weighting with a perceptual estimation task before and after subjects performed straight-ahead reaches grasping a robotic manipulandum. Each subject performed one session with a clockwise or counter-clockwise velocity-dependent force field, and one session in a null field. Subjects increased their weight of vision vs. proprioception in the force field session relative to the null session, regardless of force field direction, in the straight-ahead dimension (F1,44 = 5.13, p = 0.029). This suggests that force field adaptation is associated with an increase in the brain’s weighting of vision vs. proprioception.
Collapse
Affiliation(s)
- Brandon M Sexton
- Department of Kinesiology & Program in Neuroscience, Indiana University Bloomington, Bloomington, USA
| | - Yang Liu
- Department of Kinesiology & Program in Neuroscience, Indiana University Bloomington, Bloomington, USA
| | - Hannah J Block
- Department of Kinesiology & Program in Neuroscience, Indiana University Bloomington, Bloomington, USA.
| |
Collapse
|
38
|
Cesonis J, Leib R, Franklin S, Franklin DW. Controller Gains of an Inverted Pendulum are Influenced by the Visual Feedback Position. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:5068-5071. [PMID: 31946998 DOI: 10.1109/embc.2019.8857886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study we experimentally test and model the control behavior of human participants when controlling inverted pendulums of different dynamic lengths, and with visual feedback of varying congruence to these dynamic lengths. Participants were asked to stabilize the inverted pendulum of L = 1 m and L = 4 m, with visual feedback shown at various distances along the pendulum. We fit a family of linear models to the control input (cart velocity) applied by participants. We further tested the models by predicting this control input for a pendulum with dynamic length L = 2 m and comparing the prediction to the experimental data. We show that the sum of proportional error correction and a term inversely proportional to visual feedback gain can well describe the control in human participants.
Collapse
|
39
|
Miall RC, Rosenthal O, Ørstavik K, Cole JD, Sarlegna FR. Loss of haptic feedback impairs control of hand posture: a study in chronically deafferented individuals when grasping and lifting objects. Exp Brain Res 2019; 237:2167-2184. [PMID: 31209510 PMCID: PMC6675781 DOI: 10.1007/s00221-019-05583-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
Previous work has highlighted the role of haptic feedback for manual dexterity, in particular for the control of precision grip forces between the index finger and thumb. It is unclear how fine motor skills involving more than just two digits might be affected, especially given that loss of sensation from the hand affects many neurological patients, and impacts on everyday actions. To assess the functional consequences of haptic deficits on multi-digit grasp of objects, we studied the ability of three rare individuals with permanent large-fibre sensory loss involving the entire upper limb. All three reported difficulties in everyday manual actions (ABILHAND questionnaire). Their performance in a reach-grasp-lift task was compared to that of healthy controls. Twenty objects of varying shape, mass, opacity and compliance were used. In the reach-to-grasp phase, we found slower movement, larger grip aperture and less dynamic modulation of grip aperture in deafferented participants compared to controls. Hand posture during the lift phase also differed; deafferented participants often adopted hand postures that may have facilitated visual guidance, and/or reduced control complexity. For example, they would extend fingers that were not in contact with the object, or fold these fingers into the palm of the hand. Variability in hand postures was increased in deafferented participants, particularly for smaller objects. Our findings provide new insights into how the complex control required for whole hand actions is compromised by loss of haptic feedback, whose contribution is, thus, highlighted.
Collapse
Affiliation(s)
- R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Orna Rosenthal
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Jonathan D Cole
- Centre of Postgraduate Research and Education, Bournemouth University, Bournemouth, UK
| | | |
Collapse
|
40
|
Sensori-motor adaptation to novel limb dynamics influences the representation of peripersonal space. Neuropsychologia 2019; 131:193-204. [PMID: 31091426 DOI: 10.1016/j.neuropsychologia.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 11/24/2022]
Abstract
Peripersonal space can be considered as the interface between the body and the environment, where objects can be reached and which may serve as a reference for the central nervous system with regard to possible actions. Peripersonal space can be studied by assessing the perception of the reachable space, which depends on the body's physical characteristics (i.e., arm length) since their modifications have been shown to be associated with a change in peripersonal space representation. However, it remains unclear whether the representation of limb dynamics also influences the representation of peripersonal space. The present study investigated this issue by perturbing the force-field environment. A novel force field was created by rotating an experimental platform where participants were seated while they reached towards visual targets. Manual reaching performance was assessed before, during and after platform rotation. Crucially, perception of peripersonal space was also assessed, with reachability judgments, before and after platform rotation. As expected, sensori-motor adaptation to the perturbed force field was observed. Our principal finding is that peripersonal space was systematically perceived as closer to the body after force-field adaptation. Two control experiments showed no significant difference in reachability judgments when no reaching movements were performed during platform rotation or when reaching movements were performed without platform rotation, suggesting that the change in perceived peripersonal space resulted from exposure to new limb dynamics. Overall, our findings show that sensori-motor adaptation of reaching movements to a new force field, which does not directly influence arm length but results in the updating of the arm's internal model of limb dynamics, interacts with the perceptual categorisation of space, supporting a motor contribution to the representation of peripersonal space.
Collapse
|
41
|
Cuadra C, Falaki A, Sainburg R, Sarlegna FR, Latash ML. Case Studies in Neuroscience: The central and somatosensory contributions to finger interdependence and coordination: lessons from a study of a "deafferented person". J Neurophysiol 2019; 121:2083-2087. [PMID: 30969884 DOI: 10.1152/jn.00153.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested finger force interdependence and multifinger force-stabilizing synergies in a patient with large-fiber peripheral neuropathy ("deafferented person"). The subject performed a range of tasks involving accurate force production with one finger and with four fingers. In one-finger tasks, nontask fingers showed unintentional force production (enslaving) with an atypical pattern: very large indices for the lateral (index and little) fingers and relatively small indices for the central (middle and ring) fingers. Indices of multifinger synergies stabilizing total force and of anticipatory synergy adjustments in preparation to quick force pulses were similar to those in age-matched control females. During constant force production, removing visual feedback led to a slow force drift to lower values (by ~25% over 15 s). The results support the idea of a neural origin of enslaving and suggest that the patterns observed in the deafferented person were reorganized based on everyday manipulation tasks. The lack of significant changes in the synergy index shows that synergic control can be organized in the absence of somatosensory feedback. We discuss the control of the hand in deafferented persons within the α-model of the equilibrium-point hypothesis and suggest that force drift results from an unintentional drift of the control variables to muscles toward zero values. NEW & NOTEWORTHY We demonstrate atypical patterns of finger enslaving and unchanged force-stabilizing synergies in a person with large-fiber peripheral neuropathy. The results speak strongly in favor of central origin of enslaving and its reorganization based on everyday manipulation tasks. The data show that synergic control can be implemented in the absence of somatosensory feedback. We discuss the control of the hand in deafferented persons within the α-model of the equilibrium-point hypothesis.
Collapse
Affiliation(s)
- Cristian Cuadra
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania.,Escuela Kinesiología, Facultad de Ciencias de la Rehabilitación, Universidad Andres Bello , Viña del Mar , Chile
| | - Ali Falaki
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania.,Département de Neurosciences, Faculté de Médecine, Université de Montréal , Montréal, Québec , Canada
| | - Robert Sainburg
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| | | | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
42
|
Arnold G, Sarlegna FR, Fernandez LG, Auvray M. Somatosensory Loss Influences the Adoption of Self-Centered Versus Decentered Perspectives. Front Psychol 2019; 10:419. [PMID: 30914989 PMCID: PMC6421312 DOI: 10.3389/fpsyg.2019.00419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/12/2019] [Indexed: 11/13/2022] Open
Abstract
The body and the self are commonly experienced as forming a unity. Experiencing the external world as distinct from the self and the body strongly relies on adopting a single self-centered perspective which results in integrating multisensory sensations into one egocentric body-centered reference frame. Body posture and somatosensory representations have been reported to influence perception and specifically the reference frame relative to which multisensory sensations are coded. In the study reported here, we investigated the role of somatosensory and visual information in adopting self-centered and decentered spatial perspectives. Two deafferented patients who have neither tactile nor proprioceptive perception below the head and a group of age-matched control participants performed a graphesthesia task, consisting of the recognition of ambiguous letters (b, d, p, and q) drawn tactilely on head surfaces. To answer which letter was drawn, the participants can adopt either a self-centered perspective or a decentered one (i.e., centered on a body part or on an external location). The participants' responses can be used, in turn, to infer the way the left-right and top-bottom letters' axes are assigned with respect to the left-right and top-bottom axes of their body. In order to evaluate the influence of body posture, the ambiguous letters were drawn on the participants' forehead, left, and right surfaces of the head, with the head aligned or rotated in yaw relative to the trunk. In order to evaluate the role of external information, the participants completed the task with their eyes open in one session and closed in another one. The results obtained in control participants revealed that their preferred perspective varied with body posture but not with vision. Different results were obtained with the deafferented patients who overall do not show any significant effect of their body posture on their preferred perspective. This result suggests that the orientation of their self is not influenced by their physical body. There was an effect of vision for only one of the two patients. The deafferented patients rely on strategies that are more prone to interindividual differences, which highlights the crucial role of somatosensory information in adopting self-centered spatial perspectives.
Collapse
Affiliation(s)
- Gabriel Arnold
- Caylar, Villebon-sur-Yvette, France.,Institut des Systèmes Intelligents et de Robotique (ISIR), CNRS UMR 7222, Sorbonne Université, Paris, France
| | | | - Laura G Fernandez
- Institut des Systèmes Intelligents et de Robotique (ISIR), CNRS UMR 7222, Sorbonne Université, Paris, France
| | - Malika Auvray
- Institut des Systèmes Intelligents et de Robotique (ISIR), CNRS UMR 7222, Sorbonne Université, Paris, France
| |
Collapse
|
43
|
Kitchen NM, Miall RC. Proprioceptive deficits in inactive older adults are not reflected in fast targeted reaching movements. Exp Brain Res 2019; 237:531-545. [PMID: 30478636 PMCID: PMC6373199 DOI: 10.1007/s00221-018-5440-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
Abstract
During normal healthy ageing there is a decline in the ability to control simple movements, characterised by increased reaction times, movement durations and variability. There is also growing evidence of age-related proprioceptive loss which may contribute to these impairments. However, this relationship has not been studied in detail for the upper limb. We recruited 20 younger adults (YAs) and 31 older adults (OAs) who each performed 2 tasks on a 2D robotic manipulandum. The first assessed dynamic proprioceptive acuity using active, multi-joint movements constrained by the robot to a pre-defined path. Participants made perceptual judgements of the lateral position of the unseen arm. The second task required fast, accurate and discrete movements to the same targets in the absence of visual feedback of the hand, and without robotic intervention. We predicted that the variable proprioceptive error (uncertainty range) assessed in Task 1 would be increased in physically inactive OAs and would predict increased movement variability in Task 2. Instead we found that physically inactive OAs had larger systematic proprioceptive errors (bias) than YAs (t[33] = 2.8, p = 0.009), and neither proprioceptive uncertainty nor bias was related to motor performance in either age group (all regression model R2 ≤ 0.06). We suggest that previously reported estimates of proprioceptive decline with ageing may be exaggerated by task demands and that the extent of these deficits is unrelated to control of discrete, rapid movement. The relationship between dynamic proprioceptive acuity and movement control in other tasks with greater emphasis on online feedback is still unclear and warrants further investigation.
Collapse
Affiliation(s)
- Nick M Kitchen
- School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
44
|
Control of a Humanoid NAO Robot by an Adaptive Bioinspired Cerebellar Module in 3D Motion Tasks. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2019; 2019:4862157. [PMID: 30833964 PMCID: PMC6369512 DOI: 10.1155/2019/4862157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022]
Abstract
A bioinspired adaptive model, developed by means of a spiking neural network made of thousands of artificial neurons, has been leveraged to control a humanoid NAO robot in real time. The learning properties of the system have been challenged in a classic cerebellum-driven paradigm, a perturbed upper limb reaching protocol. The neurophysiological principles used to develop the model succeeded in driving an adaptive motor control protocol with baseline, acquisition, and extinction phases. The spiking neural network model showed learning behaviours similar to the ones experimentally measured with human subjects in the same task in the acquisition phase, while resorted to other strategies in the extinction phase. The model processed in real-time external inputs, encoded as spikes, and the generated spiking activity of its output neurons was decoded, in order to provide the proper correction on the motor actuators. Three bidirectional long-term plasticity rules have been embedded for different connections and with different time scales. The plasticities shaped the firing activity of the output layer neurons of the network. In the perturbed upper limb reaching protocol, the neurorobot successfully learned how to compensate for the external perturbation generating an appropriate correction. Therefore, the spiking cerebellar model was able to reproduce in the robotic platform how biological systems deal with external sources of error, in both ideal and real (noisy) environments.
Collapse
|
45
|
Franklin S, Cesonis J, Franklin DW. Influence of Visual Feedback on the Sensorimotor Control of an Inverted Pendulum. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:5170-5173. [PMID: 30441504 DOI: 10.1109/embc.2018.8513461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examine the visual influence of stabilization in human sensorimotor control using a simulated inverted pendulum. As the inverted pendulum is fully simulated, we are able to manipulate the visual feedback independently from the dynamics during the motor control task. Human subjects performed a balancing task of an upright pendulum on a robotic manipulandum in two different visual feedback conditions. First we examined how subjects perform a task where the visual feedback is congruent with the pendulum dynamics. Second we tested how subjects performed when the physical dynamics were fixed but the visual feedback of the pendulum length was modulated. Subjects exhibited deficits in the control of the pendulum when haptic and visual feedback did not match, even when the visual feedback provided more sensitive information about the state of the pendulum. Overall we demonstrate the importance of accurate feedback regarding task dynamics for stabilization.
Collapse
|
46
|
Semrau JA, Herter TM, Scott SH, Dukelow SP. Vision of the upper limb fails to compensate for kinesthetic impairments in subacute stroke. Cortex 2018; 109:245-259. [PMID: 30391879 DOI: 10.1016/j.cortex.2018.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/08/2018] [Accepted: 09/29/2018] [Indexed: 11/25/2022]
Abstract
Kinesthesia is an essential component of proprioception allowing for perception of movement. Due to neural injury, such as stroke, kinesthesia can be significantly impaired. Throughout neurorehabilitation, clinicians may encourage use of vision to guide limb movement to retrain impaired kinesthesia. However, little evidence exists that vision improves kinesthetic performance after stroke. We examined behavioral and neuroanatomical characteristics of kinesthesia post-stroke to determine if these impairments improve with vision. Stroke subjects (N = 281) performed a robotic kinesthetic matching task (KIN) without and with vision at ∼10 days post-stroke. A robotic exoskeleton moved the stroke-affected arm while subjects mirror-matched the movement with the opposite arm. Performance was compared to 160 controls. Spatial and temporal parameters were used to quantify kinesthetic performance. A Kinesthetic Task Score was calculated to determine overall performance on KIN without and with vision. Acute stroke imaging (N = 236) was collected to determine commonalities in lesion characteristics amongst kinesthetic impairment groups. Forty-eight percent (N = 135) of subjects had post-stroke impairment in kinesthesia both without and with vision. Only 19% (N = 52) improved to control-level performance with vision. Of the 48% of subjects that failed to improve with vision, many (N = 77, 57%) had neglect and/or field deficits. Notably 58 subjects (43%) did not have these deficits and still failed to improve with vision. Subjects who failed to improve with vision often had lesions affecting corticospinal tracts, insula, and parietal cortex, specifically the supramarginal gyrus and inferior parietal lobule. Many individuals could not use vision of the limb to correct for impaired kinesthesia after stroke. Subjects that failed to improve kinesthesia with vision had lesions affecting known sensorimotor integration areas. Our results suggest that integration of spatial information is impaired in many individuals post-stroke, particularly after parietal cortex damage. The result is a disconnect between kinesthetic and visuomotor processing necessary for visual limb guidance.
Collapse
Affiliation(s)
- Jennifer A Semrau
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Troy M Herter
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Stephen H Scott
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sean P Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
47
|
Renault AG, Auvray M, Parseihian G, Miall RC, Cole J, Sarlegna FR. Does Proprioception Influence Human Spatial Cognition? A Study on Individuals With Massive Deafferentation. Front Psychol 2018; 9:1322. [PMID: 30131736 PMCID: PMC6090482 DOI: 10.3389/fpsyg.2018.01322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/10/2018] [Indexed: 11/29/2022] Open
Abstract
When navigating in a spatial environment or when hearing its description, we can develop a mental model which may be represented in the central nervous system in different coordinate systems such as an egocentric or allocentric reference frame. The way in which sensory experience influences the preferred reference frame has been studied with a particular interest for the role of vision. The present study investigated the influence of proprioception on human spatial cognition. To do so, we compared the abilities to form spatial models of two rare participants chronically deprived of proprioception (GL and IW) and healthy control participants. Participants listened to verbal descriptions of a spatial environment, and their ability to form and use a mental model was assessed with a distance-comparison task and a free-recall task. Given that the loss of proprioception has been suggested to specifically impair the egocentric reference frame, the deafferented individuals were expected to perform worse than controls when the spatial environment was described in an egocentric reference frame. Results revealed that in both tasks, one deafferented individual (GL) made more errors than controls while the other (IW) made less errors. On average, both GL and IW were slower to respond than controls, and reaction time was more variable for IW. Additionally, we found that GL but not IW was impaired compared to controls in visuo-spatial imagery, which was assessed with the Minnesota Paper Form Board Test. Overall, the main finding of this study is that proprioception can influence the time necessary to use spatial representations while other factors such as visuo-spatial abilities can influence the capacity to form accurate spatial representations.
Collapse
Affiliation(s)
| | - Malika Auvray
- Sorbonne Université, UPMC, CNRS, Institut des Systémes Intelligents et de Robotique (ISIR), Paris, France
| | | | - R. Chris Miall
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan Cole
- Clinical Neurophysiology, Poole Hospital, and Centre of Postgraduate Research and Education, University of Bournemouth, Poole, United Kingdom
| | | |
Collapse
|
48
|
Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy. Exp Brain Res 2018; 236:2137-2155. [PMID: 29779050 PMCID: PMC6061502 DOI: 10.1007/s00221-018-5289-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022]
Abstract
It is uncertain how vision and proprioception contribute to adaptation of voluntary arm movements. In normal participants, adaptation to imposed forces is possible with or without vision, suggesting that proprioception is sufficient; in participants with proprioceptive loss (PL), adaptation is possible with visual feedback, suggesting that proprioception is unnecessary. In experiment 1 adaptation to, and retention of, perturbing forces were evaluated in three chronically deafferented participants. They made rapid reaching movements to move a cursor toward a visual target, and a planar robot arm applied orthogonal velocity-dependent forces. Trial-by-trial error correction was observed in all participants. Such adaptation has been characterized with a dual-rate model: a fast process that learns quickly, but retains poorly and a slow process that learns slowly and retains well. Experiment 2 showed that the PL participants had large individual differences in learning and retention rates compared to normal controls. Experiment 3 tested participants’ perception of applied forces. With visual feedback, the PL participants could report the perturbation’s direction as well as controls; without visual feedback, thresholds were elevated. Experiment 4 showed, in healthy participants, that force direction could be estimated from head motion, at levels close to the no-vision threshold for the PL participants. Our results show that proprioceptive loss influences perception, motor control and adaptation but that proprioception from the moving limb is not essential for adaptation to, or detection of, force fields. The differences in learning and retention seen between the three deafferented participants suggest that they achieve these tasks in idiosyncratic ways after proprioceptive loss, possibly integrating visual and vestibular information with individual cognitive strategies.
Collapse
|
49
|
Gallego JA, Hardwick RM, Oby ER. Highlights from the 2017 meeting of the Society for Neural Control of Movement (Dublin, Ireland). Eur J Neurosci 2017; 46:2141-2148. [PMID: 28837247 DOI: 10.1111/ejn.13670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Alvaro Gallego
- Neural and Cognitive Engineering Group, Centre for Automation and Robotics CSIC-UPM, Madrid, Spain.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robert M Hardwick
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.,Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Emily R Oby
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
50
|
Jarrett C, McDaid A. Virtual Normalization of Physical Impairment: A Pilot Study to Evaluate Motor Learning in Presence of Physical Impairment. Front Neurosci 2017; 11:101. [PMID: 28381985 PMCID: PMC5361658 DOI: 10.3389/fnins.2017.00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Motor learning is a critical component of the rehabilitation process; however, it can be difficult to separate the fundamental causes of a learning deficit when physical impairment is a confounding factor. In this paper, a new technique is proposed to augment the residual ability of physically impaired patients with a robotic rehabilitation exoskeleton, such that motor learning can be studied independently of physical impairment. The proposed technique augments the velocity of an on-screen cursor relative to the restricted physical motion. Radial Basis Functions (RBFs) are used to both model velocity and derive a function to scale velocity as a function of workspace position. Two variations of the algorithm are presented for comparison. In a cross-over pilot study, healthy participants were recruited and subjected to a simulated impairment to constrain their motion, imposed by the cable-driven wrist exoskeleton. Participants then completed a sinusoidal tracking task, in which the algorithms were statistically shown to augment the cursor velocity in the constrained state such that it matched position-dependent velocities recorded in the healthy state. A kinematic task was then designed as a motor-learning case study where the algorithms were statistically shown to allow participants to achieve the same performance when their motion was constrained as when unconstrained. The results of the pilot study provide motivation for further research into the use of this technique, thus providing a tool with which motor-learning can be studied in neurologically impaired populations. This could be used to give physiotherapists greater insight into underlying causes of motor learning deficits, consequently facilitating and enhancing subject-specific therapy regimes.
Collapse
Affiliation(s)
- Christopher Jarrett
- Department of Mechanical Engineering, Faculty of Engineering, University of Auckland Auckland, New Zealand
| | - Andrew McDaid
- Department of Mechanical Engineering, Faculty of Engineering, University of Auckland Auckland, New Zealand
| |
Collapse
|