1
|
Peng S, Cui Z, Zhong S, Zhang Y, Cohen AL, Fox MD, Gong G. Heterogenous brain activations across individuals localize to a common network. Commun Biol 2024; 7:1270. [PMID: 39369118 PMCID: PMC11455857 DOI: 10.1038/s42003-024-06969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Task functional magnetic resonance imaging research has generally shielded away from studying individuals due to the low reproducibility. Here, we propose that heterogeneous brain activations across individuals localize to a common network. To test this hypothesis, we use working memory (WM) as our example. First, we showed that discrete-brain-based reproducibility of brain activation during WM across individuals was low. Then, we used activation network mapping (ANM) technique to identify each individual's brain network of WM and found that network-based reproducibility was rather high. Prediction analyses using machine learning algorithms indicated that individual WM networks identified via ANM can predict WM behavioral performance. This predictive ability even outperformed that of brain activations. Our study provides a new explanation on the low reproducibility of brain activations across individuals. The results suggest that ANM can be used to identify individual brain networks of cognitive processes, thus promising broad potential applications.
Collapse
Affiliation(s)
- Shaoling Peng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Suyu Zhong
- Center for Artificial Intelligence in Medical Imaging, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Alexander L Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| |
Collapse
|
2
|
Martin RC, Yue Q, Zahn R, Lu Y. The role of variation in phonological and semantic working memory capacities in sentence comprehension: neural evidence from healthy and brain-damaged individuals. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024:10.3758/s13415-024-01217-5. [PMID: 39271594 DOI: 10.3758/s13415-024-01217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
Research on the role of working memory (WM) in language processing has typically focused on WM for phonological information. However, considerable behavioral evidence supports the existence of a separate semantic WM system that plays a greater role in language processing. We review the neural evidence that supports the distinction between phonological and semantic WM capacities and discuss how individual differences in these capacities relate to sentence processing. In terms of neural substrates, findings from multivariate functional MRI for healthy participants and voxel-based lesion-symptom mapping for brain-damaged participants imply that the left supramarginal gyrus supports phonological WM, whereas the left inferior frontal gyrus (LIFG) and angular gyrus support semantic WM. In sentence comprehension, individual variation in semantic but not phonological WM related to performance in resolving semantic information and the LIFG region implicated in semantic WM showed fMRI activation during the resolution of semantic interference. Moreover, variation for brain-damaged participants in the integrity of a fiber tract supporting semantic WM had a greater relation to the processing of complex sentences than did the integrity of fiber tracts supporting phonological WM. Overall, the neural findings provide converging evidence regarding the distinction of these two capacities and the greater contribution of individual differences in semantic than phonological WM capacity to sentence processing.
Collapse
Affiliation(s)
| | - Qiuhai Yue
- School of Psychology, Shenzhen University, Shenzhen, China.
| | | | - Yu Lu
- Rice University, Houston, TX, USA
| |
Collapse
|
3
|
Flores-Gallegos R, Fernández T, Alcauter S, Pasaye E, Albarrán-Cárdenas L, Barrera-Díaz B, Rodríguez-Leis P. Functional connectivity is linked to working memory differences in children with reading learning disability. BMC Pediatr 2024; 24:318. [PMID: 38720281 PMCID: PMC11077889 DOI: 10.1186/s12887-024-04791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Reading learning disability (RLD) is characterized by a specific difficulty in learning to read that is not better explained by an intellectual disability, lack of instruction, psychosocial adversity, or a neurological disorder. According to the domain-general hypothesis, a working memory deficit is the primary problem. Working memory in this population has recently been linked to altered resting-state functional connectivity within the default mode network (DMN), salience network (SN), and frontoparietal network (FPN) compared to that in typically developing individuals. The main purpose of the present study was to compare the within-network functional connectivity of the DMN, SN, FPN, and reading network in two groups of children with RLD: a group with lower-than-average working memory (LWM) and a group with average working memory (AWM). All subjects underwent resting-state functional magnetic resonance imaging (fMRI), and data were analyzed from a network perspective using the network brain statistics framework. The results showed that the LWM group had significantly weaker connectivity in a network that involved brain regions in the DMN, SN, and FPN than the AWM group. Although there was no significant difference between groups in reading network in the present study, other studies have shown relationship of the connectivity of the angular gyrus, supramarginal gyrus, and inferior parietal lobe with the phonological process of reading. The results suggest that although there are significant differences in functional connectivity in the associated networks between children with LWM and AWM, the distinctive cognitive profile has no specific effect on the reading network.
Collapse
Affiliation(s)
- Rodrigo Flores-Gallegos
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México
| | - Thalía Fernández
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México.
| | - Sarael Alcauter
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México
| | - Erick Pasaye
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México
| | - Lucero Albarrán-Cárdenas
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México
| | - Bertha Barrera-Díaz
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México
| | - Paulina Rodríguez-Leis
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México
| |
Collapse
|
4
|
Inguscio BMS, Cartocci G, Sciaraffa N, Nicastri M, Giallini I, Aricò P, Greco A, Babiloni F, Mancini P. Two are better than one: Differences in cortical EEG patterns during auditory and visual verbal working memory processing between Unilateral and Bilateral Cochlear Implanted children. Hear Res 2024; 446:109007. [PMID: 38608331 DOI: 10.1016/j.heares.2024.109007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Despite the proven effectiveness of cochlear implant (CI) in the hearing restoration of deaf or hard-of-hearing (DHH) children, to date, extreme variability in verbal working memory (VWM) abilities is observed in both unilateral and bilateral CI user children (CIs). Although clinical experience has long observed deficits in this fundamental executive function in CIs, the cause to date is still unknown. Here, we have set out to investigate differences in brain functioning regarding the impact of monaural and binaural listening in CIs compared with normal hearing (NH) peers during a three-level difficulty n-back task undertaken in two sensory modalities (auditory and visual). The objective of this pioneering study was to identify electroencephalographic (EEG) marker pattern differences in visual and auditory VWM performances in CIs compared to NH peers and possible differences between unilateral cochlear implant (UCI) and bilateral cochlear implant (BCI) users. The main results revealed differences in theta and gamma EEG bands. Compared with hearing controls and BCIs, UCIs showed hypoactivation of theta in the frontal area during the most complex condition of the auditory task and a correlation of the same activation with VWM performance. Hypoactivation in theta was also observed, again for UCIs, in the left hemisphere when compared to BCIs and in the gamma band in UCIs compared to both BCIs and NHs. For the latter two, a correlation was found between left hemispheric gamma oscillation and performance in the audio task. These findings, discussed in the light of recent research, suggest that unilateral CI is deficient in supporting auditory VWM in DHH. At the same time, bilateral CI would allow the DHH child to approach the VWM benchmark for NH children. The present study suggests the possible effectiveness of EEG in supporting, through a targeted approach, the diagnosis and rehabilitation of VWM in DHH children.
Collapse
Affiliation(s)
- Bianca Maria Serena Inguscio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy.
| | - Giulia Cartocci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy
| | | | - Maria Nicastri
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| | - Ilaria Giallini
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| | - Pietro Aricò
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy; Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Via Ariosto 125, Rome 00185, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy; Department of Computer Science, Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Patrizia Mancini
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| |
Collapse
|
5
|
Killanin AD, Ward TW, Embury CM, Calhoun VD, Wang YP, Stephen JM, Picci G, Heinrichs-Graham E, Wilson TW. Better with age: Developmental changes in oscillatory activity during verbal working memory encoding and maintenance. Dev Cogn Neurosci 2024; 66:101354. [PMID: 38330526 PMCID: PMC10864839 DOI: 10.1016/j.dcn.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Numerous investigations have characterized the oscillatory dynamics serving working memory in adults, but few have probed its relationship with chronological age in developing youth. We recorded magnetoencephalography during a modified Sternberg verbal working memory task in 82 youth participants aged 6-14 years old. Significant oscillatory responses were identified and imaged using a beamforming approach and the resulting whole-brain maps were probed for developmental effects during the encoding and maintenance phases. Our results indicated robust oscillatory responses in the theta (4-7 Hz) and alpha (8-14 Hz) range, with older participants exhibiting stronger alpha oscillations in left-hemispheric language regions. Older participants also had greater occipital theta power during encoding. Interestingly, there were sex-by-age interaction effects in cerebellar cortices during encoding and in the right superior temporal region during maintenance. These results extend the existing literature on working memory development by showing strong associations between age and oscillatory dynamics across a distributed network. To our knowledge, these findings are the first to link chronological age to alpha and theta oscillatory responses serving working memory encoding and maintenance, both across and between male and female youth; they reveal robust developmental effects in crucial brain regions serving higher order functions.
Collapse
Affiliation(s)
- Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas W Ward
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
6
|
Kumpulainen V, Copeland A, Pulli EP, Silver E, Kataja EL, Saukko E, Merisaari H, Lewis JD, Karlsson L, Karlsson H, Tuulari JJ. Prenatal and Postnatal Maternal Depressive Symptoms Are Associated With White Matter Integrity in 5-Year-Olds in a Sex-Specific Manner. Biol Psychiatry 2023; 94:924-935. [PMID: 37220833 DOI: 10.1016/j.biopsych.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/18/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Prenatal and postnatal maternal psychological distress predicts various detrimental consequences on social, behavioral, and cognitive development of offspring, especially in girls. Maturation of white matter (WM) continues from prenatal development into adulthood and is thus susceptible to exposures both before and after birth. METHODS WM microstructural features of 130 children (mean age, 5.36 years; range, 5.04-5.79 years; 63 girls) and their association with maternal prenatal and postnatal depressive and anxiety symptoms were investigated with diffusion tensor imaging, tract-based spatial statistics, and regression analyses. Maternal questionnaires were collected during first, second, and third trimesters and at 3, 6, and 12 months postpartum with the Edinburgh Postnatal Depression Scale (EPDS) for depressive symptoms and Symptom Checklist-90 for general anxiety. Covariates included child's sex; child's age; maternal prepregnancy body mass index; maternal age; socioeconomic status; and exposures to smoking, selective serotonin reuptake inhibitors, and synthetic glucocorticoids during pregnancy. RESULTS Prenatal second-trimester EPDS scores were positively associated with fractional anisotropy in boys (p < .05, 5000 permutations) after controlling for EPDS scores 3 months postpartum. In contrast, postpartum EPDS scores at 3 months correlated negatively with fractional anisotropy (p < .01, 5000 permutations) in widespread areas only in girls after controlling for prenatal second-trimester EPDS scores. Perinatal anxiety was not associated with WM structure. CONCLUSIONS These results suggest that prenatal and postnatal maternal psychological distress is associated with brain WM tract developmental alterations in a sex- and timing-dependent manner. Future studies including behavioral data are required to consolidate associative outcomes for these alterations.
Collapse
Affiliation(s)
- Venla Kumpulainen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland.
| | - Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Elmo P Pulli
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Eeva-Leena Kataja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Department of Radiology, Turku University Hospital, Turku, Finland
| | - John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland; Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland; Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Michel LC, McCormick EM, Kievit RA. Grey and white matter metrics demonstrate distinct and complementary prediction of differences in cognitive performance in children: Findings from ABCD (N= 11 876). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.529634. [PMID: 36945470 PMCID: PMC10028815 DOI: 10.1101/2023.03.06.529634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Individual differences in cognitive performance in childhood are a key predictor of significant life outcomes such as educational attainment and mental health. Differences in cognitive ability are governed in part by variations in brain structure. However, studies commonly focus on either grey or white matter metrics in humans, leaving open the key question as to whether grey or white matter microstructure play distinct or complementary roles supporting cognitive performance. To compare the role of grey and white matter in supporting cognitive performance, we used regularized structural equation models to predict cognitive performance with grey and white matter measures. Specifically, we compared how grey matter (volume, cortical thickness and surface area) and white matter measures (volume, fractional anisotropy and mean diffusivity) predicted individual differences in cognitive performance. The models were tested in 11,876 children (ABCD Study, 5680 female; 6196 male) at 10 years old. We found that grey and white matter metrics bring partly non-overlapping information to predict cognitive performance. The models with only grey or white matter explained respectively 15.4% and 12.4% of the variance in cognitive performance, while the combined model explained 19.0%. Zooming in we additionally found that different metrics within grey and white matter had different predictive power, and that the tracts/regions that were most predictive of cognitive performance differed across metric. These results show that studies focusing on a single metric in either grey or white matter to study the link between brain structure and cognitive performance are missing a key part of the equation.
Collapse
Affiliation(s)
- Lea C Michel
- Cognitive Neuroscience Department, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ethan M McCormick
- Cognitive Neuroscience Department, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Methodology and Statistics, Institute of Psychology, Leiden University, Leiden, Netherlands
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, United States
| | - Rogier A Kievit
- Cognitive Neuroscience Department, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
8
|
Ehrler M, Brugger P, Greutmann M, Schlosser L, Wehrle FM, Liamlahi R, Naef N, Kretschmar O, O'Gorman RT, Latal B. White matter microstructure and executive functions in congenital heart disease from childhood to adulthood: A pooled case-control study. Child Neuropsychol 2023; 29:1064-1087. [PMID: 36377081 DOI: 10.1080/09297049.2022.2144633] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
Congenital heart disease (CHD) patients are at risk for alterations in the cerebral white matter microstructure (WMM) throughout development. It is unclear whether the extent of WMM alterations changes with age, especially during adolescence when the WMM undergoes rapid maturation. We investigated differences in WMM between patients with CHD and healthy controls from childhood until early adulthood in a pooled sample of children, adolescents, and young adults. The association between WMM and EF was assessed. Patients with CHD (N=78) and controls (N=137) between 9 and 32 years of age underwent diffusion tensor imaging and an executive function test-battery. Mean fractional anisotropy (FA) was calculated for each white matter tract. Linear regression tested age and group effects (CHD vs control) and their interaction on FA. Relative Variable Importance (RI) estimated the independent contribution of tract FA, presence of CHD, CHD complexity, and parental education to the variability in EF. Mean FA was lower in patients compared to controls in almost all tracts (p between 0.057 and <0.001). WMM alterations in patients were not different depending on age (all interaction effects p>0.074). Predictors of EF were CHD group (RI=43%), parental education (RI=23%), CHD complexity (RI=10%), FA of the hippocampal cingulum (RI=6%) and FA of the corticospinal tract (RI=6%). The lack of group-FA-interactions indicates that the extent of altered FA remains similar across age. Altered FA is associated with EF impairments. CHD is a chronic disease with cerebral and neurocognitive impairments persisting into adulthood and, thus, long-term follow-up programs may improve overall outcome for this population.
Collapse
Affiliation(s)
- Melanie Ehrler
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Peter Brugger
- Department of Psychiatry, University Hospital Zurich, Zurich, Switzerland
- Rehabilitation Center Valens, Switzerland
| | - Matthias Greutmann
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Ladina Schlosser
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Flavia M Wehrle
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Neonatology and Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
| | - Rabia Liamlahi
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nadja Naef
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oliver Kretschmar
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department Pediatric Cardiology, Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ruth Tuura O'Gorman
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Liang S, Huang L, Zhan S, Zeng Y, Zhang Q, Zhang Y, Wang X, Peng L, Lin B, Xu H. Altered morphological characteristics and structural covariance connectivity associated with verbal working memory performance in ADHD children. Br J Radiol 2023; 96:20230409. [PMID: 37750842 PMCID: PMC10607391 DOI: 10.1259/bjr.20230409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVES Deficits in verbal working memory (VWM) observed in attention deficit hyperactivity disorder (ADHD) children can persist into adulthood. Although previous studies have identified brain regions that are activated during VWM tasks, the neural mechanisms underlying the relationship between VWM deficits remain unclear. The objective of this study was to investigate the structural covariance network connectivity and brain morphology changes that are associated with VWM performance in ADHD children. METHODS For this study, we selected 26 ADHD children and 26 healthy control (HC) participants. Participants were instructed to perform an n-back VWM task and their accuracy and response times were subsequently recorded. This research utilised voxel-based morphometry to measure the grey matter (GM) volume and conducted structural covariance connectivity network analysis to explore the changes of brain in ADHD. RESULTS Voxel-based morphometry analysis showed that lower GM volume in the right cerebellum lobule VI and the left parahippocampal gryus in ADHD children. Moreover, a positive correlation was found between the GM volume in the right cerebellum lobule VI and the accuracy of 2-back VWM task with verbal, small reward, and delayed feedback (VSD). Structural covariance network analysis found decreased structural connectivity between right cerebellum lobule VI and right precentral gyrus, right postcentral gyrus, left paracentral lobule, right superior parietal gyrus, and left hippocampus in ADHD children. CONCLUSIONS The low GM volume and altered structural covariance connectivity in the right cerebellum lobule VI might potentially affect VWM performance in ADHD children. ADVANCES IN KNOWLEDGE The innovation of this study lies in its more focused discussion on the morphological characteristics and structural covariance connectivity of VWM deficits in ADHD children, and the innovative finding of a positive correlation between grey matter volume in the right cerebellum lobule VI and accuracy in completing the 2-back VWM task with verbal instructions, small reward, and delayed feedback (VSD). This expands upon previous research by elucidating the specific brain structures involved in VWM deficits in ADHD children and highlights the potential importance of the cerebellum in this cognitive process. Overall, these innovative findings advance our understanding of the neural basis of ADHD and may have important implications for the development of targeted interventions for VWM deficits.
Collapse
Affiliation(s)
| | - Li Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shiqi Zhan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi Zeng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yusi Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiuxiu Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixin Peng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bohong Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Dipnall LM, Hourani D, Darling S, Anderson V, Sciberras E, Silk TJ. Fronto-parietal white matter microstructure associated with working memory performance in children with ADHD. Cortex 2023; 166:243-257. [PMID: 37406409 DOI: 10.1016/j.cortex.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 11/26/2022] [Accepted: 03/24/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Attention Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with many functional impairments thought to be underpinned by difficulties in executive function domains such as working memory. The superior longitudinal fasciculus (SLF) plays an integral role in the development of working memory in neurotypical children. Neuroimaging research suggests reduced white matter organization of the SLF may contribute to working memory difficulties commonly seen in ADHD. This study aimed to examine the relationship between white matter organization of the SLF and working memory in children with ADHD. METHODS We examined the association of tract volume and apparent fibre density (AFD) of the SLF with working memory in children with ADHD (n = 64) and controls (n = 58) aged 9-11years. Children completed a computerized spatial n-back task and underwent diffusion magnetic resonance imaging (dMRI). Constrained spherical deconvolution-based tractography was used to construct the three branches of the SLF bilaterally and examine volume and AFD of the SLF. RESULTS Regression analyses revealed children with ADHD exhibited poorer working memory, and lower volume and AFD of the left SLF-II compared to healthy controls. There was also an association between reaction time and variability (RT and RT-V) and the left SLF-II. Further analyses revealed volume of the left SLF-II mediated the relationship between ADHD and working memory performance (RT and RT-V). DISCUSSION These findings add to the current body of ADHD literature, revealing the potential role of frontoparietal white matter in working memory difficulties in ADHD.
Collapse
Affiliation(s)
| | - Danah Hourani
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Simone Darling
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Vicki Anderson
- Murdoch Children's Research Institute, Melbourne, Australia; The Royal Children's Hospital, Melbourne, Australia
| | - Emma Sciberras
- School of Psychology, Deakin University, Geelong, Australia; Murdoch Children's Research Institute, Melbourne, Australia; The Royal Children's Hospital, Melbourne, Australia
| | - Timothy J Silk
- School of Psychology, Deakin University, Geelong, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia
| |
Collapse
|
11
|
Zhang Q, Xu L, Bai Y, Chen P, Xing M, Cai F, Wu Y, Song W. Intermittent hypoxia-induced enhancement of sociability and working memory associates with CNTNAP2 upregulation. Front Mol Neurosci 2023; 16:1155047. [PMID: 37089693 PMCID: PMC10118049 DOI: 10.3389/fnmol.2023.1155047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionHypoxia is an environmental risk factor for many disorders throughout life. Perinatal hypoxia contributes to autism spectrum disorder (ASD), while hypoxic conditions in the elderly facilitate memory deficits. However, the effects of hypoxia on adolescence remains elusive. CNTNAP2 is a critical molecule in ASD pathogenesis with undefined mechanisms. We investigate hypoxia’s impact on adolescence and the underlying mechanism related to CNTNAP2.MethodsThree-chamber social approach test, Y maze, Morris Water Maze and Open Field Test were applied to evaluate behavioral alterations. Immunoblotting, 5′- RACE and dual-luciferase reporter assay were performed to examine CNTNAP2 protein expression, transcription start site (TSS) of human CNTNAP2 gene and CNTNAP2 promoter activity, respectively.ResultsIntermittent hypoxia treatment improved social behaviors and working memory in adolescent mice. CNTNAP2 was increased in the brains of hypoxia-treated mice. The sequencing results identified the TSS at 518 bp upstream of the translation start site ATG. Hypoxia upregulated CNTNAP2 by interacting with functional hypoxia response elements in CNTNAP2 promoter.ConclusionIntermittent hypoxia enhanced sociability and working memory associated with CNTNAP2 upregulation. Our study provides novel insights into intermittent hypoxia’s impact on development and the interaction between genetic and environmental risk factors in ASD pathogenesis.
Collapse
Affiliation(s)
- Qing Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
| | - Lu Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Bai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peiye Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengen Xing
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Yili Wu,
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
- Weihong Song, ; orcid.org/0000-0001-9928-889X
| |
Collapse
|
12
|
Gómez CM, Muñoz V, Rodríguez-Martínez EI, Arjona A, Barriga-Paulino CI, Pelegrina S. Child and adolescent development of the brain oscillatory activity during a working memory task. Brain Cogn 2023; 167:105969. [PMID: 36958141 DOI: 10.1016/j.bandc.2023.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
The developmental trajectories of brain oscillations during the encoding and maintenance phases of a Working Memory (WM) task were calculated. The Delayed-Match-to-Sample Test (DMTS) was applied to 239 subjects of 6-29 years, while EEG was recorded. The Event-Related Spectral Perturbation (ERSP) was obtained in the range between 1 and 25 Hz during the encoding and maintenance phases. Behavioral parameters of reaction times (RTs) and response accuracy were simultaneously recorded. The results indicate a myriad of transient and sustained bursts of oscillatory activity from low frequencies (1 Hz) to the beta range (up to 19 Hz). Beta and Low-frequency ERSP increases were prominent in the encoding phase in all age groups, while low-frequency ERSP indexed the maintenance phase only in children and adolescents, but not in late adolescents and young adults, suggesting an age-dependent neural mechanism of stimulus trace maintenance. While the latter group showed Beta and Alpha indices of anticipatory attention for the retrieval phase. Mediation analysis showed an important role of early Delta-Theta and late Alpha oscillations for mediation between age and behavioral responses performance. In conclusion, the results show a complex pattern of oscillatory bursts during the encoding and maintenance phases with a consistent pattern of developmental changes.
Collapse
Affiliation(s)
- Carlos M Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Vanesa Muñoz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Elena I Rodríguez-Martínez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Antonio Arjona
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | | | | |
Collapse
|
13
|
Arjona A, Angulo-Ruiz BY, Rodríguez-Martínez EI, Cabello-Navarro C, Gómez CM. Time-frequency neural dynamics of ADHD children and adolescents during a Working Memory task. Neurosci Lett 2023; 798:137100. [PMID: 36720344 DOI: 10.1016/j.neulet.2023.137100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
The present report analyzed the time-frequency changes in Event-Related Spectral perturbations (ERSP) in a sample of ADHD children and adolescents compared to a normodevelopment (ND) sample. A delayed match-to-sample (DMTS) test of working memory (WM) was presented to a group of ADHD subjects (N = 29) and compared with ND group (N = 34) with ages between 6 and 17 years old. Time-frequency decomposition was computed through wavelets. ADHD subjects presented higher Reaction Time (RT), Standard Deviation of RT (Std of RT), and a reduced percentage of correct responses. The results showed a complex pattern of oscillatory bursts during the encoding, maintenance, and recognition phases with similar dynamics in both groups. ADHD children presented a reduced Event-Related Synchronization (ERS) in the Theta range during the encoding phase, and also a reduced Alpha ERS during the late period of the maintenance phase. S1 Early theta ERS was positively correlated with Std of RT. Behavioral data, early Theta, and late Alpha ERS classified correctly above 70 % of ADHD and ND subjects when a linear discriminant analysis was applied. The reduced encoding and maintenance impaired brain dynamics of ADHD subjects would justify the poorer performance of this group of subjects.
Collapse
Affiliation(s)
- Antonio Arjona
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Spain.
| | - Brenda Y Angulo-Ruiz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Spain.
| | | | - Celia Cabello-Navarro
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Spain.
| | - Carlos M Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Spain.
| |
Collapse
|
14
|
Yao JK, Voorhies WI, Miller JA, Bunge SA, Weiner KS. Sulcal depth in prefrontal cortex: a novel predictor of working memory performance. Cereb Cortex 2023; 33:1799-1813. [PMID: 35589102 PMCID: PMC9977365 DOI: 10.1093/cercor/bhac173] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
The neuroanatomical changes that underpin cognitive development are of major interest in neuroscience. Of the many aspects of neuroanatomy to consider, tertiary sulci are particularly attractive as they emerge last in gestation, show a protracted development after birth, and are either human- or hominoid-specific. Thus, they are ideal targets for exploring morphological-cognitive relationships with cognitive skills that also show protracted development such as working memory (WM). Yet, the relationship between sulcal morphology and WM is unknown-either in development or more generally. To fill this gap, we adopted a data-driven approach with cross-validation to examine the relationship between sulcal depth in lateral prefrontal cortex (LPFC) and verbal WM in 60 children and adolescents between ages 6 and 18. These analyses identified 9 left, and no right, LPFC sulci (of which 7 were tertiary) whose depth predicted verbal WM performance above and beyond the effect of age. Most of these sulci are located within and around contours of previously proposed functional parcellations of LPFC. This sulcal depth model outperformed models with age or cortical thickness. Together, these findings build empirical support for a classic theory that tertiary sulci serve as landmarks in association cortices that contribute to late-maturing human cognitive abilities.
Collapse
Affiliation(s)
- Jewelia K Yao
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ 08540, United States
| | - Willa I Voorhies
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, United States
| | - Jacob A Miller
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, Berkeley, CA 94720, United States
| | - Silvia A Bunge
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, Berkeley, CA 94720, United States
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, Berkeley, CA 94720, United States
| |
Collapse
|
15
|
Horne A, Ding J, Schnur TT, Martin RC. White Matter Correlates of Domain-Specific Working Memory. Brain Sci 2022; 13:19. [PMID: 36672001 PMCID: PMC9856066 DOI: 10.3390/brainsci13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Prior evidence suggests domain-specific working memory (WM) buffers for maintaining phonological (i.e., speech sound) and semantic (i.e., meaning) information. The phonological WM buffer’s proposed location is in the left supramarginal gyrus (SMG), whereas semantic WM has been related to the left inferior frontal gyrus (IFG), the middle frontal gyrus (MFG), and the angular gyrus (AG). However, less is known about the white matter correlates of phonological and semantic WM. We tested 45 individuals with left hemisphere brain damage on single word processing, phonological WM, and semantic WM tasks and obtained T1 and diffusion weighted neuroimaging. Virtual dissections were performed for each participants’ arcuate fasciculus (AF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), middle longitudinal fasciculus (MLF), and uncinate fasciculus (UF), which connect the proposed domain-specific WM buffers with perceptual or processing regions. The results showed that the left IFOF and the posterior segment of the AF were related to semantic WM performance. Phonological WM was related to both the left ILF and the whole AF. This work informs our understanding of the white matter correlates of WM, especially semantic WM, which has not previously been investigated. In addition, this work helps to adjudicate between theories of verbal WM, providing some evidence for separate pathways supporting phonological and semantic WM.
Collapse
Affiliation(s)
- Autumn Horne
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA;
| | - Junhua Ding
- Department of Neurosurgery and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; (J.D.); (T.T.S.)
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Tatiana T. Schnur
- Department of Neurosurgery and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; (J.D.); (T.T.S.)
| | - Randi C. Martin
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA;
| |
Collapse
|
16
|
Oligodendroglia are emerging players in several forms of learning and memory. Commun Biol 2022; 5:1148. [PMID: 36309567 PMCID: PMC9617857 DOI: 10.1038/s42003-022-04116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022] Open
Abstract
Synaptic plasticity is the fundamental cellular mechanism of learning and memory, but recent research reveals that myelin-forming glia, oligodendrocytes (OL), are also involved. They contribute in ways that synaptic plasticity cannot, and the findings have not been integrated into the established conceptual framework used in the field of learning and memory. OLs and their progenitors are involved in long-term memory, memory consolidation, working memory, and recall in associative learning. They also contribute to short-term memory and non-associative learning by affecting synaptic transmission, intrinsic excitability of axons, and neural oscillations. Oligodendroglial involvement expands the field beyond synaptic plasticity to system-wide network function, where precise spike time arrival and neural oscillations are critical in information processing, storage, and retrieval. A Perspective highlights current evidence that supports oligodendrocytes and their progenitors’ involvement in cognition and proposes that our understanding of learning and memory can be expanded beyond the classic view of synaptic plasticity to a system-wide network function.
Collapse
|
17
|
Zhang J, Sun Z, Duan F, Shi L, Zhang Y, Solé‐Casals J, Caiafa CF. Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis. Hum Brain Mapp 2022; 43:5220-5234. [PMID: 35778791 PMCID: PMC9812233 DOI: 10.1002/hbm.25998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/15/2023] Open
Abstract
Understanding the laminar brain structure is of great help in further developing our knowledge of the functions of the brain. However, since most layer segmentation methods are invasive, it is difficult to apply them to the human brain in vivo. To systematically explore the human brain's laminar structure noninvasively, the K-means clustering algorithm was used to automatically segment the left hemisphere into two layers, the superficial and deep layers, using a 7 Tesla (T) diffusion magnetic resonance imaging (dMRI)open dataset. The obtained layer thickness was then compared with the layer thickness of the BigBrain reference dataset, which segmented the neocortex into six layers based on the von Economo atlas. The results show a significant correlation not only between our automatically segmented superficial layer thickness and the thickness of layers 1-3 from the reference histological data, but also between our automatically segmented deep layer thickness and the thickness of layers 4-6 from the reference histological data. Second, we constructed the laminar connections between two pairs of unidirectional connected regions, which is consistent with prior research. Finally, we conducted the laminar analysis of the working memory, which was challenging to do in the past, and explained the conclusions of the functional analysis. Our work successfully demonstrates that it is possible to segment the human cortex noninvasively into layers using dMRI data and further explores the mechanisms of the human brain.
Collapse
Affiliation(s)
- Jie Zhang
- College of Artificial IntelligenceNankai UniversityTianjinChina
| | - Zhe Sun
- Computational Engineering Applications UnitHead Office for Information Systems and Cybersecurity, RIKENSaitamaJapan
| | - Feng Duan
- College of Artificial IntelligenceNankai UniversityTianjinChina
| | - Liang Shi
- College of Artificial IntelligenceNankai UniversityTianjinChina
| | - Yu Zhang
- Department of Bioengineering and Department of Electrical and Computer EngineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Jordi Solé‐Casals
- College of Artificial IntelligenceNankai UniversityTianjinChina,Department of PsychiatryUniversity of CambridgeCambridgeUK,Data and Signal Processing Research GroupUniversity of Vic‐Central University of CataloniaVicCataloniaSpain
| | - Cesar F. Caiafa
- College of Artificial IntelligenceNankai UniversityTianjinChina,Instituto Argentino de Radioastronomía‐ CCT La Plata, CONICET/CIC‐PBA/UNLP, 1894 V.ElisaArgentina
| |
Collapse
|
18
|
Farah R, Glukhovsky N, Rosch K, Horowitz-Kraus T. Structural white matter characteristics for working memory and switching/inhibition in children with reading difficulties: The role of the left superior longitudinal fasciculus. Netw Neurosci 2022; 6:897-915. [PMID: 36605413 PMCID: PMC9810373 DOI: 10.1162/netn_a_00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/02/2022] [Indexed: 01/18/2023] Open
Abstract
Reading difficulties (RDs) are characterized by slow and inaccurate reading as well as additional challenges in cognitive control (i.e., executive functions, especially in working memory, inhibition, and visual attention). Despite evidence demonstrating differences in these readers' language and visual processing abilities, white matter differences associated with executive functions (EFs) difficulties in children with RDs are scarce. Structural correlates for reading and EFs in 8- to 12-year-old children with RDs versus typical readers (TRs) were examined using diffusion tensor imaging (DTI) data. Results suggest that children with RDs showed significantly lower reading and EF abilities versus TRs. Lower fractional anisotropy (FA) in left temporo-parietal tracts was found in children with RDs, who also showed positive correlations between reading and working memory and switching/inhibition scores and FA in the left superior longitudinal fasciculus (SLF). FA in the left SLF predicted working memory performance mediated by reading ability in children with RDs but not TRs. Our findings support alterations in white matter tracts related to working memory, switching/inhibition, and overall EF challenges in children with RDs and the linkage between working memory difficulties and FA alterations in the left SLF in children with RDs via reading.
Collapse
Affiliation(s)
- Rola Farah
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Noam Glukhovsky
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Keri Rosch
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Foraster M, Esnaola M, López-Vicente M, Rivas I, Álvarez-Pedrerol M, Persavento C, Sebastian-Galles N, Pujol J, Dadvand P, Sunyer J. Exposure to road traffic noise and cognitive development in schoolchildren in Barcelona, Spain: A population-based cohort study. PLoS Med 2022; 19:e1004001. [PMID: 35653430 PMCID: PMC9162347 DOI: 10.1371/journal.pmed.1004001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Road traffic noise is a prevalent and known health hazard. However, little is known yet about its effect on children's cognition. We aimed to study the association between exposure to road traffic noise and the development of working memory and attention in primary school children, considering school-outdoor and school-indoor annual average noise levels and noise fluctuation characteristics, as well as home-outdoor noise exposure. METHODS AND FINDINGS We followed up a population-based sample of 2,680 children aged 7 to 10 years from 38 schools in Barcelona (Catalonia, Spain) between January 2012 to March 2013. Children underwent computerised cognitive tests 4 times (n = 10,112), for working memory (2-back task, detectability), complex working memory (3-back task, detectability), and inattentiveness (Attention Network Task, hit reaction time standard error, in milliseconds). Road traffic noise was measured indoors and outdoors at schools, at the start of the school year, using standard protocols to obtain A-weighted equivalent sound pressure levels, i.e., annual average levels scaled to human hearing, for the daytime (daytime LAeq, in dB). We also derived fluctuation indicators out of the measurements (noise intermittency ratio, %; and number of noise events) and obtained individual estimated indoor noise levels (LAeq) correcting for classroom orientation and classroom change between years. Home-outdoor noise exposure at home (Lden, i.e., EU indicator for the 24-hour annual average levels) was estimated using Barcelona's noise map for year 2012, according to the European Noise Directive (2002). We used linear mixed models to evaluate the association between exposure to noise and cognitive development adjusting for age, sex, maternal education, socioeconomical vulnerability index at home, indoor or outdoor traffic-related air pollution (TRAP) for corresponding school models or outdoor nitrogen dioxide (NO2) for home models. Child and school were included as nested random effects. The median age (percentile 25, percentile 75) of children in visit 1 was 8.5 (7.8; 9.3) years, 49.9% were girls, and 50% of the schools were public. School-outdoor exposure to road traffic noise was associated with a slower development in working memory (2-back and 3-back) and greater inattentiveness over 1 year in children, both for the average noise level (e.g., ‒4.83 points [95% CI: ‒7.21, ‒2.45], p-value < 0.001, in 2-back detectability per 5 dB in street levels) and noise fluctuation (e.g., ‒4.38 [‒7.08, ‒1.67], p-value = 0.002, per 50 noise events at street level). Individual exposure to the road traffic average noise level in classrooms was only associated with inattentiveness (2.49 ms [0, 4.81], p-value = 0.050, per 5 dB), whereas indoor noise fluctuation was consistently associated with all outcomes. Home-outdoor noise exposure was not associated with the outcomes. Study limitations include a potential lack of generalizability (58% of mothers with university degree in our study versus 50% in the region) and the lack of past noise exposure assessment. CONCLUSIONS We observed that exposure to road traffic noise at school, but not at home, was associated with slower development of working memory, complex working memory, and attention in schoolchildren over 1 year. Associations with noise fluctuation indicators were more evident than with average noise levels in classrooms.
Collapse
Affiliation(s)
- Maria Foraster
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBEREsp), Madrid, Spain
- PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain
- * E-mail:
| | - Mikel Esnaola
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBEREsp), Madrid, Spain
| | - Mónica López-Vicente
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBEREsp), Madrid, Spain
| | - Mar Álvarez-Pedrerol
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBEREsp), Madrid, Spain
| | - Cecilia Persavento
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBEREsp), Madrid, Spain
| | | | - Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBEREsp), Madrid, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBEREsp), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
20
|
Pedale T, Mastroberardino S, Capurso M, Macrì S, Santangelo V. Developmental differences in the impact of perceptual salience on short-term memory performance and meta-memory skills. Sci Rep 2022; 12:8185. [PMID: 35581267 PMCID: PMC9113989 DOI: 10.1038/s41598-022-11624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
In everyday life, individuals are surrounded by many stimuli that compete to access attention and memory. Evidence shows that perceptually salient stimuli have more chances to capture attention resources, thus to be encoded into short-term memory (STM). However, the impact of perceptual salience on STM at different developmental stages is entirely unexplored. Here we assessed STM performance and meta-memory skills of 6, 10, and 18 years-old participants (total N = 169) using a delayed match-to-sample task. On each trial, participants freely explored a complex (cartoon-like) scene for 4 s. After a retention interval of 4 s, they discriminated the same/different position of a target-object extracted from the area of maximal or minimal salience of the initially-explored scene. Then, they provided a confidence judgment of their STM performance, as an index of meta-memory skills. When taking into account 'confident' responses, we found increased STM performance following targets at maximal versus minimal salience only in adult participants. Similarly, only adults showed enhanced meta-memory capabilities following maximal versus minimal salience targets. These findings documented a late development in the impact of perceptual salience on STM performance and in the improvement of metacognitive capabilities to properly judge the content of one's own memory representation.
Collapse
Affiliation(s)
- Tiziana Pedale
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Serena Mastroberardino
- Department of Psychology, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Michele Capurso
- Department of Philosophy, Social Sciences and Education, University of Perugia, Piazza G. Ermini 1, 06123, Perugia, Italy
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Valerio Santangelo
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy. .,Department of Philosophy, Social Sciences and Education, University of Perugia, Piazza G. Ermini 1, 06123, Perugia, Italy.
| |
Collapse
|
21
|
Namiranian R, Rahimi Malakshan S, Abrishami Moghaddam H, Khadem A, Jafari R. Normal development of the brain: a survey of joint structural-functional brain studies. Rev Neurosci 2022; 33:745-765. [PMID: 35304982 DOI: 10.1515/revneuro-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/15/2022]
Abstract
Joint structural-functional (S-F) developmental studies present a novel approach to address the complex neuroscience questions on how the human brain works and how it matures. Joint S-F biomarkers have the inherent potential to model effectively the brain's maturation, fill the information gap in temporal brain atlases, and demonstrate how the brain's performance matures during the lifespan. This review presents the current state of knowledge on heterochronous and heterogeneous development of S-F links during the maturation period. The S-F relationship has been investigated in early-matured unimodal and prolonged-matured transmodal regions of the brain using a variety of structural and functional biomarkers and data acquisition modalities. Joint S-F unimodal studies have employed auditory and visual stimuli, while the main focus of joint S-F transmodal studies has been resting-state and cognitive experiments. However, nonsignificant associations between some structural and functional biomarkers and their maturation show that designing and developing effective S-F biomarkers is still a challenge in the field. Maturational characteristics of brain asymmetries have been poorly investigated by the joint S-F studies, and the results were partially inconsistent with previous nonjoint ones. The inherent complexity of the brain performance can be modeled using multifactorial and nonlinear techniques as promising methods to simulate the impact of age on S-F relations considering their analysis challenges.
Collapse
Affiliation(s)
- Roxana Namiranian
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Sahar Rahimi Malakshan
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Hamid Abrishami Moghaddam
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran.,Inserm UMR 1105, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Reza Jafari
- Department of Electrical and Computer Engineering, Thompson Engineering Building, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
22
|
Kumar M, Singh S, Rana P, Modi S, Sekhri T, Kanwar R, D'Souza M, Khushu S. Brain functional connectivity in patients with hyperthyroidism after anti-thyroid treatment. J Neuroendocrinol 2022; 34:e13075. [PMID: 34905237 DOI: 10.1111/jne.13075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022]
Abstract
Thyroid disease is known to affect brain metabolism and cognitive function, although the recovery of thyroid-induced brain functional changes after treatment remains unclear. We aimed to investigate the alteration in brain functional connectivity and its correlation with neuropsychological variables in hyperthyroid patients before and after anti-thyroid treatment using a resting-state functional magnetic resonance imaging (rsfMRI) technique. This is a follow-up rsfMRI study of previous work that showed impaired brain functional connectivity in hyperthyroid patients compared to healthy controls. We included rsfMRI and neuropsychological data from 21 hyperthyroid patients out of an original cohort of 28 patients, before and after anti-thyroid treatment for 30 weeks. Functional connectivity analysis and neuropsychological scores were compared using paired t tests in patients at baseline and at follow-up. Patients showed an improvement in some of the memory (p < .05) and executive, visuospatial and motor (p < .001) functions after treatment, and also showed increased functional connectivity in the regions of the right fronto-parietal network, left fronto-parietal network, and default mode network (DMN) (p < .05). At follow-up, the functional connectivity of the right fronto-parietal network showed a significantly positive correlation with the recognition of objects memory score. The overall findings suggest that anti-thyroid treatment with carbimazole improves the functional connectivity within some of the resting state networks in the hyperthyroid patients, whereas the remaining networks still show impairment.
Collapse
Affiliation(s)
- Mukesh Kumar
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Sadhana Singh
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Shilpi Modi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Tarun Sekhri
- Thyroid Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Ratnesh Kanwar
- Thyroid Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Maria D'Souza
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, India
| |
Collapse
|
23
|
Hsieh SS, Raine LB, Ortega FB, Hillman CH. The Role of Chronic Physical Activity in Alleviating the Detrimental Relationship of Childhood Obesity on Brain and Cognition. JOURNAL OF COGNITIVE ENHANCEMENT 2021. [DOI: 10.1007/s41465-021-00230-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Childhood obesity and its negative relation with children’s brain health has become a growing health concern. Over the last decade, literature has indicated that physical activity attenuates cognitive impairment associated with obesity and excess adiposity in children. However, there is no comprehensive review that considers the extent to which these factors affect different domains of cognition. This narrative review comprehensively summarizes behavioral, neuroimaging, and neuroelectric findings associated with chronic physical activity and fitness on brain and cognition in childhood obesity. Based on the literature reviewed, increased adiposity has a demonstrated relationship with neurocognitive health via mechanisms triggered by central inflammation and insulin resistance, with the most pronounced decrements observed for cognitive domains that are prefrontal- and hippocampal-dependent. Fortunately, physical activity, especially interventions enhancing aerobic fitness and motor coordination, have demonstrated efficacy for attenuating the negative effects of obesity across different subdomains of structural and functional brain imaging, cognition, and multiple academic outcomes in children with overweight or obesity. Such mitigating effects may be accounted for by attenuated central inflammation, improved insulin sensitivity, and increased expression of neurotrophic factors. Lastly, individual differences appear to play a role in this relationship, as the manipulation of physical activity characteristics, the employment of a wide array of cognitive and academic measures, the inclusion of different adiposity measures that are sensitive to neurocognitive function, and the utilization of an inter-disciplinary approach have been found to influence the relationship between physical activity and excess adiposity on brain and cognition.
Collapse
|
24
|
Krogsrud SK, Mowinckel AM, Sederevicius D, Vidal-Piñeiro D, Amlien IK, Wang Y, Sørensen Ø, Walhovd KB, Fjell AM. Relationships between apparent cortical thickness and working memory across the lifespan - Effects of genetics and socioeconomic status. Dev Cogn Neurosci 2021; 51:100997. [PMID: 34392161 PMCID: PMC8371229 DOI: 10.1016/j.dcn.2021.100997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022] Open
Abstract
Working memory (WM) supports several higher-level cognitive abilities, yet we know less about factors associated with development and decline in WM compared to other cognitive processes. Here, we investigated lifespan changes in WM capacity and their structural brain correlates, using a longitudinal sample including 2358 magnetic resonance imaging (MRI) scans and WM scores from 1656 participants (4.4-86.4 years, mean follow-up interval 4.3 years). 8764 participants (9.0-10.9 years) with MRI, WM scores and genetic information from the Adolescent Brain Cognitive Development study were used for follow-up analyses. Results showed that both the information manipulation component and the storage component of WM improved during childhood and adolescence, but the age-decline could be fully explained by reductions in passive storage capacity alone. Greater WM function in development was related to apparent thinner cortex in both samples, also when general cognitive function was accounted for. The same WM-apparent thickness relationship was found for young adults. The WM-thickness relationships could not be explained by SNP-based co-heritability or by socioeconomic status. A larger sample with genetic information may be necessary to disentangle the true gene-environment effects. In conclusion, WM capacity changes greatly through life and has anatomically extended rather than function-specific structural cortical correlates.
Collapse
Affiliation(s)
- Stine K Krogsrud
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Athanasia M Mowinckel
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Donatas Sederevicius
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317, Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0372, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317, Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0372, Oslo, Norway.
| |
Collapse
|
25
|
Goddings AL, Roalf D, Lebel C, Tamnes CK. Development of white matter microstructure and executive functions during childhood and adolescence: a review of diffusion MRI studies. Dev Cogn Neurosci 2021; 51:101008. [PMID: 34492631 PMCID: PMC8424510 DOI: 10.1016/j.dcn.2021.101008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) provides indirect measures of white matter microstructure that can be used to make inferences about structural connectivity within the brain. Over the last decade, a growing literature of cross-sectional and longitudinal studies have documented relationships between dMRI indices and cognitive development. In this review, we provide a brief overview of dMRI methods and how they can be used to study white matter and connectivity and review the extant literature examining the links between dMRI indices and executive functions during development. We explore the links between white matter microstructure and specific executive functions: inhibition, working memory and cognitive shifting, as well as performance on complex executive function tasks. Concordance in findings across studies are highlighted, and potential explanations for discrepancies between results, together with challenges with using dMRI in child and adolescent populations, are discussed. Finally, we explore future directions that are necessary to better understand the links between child and adolescent development of structural connectivity of the brain and executive functions.
Collapse
Affiliation(s)
- Anne-Lise Goddings
- UCL Great Ormond Street Institute of Child Health, University College London, UK.
| | - David Roalf
- Department of Psychiatry, University of Pennsylvania, USA; Lifespan Brain Institute, Children's Hospital of Philadelphia and the University of Pennsylvania, USA
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Alberta, Canada
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
26
|
Har-shai Yahav P, Zion Golumbic E. Linguistic processing of task-irrelevant speech at a cocktail party. eLife 2021; 10:e65096. [PMID: 33942722 PMCID: PMC8163500 DOI: 10.7554/elife.65096] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
Paying attention to one speaker in a noisy place can be extremely difficult, because to-be-attended and task-irrelevant speech compete for processing resources. We tested whether this competition is restricted to acoustic-phonetic interference or if it extends to competition for linguistic processing as well. Neural activity was recorded using Magnetoencephalography as human participants were instructed to attend to natural speech presented to one ear, and task-irrelevant stimuli were presented to the other. Task-irrelevant stimuli consisted either of random sequences of syllables, or syllables structured to form coherent sentences, using hierarchical frequency-tagging. We find that the phrasal structure of structured task-irrelevant stimuli was represented in the neural response in left inferior frontal and posterior parietal regions, indicating that selective attention does not fully eliminate linguistic processing of task-irrelevant speech. Additionally, neural tracking of to-be-attended speech in left inferior frontal regions was enhanced when competing with structured task-irrelevant stimuli, suggesting inherent competition between them for linguistic processing.
Collapse
Affiliation(s)
- Paz Har-shai Yahav
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan UniversityRamat GanIsrael
| | - Elana Zion Golumbic
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan UniversityRamat GanIsrael
| |
Collapse
|
27
|
Shi Y, Cai K, Zhu H, Dong X, Xiong X, Zhu L, Sun Z, Chen A. Football Juggling Learning Alters the Working Memory and White Matter Integrity in Early Adulthood: A Randomized Controlled Study. APPLIED SCIENCES 2021; 11:3843. [DOI: 10.3390/app11093843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2024]
Abstract
Cross-sectional studies suggest that motor skill learning is associated with working memory (WM) and white matter integrity (WMI). However, it has not been established whether motor skill learning improves WM performance, and information on its neural mechanisms have not been clearly elucidated. Therefore, this study compared WM and WMI across time points prior to and following football juggling learning, in early adulthood (18–20 years old), relative to a control group. Study participants in the experimental group were subjected to football juggling for 10 weeks while participants in the control category went on with their routine life activities for the same period of time and were not involved in the learning-related activities. Data on cognitive measurements and that from diffusion tensor imaging (DTI) were collected before and after learning. There was a significant improvement in WM performance of the experimental group after motor learning, although no improvement was observed in the control group. Additionally, after learning, DTI data revealed a significant increase in functional anisotropy (FA) in the genu of corpus callosum (GOCC) and the right anterior corona radiata (R.ACR) in the experimental group. Moreover, the better WM associated with football juggling learning was correlated to a higher FA. Mediation analysis suggested that FA in the GOCC acts as a mediation variable between football juggling learning and WM. These findings show that motor skill learning improves the WM and remodels WMI in early adulthood. With a particular emphasis on the importance of WMI in motor skill learning and WM, this study also revealed the possible neural mechanisms mediated by WMI.
Collapse
Affiliation(s)
- Yifan Shi
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Kelong Cai
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Hao Zhu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Xiaoxiao Dong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Xuan Xiong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Lina Zhu
- School of Physical Education and Sports Science, Beijing Normal University, Beijing 100000, China
| | - Zhiyuan Sun
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
- Chinese–Polish Laboratory of Sport and Brain Science, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
28
|
Zhu J, Li Y, Fang Q, Shen Y, Qian Y, Cai H, Yu Y. Dynamic functional connectome predicts individual working memory performance across diagnostic categories. NEUROIMAGE-CLINICAL 2021; 30:102593. [PMID: 33647810 PMCID: PMC7930367 DOI: 10.1016/j.nicl.2021.102593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022]
Abstract
We created transdiagnostic predictive working memory models using connectome-based predictive modeling (CPM). Dynamic functional connectivity-based CPM models successfully predicted working memory. Static functional connectivity-based CPM models fell short in prediction. Frontoparietal, somato-motor, default mode and visual networks contributed most to prediction.
Working memory impairment is a common feature of psychiatric disorders. Although its neural mechanisms have been extensively examined in healthy subjects or individuals with a certain clinical condition, studies investigating neural predictors of working memory in a transdiagnostic sample are scarce. The objective of this study was to create a transdiagnostic predictive working memory model from whole-brain functional connectivity using connectome-based predictive modeling (CPM), a recently developed machine learning approach. Resting-state functional MRI data from 242 subjects across 4 diagnostic categories (healthy controls and individuals with schizophrenia, bipolar disorder, and attention deficit/hyperactivity) were used to construct dynamic and static functional connectomes. Spatial working memory was assessed by the spatial capacity task. CPM was conducted to predict individual working memory from dynamic and static functional connectivity patterns. Results showed that dynamic connectivity-based CPM models successfully predicted overall working memory capacity and accuracy as well as mean reaction time, yet their static counterparts fell short in the prediction. At the neural level, we found that dynamic connectivity of the frontoparietal and somato-motor networks were negatively correlated with working memory capacity and accuracy, and those of the default mode and visual networks were positively associated with mean reaction time. Moreover, different feature selection thresholds, parcellation strategies and model validation methods as well as diagnostic categories did not significantly influence the prediction results. Our findings not only are coherent with prior reports that dynamic functional connectivity encodes more behavioral information than static connectivity, but also help advance the translation of cognitive “connectome fingerprinting” into real-world application.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yating Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qian Fang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yuhao Shen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
29
|
Steinmann S, Lyall AE, Langhein M, Nägele FL, Rauh J, Cetin-Karayumak S, Zhang F, Mussmann M, Billah T, Makris N, Pasternak O, O'Donnell LJ, Rathi Y, Kubicki M, Leicht G, Shenton ME, Mulert C. Sex-Related Differences in White Matter Asymmetry and Its Implications for Verbal Working Memory in Psychosis High-Risk State. Front Psychiatry 2021; 12:686967. [PMID: 34194350 PMCID: PMC8236502 DOI: 10.3389/fpsyt.2021.686967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Objective: Sexual dimorphism has been investigated in schizophrenia, although sex-specific differences among individuals who are at clinical high-risk (CHR) for developing psychosis have been inconclusive. This study aims to characterize sexual dimorphism of language areas in the brain by investigating the asymmetry of four white matter tracts relevant to verbal working memory in CHR patients compared to healthy controls (HC). HC typically show a leftward asymmetry of these tracts. Moreover, structural abnormalities in asymmetry and verbal working memory dysfunctions have been associated with neurodevelopmental abnormalities and are considered core features of schizophrenia. Methods: Twenty-nine subjects with CHR (17 female/12 male) for developing psychosis and twenty-one HC (11 female/10 male) matched for age, sex, and education were included in the study. Two-tensor unscented Kalman filter tractography, followed by an automated, atlas-guided fiber clustering approach, were used to identify four fiber tracts related to verbal working memory: the superior longitudinal fasciculi (SLF) I, II and III, and the superior occipitofrontal fasciculus (SOFF). Using fractional anisotropy (FA) of tissue as the primary measure, we calculated the laterality index for each tract. Results: There was a significantly greater right>left asymmetry of the SLF-III in CHR females compared to HC females, but no hemispheric difference between CHR vs. HC males. Moreover, the laterality index of SLF-III for CHR females correlated negatively with Backward Digit Span performance, suggesting a greater rightward asymmetry was associated with poorer working memory functioning. Conclusion: This study suggests increased rightward asymmetry of the SLF-III in CHR females. This finding of sexual dimorphism in white matter asymmetry in a language-related area of the brain in CHR highlights the need for a deeper understanding of the role of sex in the high-risk state. Future work investigating early sex-specific pathophysiological mechanisms, may lead to the development of novel personalized treatment strategies aimed at preventing transition to a more chronic and difficult-to-treat disorder.
Collapse
Affiliation(s)
- Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital Harvard Medical School, Boston, MA, United States
| | - Mina Langhein
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Felix L Nägele
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | - Marius Mussmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tashrif Billah
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital Harvard Medical School, Boston, MA, United States
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States.,Department of Radiology, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States.,Department of Radiology, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital Harvard Medical School, Boston, MA, United States
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital Harvard Medical School, Boston, MA, United States.,Department of Radiology, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Psychiatry and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
30
|
Spitzhüttl JS, Kronbichler M, Kronbichler L, Benzing V, Siegwart V, Pastore‐Wapp M, Kiefer C, Slavova N, Grotzer M, Roebers CM, Steinlin M, Leibundgut K, Everts R. Impact of non-CNS childhood cancer on resting-state connectivity and its association with cognition. Brain Behav 2021; 11:e01931. [PMID: 33205895 PMCID: PMC7821559 DOI: 10.1002/brb3.1931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Non-central nervous system cancer in childhood (non-CNS CC) and its treatments pose a major threat to brain development, with implications for functional networks. Structural and functional alterations might underlie the cognitive late-effects identified in survivors of non-CNS CC. The present study evaluated resting-state functional networks and their associations with cognition in a mixed sample of non-CNS CC survivors (i.e., leukemia, lymphoma, and other non-CNS solid tumors). METHODS Forty-three patients (off-therapy for at least 1 year and aged 7-16 years) were compared with 43 healthy controls matched for age and sex. High-resolution T1-weighted structural magnetic resonance and resting-state functional magnetic resonance imaging were acquired. Executive functions, attention, processing speed, and memory were assessed outside the scanner. RESULTS Cognitive performance was within the normal range for both groups; however, patients after CNS-directed therapy showed lower executive functions than controls. Seed-based connectivity analyses revealed that patients exhibited stronger functional connectivity between fronto- and temporo-parietal pathways and weaker connectivity between parietal-cerebellar and temporal-occipital pathways in the right hemisphere than controls. Functional hyperconnectivity was related to weaker memory performance in the patients' group. CONCLUSION These data suggest that even in the absence of brain tumors, non-CNS CC and its treatment can lead to persistent cerebral alterations in resting-state network connectivity.
Collapse
Affiliation(s)
- Janine S. Spitzhüttl
- Department of PsychologyUniversity of BernBernSwitzerland
- Neuropediatrics, Development and RehabilitationUniversity Children's Hospital Bern, and University of BernBernSwitzerland
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience and Department of PsychologyUniversity of SalzburgSalzburgAustria
- Neuroscience InstituteChristian‐Doppler Medical CentreParacelsus Medical UniversitySalzburgAustria
| | - Lisa Kronbichler
- Centre for Cognitive Neuroscience and Department of PsychologyUniversity of SalzburgSalzburgAustria
- Neuroscience InstituteChristian‐Doppler Medical CentreParacelsus Medical UniversitySalzburgAustria
- Department of Psychiatry, Psychotherapy and PsychosomaticsChristian‐Doppler Medical Centre, Paracelsus Medical UniversitySalzburgAustria
| | - Valentin Benzing
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
- Institute of Sport ScienceUniversity of BernBernSwitzerland
| | - Valerie Siegwart
- Neuropediatrics, Development and RehabilitationUniversity Children's Hospital Bern, and University of BernBernSwitzerland
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
| | - Manuela Pastore‐Wapp
- Support Center for Advanced Neuroimaging (SCAN)Institute of Diagnostic and Interventional Neuroradiology, InselspitalBern University Hospital, and University of BernBernSwitzerland
| | - Claus Kiefer
- Support Center for Advanced Neuroimaging (SCAN)Institute of Diagnostic and Interventional Neuroradiology, InselspitalBern University Hospital, and University of BernBernSwitzerland
| | - Nedelina Slavova
- Support Center for Advanced Neuroimaging (SCAN)Institute of Diagnostic and Interventional Neuroradiology, InselspitalBern University Hospital, and University of BernBernSwitzerland
| | - Michael Grotzer
- Department of Pediatric OncologyUniversity Children's Hospital ZurichZurichSwitzerland
| | | | - Maja Steinlin
- Neuropediatrics, Development and RehabilitationUniversity Children's Hospital Bern, and University of BernBernSwitzerland
| | - Kurt Leibundgut
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
| | - Regula Everts
- Neuropediatrics, Development and RehabilitationUniversity Children's Hospital Bern, and University of BernBernSwitzerland
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
| |
Collapse
|
31
|
Zhu R, Luo Y, Wang Z, You X. Modality effects in verbal working memory updating: Transcranial direct current stimulation over human inferior frontal gyrus and posterior parietal cortex. Brain Cogn 2020; 145:105630. [PMID: 33091807 DOI: 10.1016/j.bandc.2020.105630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022]
Abstract
Verbal working memory (VWM) involves visual and auditory verbal information. Neuroimaging studies have shown significant modality effects for VWM in the left posterior parietal cortex (PPC). The left inferior frontal gyrus (IFG) is more sensitive to auditory and phonological information. However, much less is known about the effects of transcranial direct current stimulation (tDCS) over the left PPC and IFG on different sensory modalities of VWM (auditory vs. visual). Therefore, the present study aimed to examine whether tDCS over the left PPC and IFG affects visual and auditory VWM updating performance using a single-blind design. Fifty-one healthy participants were randomly assigned to three tDCS groups (left PPC/left IFG/sham) and were asked to complete both the visual and auditory letter 3-back tasks. Results showed that stimulating the left PPC enhanced the response efficiency of visual, but not auditory, VWM compared with the sham condition. Anodal stimulation to the left IFG improved the response efficiency of both tasks. The present study revealed a modality effect of VWM in the left PPC, while the left IFG had a causal role in VWM updating of different sensory modalities.
Collapse
Affiliation(s)
- Rongjuan Zhu
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Yangmei Luo
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Ziyu Wang
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Xuqun You
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
32
|
Canada KL, Botdorf M, Riggins T. Longitudinal development of hippocampal subregions from early- to mid-childhood. Hippocampus 2020; 30:1098-1111. [PMID: 32497411 DOI: 10.1002/hipo.23218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/11/2023]
Abstract
Early childhood is characterized by vast changes in behaviors supported by the hippocampus and an increased susceptibility of the hippocampus to environmental influences. Thus, it is an important time to investigate the development of the hippocampus. Existing research suggests subregions of the hippocampus (i.e., head, body, tail) have dissociable functions and that the relations between subregions and cognitive abilities vary across development. However, longitudinal research examining age-related changes in subregions in humans, particularly during early childhood (i.e., 4-6 years), is limited. Using a large sample of 184 healthy 4- to 8-year-old children, the present study is the first to characterize developmental changes in hippocampal subregion volume from early- to mid-childhood. Results reveal differential developmental trajectories in hippocampal head, body, and tail during this period. Specifically, head volume showed a quadratic pattern of change, and both body and tail showed linear increases, resulting in a pattern of cubic change for total hippocampal volume. Further, main effects of sex on hippocampal volume (males > females) and hemispheric differences in developmental trajectories were observed. These findings provide an improved understanding of the development of the hippocampus and have important implications for research investigating a range of cognitive abilities and behaviors.
Collapse
Affiliation(s)
- Kelsey L Canada
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| | - Morgan Botdorf
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
33
|
Albajara Sáenz A, Villemonteix T, Slama H, Baijot S, Mary A, Balériaux D, Metens T, Kavec M, Peigneux P, Massat I. Relationship Between White Matter Abnormalities and Neuropsychological Measures in Children With ADHD. J Atten Disord 2020; 24:1020-1031. [PMID: 30014760 DOI: 10.1177/1087054718787878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: Using Diffusion Tensor Imaging (DTI), to investigate microstructural white matter differences between ADHD and typically developing children (TDC), and their association with inhibition and working memory performance usually impaired in ADHD. Method: Fractional anisotropy (FA) and mean diffusivity (MD) were estimated in 36 noncomorbid children with a Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.; DSM-IV-TR) diagnosis of combined type ADHD and 20 TDC. Correlations between FA/MD and Stop Signal Task and N-Back performance parameters were computed. Results: Working memory performance was significantly associated with MD in the superior longitudinal fasciculus (SLF) and the cingulum in the ADHD group. No between-group differences in FA/MD reached significance, after controlling for between-group head motion differences. Conclusion: The association between white matter integrity in the cingulum and the SLF and working memory performance confirms previous studies. Our results also show that when critical conditions are controlled (age, comorbidity, head motion), no ADHD-related structural abnormality (FA/MD) are observed, in line with prior suggestions.
Collapse
Affiliation(s)
| | - Thomas Villemonteix
- Université Libre de Bruxelles, Brussels, Belgium.,Paris 8 Vincennes-Saint Denis University, France
| | - Hichem Slama
- Université Libre de Bruxelles, Brussels, Belgium
| | - Simon Baijot
- Université Libre de Bruxelles, Brussels, Belgium.,Queen Fabiola Children's University Hospital, Brussels, Belgium
| | - Alison Mary
- Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | - Isabelle Massat
- Université Libre de Bruxelles, Brussels, Belgium.,FNRS-National Fund of Scientific Research, Brussels, Belgium
| |
Collapse
|
34
|
Association between diffusivity measures and language and cognitive-control abilities from early toddler’s age to childhood. Brain Struct Funct 2020; 225:1103-1122. [DOI: 10.1007/s00429-020-02062-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
|
35
|
Herbet G, Duffau H. Revisiting the Functional Anatomy of the Human Brain: Toward a Meta-Networking Theory of Cerebral Functions. Physiol Rev 2020; 100:1181-1228. [PMID: 32078778 DOI: 10.1152/physrev.00033.2019] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For more than one century, brain processing was mainly thought in a localizationist framework, in which one given function was underpinned by a discrete, isolated cortical area, and with a similar cerebral organization across individuals. However, advances in brain mapping techniques in humans have provided new insights into the organizational principles of anatomo-functional architecture. Here, we review recent findings gained from neuroimaging, electrophysiological, as well as lesion studies. Based on these recent data on brain connectome, we challenge the traditional, outdated localizationist view and propose an alternative meta-networking theory. This model holds that complex cognitions and behaviors arise from the spatiotemporal integration of distributed but relatively specialized networks underlying conation and cognition (e.g., language, spatial cognition). Dynamic interactions between such circuits result in a perpetual succession of new equilibrium states, opening the door to considerable interindividual behavioral variability and to neuroplastic phenomena. Indeed, a meta-networking organization underlies the uniquely human propensity to learn complex abilities, and also explains how postlesional reshaping can lead to some degrees of functional compensation in brain-damaged patients. We discuss the major implications of this approach in fundamental neurosciences as well as for clinical developments, especially in neurology, psychiatry, neurorehabilitation, and restorative neurosurgery.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1191, Institute of Functional Genomics, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1191, Institute of Functional Genomics, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
36
|
Altered frontal white matter microstructure is associated with working memory impairments in adolescents with congenital heart disease: A diffusion tensor imaging study. NEUROIMAGE-CLINICAL 2019; 25:102123. [PMID: 31869770 PMCID: PMC6933217 DOI: 10.1016/j.nicl.2019.102123] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022]
Abstract
Children and adolescents with congenital heart disease (CHD) are at risk for mild to moderate cognitive impairments. In particular, impaired working memory performance has been found in CHD patients of all ages. Working memory is an important domain of higher order cognitive function and is crucial for everyday activities, with emerging importance in adolescence. However, the underlying neural correlate of working memory impairments in CHD is not yet fully understood. Diffusion tensor imaging and tract based spatial statistics analyses were conducted in 47 adolescent survivors of childhood cardiopulmonary bypass surgery (24 females) and in 44 healthy controls (24 females) between 11 and 16 years of age (mean age = 13.9, SD = 1.6). Fractional anisotropy (FA) of white matter diffusion was compared between groups and was correlated with working memory performance, derived from the Wechsler Intelligence Scale for Children-IV. CHD patients had significantly poorer working memory compared to controls (p = 0.001). Widespread bilateral reduction in FA was observed in CHD patients compared to healthy controls (threshold-free cluster enhancement (TFCE) corrected p < 0.05). This reduction in FA was present both in cyanotic and acyanotic CHD patients compared to healthy controls (both p < 0.001). The FA reduction in the frontal lobe, mainly in the forceps minor, was associated with poorer working memory performance in both patients with CHD and healthy controls (TFCE corrected p < 0.05). The current findings underline that in CHD patients, irrespective of disease severity, disrupted or delayed maturation of white matter may persist into adolescence and is associated with working memory impairments, particularly if present in the frontal lobe. Adolescence, which is a crucial period for prefrontal brain maturation, may offer a window of opportunity for intervention in order to support the maturation of frontal brain regions and therefore improve higher order cognitive function in patients with CHD.
Collapse
|
37
|
Salami A, Rieckmann A, Karalija N, Avelar-Pereira B, Andersson M, Wåhlin A, Papenberg G, Garrett DD, Riklund K, Lövdén M, Lindenberger U, Bäckman L, Nyberg L. Neurocognitive Profiles of Older Adults with Working-Memory Dysfunction. Cereb Cortex 2019; 28:2525-2539. [PMID: 29901790 PMCID: PMC5998950 DOI: 10.1093/cercor/bhy062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 02/23/2018] [Indexed: 01/21/2023] Open
Abstract
Individuals differ in how they perceive, remember, and think. There is evidence for the existence of distinct subgroups that differ in cognitive performance within the older population. However, it is less clear how individual differences in cognition in old age are linked to differences in brain-based measures. We used latent-profile analysis on n-back working-memory (WM) performance to identify subgroups in a large sample of older adults (n = 181; age = 64–68 years). Our analysis identified one larger normal subgroup with higher performance (n = 113; 63%), and a second smaller subgroup (n = 55; 31%) with lower performance. The low-performing subgroup showed weaker load-dependent BOLD modulation and lower connectivity within the fronto-parietal network (FPN) as well as between FPN and striatum during n-back, along with lower FPN connectivity at rest. This group also exhibited lower FPN structural integrity, lower frontal dopamine D2 binding potential, inferior performance on offline WM tests, and a trend-level genetic predisposition for lower dopamine-system efficiency. By contrast, this group exhibited relatively intact episodic memory and associated brain measures (i.e., hippocampal volume, structural, and functional connectivity within the default-mode network). Collectively, these data provide converging evidence for the existence of a group of older adults with impaired WM functioning characterized by reduced cortico-striatal coupling and aberrant cortico-cortical integrity within FPN.
Collapse
Affiliation(s)
- Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anna Rieckmann
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Bárbara Avelar-Pereira
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Micael Andersson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Douglas D Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
38
|
Tokariev M, Vuontela V, Lönnberg P, Lano A, Perkola J, Wolford E, Andersson S, Metsäranta M, Carlson S. Altered working memory-related brain responses and white matter microstructure in extremely preterm-born children at school age. Brain Cogn 2019; 136:103615. [PMID: 31563082 DOI: 10.1016/j.bandc.2019.103615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 11/28/2022]
Abstract
Preterm birth poses a risk for neurocognitive and behavioral development. Preterm children, who have not been diagnosed with neurological or cognitive deficits, enter normal schools and are expected to succeed as their term-born peers. Here we tested the hypotheses that despite an uneventful development after preterm birth, these children might exhibit subtle abnormalities in brain function and white-matter microstructure at school-age. We recruited 7.5-year-old children born extremely prematurely (<28 weeks' gestation), and age- and gender-matched term-born controls (≥37 weeks' gestation). We applied fMRI during working-memory (WM) tasks, and investigated white-matter microstructure with diffusion tensor imaging. Compared with controls, preterm-born children performed WM tasks less accurately, had reduced activation in several right prefrontal areas, and weaker deactivation of right temporal lobe areas. The weaker prefrontal activation correlated with poorer WM performance. Preterm-born children had higher fractional anisotropy (FA) and lower diffusivity than controls in several white-matter areas, and in the posterior cerebellum, the higher FA associated with poorer visuospatial test scores. In controls, higher FA and lower diffusivity correlated with faster WM performance. Together these findings demonstrate weaker WM-related brain activations and altered white matter microstructure in children born extremely preterm, who had normal global cognitive ability.
Collapse
Affiliation(s)
- Maksym Tokariev
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Virve Vuontela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Piia Lönnberg
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aulikki Lano
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Perkola
- Department of Clinical Neurophysiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elina Wolford
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Sture Andersson
- Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjo Metsäranta
- Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Synnöve Carlson
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland.
| |
Collapse
|
39
|
Caplan R. Epilepsy, language, and social skills. BRAIN AND LANGUAGE 2019; 193:18-30. [PMID: 28987707 DOI: 10.1016/j.bandl.2017.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 08/10/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
Language and social skills are essential for intrapersonal and interpersonal functioning and quality of life. Since epilepsy impacts these important domains of individuals' functioning, understanding the psychosocial and biological factors involved in the relationship among epilepsy, language, and social skills has important theoretical and clinical implications. This review first describes the psychosocial and biological factors involved in the association between language and social behavior in children and in adults and their relevance for epilepsy. It reviews the findings of studies of social skills and the few studies conducted on the inter-relationship of language and social skills in pediatric and adult epilepsy. The paper concludes with suggested future research and clinical directions that will enhance early identification and treatment of epilepsy patients at risk for impaired language and social skills.
Collapse
Affiliation(s)
- Rochelle Caplan
- UCLA David Geffen School of Medicine, Department of Psychiatry, United States.
| |
Collapse
|
40
|
van den Berg L, de Weerd A, Reuvekamp M, Hagebeuk E, van der Meere J. Working memory in pediatric frontal lobe epilepsy. APPLIED NEUROPSYCHOLOGY-CHILD 2019; 10:101-110. [PMID: 31092008 DOI: 10.1080/21622965.2019.1611431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Thirty-two children with frontal lobe epilepsy (FLE) were assessed using different working memory measures. In addition, parents and teachers completed the working memory scale of the Behavioral Rating Inventory of Executive Functioning (BRIEF) to assess the children's "daily life behavior." Results suggested minimal working memory deficits as assessed with performance-based measures. However, the BRIEF showed more working memory deficits suggesting that, on a daily life level, working memory problems seem to be associated with FLE. We discuss why the results of the performance-based measures are not consistent with results of the BRIEF.HighlightsParents as well as teachers report working memory dysfunction in daily life to the same extent.Performance based measures show minimal deficits of working memory.Correlation between working memory tasks and proxy measures are low.
Collapse
Affiliation(s)
- Lydia van den Berg
- Stichting Epilepsie Instellingen Nederland, Zwolle, Netherlands.,Faculteit Clinical and developmental neuropsychology, Faculty behavioral science, University of Groningen, Netherlands
| | - Al de Weerd
- Stichting Epilepsie Instellingen Nederland, Zwolle, Netherlands
| | | | | | - Jaap van der Meere
- Faculteit Clinical and developmental neuropsychology, Faculty behavioral science, University of Groningen, Netherlands
| |
Collapse
|
41
|
Rivas I, Basagaña X, Cirach M, López-Vicente M, Suades-González E, Garcia-Esteban R, Álvarez-Pedrerol M, Dadvand P, Sunyer J. Association between Early Life Exposure to Air Pollution and Working Memory and Attention. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57002. [PMID: 31070940 PMCID: PMC6791117 DOI: 10.1289/ehp3169] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Although previous studies have reported negative associations between exposure to air pollution and cognition, studies of the effects of prenatal and postnatal exposures in early childhood have been limited. OBJECTIVES We sought to assess the role exposure to fine particulate matter ([Formula: see text]) during different prenatal and postnatal windows may play in children's cognitive development at school age. METHODS Within the Brain Development and Air Pollution Ultrafine Particles in School Children (BREATHE) Project, we estimated residential [Formula: see text] exposures by land use regression for the prenatal period and first seven postnatal years of 2,221 children from Barcelona, Spain. The participants ([Formula: see text]) completed computerized tests assessing working memory, attentiveness, and conflict network during four visits in 2012–2013. We used linear mixed effects and distributed lag models to assess the period of exposure to [Formula: see text] in association with cognitive development. RESULTS Inverse associations were identified between [Formula: see text] exposure during the fifth and sixth postnatal years and working memory, with boys showing much higher vulnerability. Regarding attention functions, exposure to higher [Formula: see text] levels during the prenatal period and from the fourth postnatal year were associated with a reduction in conflict network performance, though we found no association with attentiveness. The overall estimated cumulative effect of a [Formula: see text] increase in [Formula: see text] resulted in a reduction in the working memory [Formula: see text] score of [Formula: see text] [95% confidence interval (CI): [Formula: see text], [Formula: see text]] points and an increase in the conflict attentional network of 11.31 (95% CI: 6.05, 16.57) milliseconds, indicating a poorer performance. CONCLUSIONS Early life exposure to [Formula: see text] was associated with a reduction in fundamental cognitive abilities, including working memory and conflict attentional network. https://doi.org/10.1289/EHP3169.
Collapse
Affiliation(s)
- Ioar Rivas
- ISGlobal (Barcelona Institute for Global Health), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- CIBERESP (Consortium for Biomedical Research in Epidemiology and Public Health), Madrid, Spain
- MRC-PHE Centre for Environment & Health, Environmental Research Group, King’s College London, London, UK
| | - Xavier Basagaña
- ISGlobal (Barcelona Institute for Global Health), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- CIBERESP (Consortium for Biomedical Research in Epidemiology and Public Health), Madrid, Spain
| | - Marta Cirach
- ISGlobal (Barcelona Institute for Global Health), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- CIBERESP (Consortium for Biomedical Research in Epidemiology and Public Health), Madrid, Spain
| | - Mónica López-Vicente
- ISGlobal (Barcelona Institute for Global Health), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- CIBERESP (Consortium for Biomedical Research in Epidemiology and Public Health), Madrid, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques–Parc de Salut Mar, Barcelona, Catalonia, Spain
| | - Elisabet Suades-González
- ISGlobal (Barcelona Institute for Global Health), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- CIBERESP (Consortium for Biomedical Research in Epidemiology and Public Health), Madrid, Spain
- Learning Disabilities Unit (UTAE), Neuropediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Raquel Garcia-Esteban
- ISGlobal (Barcelona Institute for Global Health), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- CIBERESP (Consortium for Biomedical Research in Epidemiology and Public Health), Madrid, Spain
| | - Mar Álvarez-Pedrerol
- ISGlobal (Barcelona Institute for Global Health), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- CIBERESP (Consortium for Biomedical Research in Epidemiology and Public Health), Madrid, Spain
| | - Payam Dadvand
- ISGlobal (Barcelona Institute for Global Health), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- CIBERESP (Consortium for Biomedical Research in Epidemiology and Public Health), Madrid, Spain
| | - Jordi Sunyer
- ISGlobal (Barcelona Institute for Global Health), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- CIBERESP (Consortium for Biomedical Research in Epidemiology and Public Health), Madrid, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques–Parc de Salut Mar, Barcelona, Catalonia, Spain
| |
Collapse
|
42
|
Gross LA, Moore EM, Wozniak JR, Coles CD, Kable JA, Sowell ER, Jones KL, Riley EP, Mattson SN. Neural correlates of verbal memory in youth with heavy prenatal alcohol exposure. Brain Imaging Behav 2019; 12:806-822. [PMID: 28656347 DOI: 10.1007/s11682-017-9739-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prenatal alcohol exposure can impact both brain development and neurobehavioral function, including verbal learning and recall, although the relation between verbal recall and brain structure in this population has not been examined fully. We aimed to determine the structural neural correlates of verbal learning and recall in youth with histories of heavy prenatal alcohol exposure using a region of interest (ROI) approach. As part of an ongoing multisite project, subjects (age 10-16 years) with prenatal alcohol exposure (AE, n = 81) and controls (CON, n = 81) were tested using the CVLT-C and measures of cortical volume, surface area, and thickness as well as hippocampal volume were derived from MRI. Group differences in brain and memory indices were tested with ANOVA. Multiple regression analyses tested whether brain ROIs significantly predicted memory performance. The AE group had lower scores than the CON group on all CVLT-C variables (ps ≤ .001) and volume and surface area (ps < .025), although results varied by ROI. No group differences in cortical thickness were found. The relations between cortical structure and memory performance differed between group among some ROIs, particularly those in the frontal cortex, generally with smaller surface area and/or thinner cortex predicting better performance in CON but worse performance in AE. Cortical surface area appears to be the most sensitive index to the effects of prenatal alcohol exposure, while cortical thickness appears to be the least sensitive. These findings also indicate that the neural correlates of verbal memory are altered in youth with heavy prenatal alcohol exposure compared to controls.
Collapse
Affiliation(s)
- Lauren A Gross
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA, 92120, USA
| | - Eileen M Moore
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA, 92120, USA
| | - Jeffrey R Wozniak
- Department of Psychiatry, University of Minnesota, F282/2A West, 2450 Riverside Ave, Minneapolis, MN, 55454, USA
| | - Claire D Coles
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Drive, Atlanta, GA, 30329, USA.,Department of Pediatrics, Emory University School of Medicine, 12 Executive Park Drive, Atlanta, GA, 30329, USA
| | - Julie A Kable
- Department of Pediatrics, Emory University School of Medicine, 12 Executive Park Drive, Atlanta, GA, 30329, USA
| | - Elizabeth R Sowell
- Department of Pediatrics, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd., Mailstop #130, Los Angeles, CA, 90027, USA
| | - Kenneth L Jones
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0828, USA
| | - Edward P Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA, 92120, USA
| | - Sarah N Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA, 92120, USA.
| | | |
Collapse
|
43
|
Botdorf M, Riggins T. When less is more: Thinner fronto-parietal cortices are associated with better forward digit span performance during early childhood. Neuropsychologia 2018; 121:11-18. [PMID: 30393004 PMCID: PMC6289754 DOI: 10.1016/j.neuropsychologia.2018.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/11/2023]
Abstract
Although research shows that working memory improves during early childhood, it remains unclear how the fronto-parietal network of cortical regions, known to support this ability in adults, relates to changes in young children. Measures of cortical thickness may be useful in investigating this association as they reflect age-related differences in gray matter and have been proposed to support age-related improvements in other cognitive abilities, but have only sparingly been tested empirically in early childhood. The present study sought to investigate relations between cortical thickness and performance on a digit span task in 200 4- to 8-year-old children using both a priori defined regions of interest related to working memory (superior frontal cortex, middle frontal cortex, anterior cingulate cortex, superior parietal cortex) and whole brain analyses. Results indicated a significant association between cortical thickness in each a priori defined fronto-parietal region and performance on digit span, such that those with a thinner cortex recalled more items than those with a thicker cortex. Similar regions emerged from the whole brain analyses, as did several other regions not typically included in the fronto-parietal network. Results of a mediation analysis indicated that age-related differences in behavior were partially explained by variations in thickness of anterior cingulate cortex, suggesting a potentially important role for this structure during early childhood. Overall, these results suggest that in children as young as 4 years of age there are associations between working memory abilities and thickness in cortical areas known to support working memory in adults.
Collapse
Affiliation(s)
- Morgan Botdorf
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
44
|
Samara A, Feng K, Pivik RT, Jarratt KP, Badger TM, Ou X. White Matter Microstructure Correlates with Memory Performance in Healthy Children: A Diffusion Tensor Imaging Study. J Neuroimaging 2018; 29:233-241. [DOI: 10.1111/jon.12580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Amjad Samara
- Arkansas Children's Nutrition Center; Little Rock AR
- Department of Pediatrics; University of Arkansas for Medical Sciences; Little Rock AR
| | - Kaiyang Feng
- Arkansas Children's Research Institute; Little Rock AR
| | - R. Terry Pivik
- Arkansas Children's Nutrition Center; Little Rock AR
- Department of Pediatrics; University of Arkansas for Medical Sciences; Little Rock AR
| | - Kelly P. Jarratt
- Arkansas Children's Nutrition Center; Little Rock AR
- Department of Pediatrics; University of Arkansas for Medical Sciences; Little Rock AR
| | - Thomas M. Badger
- Arkansas Children's Nutrition Center; Little Rock AR
- Department of Pediatrics; University of Arkansas for Medical Sciences; Little Rock AR
| | - Xiawei Ou
- Arkansas Children's Nutrition Center; Little Rock AR
- Department of Pediatrics; University of Arkansas for Medical Sciences; Little Rock AR
- Department of Radiology; University of Arkansas for Medical Sciences; Little Rock AR
| |
Collapse
|
45
|
Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev 2018; 94:179-195. [PMID: 30201220 PMCID: PMC6526538 DOI: 10.1016/j.neubiorev.2018.09.005] [Citation(s) in RCA: 352] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
Abstract
The transition from adolescence to adulthood is characterized by improvements in higher-order cognitive abilities and corresponding refinements of the structure and function of the brain regions that support them. Whereas the neurobiological mechanisms that govern early development of sensory systems are well-understood, the mechanisms that drive developmental plasticity of association cortices, such as prefrontal cortex (PFC), during adolescence remain to be explained. In this review, we synthesize neurodevelopmental findings at the cellular, circuit, and systems levels in PFC and evaluate them through the lens of established critical period (CP) mechanisms that guide early sensory development. We find remarkable correspondence between these neurodevelopmental processes and the mechanisms driving CP plasticity, supporting the hypothesis that adolescent development is driven by CP mechanisms that guide the rapid development of neurobiology and cognitive ability during adolescence and their subsequent stability in adulthood. Critically, understanding adolescence as a CP not only provides a mechanism for normative adolescent development, it provides a framework for understanding the role of experience and neurobiology in the emergence of psychopathology that occurs during this developmental period.
Collapse
Affiliation(s)
- Bart Larsen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States.
| | - Beatriz Luna
- Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| |
Collapse
|
46
|
Development of white matter microstructure in relation to verbal and visuospatial working memory-A longitudinal study. PLoS One 2018; 13:e0195540. [PMID: 29689058 PMCID: PMC5916522 DOI: 10.1371/journal.pone.0195540] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
Working memory capacity is pivotal for a broad specter of cognitive tasks and develops throughout childhood. This must in part rely on development of neural connections and white matter microstructure maturation, but there is scarce knowledge of specific relations between this and different aspects of working memory. Diffusion tensor imaging (DTI) enables us to study development of brain white matter microstructure. In a longitudinal DTI study of 148 healthy children between 4 and 11 years scanned twice with an on average 1.6 years interval, we characterized change in fractional anisotropy (FA), mean (MD), radial (RD) and axial diffusivity (AD) in 10 major white matter tracts hypothesized to be of importance for working memory. The results showed relationships between change in several tracts and change in visuospatial working memory. Specifically, improvement in visuospatial working memory capacity was significantly associated with decreased MD, RD and AD in inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF) and uncinate fasciculus (UF) in the right hemisphere, as well as forceps major (FMaj). No significant relationships were found between change in DTI metrics and change in verbal working memory capacity. These findings yield new knowledge about brain development and corresponding working memory improvements in childhood.
Collapse
|
47
|
Gómez CM, Barriga-Paulino CI, Rodríguez-Martínez EI, Rojas-Benjumea MÁ, Arjona A, Gómez-González J. The neurophysiology of working memory development: from childhood to adolescence and young adulthood. Rev Neurosci 2018; 29:261-282. [DOI: 10.1515/revneuro-2017-0073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/09/2017] [Indexed: 12/27/2022]
Abstract
AbstractWorking memory (WM) is an important cognitive function that is necessary to perform our daily activities. The present review briefly describes the most accepted models underlying WM and the neural networks involved in its processing. The review focuses on how the neurophysiological mechanisms develop with age in the periods from childhood to adolescence and young adulthood. Studies using behavioral, neuroimaging, and electrophysiological techniques showed the progress of WM throughout the development. The present review focuses on the neurophysiology of the basic processes underlying WM operations, as indicated by electroencephalogram-derived signals, in order to take advantage of the excellent time resolution of this technique. Children and adults use similar cerebral mechanisms and areas to encode, recognize, and keep the stimuli in memory and update the WM contents, although adults rely more on anterior sites. The possibility that a functional reorganization of WM brain processing occurs around the adolescent period is suggested, and would partly justify the high prevalence of the emergence of mental pathology in the adolescent period.
Collapse
|
48
|
Zammit N, Falzon O, Camilleri K, Muscat R. Working memory alpha-beta band oscillatory signatures in adolescents and young adults. Eur J Neurosci 2018. [DOI: 10.1111/ejn.13897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nowell Zammit
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| | - Owen Falzon
- Centre for Biomedical Cybernetics; University of Malta; Msida Malta
| | - Kenneth Camilleri
- Centre for Biomedical Cybernetics; University of Malta; Msida Malta
- Department of Systems and Control Engineering; Faculty of Engineering; University of Malta; Msida Malta
| | - Richard Muscat
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
- Department of Physiology and Biochemistry; Faculty of Medicine and Surgery; University of Malta; Msida Malta
| |
Collapse
|
49
|
Nemmi F, Nymberg C, Darki F, Banaschewski T, Bokde ALW, Büchel C, Flor H, Frouin V, Garavan H, Gowland P, Heinz A, Martinot JL, Nees F, Paus T, Smolka MN, Robbins TW, Schumann G, Klingberg T. Interaction between striatal volume and DAT1 polymorphism predicts working memory development during adolescence. Dev Cogn Neurosci 2018; 30:191-199. [PMID: 29567584 PMCID: PMC6969124 DOI: 10.1016/j.dcn.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/26/2018] [Accepted: 03/10/2018] [Indexed: 12/03/2022] Open
Abstract
There is considerable inter-individual variability in the rate at which working memory (WM) develops during childhood and adolescence, but the neural and genetic basis for these differences are poorly understood. Dopamine-related genes, striatal activation and morphology have been associated with increased WM capacity after training. Here we tested the hypothesis that these factors would also explain some of the inter-individual differences in the rate of WM development. We measured WM performance in 487 healthy subjects twice: at age 14 and 19. At age 14 subjects underwent a structural MRI scan, and genotyping of five single nucleotide polymorphisms (SNPs) in or close to the dopamine genes DRD2, DAT-1 and COMT, which have previously been associated with gains in WM after WM training. We then analyzed which biological factors predicted the rate of increase in WM between ages 14 and 19. We found a significant interaction between putamen size and DAT1/SLC6A3 rs40184 polymorphism, such that TC heterozygotes with a larger putamen at age 14 showed greater WM improvement at age 19. The effect of the DAT1 polymorphism on WM development was exerted in interaction with striatal morphology. These results suggest that development of WM partially share neuro-physiological mechanism with training-induced plasticity.
Collapse
Affiliation(s)
- F Nemmi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - C Nymberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - F Darki
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - T Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - A L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - C Büchel
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - H Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - V Frouin
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - H Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - P Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham,University Park, Nottingham, United Kingdom
| | - A Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - J-L Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud - Paris Saclay, University Paris Descartes, Service Hospitalier Frédéric Joliot, Orsay; and Maison de Solenn, Paris, France
| | - F Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - T Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - M N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - T W Robbins
- Department of Psychology, Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - G Schumann
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - T Klingberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
50
|
Sharma A, Kumar A, Singh S, Bhatia T, Beniwal RP, Khushu S, Prasad KM, Deshpande SN. Altered resting state functional connectivity in early course schizophrenia. Psychiatry Res 2018; 271:17-23. [PMID: 29220695 PMCID: PMC5773345 DOI: 10.1016/j.pscychresns.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 01/08/2023]
Abstract
Impaired connectivity is proposed to underlie pathophysiology of schizophrenia. Existing studies on functional connectivity show inconsistent results. We examined functional connectivity in a clinically homogenous sample of 34 early course schizophrenia patients compared with/to 19 healthy controls using resting state functional magnetic resonance imaging (rsfMRI). Mean duration of illness for schizophrenia patients was 4 ± 1.78 years. Following a comprehensive clinical assessment, rsfMRI data were acquired using a 3.0 T magnetic resonance imaging scanner, and analyzed using FSL version 5.01 software (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Compared to healthy controls, schizophrenia patients had significantly decreased functional connectivity in the left fronto-parietal network, lateral and medial visual network, motor network, default mode network and auditory network. Our data suggests significant functional hypoconnectivity in selected brain networks in early schizophrenia patients compared to controls. It is likely that the observed functional hypoconnectivity may be associated with features of schizophrenia other than those examined in this study. It is possible that hypoconnectivity is necessary but not sufficient to the clinical manifestation of schizophrenia. The examination of functional connectivity as a biomarker should be extended to a wider array of disease phenotypes to better understand its significance.
Collapse
Affiliation(s)
- Aastha Sharma
- Medical Training Initiative (MTI) Training Fellow, Mental Health Hospital Liaison Team, Central and North West London NHS Foundation trust, Milton Keynes, United Kingdom
| | - Arvind Kumar
- Department of Psychiatry and De-addiction, Center of Excellence in Mental Health, P.G.I.M.E.R.-Dr.R.M.L. Hospital, New Delhi, India
| | - Sadhana Singh
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Timarpur, Delhi
| | - Triptish Bhatia
- Department of Psychiatry and De-addiction, Center of Excellence in Mental Health, P.G.I.M.E.R.-Dr.R.M.L. Hospital, New Delhi, India
| | - R P Beniwal
- Department of Psychiatry and De-addiction, Center of Excellence in Mental Health, P.G.I.M.E.R.-Dr.R.M.L. Hospital, New Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Timarpur, Delhi
| | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Smita N Deshpande
- Department of Psychiatry and De-addiction, Center of Excellence in Mental Health, P.G.I.M.E.R.-Dr.R.M.L. Hospital, New Delhi, India.
| |
Collapse
|