1
|
He X, Li Y, Xiao X, Li Y, Fang J, Zhou R. Multi-level cognitive state classification of learners using complex brain networks and interpretable machine learning. Cogn Neurodyn 2025; 19:5. [PMID: 39758356 PMCID: PMC11699182 DOI: 10.1007/s11571-024-10203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/06/2024] [Accepted: 10/13/2024] [Indexed: 01/07/2025] Open
Abstract
Identifying the cognitive state can help educators understand the evolving thought processes of learners, and it is important in promoting the development of higher-order thinking skills (HOTS). Cognitive neuroscience research identifies cognitive states by designing experimental tasks and recording electroencephalography (EEG) signals during task performance. However, most of the previous studies primarily concentrated on extracting features from individual channels in single-type tasks, ignoring the interconnection across channels. In this study, three learning activities (i.e., video watching activity, keyword extracting activity, and essay creating activity) were designed based on a revised Bloom's taxonomy and the Interactive-Constructive-Active-Passive framework and used with 31 college students. The EEG signals were recorded when they were engaged in these activities. First, whole-brain network temporal dynamics were characterized by EEG microstate sequence analysis. Such dynamic changes rely on learning activity and corresponding functional brain systems. Subsequently, phase locking value was used to construct synchrony-based functional brain networks. The network characteristics were extracted to be inputted into different machine learning classifiers: Support Vector Machine, K-Nearest Neighbour, Random Forest, and eXtreme Gradient Boosting (XGBoost). XGBoost showed superior performance in the classification of cognitive states, with an accuracy of 88.07%. Furthermore, SHapley Additive exPlanations (SHAP) was adopted to reveal the connections between different brain regions that contributed to the classification of cognitive state. SHAP analysis reveals that the connections in the frontal, temporal, and central regions are most important for the high cognitive state. Collectively, this study may provide further evidence for educators to design cognitive-guided instructional activities to enhance learners' HOTS.
Collapse
Affiliation(s)
- Xiuling He
- National Engineering Research Center of Educational Big Data, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China
- National Engineering Research Center for E-Learning, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China
| | - Yue Li
- National Engineering Research Center of Educational Big Data, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China
- National Engineering Research Center for E-Learning, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China
| | - Xiong Xiao
- National Engineering Research Center of Educational Big Data, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China
- National Engineering Research Center for E-Learning, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China
| | - Yingting Li
- National Engineering Research Center of Educational Big Data, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China
- National Engineering Research Center for E-Learning, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China
| | - Jing Fang
- National Engineering Research Center of Educational Big Data, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China
- National Engineering Research Center for E-Learning, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China
| | - Ruijie Zhou
- National Engineering Research Center of Educational Big Data, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China
- National Engineering Research Center for E-Learning, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China
| |
Collapse
|
2
|
Pick H, Fahoum N, Shamay Tsoory SG. Creating together: An interbrain model of group creativity. Neuropsychologia 2025; 207:109063. [PMID: 39653071 DOI: 10.1016/j.neuropsychologia.2024.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/01/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Despite the growing interest in understanding creativity-the ability to produce novel and useful ideas-most research in the field focuses on examining the neural networks underlying creativity in isolated individuals. However, numerous creative breakthroughs in arts, sciences, and industries occur through social interactions, where ideas are generated collaboratively by dyads and groups. The accumulating evidence indicates that cooperative settings foster higher levels of creativity compared to individual settings, suggesting that social factors play a role in creativity.In this review, we synthesize the findings on individual and group creativity and propose a new brain model for understanding group creativity. We extend the twofold model of creativity and suggest that creativity in social setting involves an interplay between idea generation, social influence and flexibility. Building on this model we suggest that group creativity is mediated by activity as well as interbrain coupling in neural circuits associated with associative thinking (default mode network), flexibility (executive control network) and observation-execution (inferior frontal gyrus). By shifting the focus from isolated individuals to social settings, we can gain a more comprehensive understanding of creativity and its neural mechanisms. This research direction holds the potential to uncover valuable insights into how group dynamics and social interactions facilitate the generation of creative ideas.
Collapse
Affiliation(s)
- Hadas Pick
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Nardine Fahoum
- Department of Psychology, University of Haifa, Haifa, Israel
| | | |
Collapse
|
3
|
Bigliassi M, Cabral DF, Evans AC. Improving brain health via the central executive network. J Physiol 2025. [PMID: 39856810 DOI: 10.1113/jp287099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Cognitive and physical stress have significant effects on brain health, particularly through their influence on the central executive network (CEN). The CEN, which includes regions such as the dorsolateral prefrontal cortex, anterior cingulate cortex and inferior parietal lobe, is central to managing the demands of cognitively challenging motor tasks. Acute stress can temporarily reduce connectivity within the CEN, leading to impaired cognitive function and emotional states. However a rebound in these states often follows, driven by motivational signals through the mesocortical and mesolimbic pathways, which help sustain inhibitory control and task execution. Chronic exposure to physical and cognitive challenges leads to long-term improvements in CEN functionality. These changes are supported by neurochemical, structural and systemic adaptations, including mechanisms of tissue crosstalk. Myokines, adipokines, anti-inflammatory cytokines and gut-derived metabolites contribute to a biochemical environment that enhances neuroplasticity, reduces neuroinflammation and supports neurotransmitters such as serotonin and dopamine. These processes strengthen CEN connectivity, improve self-regulation and enable individuals to adopt and sustain health-optimizing behaviours. Long-term physical activity not only enhances inhibitory control but also reduces the risk of age-related cognitive decline and neurodegenerative diseases. This review highlights the role of progressive physical stress through exercise as a practical approach to strengthening the CEN and promoting brain health, offering a strategy to improve cognitive resilience and emotional well-being across the lifespan.
Collapse
Affiliation(s)
- Marcelo Bigliassi
- Department of Teaching and Learning, Florida International University, Miami, Florida, USA
| | - Danylo F Cabral
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda C Evans
- Functional Flow Solutions LLC, Albuquerque, New Mexico, USA
| |
Collapse
|
4
|
Chen Q, Kenett YN, Cui Z, Takeuchi H, Fink A, Benedek M, Zeitlen DC, Zhuang K, Lloyd-Cox J, Kawashima R, Qiu J, Beaty RE. Dynamic switching between brain networks predicts creative ability. Commun Biol 2025; 8:54. [PMID: 39809882 PMCID: PMC11733278 DOI: 10.1038/s42003-025-07470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Creativity is hypothesized to arise from a mental state which balances spontaneous thought and cognitive control, corresponding to functional connectivity between the brain's Default Mode (DMN) and Executive Control (ECN) Networks. Here, we conduct a large-scale, multi-center examination of this hypothesis. Employing a meta-analytic network neuroscience approach, we analyze resting-state fMRI and creative task performance across 10 independent samples from Austria, Canada, China, Japan, and the United States (N = 2433)-constituting the largest and most ethnically diverse creativity neuroscience study to date. Using time-resolved network analysis, we investigate the relationship between creativity (i.e., divergent thinking ability) and dynamic switching between DMN and ECN. We find that creativity, but not general intelligence, can be reliably predicted by the number of DMN-ECN switches. Importantly, we identify an inverted-U relationship between creativity and the degree of balance between DMN-ECN switching, suggesting that optimal creative performance requires balanced brain network dynamics. Furthermore, an independent task-fMRI validation study (N = 31) demonstrates higher DMN-ECN switching during creative idea generation (compared to a control condition) and replicates the inverted-U relationship. Therefore, we provide robust evidence across multi-center datasets that creativity is tied to the capacity to dynamically switch between brain networks supporting spontaneous and controlled cognition.
Collapse
Affiliation(s)
- Qunlin Chen
- Faculty of Psychology, Southwest University, Chongqing, China
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yoed N Kenett
- Faculty of Data and Decision Sciences, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Andreas Fink
- Department of Psychology, University of Graz, Graz, Austria
| | | | - Daniel C Zeitlen
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kaixiang Zhuang
- IInstitute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - James Lloyd-Cox
- Department of Psychology, Goldsmiths, University of London, London, UK
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
5
|
Tripathi V, Batta I, Zamani A, Atad DA, Sheth SKS, Zhang J, Wager TD, Whitfield-Gabrieli S, Uddin LQ, Prakash RS, Bauer CCC. Default mode network functional connectivity as a transdiagnostic biomarker of cognitive function. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00015-1. [PMID: 39798799 DOI: 10.1016/j.bpsc.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
The default mode network (DMN) is intricately linked with processes such as self-referential thinking, episodic memory recall, goal-directed cognition, self-projection, and theory of mind. Over recent years, there has been a surge in examining its functional connectivity, particularly its relationship with frontoparietal networks (FPN) involved in top-down attention, executive function, and cognitive control. The fluidity in switching between these internal and external modes of processing-highlighted by anti-correlated functional connectivity-has been proposed as an indicator of cognitive health. Due to the ease of estimation of functional connectivity-based measures through resting state fMRI paradigms, there is now a wealth of large-scale datasets, paving the way for standardized connectivity benchmarks. This review delves into the promising role of DMN connectivity metrics as potential biomarkers of cognitive state across attention, internal mentation, mind wandering and meditation states, and investigating deviations in trait-level measures across aging and in clinical conditions such as Alzheimer's disease, Parkinson's, depression, ADHD, and others. Additionally, we tackle the issue of reliability of network estimation and functional connectivity and share recommendations for using functional connectivity measures as a biomarker of cognitive health.
Collapse
Affiliation(s)
- Vaibhav Tripathi
- Center for Brain Science & Department of Psychology, Harvard University, Cambridge, MA; Department of Psychological and Brain Sciences, Boston University, Boston, MA
| | - Ishaan Batta
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA
| | - Andre Zamani
- Department of Psychology, University of British Columbia, Vancouver, BC, CA
| | - Daniel A Atad
- Faculty of Education, Department of Counseling and Human Development, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa; Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa, Israel
| | - Sneha K S Sheth
- Department of Psychology, University of British Columbia, Vancouver, BC, CA
| | - Jiahe Zhang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychology, Northeastern University
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Science, University of California Los Angeles, Los Angeles, CA, USA; Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ruchika S Prakash
- Department of Psychology & Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, OH, USA
| | - Clemens C C Bauer
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Brain and Cognitive Science at the McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Psychology, Northeastern University.
| |
Collapse
|
6
|
Bartoli E, Devara E, Dang HQ, Rabinovich R, Mathura RK, Anand A, Pascuzzi BR, Adkinson J, Kenett YN, Bijanki KR, Sheth SA, Shofty B. Default mode network electrophysiological dynamics and causal role in creative thinking. Brain 2024; 147:3409-3425. [PMID: 38889248 PMCID: PMC11449134 DOI: 10.1093/brain/awae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
The default mode network (DMN) is a widely distributed, intrinsic brain network thought to play a crucial role in internally directed cognition. The present study employs stereo-EEG in 13 human patients, obtaining high resolution neural recordings across multiple canonical DMN regions during two processes that have been associated with creative thinking: spontaneous and divergent thought. We probe these two DMN-associated higher cognitive functions through mind wandering and alternate uses tasks, respectively. Our results reveal DMN recruitment during both tasks, as well as a task-specific dissociation in spatiotemporal response dynamics. When compared to the fronto-parietal network, DMN activity was characterized by a stronger increase in gamma band power (30-70 Hz) coupled with lower theta band power (4-8 Hz). The difference in activity between the two networks was especially strong during the mind wandering task. Within the DMN, we found that the tasks showed different dynamics, with the alternate uses task engaging the DMN more during the initial stage of the task, and mind wandering in the later stage. Gamma power changes were mainly driven by lateral DMN sites, while theta power displayed task-specific effects. During alternate uses task, theta changes did not show spatial differences within the DMN, while mind wandering was associated to an early lateral and late dorsomedial DMN engagement. Furthermore, causal manipulations of DMN regions using direct cortical stimulation preferentially decreased the originality of responses in the alternative uses task, without affecting fluency or mind wandering. Our results suggest that DMN activity is flexibly modulated as a function of specific cognitive processes and supports its causal role in divergent thinking. These findings shed light on the neural constructs supporting different forms of cognition and provide causal evidence for the role of DMN in the generation of original connections among concepts.
Collapse
Affiliation(s)
- Eleonora Bartoli
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ethan Devara
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huy Q Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rikki Rabinovich
- Department of Neurosurgery, Clinical Neuroscience Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Raissa K Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrish Anand
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bailey R Pascuzzi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua Adkinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yoed N Kenett
- Faculty of Data and Decision Sciences, Technion—Israel Institute of Technology, Haifa, 3200003Israel
| | - Kelly R Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ben Shofty
- Department of Neurosurgery, Clinical Neuroscience Center, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
7
|
Barnett KS, Vasiu F. How the arts heal: a review of the neural mechanisms behind the therapeutic effects of creative arts on mental and physical health. Front Behav Neurosci 2024; 18:1422361. [PMID: 39416439 PMCID: PMC11480958 DOI: 10.3389/fnbeh.2024.1422361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background The creative arts have long been known for their therapeutic potential. These modalities, which include dance, painting, and music, among others, appear to be effective in enhancing emotional expression and alleviating adverse physiological and psychological effects. Engagement in creative arts can be pursued as a personal hobby, in a classroom setting, or through a formal therapeutic intervention with a qualified therapist. Engagement can be active (i.e., creating) or passive (i.e., viewing, listening). Regardless of the modality and manner of engagement, the mechanisms explaining the therapeutic efficacy of creative arts remain poorly understood. Objective This study aims to systematically review research investigating the neurological mechanisms activated during active or passive engagement in creative arts, with a specific emphasis on the roles of the medial prefrontal cortex (mPFC) and the amygdala in emotional regulation (ER) and creative behaviors. The review seeks to provide preliminary evidence for the possible existence of common neural mechanisms underlying both phenomena, which could inform the development of targeted therapeutic interventions leveraging creative arts for ER. Methods A systematic review was conducted following the Cochrane Collaboration guideline and PRISMA standards to identify studies examining the neurological mechanisms underlying creative activities. Results A total of six out of 85 records meet the inclusion criteria, with all being basic research studies. Preliminary findings suggest that active and passive engagement with creative arts consistently activate neural circuits implicated in adaptive emotional regulation, including the mPFC and amygdala. These activations mirror the neural pathways engaged in effective ER strategies, suggesting the possible existence of shared mechanisms between creative expression and emotional processing. Conclusion The evidence underscores the potential of creative arts as a complementary therapeutic strategy alongside conventional care and other evidence-based mind-body modalities. By elucidating the shared neural mechanisms between creative arts engagement and ER, this review contributes to the theoretical and practical understanding of the role of creative arts in mental health. Future research is recommended to further explore these neural correlations and their implications for therapeutic practice.
Collapse
|
8
|
MacLean J, Stirn J, Bidelman GM. Auditory-motor entrainment and listening experience shape the perceptual learning of concurrent speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604167. [PMID: 39071391 PMCID: PMC11275804 DOI: 10.1101/2024.07.18.604167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Plasticity from auditory experience shapes the brain's encoding and perception of sound. Though prior research demonstrates that neural entrainment (i.e., brain-to-acoustic synchronization) aids speech perception, how long- and short-term plasticity influence entrainment to concurrent speech has not been investigated. Here, we explored neural entrainment mechanisms and the interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Method Participants learned to identify double-vowel mixtures during ∼45 min training sessions with concurrent high-density EEG recordings. We examined the degree to which brain responses entrained to the speech-stimulus train (∼9 Hz) to investigate whether entrainment to speech prior to behavioral decision predicted task performance. Source and directed functional connectivity analyses of the EEG probed whether behavior was driven by group differences auditory-motor coupling. Results Both musicians and nonmusicians showed rapid perceptual learning in accuracy with training. Interestingly, listeners' neural entrainment strength prior to target speech mixtures predicted behavioral identification performance; stronger neural synchronization was observed preceding incorrect compared to correct trial responses. We also found stark hemispheric biases in auditory-motor coupling during speech entrainment, with greater auditory-motor connectivity in the right compared to left hemisphere for musicians (R>L) but not in nonmusicians (R=L). Conclusions Our findings confirm stronger neuroacoustic synchronization and auditory-motor coupling during speech processing in musicians. Stronger neural entrainment to rapid stimulus trains preceding incorrect behavioral responses supports the notion that alpha-band (∼10 Hz) arousal/suppression in brain activity is an important modulator of trial-by-trial success in perceptual processing.
Collapse
|
9
|
Herault C, Ovando-Tellez M, Lebuda I, Kenett YN, Beranger B, Benedek M, Volle E. Creative connections: the neural correlates of semantic relatedness are associated with creativity. Commun Biol 2024; 7:810. [PMID: 38961130 PMCID: PMC11222432 DOI: 10.1038/s42003-024-06493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/22/2024] [Indexed: 07/05/2024] Open
Abstract
The associative theory of creativity proposes that creative ideas result from connecting remotely related concepts in memory. Previous research found that higher creative individuals exhibit a more flexible organization of semantic memory, generate more uncommon word associations, and judge remote concepts as more related. In this study (N = 93), we used fMRI to investigate brain regions involved in judging the relatedness of concepts that vary in their semantic distance, and how such neural involvement relates to individual differences in creativity. Brain regions where activity increased with semantic relatedness mainly overlapped with default, control, salience, semantic control, and multiple demand networks. The default and semantic control networks exhibited increased involvement when evaluating more remote associations. Finally, higher creative people, who provided higher relatedness judgements on average, exhibited lower activity in those regions, possibly reflecting higher neural efficiency. We discuss these findings in the context of the neurocognitive processing underlying creativity. Overall, our findings indicate that judging remote concepts as related reflects a cognitive mechanism underlying creativity and shed light on the neural correlates of this mechanism.
Collapse
Affiliation(s)
- Caroline Herault
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France.
| | - Marcela Ovando-Tellez
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France
| | - Izabela Lebuda
- Institute of Psychology, University of Graz, Graz, Austria
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
| | - Yoed N Kenett
- The Faculty of Data and Decision Sciences, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Benoit Beranger
- Sorbonne University, CENIR at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France
| | | | - Emmanuelle Volle
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France.
| |
Collapse
|
10
|
Stuyck H, Demeyer F, Bratanov C, Cleeremans A, Van den Bussche E. Insight and non-insight problem solving: A heart rate variability study. Q J Exp Psychol (Hove) 2024; 77:1462-1484. [PMID: 37688497 DOI: 10.1177/17470218231202519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Occasionally, problems are solved with a sudden Aha! moment (insight), while the mundane approach to solving problems is analytical (non-insight). At first glance, non-insight appears to depend on the availability and taxation of cognitive resources to execute the step-by-step approach, whereas insight does not, or to a lesser extent. However, this remains debated. To investigate the reliance of both solution types on cognitive resources, we assessed the involvement of the prefrontal cortex using vagally mediated heart rate variability (vmHRV) as an index. Participants (N = 68) solved 70 compound remote associates word puzzles solvable with insight and non-insight. Before, during, and after solving the word puzzles, we measured the vmHRV. Our results showed that resting-state vmHRV (trait) showed a negative association with behavioural performance for both solution types. This might reflect inter-individual differences in inhibitory control. As the solution search requires one to think of remote associations, inhibitory control might hamper rather than aid this process. Furthermore, we observed, for both solution types, a vmHRV increase from resting-state to solution search (state), lingering on in the post-task recovery period. This could mark the increase of prefrontal resources to promote an open-minded stance, essential for divergent thinking, which arguably is crucial for this task. Our findings suggest that, at a general level, both solution types share common aspects. However, a closer analysis of early and late solutions and puzzle difficulty suggested that metacognitive differentiation between insight and non-insight improved with higher trait vmHRV, and that a unique association between trait vmHRV and puzzle difficulty was present for each solution type.
Collapse
Affiliation(s)
- Hans Stuyck
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Center for Research in Cognition and Neurosciences, Faculty of Psychology and Education Sciences, Université libre de Bruxelles, Brussel, Belgium
| | - Febe Demeyer
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Christo Bratanov
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Axel Cleeremans
- Center for Research in Cognition and Neurosciences, Faculty of Psychology and Education Sciences, Université libre de Bruxelles, Brussel, Belgium
| | - Eva Van den Bussche
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Ryom KI, Basu A, Stendardi D, Ciaramelli E, Treves A. Taking time to compose thoughts with prefrontal schemata. Exp Brain Res 2024; 242:1101-1114. [PMID: 38483564 PMCID: PMC11078815 DOI: 10.1007/s00221-024-06785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/16/2024] [Indexed: 05/12/2024]
Abstract
Under what conditions can prefrontal cortex direct the composition of brain states, to generate coherent streams of thoughts? Using a simplified Potts model of cortical dynamics, crudely differentiated into two halves, we show that once activity levels are regulated, so as to disambiguate a single temporal sequence, whether the contents of the sequence are mainly determined by the frontal or by the posterior half, or by neither, depends on statistical parameters that describe its microcircuits. The frontal cortex tends to lead if it has more local attractors, longer lasting and stronger ones, in order of increasing importance. Its guidance is particularly effective to the extent that posterior cortices do not tend to transition from state to state on their own. The result may be related to prefrontal cortex enforcing its temporally-oriented schemata driving coherent sequences of brain states, unlike the atemporal "context" contributed by the hippocampus. Modelling a mild prefrontal (vs. posterior) lesion offers an account of mind-wandering and event construction deficits observed in prefrontal patients.
Collapse
Affiliation(s)
- Kwang Il Ryom
- SISSA - Cognitive Neuroscience, via Bonomea 265, 34136, Trieste, Italy
| | - Anindita Basu
- SISSA - Cognitive Neuroscience, via Bonomea 265, 34136, Trieste, Italy
| | - Debora Stendardi
- Dip. Psicologia Renzo Canestrari, Univ. Bologna, Viale C. Berti-Pichat 5, 40126, Bologna, Italy
| | - Elisa Ciaramelli
- Dip. Psicologia Renzo Canestrari, Univ. Bologna, Viale C. Berti-Pichat 5, 40126, Bologna, Italy
| | - Alessandro Treves
- SISSA - Cognitive Neuroscience, via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
12
|
Kenett YN, Chrysikou EG, Bassett DS, Thompson-Schill SL. Neural Dynamics During the Generation and Evaluation of Creative and Non-Creative Ideas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589621. [PMID: 38659810 PMCID: PMC11042297 DOI: 10.1101/2024.04.15.589621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
What are the neural dynamics that drive creative thinking? Recent studies have provided much insight into the neural mechanisms of creative thought. Specifically, the interaction between the executive control, default mode, and salience brain networks has been shown to be an important marker of individual differences in creative ability. However, how these different brain systems might be recruited dynamically during the two key components of the creative process-generation and evaluation of ideas-remains far from understood. In the current study we applied state-of-the-art network neuroscience methodologies to examine the neural dynamics related to the generation and evaluation of creative and non-creative ideas using a novel within-subjects design. Participants completed two functional magnetic resonance imaging sessions, taking place a week apart. In the first imaging session, participants generated either creative (alternative uses) or non-creative (common characteristics) responses to common objects. In the second imaging session, participants evaluated their own creative and non-creative responses to the same objects. Network neuroscience methods were applied to examine and directly compare reconfiguration, integration, and recruitment of brain networks during these four conditions. We found that generating creative ideas led to significantly higher network reconfiguration than generating non-creative ideas, whereas evaluating creative and non-creative ideas led to similar levels of network integration. Furthermore, we found that these differences were attributable to different dynamic patterns of neural activity across the executive control, default mode, and salience networks. This study is the first to show within-subject differences in neural dynamics related to generating and evaluating creative and non-creative ideas.
Collapse
Affiliation(s)
- Yoed N Kenett
- Faculty of Data and Decision Sciences, Technion, Israel Institute of Technology, Haifa, Israel, 3200003
| | - Evangelia G Chrysikou
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
13
|
Sun J, Zhang J, Chen Q, Yang W, Wei D, Qiu J. Psychological resilience-related functional connectomes predict creative personality. Psychophysiology 2024; 61:e14463. [PMID: 37855121 DOI: 10.1111/psyp.14463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/25/2023] [Accepted: 07/27/2023] [Indexed: 10/20/2023]
Abstract
Both psychological resilience and creativity are complex concepts that have positive effects on individual adaptation. Previous studies have shown overlaps between the key brain regions or brain functional networks related to psychological resilience and creativity. However, no direct experimental evidence has been provided to support the assumption that psychological resilience and creativity share a common brain basis. Therefore, the present study investigated the relationship between psychological resilience and creativity using neural imaging method with a machine learning approach. At the behavioral level, we found that psychological resilience was positively related to creative personality. Predictive analysis based on static functional connectivity (FC) and dynamic FC demonstrated that FCs related to psychological resilience could effectively predict an individual's creative personality score. Both the static FC and dynamic FC were mainly located in the default mode network. These results prove that psychological resilience and creativity share a common brain functional basis. These findings also provide insights into the possibility of promoting individual positive adaptation from negative events or situations in a creative way.
Collapse
Affiliation(s)
- Jiangzhou Sun
- College of International Studies, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Jingyi Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Beijing, China
| |
Collapse
|
14
|
Khalil R, Demarin V. Creative therapy in health and disease: Inner vision. CNS Neurosci Ther 2024; 30:e14266. [PMID: 37305955 PMCID: PMC10915997 DOI: 10.1111/cns.14266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Can we better understand the unique mechanisms of de novo abilities in light of our current knowledge of the psychological and neuroscientific literature on creativity? This review outlines the state-of-the-art in the neuroscience of creativity and points out crucial aspects that still demand further exploration, such as brain plasticity. The progressive development of current neuroscience research on creativity presents a multitude of prospects and potentials for furnishing efficacious therapy in the context of health and illness. Therefore, we discuss directions for future studies, identifying a focus on pinpointing the neglected beneficial practices for creative therapy. We emphasize the neglected neuroscience perspective of creativity on health and disease and how creative therapy could offer limitless possibilities to improve our well-being and give hope to patients with neurodegenerative diseases to compensate for their brain injuries and cognitive impairments by expressing their hidden creativity.
Collapse
Affiliation(s)
- Radwa Khalil
- School of Business, Social and Decision SciencesConstructor UniversityBremenGermany
| | - Vida Demarin
- International Institute for Brain HealthZagrebCroatia
| |
Collapse
|
15
|
Baldini S, Duma GM, Danieli A, Antoniazzi L, Vettorel A, Baggio M, Da Rold M, Bonanni P. Electroencephalographic microstates as a potential neurophysiological marker differentiating bilateral from unilateral temporal lobe epilepsy. Epilepsia 2024; 65:664-674. [PMID: 38265624 DOI: 10.1111/epi.17893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE Electroencephalographic (EEG) microstate abnormalities have been documented in different neurological disorders. We aimed to assess whether EEG microstates are altered also in patients with temporal epilepsy (TLE) and whether they show different activations in patients with unilateral TLE (UTLE) and bilateral TLE (BTLE). METHODS Nineteen patients with UTLE, 12 with BTLE, and 15 healthy controls were enrolled. Resting state high-density electroencephalography (128 channels) was recorded for 15 min with closed eyes. We obtained a set of stable scalp maps representing the EEG activity, named microstates, from which we acquired the following variables: global explained variance (GEV), mean duration (MD), time coverage (TC), and frequency of occurrence (FO). Two-way repeated measures analysis of variance was used to compare groups, and Spearman correlation was performed to study the maps in association with the clinical and neuropsychological data. RESULTS Patients with BTLE and UTLE showed differences in most of the parameters (GEV, MD, TC, FO) of the four microstate maps (A-D) compared to controls. Patients with BTLE showed a significant increase in all parameters for the microstates in Map-A and a decrease in Map-D compared to UTLE and controls. We observed a correlation between Map-A, disease duration, and spatial short-term memory, whereas microstate Map-D was correlated with the global intelligence score and short-term memory performance. SIGNIFICANCE A global alteration of the neural dynamics was observed in patients with TLE compared to controls. A different pattern of EEG microstate abnormalities was identified in BTLE compared to UTLE, which might represent a distinctive biomarker.
Collapse
Affiliation(s)
- Sara Baldini
- Clinical Unit of Neurology, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Gian Marco Duma
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Epilepsy Unit, Conegliano, TV, Italy
| | - Alberto Danieli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Epilepsy Unit, Conegliano, TV, Italy
| | - Lisa Antoniazzi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Epilepsy Unit, Conegliano, TV, Italy
| | | | - Martina Baggio
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Epilepsy Unit, Conegliano, TV, Italy
| | | | - Paolo Bonanni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Epilepsy Unit, Conegliano, TV, Italy
| |
Collapse
|
16
|
Khalil R, Agnoli S, Mastria S, Kondinska A, Karim AA, Godde B. Individual differences and creative ideation: neuromodulatory signatures of mindset and response inhibition. Front Neurosci 2023; 17:1238165. [PMID: 38125402 PMCID: PMC10731982 DOI: 10.3389/fnins.2023.1238165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
This study addresses the modulatory role of individual mindset in explaining the relationship between response inhibition (RI) and divergent thinking (DT) using transcranial direct current stimulation (tDCS). Forty undergraduate students (22 male and 18 female), aged between 18 and 23 years (average age = 19 years, SD = 1.48), were recruited. Participants received either anodal tDCS of the right IFG coupled with cathodal tDCS of the left IFG (R + L-; N = 19) or the opposite coupling (R-L+; N = 21). We tested DT performance using the alternative uses task (AUT), measuring participants' fluency, originality, and flexibility in the response production, as well as participants' mindsets. Furthermore, we applied a go-no-go task to examine the role of RI before and after stimulating the inferior frontal gyrus (IFG) using tDCS. The results showed that the mindset levels acted as moderators on stimulation conditions and enhanced RI on AUT fluency and flexibility but not originality. Intriguingly, growth mindsets have opposite moderating effects on the change in DT, resulting from the tDCS stimulation of the left and the right IFG, with reduced fluency but enhanced flexibility. Our findings imply that understanding neural modulatory signatures of ideational processes with tDCS strongly benefits from evaluating cognitive status and control functions.
Collapse
Affiliation(s)
- Radwa Khalil
- School of Business, Social and Decision Sciences, Constructor University, Bremen, Germany
| | - Sergio Agnoli
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Marconi Institute for Creativity, Sasso Marconi, Italy
| | - Serena Mastria
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Angela Kondinska
- School of Business, Social and Decision Sciences, Constructor University, Bremen, Germany
| | - Ahmed A. Karim
- School of Business, Social and Decision Sciences, Constructor University, Bremen, Germany
- Department of Psychiatry and Psychotherapy, University Clinic Tübingen, Tübingen, Germany
- Department of Health Psychology and Neurorehabilitation, SRH Mobile University, Riedlingen, Germany
| | - Ben Godde
- School of Business, Social and Decision Sciences, Constructor University, Bremen, Germany
| |
Collapse
|
17
|
Duval PE, Fornari E, Décaillet M, Ledoux JB, Beaty RE, Denervaud S. Creative thinking and brain network development in schoolchildren. Dev Sci 2023; 26:e13389. [PMID: 36942648 DOI: 10.1111/desc.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Fostering creative minds has always been a premise to ensure adaptation to new challenges of human civilization. While some alternative educational settings (i.e., Montessori) were shown to nurture creative skills, it is unknown how they impact underlying brain mechanisms across the school years. This study assessed creative thinking and resting-state functional connectivity via fMRI in 75 children (4-18 y.o.) enrolled either in Montessori or traditional schools. We found that pedagogy significantly influenced creative performance and underlying brain networks. Replicating past work, Montessori-schooled children showed higher scores on creative thinking tests. Using static functional connectivity analysis, we found that Montessori-schooled children showed decreased within-network functional connectivity of the salience network. Moreover, using dynamic functional connectivity, we found that traditionally-schooled children spent more time in a brain state characterized by high intra-default mode network connectivity. These findings suggest that pedagogy may influence brain networks relevant to creative thinking-particularly the default and salience networks. Further research is needed, like a longitudinal study, to verify these results given the implications for educational practitioners. A video abstract of this article can be viewed at https://www.youtube.com/watch?v=xWV_5o8wB5g . RESEARCH HIGHLIGHTS: Most executive jobs are prospected to be obsolete within several decades, so creative skills are seen as essential for the near future. School experience has been shown to play a role in creativity development, however, the underlying brain mechanisms remained under-investigated yet. Seventy-five 4-18 years-old children, from Montessori or traditional schools, performed a creativity task at the behavioral level, and a 6-min resting-state MR scan. We uniquely report preliminary evidence for the impact of pedagogy on functional brain networks.
Collapse
Affiliation(s)
- Philippe Eon Duval
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Eleonora Fornari
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Marion Décaillet
- Department Woman Mother-Child, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jean-Baptiste Ledoux
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Solange Denervaud
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
18
|
Wang Y, Zhang J, Li Y, Qi S, Zhang F, Ball LJ, Duan H. Preventing prefrontal dysfunction by tDCS modulates stress-induced creativity impairment in women: an fNIRS study. Cereb Cortex 2023; 33:10528-10545. [PMID: 37585735 DOI: 10.1093/cercor/bhad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
Stress is a major external factor threatening creative activity. The study explored whether left-lateralized activation in the dorsolateral prefrontal cortex manipulated through transcranial direct current stimulation could alleviate stress-induced impairment in creativity. Functional near-infrared spectroscopy was used to explore the underlying neural mechanisms. Ninety female participants were randomly assigned to three groups that received stress induction with sham stimulation, stress induction with true stimulation (anode over the left and cathode over the right dorsolateral prefrontal cortex), and control manipulation with sham stimulation, respectively. Participants underwent the stress or control task after the transcranial direct current stimulation manipulation, and then completed the Alternative Uses Task to measure creativity. Behavioral results showed that transcranial direct current stimulation reduced stress responses in heart rate and anxiety. The functional near-infrared spectroscopy results revealed that transcranial direct current stimulation alleviated dysfunction of the prefrontal cortex under stress, as evidenced by higher activation of the dorsolateral prefrontal cortex and frontopolar cortex, as well as stronger inter-hemispheric and intra-hemispheric functional connectivity within the prefrontal cortex. Further analysis demonstrated that the cortical regulatory effect prevented creativity impairment induced by stress. The findings validated the hemispheric asymmetry hypothesis regarding stress and highlighted the potential for brain stimulation to alleviate stress-related mental disorders and enhance creativity.
Collapse
Affiliation(s)
- Yifan Wang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| | - Jiaqi Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| | - Yadan Li
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| | - Senqing Qi
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| | - Fengqing Zhang
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA 19104, USA
| | - Linden J Ball
- School of Psychology & Computer Science, University of Central Lancashire, Preston PR1 2HE, UK
| | - Haijun Duan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| |
Collapse
|
19
|
Rominger C, Perchtold-Stefan CM, Fink A. The Experience of Meaningful Coincidences Is Associated with Stronger Alpha Power Increases during an Eyes-closed Resting Condition: A Bayesian Replication Approach. J Cogn Neurosci 2023; 35:1681-1692. [PMID: 37432751 DOI: 10.1162/jocn_a_02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Recognizing and perceiving meaningful patterns in an ever-changing environment is fundamental to (human) beings. Apophenia, patternicity, and the propensity to perceive meaningful coincidences might result from the human brain working as a prediction machine that constantly matches sensory information to prior expectations. The propensity for Type I errors varies between people and, at its extreme, is associated with symptoms of schizophrenia. However, on a nonclinical level seeing meaning in randomness might be benevolent and was found to be associated with creativity and openness. However, hardly any neuroscientific investigation has examined EEG patterns of the propensity to experience meaningful coincidences in this manner. We hypothesized deviations in brain functions as one potential reason why some people experience more meaning in random arrangements than others. The gating by inhibition theory suggests that alpha power increases represent basic control mechanisms of sensory processes during varying task requirements. We found that people perceiving more meaningful coincidences had higher alpha power during an eyes-closed versus eyes-opened condition compared with people experiencing less meaningful coincidences. This indicates deviations in the sensory inhibition mechanism of the brain, which are critically relevant for higher cognitive functions. Applying Bayesian statistics, we replicated this finding in another independent sample.
Collapse
|
20
|
Orwig W, Setton R, Diez I, Bueichekú E, Meyer ML, Tamir DI, Sepulcre J, Schacter DL. Creativity at rest: Exploring functional network connectivity of creative experts. Netw Neurosci 2023; 7:1022-1033. [PMID: 37781148 PMCID: PMC10473280 DOI: 10.1162/netn_a_00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/31/2023] [Indexed: 10/03/2023] Open
Abstract
The neuroscience of creativity seeks to disentangle the complex brain processes that underpin the generation of novel ideas. Neuroimaging studies of functional connectivity, particularly functional magnetic resonance imaging (fMRI), have revealed individual differences in brain network organization associated with creative ability; however, much of the extant research is limited to laboratory-based divergent thinking measures. To overcome these limitations, we compare functional brain connectivity in a cohort of creative experts (n = 27) and controls (n = 26) and examine links with creative behavior. First, we replicate prior findings showing reduced connectivity in visual cortex related to higher creative performance. Second, we examine whether this result is driven by integrated or segregated connectivity. Third, we examine associations between functional connectivity and vivid distal simulation separately in creative experts and controls. In accordance with past work, our results show reduced connectivity to the primary visual cortex in creative experts at rest. Additionally, we observe a negative association between distal simulation vividness and connectivity to the lateral visual cortex in creative experts. Taken together, these results highlight connectivity profiles of highly creative people and suggest that creative thinking may be related to, though not fully redundant with, the ability to vividly imagine the future.
Collapse
Affiliation(s)
- William Orwig
- Department of Psychology, Harvard University, Cambridge, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Meghan L. Meyer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Diana I. Tamir
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
21
|
Bartoli E, Devara E, Dang HQ, Rabinovich R, Mathura RK, Anand A, Pascuzzi BR, Adkinson J, Bijanki KR, Sheth SA, Shofty B. Default mode network spatio-temporal electrophysiological signature and causal role in creativity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557639. [PMID: 37786678 PMCID: PMC10541614 DOI: 10.1101/2023.09.13.557639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The default mode network (DMN) is a widely distributed, intrinsic brain network thought to play a crucial role in internally-directed cognition. It subserves self-referential thinking, recollection of the past, mind wandering, and creativity. Knowledge about the electrophysiology underlying DMN activity is scarce, due to the difficulty to simultaneously record from multiple distant cortical areas with commonly-used techniques. The present study employs stereo-electroencephalography depth electrodes in 13 human patients undergoing monitoring for epilepsy, obtaining high spatiotemporal resolution neural recordings across multiple canonical DMN regions. Our results offer a rare insight into the temporal evolution and spatial origin of theta (4-8Hz) and gamma signals (30-70Hz) during two DMN-associated higher cognitive functions: mind-wandering and alternate uses. During the performance of these tasks, DMN activity is defined by a specific pattern of decreased theta coupled with increased gamma power. Critically, creativity and mind wandering engage the DMN with different dynamics: creativity recruits the DMN strongly during the covert search of ideas, while mind wandering displays the strongest modulation of DMN during the later recall of the train of thoughts. Theta band power modulations, predominantly occurring during mind wandering, do not show a predominant spatial origin within the DMN. In contrast, gamma power effects were similar for mind wandering and creativity and more strongly associated to lateral temporal nodes. Interfering with DMN activity through direct cortical stimulation within several DMN nodes caused a decrease in creativity, specifically reducing the originality of the alternate uses, without affecting creative fluency or mind wandering. These results suggest that DMN activity is flexibly modulated as a function of specific cognitive processes and supports its causal role in creative thinking. Our findings shed light on the neural constructs supporting creative cognition and provide causal evidence for the role of DMN in the generation of original connections among concepts.
Collapse
Affiliation(s)
- E Bartoli
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - E Devara
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - H Q Dang
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - R Rabinovich
- Department of Neurosurgery, University of Utah, USA
| | - R K Mathura
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - A Anand
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - B R Pascuzzi
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - J Adkinson
- Department of Neurosurgery, Baylor College of Medicine, USA
| | - K R Bijanki
- Department of Neurosurgery, Baylor College of Medicine, USA
- Department of Neuroscience, Baylor College of Medicine, USA
| | - S A Sheth
- Department of Neurosurgery, Baylor College of Medicine, USA
- Department of Neuroscience, Baylor College of Medicine, USA
| | - B Shofty
- Department of Neurosurgery, University of Utah, USA
| |
Collapse
|
22
|
Ivancovsky T, Baror S, Bar M. A shared novelty-seeking basis for creativity and curiosity. Behav Brain Sci 2023; 47:e89. [PMID: 37547934 DOI: 10.1017/s0140525x23002807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Curiosity and creativity are central pillars of human growth and invention. Although they have been studied extensively in isolation, the relationship between them has not yet been established. We propose that both curiosity and creativity emanate from the same mechanism of novelty seeking. We first present a synthesis showing that curiosity and creativity are affected similarly by a number of key cognitive faculties such as memory, cognitive control, attention, and reward. We then review empirical evidence from neuroscience research, indicating that the same brain regions are involved in both curiosity and creativity, focusing on the interplay between three major brain networks: the default mode network, the salience network, and the executive control network. After substantiating the link between curiosity and creativity, we propose a novelty-seeking model (NSM) that underlies them and suggests that the manifestation of the NSM is governed by one's state of mind.
Collapse
Affiliation(s)
- Tal Ivancovsky
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan,
- Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, Catalunya, Spain
| | - Shira Baror
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel.
| | - Moshe Bar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan,
| |
Collapse
|
23
|
Hwang YG, Pae C, Song CR, Kim HJ, Bang M, Park CI, Choi TK, Kim MK, Lee SH. Self-compassion is associated with the superior longitudinal fasciculus in the mirroring network in healthy individuals. Sci Rep 2023; 13:12264. [PMID: 37507513 PMCID: PMC10382476 DOI: 10.1038/s41598-023-39384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Self-compassion (SC) involves taking an emotionally positive attitude towards oneself when suffering. Although SC has positive effects on mental well-being as well as a protective role in preventing symptoms in healthy individuals, few studies on white matter (WM) microstructures in neuroimaging studies of SC has been studied. Brain imaging data were acquired from 71 healthy participants. WM regions of mirroring network were analyzed using tract-based spatial statistics. After the WM regions associated with SC were extracted, exploratory correlation analysis with the self-forgiveness scale, the coping scale, and the world health organization quality of life scale abbreviated version was performed. We found that self-compassion scale total scores were negatively correlated with the fractional anisotropy (FA) values of the superior longitudinal fasciculus (SLF) in healthy individuals. The self-kindness and mindfulness subscale scores were also negatively correlated with FA values of the same regions. These FA values were negatively correlated with the total scores of self-forgiveness scale, and self-control coping strategy and confrontation coping strategy. Our findings suggest levels of SC may be associated with WM microstructural changes of SLF in healthy individuals. These lower WM microstructures may be associated with positive personal attitudes, such as self-forgiveness, self-control and active confrontational strategies.
Collapse
Affiliation(s)
- Yeong-Geon Hwang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
- Graduate School of Clinical Counseling Psychology, CHA University, Seongnam-si, Republic of Korea
| | - Chongwon Pae
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Chae Rim Song
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Hyun-Ju Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Chun Il Park
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Tai Kiu Choi
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Min-Kyoung Kim
- Department of Psychiatry, CHA Ilsan Medical Center, CHA University, 1205, Jungang-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10414, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
24
|
Raffaelli Q, Malusa R, de Stefano NA, Andrews E, Grilli MD, Mills C, Zabelina DL, Andrews-Hanna JR. Creative minds at rest: Creative individuals are more associative and engaged with their idle thoughts. CREATIVITY RESEARCH JOURNAL 2023; 36:396-412. [PMID: 39132452 PMCID: PMC11315452 DOI: 10.1080/10400419.2023.2227477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 08/13/2024]
Abstract
Despite an established body of research characterizing how creative individuals explore their external world, relatively little is known about how such individuals navigate their inner mental life, especially in unstructured contexts such as periods of awake rest. Across two studies, the present manuscript tested the hypothesis that creative individuals are more engaged with their idle thoughts and more associative in the dynamic transitions between them. Study 1 captured the real-time conscious experiences of 81 adults as they voiced aloud the content of their mind moment-by-moment across a 10-minute unconstrained baseline period. Higher originality scores on a divergent thinking task were associated with less perceived boredom, more words spoken overall, more freely moving thoughts, and more loosely-associative (as opposed to sharp) transitions during the baseline rest period. In Study 2, across 2,612 participants, those who reported higher self-rated creativity also reported less perceived boredom during the COVID-19 pandemic, a time during which many people experienced unusually extended periods of unstructured free time. Overall, these results suggest a tendency for creative individuals to be more engaged and explorative with their thoughts when task demands are relaxed, raising implications for resting state functional MRI and societal trends to devalue idle time.
Collapse
Affiliation(s)
- Quentin Raffaelli
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Cognitive Science, University of Arizona, Tucson, AZ, USA
| | - Rudy Malusa
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | | | - Eric Andrews
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Cognitive Science, University of Arizona, Tucson, AZ, USA
| | - Matthew D. Grilli
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - Caitlin Mills
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Darya L. Zabelina
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Jessica R. Andrews-Hanna
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Cognitive Science, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
25
|
Messina A, Cuccì G, Crescimanno C, Signorelli MS. Clinical anatomy of the precuneus and pathogenesis of the schizophrenia. Anat Sci Int 2023:10.1007/s12565-023-00730-w. [PMID: 37340095 DOI: 10.1007/s12565-023-00730-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023]
Abstract
Recent evidence has shown that the precuneus plays a role in the pathogenesis of schizophrenia. The precuneus is a structure of the parietal lobe's medial and posterior cortex, representing a central hub involved in multimodal integration processes. Although neglected for several years, the precuneus is highly complex and crucial for multimodal integration. It has extensive connections with different cerebral areas and is an interface between external stimuli and internal representations. In human evolution, the precuneus has increased in size and complexity, allowing the development of higher cognitive functions, such as visual-spatial ability, mental imagery, episodic memory, and other tasks involved in emotional processing and mentalization. This paper reviews the functions of the precuneus and discusses them concerning the psychopathological aspects of schizophrenia. The different neuronal circuits, such as the default mode network (DMN), in which the precuneus is involved and its alterations in the structure (grey matter) and the disconnection of pathways (white matter) are described.
Collapse
Affiliation(s)
- Antonino Messina
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy.
| | | | | | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| |
Collapse
|
26
|
Kruse JA, Martin CS, Hamlin N, Slattery E, Moriarty EM, Horne LK, Ozkalp-Poincloux B, Camarda A, White SF, Oleson J, Cassotti M, Doucet GE. Changes of creative ability and underlying brain network connectivity throughout the lifespan. Brain Cogn 2023; 168:105975. [PMID: 37031635 PMCID: PMC10175225 DOI: 10.1016/j.bandc.2023.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023]
Abstract
Creativity, or divergent thinking, is essential to and supported by cognitive functions necessary for everyday tasks. The current study investigates divergent thinking and its neural mechanisms from adolescence to late adulthood. To do this, 180 healthy participants completed a creativity task called the egg task including 86 adolescents (mean age (SD) = 13.62 (1.98)), 52 young adults (24.92 (3.60), and 42 older adults (62.84 (7.02)). Additionally, a subsample of 111 participants completed a resting-state fMRI scan. After investigating the impact of age on different divergent thinking metrics, we investigated the impact of age on the association between divergent thinking and resting-state functional connectivity within and between major resting-state brain networks associated with creative thinking: the DMN, ECN, and SN. Adolescents tended to be less creative than both young and older adults in divergent thinking scores related to expansion creativity, and not in persistent creativity, while young and older adults performed relatively similar. We found that adolescents' functional integrity of the executive control network (ECN) was positively associated with expansion creativity, which was significantly different from the negative association in both the young and older adults. These results suggest that creative performance and supporting brain networks change throughout the lifespan.
Collapse
Affiliation(s)
- Jordanna A Kruse
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Casey S Martin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Noah Hamlin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Emma Slattery
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Eibhlis M Moriarty
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Lucy K Horne
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Anaelle Camarda
- Institut Supérieur Maria Montessori, France; Université Paris Cité and Université Gustave Eiffel, LaPEA, Boulogne-Billancourt, France
| | - Stuart F White
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | | | | | - Gaelle E Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
27
|
Kathofer M, Leder H, Crone JS. Bridging neurodegenerative diseases and artistic expressivity: The significance of testable models and causal inference: Comment on "Can we really 'read' art to see the changing brain? A review and empirical assessment of clinical case reports and published artworks for systematic evidence of quality and style changes linked to damage or neurodegenerative disease" by Pelowski et al. (2022). Phys Life Rev 2023; 45:66-70. [PMID: 37167925 DOI: 10.1016/j.plrev.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Affiliation(s)
| | - Helmut Leder
- Vienna Cognitive Science Hub, University of Vienna, Austria; Faculty of Psychology, University of Vienna, Austria
| | - Julia Sophia Crone
- Vienna Cognitive Science Hub, University of Vienna, Austria; University of California Los Angeles, Department of Psychology, USA
| |
Collapse
|
28
|
Chan YC, Zeitlen DC, Beaty RE. Amygdala-frontoparietal effective connectivity in creativity and humor processing. Hum Brain Mapp 2023; 44:2585-2606. [PMID: 36773031 PMCID: PMC10028645 DOI: 10.1002/hbm.26232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Although both creativity and humor elicit experiences of surprise followed by appreciation, it remains unknown whether shared or distinct patterns of effective connectivity are involved in their processing. The present fMRI study used dynamic causal modeling and parametrical empirical Bayes analysis to examine the effective connectivity between the amygdala and frontoparietal network during two-stage creativity and humor processing. We examined processing during the setup and punch line stages for creativity and humor, including typical forms (alternate uses for creativity and incongruity-resolution humor), atypical forms (aesthetic uses for creativity and nonsense humor), and baseline forms. Our focus was on the mesolimbic pathway during the punch line stage. We found that the amygdala plays a key role in expectation violation and appreciation. Broadly, amygdala-to-IFG connectivity was important for evaluating typical and atypical forms of both creativity and humor, while amygdala-to-precuneus connectivity was involved in evaluating typical forms. Amygdala-to-IFG connectivity was involved in the expectation violation to resolution stage of processing for typical and atypical forms of creativity and humor. Amygdala-to-precuneus connectivity was involved in processing the novelty and usefulness of typical forms of creativity (alternate uses) and understanding others' intentions in typical forms of humor (incongruity-resolution). Interestingly, VTA-to-amygdala connectivity was involved in processing the appreciation of both typical (incongruity-resolution humor) and atypical (nonsense humor) forms of humor while amygdala-to-VTA connectivity was involved in processing the appreciation of atypical (aesthetic uses) forms of creativity. Altogether, these findings suggest that the amygdala and frontoparietal circuitry are critical for creativity and humor processing.
Collapse
Affiliation(s)
- Yu-Chen Chan
- Department of Educational Psychology and Counseling, National Tsing Hua University, Hsinchu, Taiwan
| | - Daniel C Zeitlen
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
29
|
Chen Q, He R, Sun J, Ding K, Wang X, He L, Zhuang K, Lloyd-Cox J, Qiu J. Common brain activation and connectivity patterns supporting the generation of creative uses and creative metaphors. Neuropsychologia 2023; 181:108487. [PMID: 36669695 DOI: 10.1016/j.neuropsychologia.2023.108487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Recent studies and reviews suggest that creative thinking is at least partly a domain-general cognitive ability, dependent on consistent patterns of brain activity including co-activation of the executive control and default mode networks. However, the degree to which the generation of ideas in different creative tasks relies on common brain activity remains unknown. In this fMRI study, participants were asked to generate creative ideas in both a uses generation task and a metaphor production task. Whole-brain analysis showed that generation of creative uses (relative to conventional uses) activated the bilateral inferior frontal gyrus (IFG), medial prefrontal cortex, left supplementary motor area, left angular gyrus (AG), left thalamus, and bilateral cerebellum posterior lobe. The generation of creative metaphors (relative to conventional metaphors) activated dorsal medial prefrontal cortex (dmPFC) and left AG. Importantly, regions active in both creative use and creative metaphor generation included the dmPFC and left AG. Psycho-physiological interactions analysis showed that the left AG was positively connected to the right precentral gyrus, and the dmPFC to the left IFG in both creative tasks. Our findings provide evidence that the generation of creative ideas relies on a core creative network related to remote semantic association-making and conceptual integration, offering new insight into the domain-general mechanisms underlying creative thinking.
Collapse
Affiliation(s)
- Qunlin Chen
- Faculty of Psychology, Southwest University, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.
| | - Ruizhi He
- Faculty of Psychology, Southwest University, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Jiangzhou Sun
- College of International Studies, Southwest University, China
| | - Ke Ding
- Faculty of Psychology, Southwest University, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Xi Wang
- Faculty of Psychology, Southwest University, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Li He
- Faculty of Psychology, Southwest University, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Kaixiang Zhuang
- Faculty of Psychology, Southwest University, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - James Lloyd-Cox
- Department of Psychology, Goldsmiths, University of London, UK
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, China
| |
Collapse
|
30
|
Li X, Li Y, Wang X, Hu W. Reduced brain activity and functional connectivity during creative idea generation in individuals with smartphone addiction. Soc Cogn Affect Neurosci 2023; 18:6712258. [PMID: 36149062 PMCID: PMC9619470 DOI: 10.1093/scan/nsac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Since the coronavirus disease 2019 outbreak, the frequency of smartphone use has surged, which has caused an increase in smartphone addiction among individuals. Smartphone addiction can impair various cognitive abilities. However, to date, the impact of smartphone addiction on creative cognition remains unclear. The current functional near-infrared spectroscopy study compared neural differences between smartphone addiction tendency (SAT) and healthy control (HC) individuals during creative idea generation. In particular, by manipulating a key component of creative cognition, that is, overcoming semantic constraints, we explored whether SAT individuals could overcome semantic constraints. Both the SAT and HC groups completed the alternate uses task (AUT) in semantic constraint and unconstraint conditions. The results indicated that the prefrontal cortex (PFC) and temporal regions were less active during AUT in the SAT group than in the HC group. In the SAT group, the PFC was less active under constraint than unconstraint conditions. Moreover, both task-related and resting-state functional connectivity analyses indicated weaker coupling between the PFC and temporal regions in the SAT than in the HC group. Furthermore, the left dorsolateral PFC mediated the effect of smartphone addiction on creative performance. These findings provide unprecedented neuroimaging evidence on the negative impact of smartphone addiction on creative cognition.
Collapse
Affiliation(s)
- Xinyi Li
- Key Laboratory of Modern Teaching Technology (Ministry of Education), Shaanxi Normal University, Xi'an 710062, China
| | - Yadan Li
- Key Laboratory of Modern Teaching Technology (Ministry of Education), Shaanxi Normal University, Xi'an 710062, China.,Shaanxi Normal University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Xi'an 710062, China
| | - Xuewei Wang
- Centre for Mental Health Education, Xidian University, Xi'an 710126, Shaanxi, China
| | - Weiping Hu
- Key Laboratory of Modern Teaching Technology (Ministry of Education), Shaanxi Normal University, Xi'an 710062, China.,Shaanxi Normal University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Xi'an 710062, China
| |
Collapse
|
31
|
Hong TY, Yang CJ, Shih CH, Fan SF, Yeh TC, Yu HY, Chen LF, Hsieh JC. Enhanced intrinsic functional connectivity in the visual system of visual artist: Implications for creativity. Front Neurosci 2023; 17:1114771. [PMID: 36908805 PMCID: PMC9992720 DOI: 10.3389/fnins.2023.1114771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction This study sought to elucidate the cognitive traits of visual artists (VAs) from the perspective of visual creativity and the visual system (i.e., the most fundamental neural correlate). Methods We examined the local and long-distance intrinsic functional connectivity (FC) of the visual system to unravel changes in brain traits among VAs. Twenty-seven university students majoring in visual arts and 27 non-artist controls were enrolled. Results VAs presented enhanced local FC in the right superior parietal lobule, right precuneus, left inferior temporal gyrus (ITG), left superior parietal lobule, left angular gyrus, and left middle occipital gyrus. VAs also presented enhanced FC with the ITG that targeted the visual area (occipital gyrus and cuneus), which appears to be associated with visual creativity. Discussion The visual creativity of VAs was correlated with strength of intrinsic functional connectivity in the visual system. Learning-induced neuroplasticity as a trait change observed in VAs can be attributed to the macroscopic consolidation of consociated neural circuits that are engaged over long-term training in the visual arts and aesthetic experience. The consolidated network can be regarded as virtuoso-specific neural fingerprint.
Collapse
Affiliation(s)
- Tzu-Yi Hong
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Heng Shih
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Fen Fan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chen Yeh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
32
|
Zeng XX, Zeng JB. Systems Medicine as a Strategy to Deal with Alzheimer's Disease. J Alzheimers Dis 2023; 96:1411-1426. [PMID: 37980671 DOI: 10.3233/jad-230739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The traits of Alzheimer's disease (AD) include amyloid plaques made of Aβ1-40 and Aβ1-42, and neurofibrillary tangles by the hyperphosphorylation of tau protein. AD is a complex disorder that is heterogenous in genetical, neuropathological, and clinical contexts. Current available therapeutics are unable to cure AD. Systems medicine is a strategy by viewing the body as a whole system, taking into account each individual's unique health profile, provide treatment and associated nursing care clinically for the patient, aiming for precision. Since the onset of AD can lead towards cognitive impairment, it is vital to intervene and diagnose early and prevent further progressive loss of neurons. Moreover, as the individual's brain functions are impaired due to neurodegeneration in AD, it is essential to reconstruct the neurons or brain cells to enable normal brain functions. Although there are different subtypes of AD due to varied pathological lesions, in the majority cases of AD, neurodegeneration and severe brain atrophy develop at the chronic stage. Novel approaches including RNA based gene therapy, stem cell based technology, bioprinting technology, synthetic biology for brain tissue reconstruction are researched in recent decades in the hope to decrease neuroinflammation and restore normal brain function in individuals of AD. Systems medicine include the prevention of disease, diagnosis and treatment by viewing the individual's body as a whole system, along with systems medicine based nursing as a strategy against AD that should be researched further.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Lishui Town, Nanhai District, Foshan City, Guangdong Province, P.R. China
| | - Jie Bangzhe Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
33
|
Fan L, Zhuang K, Wang X, Zhang J, Liu C, Gu J, Qiu J. Exploring the behavioral and neural correlates of semantic distance in creative writing. Psychophysiology 2022; 60:e14239. [PMID: 36537015 DOI: 10.1111/psyp.14239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Creativity is critical to economic growth and societal progress. However, assessing creativity using objective approaches remains a challenge. To address this, we employ three objective indicators based on semantic distance to quantify the originality and appropriateness of creativity by analyzing long texts in a story-writing experiment. Global and local distances were generated separately by computing the mean distance of the whole text and the distance between adjacent sentences, and they were positively correlated with story originality in writing. Global cohesion was positively correlated with story rationality in writing, as generated by computing the semantic coherence between the text and story context. At the behavioral level, three semantic indicators were used to measure originality and appropriateness of creativity and reflected individual differences, including creative achievement and creative personality. At the neural level, global distance was best predicted by the features of the salience and default networks, whereas global cohesion corresponded to the control and salience networks. These findings point to a stable neural basis for semantic indicators and verify the idea of separating different dimensions of creativity. Taken together, our results demonstrate the significance of semantic indicators in assessing creativity and provide insights into analyzing long texts in natural paradigm.
Collapse
Affiliation(s)
- Li Fan
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
| | - Kaixiang Zhuang
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
| | - Jingyi Zhang
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
| | - Cheng Liu
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
| | - Jing Gu
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University Chongqing China
| |
Collapse
|
34
|
Cruz TND, Camelo EV, Nardi AE, Cheniaux E. Creativity in bipolar disorder: a systematic review. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2022; 44:e20210196. [PMID: 34374271 PMCID: PMC10039727 DOI: 10.47626/2237-6089-2021-0196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Based on studies of the biographies of artists and on research in which modern diagnostic criteria were applied, it has been suggested that there is a relationship between bipolar disorder (BD) and creativity. Objective: To investigate the relationship between BD and creativity and whether creative capacity varies depending on mood state. METHOD We conducted a systematic search of the scientific literature indexed on the PubMed, ISI Web of Science, PsycINFO, and SciELO databases using the terms "bipolar" OR "bipolar disorder" OR "mania" OR "manic" AND "creativ*". Original studies were selected that investigated samples of at least ten patients with BD using at least one psychometric instrument to assess creativity. RESULTS Twelve articles met the selection criteria. The results of comparisons of BD patients with control groups without BD were heterogeneous. BD was not associated with higher levels of creativity than other mental disorders. When comparing BD phases, depression was associated with worse performance on creativity tests and patients in mania (or hypomania) were not distinguished from euthymia patients. CONCLUSION It was not possible to corroborate the hypothesis that individuals with BD are more creative than individuals without psychiatric diagnoses or than patients suffering from other mental disorders, which may be related to the cross-sectional rather than longitudinal designs of virtually all of the clinical studies.
Collapse
Affiliation(s)
- Thiara Nascimento da Cruz
- Instituto de Psiquiatria (IPUB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Evelyn V Camelo
- Instituto de Psiquiatria (IPUB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Elie Cheniaux
- Instituto de Psiquiatria (IPUB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil. Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Kotler S, Mannino M, Kelso S, Huskey R. First few seconds for flow: A comprehensive proposal of the neurobiology and neurodynamics of state onset. Neurosci Biobehav Rev 2022; 143:104956. [PMID: 36368525 DOI: 10.1016/j.neubiorev.2022.104956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Flow is a cognitive state that manifests when there is complete attentional absorption while performing a task. Flow occurs when certain internal as well as external conditions are present, including intense concentration, a sense of control, feedback, and a balance between the challenge of the task and the relevant skillset. Phenomenologically, flow is accompanied by a loss of self-consciousness, seamless integration of action and awareness, and acute changes in time perception. Research has begun to uncover some of the neurophysiological correlates of flow, as well as some of the state's neuromodulatory processes. We comprehensively review this work and consider the neurodynamics of the onset of the state, considering large-scale brain networks, as well as dopaminergic, noradrenergic, and endocannabinoid systems. To accomplish this, we outline an evidence-based hypothetical situation, and consider the flow state in a broader context including other profound alterations in consciousness, such as the psychedelic state and the state of traumatic stress that can induce PTSD. We present a broad theoretical framework which may motivate future testable hypotheses.
Collapse
Affiliation(s)
| | | | - Scott Kelso
- Human Brain & Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, United States; Intelligent Systems Research Centre, Ulster University, Derry∼Londonderry, North Ireland
| | - Richard Huskey
- Cognitive Communication Science Lab, Department of Communication, University of California Davis, United States; Cognitive Science Program, University of California Davis, United States; Center for Mind and Brain, University of California Davis, United States.
| |
Collapse
|
36
|
Krieger-Redwood K, Steward A, Gao Z, Wang X, Halai A, Smallwood J, Jefferies E. Creativity in verbal associations is linked to semantic control. Cereb Cortex 2022; 33:5135-5147. [PMID: 36222614 PMCID: PMC10152057 DOI: 10.1093/cercor/bhac405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/13/2022] Open
Abstract
Although memory is known to play a key role in creativity, previous studies have not isolated the critical component processes and networks. We asked participants to generate links between words that ranged from strongly related to completely unrelated in long-term memory, delineating the neurocognitive processes that underpin more unusual versus stereotypical patterns of retrieval. More creative responses to strongly associated word-pairs were associated with greater engagement of episodic memory: in highly familiar situations, semantic, and episodic stores converge on the same information enabling participants to form a personal link between items. This pattern of retrieval was associated with greater engagement of core default mode network (DMN). In contrast, more creative responses to weakly associated word-pairs were associated with the controlled retrieval of less dominant semantic information and greater recruitment of the semantic control network, which overlaps with the dorsomedial subsystem of DMN. Although both controlled semantic and episodic patterns of retrieval are associated with activation within DMN, these processes show little overlap in activation. These findings demonstrate that controlled aspects of semantic cognition play an important role in verbal creativity.
Collapse
Affiliation(s)
- Katya Krieger-Redwood
- Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Anna Steward
- Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, YO10 5DD, United Kingdom.,Graduate School of Systemic Neurosciences, Ludwig Maximilians-Universität, Institute for Stroke and Dementia Research, Feodor-Lynen-Strasse 17, 81377, Munich, Germany
| | - Zhiyao Gao
- Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Xiuyi Wang
- Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, YO10 5DD, United Kingdom.,CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Ajay Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Rd, Cambridge, CB2 7EF, United Kingdom
| | - Jonathan Smallwood
- Department of Psychology, Humphrey Hall, 62 Arch Street, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Elizabeth Jefferies
- Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
37
|
Zhang J, Zhuang K, Sun J, Liu C, Fan L, Wang X, Gu J, Qiu J. Retrieval flexibility links to creativity: evidence from computational linguistic measure. Cereb Cortex 2022; 33:4964-4976. [PMID: 36218835 DOI: 10.1093/cercor/bhac392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Creativity, the ability to generate original and valuable products, has long been linked to semantic retrieval processes. The associative theory of creativity posits flexible retrieval ability as an important basis for creative idea generation. However, there is insufficient research on how flexible memory retrieval acts on creative activities. This study aimed to capture different dynamic aspects of retrieval processes and examine the behavioral and neural associations between retrieval flexibility and creativity. We developed 5 metrics to quantify retrieval flexibility based on previous studies, which confirmed the important role of creativity. Our findings showed that retrieval flexibility was positively correlated with multiple creativity-related behavior constructs and can promote distinct search patterns in different creative groups. Moreover, high flexibility was associated with the lifetime of a specific brain state during rest, characterized by interactions among large-scale cognitive brain systems. The flexible functional connectivity within and between default mode, executive control, and salience provides further evidence on brain dynamics of creativity. Retrieval flexibility mediated the links between the lifetime of the related brain state and creativity. This new approach is expected to enhance our knowledge of the role of retrieval flexibility in creativity from a dynamic perspective.
Collapse
Affiliation(s)
- Jingyi Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.,Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Kaixiang Zhuang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.,Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Jiangzhou Sun
- College of International Studies, Southwest University, Chongqing 400715, China
| | - Cheng Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.,Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Li Fan
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.,Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.,Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Jing Gu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.,Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.,Faculty of Psychology, Southwest University, Chongqing 400715, China.,Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715 , China
| |
Collapse
|
38
|
Orwig W, Diez I, Bueichekú E, Kelly CA, Sepulcre J, Schacter DL. Intentionality of Self-Generated Thought: Contributions of Mind Wandering to Creativity. CREATIVITY RESEARCH JOURNAL 2022; 35:471-480. [PMID: 37576950 PMCID: PMC10414778 DOI: 10.1080/10400419.2022.2120286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 11/03/2022]
Abstract
Studies suggest that internally oriented cognitive processes are central to creativity. Here, we distinguish between intentional and unintentional forms of mind wandering and explore their behavioral and neural correlates. We used a sample of 155 healthy adults from the mind-brain-body dataset, all of whom completed resting-state fMRI scans and trait-level measures of mind wandering. We analyzed intentional and unintentional mind wandering tendencies using self-report measures. Next, we explored the relationship between mind wandering tendencies and creativity, as measured by a divergent thinking task. Finally, we describe patterns of resting-state network connectivity associated with mind wandering, using graph theory analysis. At the behavioral level, results showed a significant positive association between creativity and both intentional and unintentional mind wandering. Neuroimaging analysis revealed higher weighted degree connectivity associated with both forms of mind wandering, implicating core regions of the default network and the left temporal pole. We observed topological connectivity differences within the default network: intentional mind wandering was associated with degree connectivity in posterior regions, whereas unintentional mind wandering showed greater involvement of prefrontal areas. Overall, the findings highlight patterns of resting-state network connectivity associated with intentional and unintentional mind wandering, and provide novel evidence of a link between mind wandering and creativity.
Collapse
Affiliation(s)
- William Orwig
- Harvard University, Department of Psychology, Cambridge, Massachusetts
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Christopher A. Kelly
- Department of Experimental Psychology, University College London, London
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | | |
Collapse
|
39
|
The effect of ambiguous and unambiguous stimuli on target processing in less creative and more creative groups. Neuropsychologia 2022; 175:108355. [PMID: 36037913 DOI: 10.1016/j.neuropsychologia.2022.108355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/04/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022]
Abstract
In the present study our aim was to examine how the processing of task-irrelevant stimuli changes with creativity and aging, and how this processing influences task-relevant responding. We hypothesized that the degree in which irrelevant stimuli attract attention and occupy cognitive capacity, thereby interfering with the motor task, depends not only on the stimuli's saliency, but also on the participants' creativity and age. We investigated event-related potentials (ERP) and behavioural data in four groups - more creative and less creative younger (18-30 years) and older (60-75 years) adults - by presenting unambiguous and ambiguous portrait paintings and photos of faces in equal proportions before and after the target stimuli. Our results showed that aging affected behavioural and ERP responses, but there were no interactions between age groups, creativity and the three types of stimuli. Older adults were not more exposed to the interference caused by distractor stimuli as they compensated with bilateral activity to reach a similar performance to the younger group. The reaction time was faster for targets when they followed the faces rather than the portrait paintings, so, faces may have been less salient to the participants than paintings. The three types of stimuli were differentiated in all the processing stages. Creativity had a measured effect in the earliest (P1) stage with more creative groups being able to distinguish between unambiguous and ambiguous stimuli; and also, in the last processing stage (CNV), in which task-irrelevant stimuli, particularly photos of faces, were less distracting for more creative participants in task preparation. The results show that creativity in general has an influence even at the earliest stage of visual perception.
Collapse
|
40
|
Xie C, Luchini S, Beaty RE, Du Y, Liu C, Li Y. Automated Creativity Prediction Using Natural Language Processing And Resting-State Functional Connectivity: An Fnirs Study. CREATIVITY RESEARCH JOURNAL 2022. [DOI: 10.1080/10400419.2022.2108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | - Yadan Li
- Shaanxi Normal University
- Shaanxi Normal University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University
| |
Collapse
|
41
|
Li X, Tong W, Li Y, Lyu Y, Hu W. The effects of social comparison and self-construal on creative idea generation: An EEG study. Behav Brain Res 2022; 436:114084. [DOI: 10.1016/j.bbr.2022.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
|
42
|
Kuang C, Chen J, Chen J, Shi Y, Huang H, Jiao B, Lin Q, Rao Y, Liu W, Zhu Y, Mo L, Ma L, Lin J. Uncovering neural distinctions and commodities between two creativity subsets: A meta-analysis of fMRI studies in divergent thinking and insight using activation likelihood estimation. Hum Brain Mapp 2022; 43:4864-4885. [PMID: 35906880 PMCID: PMC9582370 DOI: 10.1002/hbm.26029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
The dual‐process theory that two different systems of thought coexist in creative thinking has attracted considerable attention. In the field of creative thinking, divergent thinking (DT) is the ability to produce multiple solutions to open‐ended problems in a short time. It is mainly considered an associative and fast process. Meanwhile, insight, the new and unexpected comprehension of close‐ended problems, is frequently marked as a deliberate and time‐consuming thinking process requiring concentrated effort. Previous research has been dedicated to revealing their separate neural mechanisms, while few studies have compared their differences and similarities at the brain level. Therefore, the current study applied Activation Likelihood Estimation to decipher common and distinctive neural pathways that potentially underlie DT and insight. We selected 27 DT studies and 30 insight studies for retrospective meta‐analyses. Initially, two single analyses with follow‐up contrast and conjunction analyses were performed. The single analyses showed that DT mainly involved the inferior parietal lobe (IPL), cuneus, and middle frontal gyrus (MFG), while the precentral gyrus, inferior frontal gyrus (IFG), parahippocampal gyrus (PG), amygdala (AMG), and superior parietal lobe were engaged in insight. Compared to insight, DT mainly led to greater activation in the IPL, the crucial part of the default mode network. However, insight caused more significant activation in regions related to executive control functions and emotional responses, such as the IFG, MFG, PG, and AMG. Notably, the conjunction analysis detected no overlapped areas between DT and insight. These neural findings implicate that various neurocognitive circuits may support DT and insight.
Collapse
Affiliation(s)
- Changyi Kuang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Chen
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Jiawen Chen
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafei Shi
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiyuan Huang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bingqing Jiao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwen Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuyang Rao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Liu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunpeng Zhu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Mo
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Lijun Ma
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiabao Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China.,UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
43
|
Lunke K, Meier B. Synesthetes are More Involved in Art — Evidence From the Artistic Creativity Domains Compendium (
ACDC
). JOURNAL OF CREATIVE BEHAVIOR 2022. [DOI: 10.1002/jocb.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Kristanto D, Liu X, Sommer W, Hildebrandt A, Zhou C. What do neuroanatomical networks reveal about the ontology of human cognitive abilities? iScience 2022; 25:104706. [PMID: 35865139 PMCID: PMC9293763 DOI: 10.1016/j.isci.2022.104706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Over the last decades, cognitive psychology has come to a fair consensus about the human intelligence ontological structure. However, it remains an open question whether anatomical properties of the brain support the same ontology. The present study explored the ontological structure derived from neuroanatomical networks associated with performance on 15 cognitive tasks indicating various abilities. Results suggest that the brain-derived (neurometric) ontology partly agrees with the cognitive performance-derived (psychometric) ontology complemented with interpretable differences. Moreover, the cortical areas associated with different inferred abilities are segregated, with little or no overlap. Nevertheless, these spatially segregated cortical areas are integrated via denser white matter structural connections as compared with the general brain connectome. The integration of ability-related cortical networks constitutes a neural counterpart to the psychometric construct of general intelligence, while the consistency and difference between psychometric and neurometric ontologies represent crucial pieces of knowledge for theory building, clinical diagnostics, and treatment. Psychometric and neurometric cognitive ontologies are partly equivalent Ability-related brain areas are ontologically segregated with little to no overlap However, ability-related brain areas are densely interconnected by fiber tracts
Collapse
|
45
|
Ovando-Tellez M, Benedek M, Kenett YN, Hills T, Bouanane S, Bernard M, Belo J, Bieth T, Volle E. An investigation of the cognitive and neural correlates of semantic memory search related to creative ability. Commun Biol 2022; 5:604. [PMID: 35710948 PMCID: PMC9203494 DOI: 10.1038/s42003-022-03547-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
Creative ideas likely result from searching and combining semantic memory knowledge, yet the mechanisms acting on memory to yield creative ideas remain unclear. Here, we identified the neurocognitive correlates of semantic search components related to creative abilities. We designed an associative fluency task based on polysemous words and distinguished two search components related to clustering and switching between the different meanings of the polysemous words. Clustering correlated with divergent thinking, while switching correlated with the ability to combine remote associates. Furthermore, switching correlated with semantic memory structure and executive abilities, and was predicted by connectivity between the default, control, and salience neural networks. In contrast, clustering relied on interactions between control, salience, and attentional neural networks. Our results suggest that switching captures interactions between memory structure and control processes guiding the search whereas clustering may capture attentional controlled processes for persistent search, and that alternations between exploratory search and focused attention support creativity.
Collapse
Affiliation(s)
- Marcela Ovando-Tellez
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France.
| | | | - Yoed N Kenett
- Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Thomas Hills
- Department of Psychology, University of Warwick, University Road, Coventry, CV4 7AL, UK
| | - Sarah Bouanane
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France
| | - Matthieu Bernard
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France
| | - Joan Belo
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France
| | - Theophile Bieth
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France
- Neurology Department, Pitié-Salpêtrière hospital, AP-HP, F-75013, Paris, France
| | - Emmanuelle Volle
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013, Paris, France.
| |
Collapse
|
46
|
Van't Westeinde A, Patel KD. Heartfulness Meditation: A Yogic and Neuroscientific Perspective. Front Psychol 2022; 13:806131. [PMID: 35619781 PMCID: PMC9128627 DOI: 10.3389/fpsyg.2022.806131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/21/2022] [Indexed: 12/05/2022] Open
Abstract
Today, as research into the contemplative sciences is being widely referenced, the research community would benefit from an understanding of the Heartfulness method of meditation. Heartfulness offers an in-depth experiential practice focused on the evolution of human consciousness using the ancient technique of Pranahuti (yogic Transmission) during Meditation, in combination with the more active mental practice of “Cleaning.” Both are enabled by initiation into the Heartfulness practices. These unique features distinguish Heartfulness from other paths that have been described in the scientific literature thus far. In this introductory paper, we present the Heartfulness practices, the philosophy upon which the practices are based, and we reflect on the putative mechanisms through which Heartfulness could exert its effects on the human body and mind in the light of scientific research that has been done in other meditation systems. We conclude with suggestions for future research on the Heartfulness way of meditation.
Collapse
Affiliation(s)
- Annelies Van't Westeinde
- Pediatric Endocrinology Unit (QB83), Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Kamlesh D Patel
- Heartfulness Institute, Kanha Shanti Vanam, Hyderabad, India
| |
Collapse
|
47
|
Lin J, Chen Y, Xie J, Cheng Q, Zou M, Mo L. Brain Structural Correlates of Dispositional Insight and the Mediation Role of Neuroticism in Young Adults. Front Behav Neurosci 2022; 16:846377. [PMID: 35493951 PMCID: PMC9051366 DOI: 10.3389/fnbeh.2022.846377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Studies on the neural correlates of episodic insight have made significant progress in the past decades. However, the neural mechanisms underlying dispositional insight are largely unknown. In the present study, we recruited forty-four young, healthy adults and performed several analyses to reveal the neural mechanisms of dispositional insight. Firstly, a voxel-based morphometry (VBM) technique was used to explore the structural brain mechanisms of dispositional insight. We found that dispositional insight was significantly and negatively correlated with the regional gray matter volume (rGMV) in the left thalamus (TLM.L), right temporoparietal junction (TPJ.R), and left dorsal medial prefrontal cortex (DMPFC.L). Secondly, we performed a seed-based resting-state functional connectivity (RSFC) analysis to complement the findings of VBM analysis further. The brain regions of TLM.L, DMPFC.L, and TPJ.R were selected as seed regions. We found that dispositional insight was associated with altered RSFC between the DMPFC.L and bilateral TPJ, between the TPJ.R and left dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, DMPFC.L, TPJ.L, right insula, and right cerebellum. Finally, a mediation analysis found that the personality of neuroticism partially mediated the relationship between the brain region of TLM.L and dispositional insight. These findings imply that dispositional insight has a specific functional and structural neural mechanism. The personality of neuroticism may play a pivotal role in the processes of dispositional insight.
Collapse
Affiliation(s)
- Jiabao Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
| | - Yajue Chen
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jiushu Xie
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Qiuping Cheng
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
| | - Mi Zou
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
| | - Lei Mo
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
- *Correspondence: Lei Mo,
| |
Collapse
|
48
|
Gande N. Neural Phenomenon in Musicality: The Interpretation of Dual-Processing Modes in Melodic Perception. Front Hum Neurosci 2022; 16:823325. [PMID: 35496061 PMCID: PMC9051476 DOI: 10.3389/fnhum.2022.823325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
The confluence of creativity in music performance finds itself in performance practices and cultural motifs, the communication of the human body along with the instrument it interacts with, and individual performers' perceptual, motor, and cognitive abilities that contribute to varied musical interpretations of the same piece or melodic line. The musical and artistic execution of a player, as well as the product of this phenomena can become determinant causes in a creative mental state. With advances in neurocognitive measures, the state of one's artistic intuition and execution has been a growing interest in understanding the creative thought process of human behavior, particularly in improvising artists. This article discusses the implementation on the concurrence of spontaneous (Type-1) and controlled (Type-2) processing modes that may be apparent in the perception of non-improvising artists on how melodic lines are perceived in music performance. Elucidating the cortical-subcortical activity in the dual-process model may extend to non-improvising musicians explored in the paradigm of neural correlates. These interactions may open new possibilities for expanding the repertoire of executive functions, creativity, and the coordinated activity of cortical-subcortical regions that regulate the free flow of artistic ideas and expressive spontaneity in future neuromusical research.
Collapse
Affiliation(s)
- Nathazsha Gande
- Department of A-Levels, HELP University, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Li X, Li Y, Wang X, Bai H, Deng W, Cai N, Hu W. Neural mechanisms underlying the influence of retrieval ability on creating and recalling creative ideas. Neuropsychologia 2022; 171:108239. [DOI: 10.1016/j.neuropsychologia.2022.108239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/13/2022] [Accepted: 04/09/2022] [Indexed: 01/05/2023]
|
50
|
Parente A, Giovagnoli AR. Profile of personality in frontal and temporal lobe epilepsy: A study using the Millon Clinical Multiaxial Inventory-III. Epilepsy Behav 2022; 129:108660. [PMID: 35313203 DOI: 10.1016/j.yebeh.2022.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
Abstract
Personality disorders can influence and, along with cognitive deficits, compromise the quality of life of patients with epilepsy. This study evaluated personality traits and disorders in patients with frontal (FLE) or temporal lobe epilepsy (TLE) using the Millon Clinical Multiaxial Inventory-III with the aim to determine prevalent personality profiles. The results demonstrate the presence of particularly pronounced personality traits and disorders with prevalence of histrionic and obsessive-compulsive personality profiles, respectively, in FLE and TLE. These profiles may be related to different effects of pathophysiological and clinical aspects.
Collapse
Affiliation(s)
- Annalisa Parente
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.
| | - Anna Rita Giovagnoli
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|