1
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
2
|
Martí-Clúa J. 5-Bromo-2'-deoxyuridine labeling: historical perspectives, factors influencing the detection, toxicity, and its implications in the neurogenesis. Neural Regen Res 2024; 19:302-308. [PMID: 37488882 PMCID: PMC10503596 DOI: 10.4103/1673-5374.379038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/25/2023] [Indexed: 07/26/2023] Open
Abstract
The halopyrimidine 5-bromo-2'-deoxyuridine (BrdU) is an exogenous marker of DNA synthesis. Since the introduction of monoclonal antibodies against BrdU, an increasing number of methodologies have been used for the immunodetection of this synthesized bromine-tagged base analogue into replicating DNA. BrdU labeling is widely used for identifying neuron precursors and following their fate during the embryonic, perinatal, and adult neurogenesis in a variety of vertebrate species including birds, reptiles, and mammals. Due to BrdU toxicity, its incorporation into replicating DNA presents adverse consequences on the generation, survival, and settled patterns of cells. This may lead to false results and misinterpretation in the identification of proliferative neuroblasts. In this review, I will indicate the detrimental effects of this nucleoside during the development of the central nervous system, as well as the reliability of BrdU labeling to detect proliferating neuroblasts. Moreover, it will show factors influencing BrdU immunodetection and the contribution of this nucleoside to the study of prenatal, perinatal, and adult neurogenesis. Human adult neurogenesis will also be discussed. It is my hope that this review serves as a reference for those researchers who focused on detecting cells that are in the synthetic phase of the cell cycle.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología. Departament de Biologia Cel·lular, de Fisiologia i d’Immunologia. Facultad de Biociencias. Institut de Neurociències. Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
3
|
Chen Y, Bury LA, Chen F, Aldinger KA, Miranda HC, Wynshaw-Boris A. Generation of advanced cerebellar organoids for neurogenesis and neuronal network development. Hum Mol Genet 2023; 32:2832-2841. [PMID: 37387247 PMCID: PMC10481094 DOI: 10.1093/hmg/ddad110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023] Open
Abstract
Neurons within the cerebellum form temporal-spatial connections through the cerebellum, and the entire brain. Organoid models provide an opportunity to model the early differentiation of the developing human cerebellum, which is difficult to study in vivo, and affords the opportunity to study neurodegenerative and neurodevelopmental diseases of the cerebellum. Previous cerebellar organoid models focused on early neuron generation and single cell activity. Here, we modify previous protocols to generate more mature cerebellar organoids that allow for the establishment of several classes of mature neurons during cerebellar differentiation and development, including the establishment of neural networks during whole-organoid maturation. This will provide a means to study the generation of several more mature cerebellar cell types, including Purkinje cells, granule cells and interneurons expression as well as neuronal communication for biomedical, clinical and pharmaceutical applications.
Collapse
Affiliation(s)
- Ya Chen
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Luke A Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Fu Chen
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kimberly A Aldinger
- Department of Pediatrics and Neurology, Center for Integrative Brain Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101, USA
| | - Helen C Miranda
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Lowenstein ED, Cui K, Hernandez-Miranda LR. Regulation of early cerebellar development. FEBS J 2023; 290:2786-2804. [PMID: 35262281 DOI: 10.1111/febs.16426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
The study of cerebellar development has been at the forefront of neuroscience since the pioneering work of Wilhelm His Sr., Santiago Ramón y Cajal and many others since the 19th century. They laid the foundation to identify the circuitry of the cerebellum, already revealing its stereotypic three-layered cortex and discerning several of its neuronal components. Their work was fundamental in the acceptance of the neuron doctrine, which acknowledges the key role of individual neurons in forming the basic units of the nervous system. Increasing evidence shows that the cerebellum performs a variety of homeostatic and higher order neuronal functions beyond the mere control of motor behaviour. Over the last three decades, many studies have revealed the molecular machinery that regulates distinct aspects of cerebellar development, from the establishment of a cerebellar anlage in the posterior brain to the identification of cerebellar neuron diversity at the single cell level. In this review, we focus on summarizing our current knowledge on early cerebellar development with a particular emphasis on the molecular determinants that secure neuron specification and contribute to the diversity of cerebellar neurons.
Collapse
Affiliation(s)
| | - Ke Cui
- Institut für Zell- and Neurobiologie, Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Luis Rodrigo Hernandez-Miranda
- Institut für Zell- and Neurobiologie, Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
5
|
Joyner AL, Bayin NS. Cerebellum lineage allocation, morphogenesis and repair: impact of interplay amongst cells. Development 2022; 149:dev185587. [PMID: 36172987 PMCID: PMC9641654 DOI: 10.1242/dev.185587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The cerebellum has a simple cytoarchitecture consisting of a folded cortex with three cell layers that surrounds a nuclear structure housing the output neurons. The excitatory neurons are generated from a unique progenitor zone, the rhombic lip, whereas the inhibitory neurons and astrocytes are generated from the ventricular zone. The growth phase of the cerebellum is driven by lineage-restricted progenitor populations derived from each zone. Research during the past decade has uncovered the importance of cell-to-cell communication between the lineages through largely unknown signaling mechanisms for regulating the scaling of cell numbers and cell plasticity during mouse development and following injury in the neonatal (P0-P14) cerebellum. This Review focuses on how the interplay between cell types is key to morphogenesis, production of robust neural circuits and replenishment of cells after injury, and ends with a discussion of the implications of the greater complexity of the human cerebellar progenitor zones for development and disease.
Collapse
Affiliation(s)
- Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - N. Sumru Bayin
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge University, Cambridge CB2 1NQ, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| |
Collapse
|
6
|
Martí-Clúa J. Developmental timetables and gradients of neurogenesis in cerebellar Purkinje cells and deep glutamatergic neurons: A comparative study between the mouse and the rat. Anat Rec (Hoboken) 2021; 304:2856-2864. [PMID: 33620144 DOI: 10.1002/ar.24607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/31/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
The aim of this report is to determine whether the times of neuron origin and neurogenetic gradients of PCs and Deep cerebellar nucli (DCN) glutamatergic neurons are different between mice and rats. Purkinje cells (PCs) were analyzed in each compartment of the cerebellar cortex (vermis, paravermis, medial, and lateral hemispheres), and deep glutamatergic neurons at the level of the medialis, interpositus, and lateralis nuclei. Tritiated thymidine ([3 H]TdR) autoradiography was applied on sections. The experimental rodents were the offspring of pregnant dams injected with [3 H]TdR on embryonic days (E) 11-12, E12-13, E13-14, E14-15, E15-16, and E16-17. Our results indicate that systematic differences exist in the pattern of neurogenesis and the spatial location of cerebellar PCs and deep glutamatergic neurons between mice and rats. In mice, PCs and deep glutamatergic neurons neurogenesis extend from E10 to E14, with a predominance of neurogenesis on E12 for PCs, and on E12, E11, and E10 for the medialis, interpositus, and lateralis neurons, respectively. When neurogenesis in rats was considered, the data reveal that PCs and deep glutamatergic neurons production extends from E12 to E16, with a peak of production on E14 for PCs, and on E14, E13, and E12 for the medialis, interpositus, and lateralis neurons, respectively. Current data also indicate that, both in mice and rats, both types of macroneurons are generated according to a lateral-to-medial gradient. Thus, the lateral hemisphere and the lateralis nucleus present more early-generated neurons than the vermis and the medialis nucleus, which in their turn have more late-produced neurons.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia. Facultad de Biociencias, Institut de Neurociències. Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
7
|
Lowenstein ED, Rusanova A, Stelzer J, Hernaiz-Llorens M, Schroer AE, Epifanova E, Bladt F, Isik EG, Buchert S, Jia S, Tarabykin V, Hernandez-Miranda LR. Olig3 regulates early cerebellar development. eLife 2021; 10:64684. [PMID: 33591268 PMCID: PMC7886330 DOI: 10.7554/elife.64684] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
The mature cerebellum controls motor skill precision and participates in other sophisticated brain functions that include learning, cognition, and speech. Different types of GABAergic and glutamatergic cerebellar neurons originate in temporal order from two progenitor niches, the ventricular zone and rhombic lip, which express the transcription factors Ptf1a and Atoh1, respectively. However, the molecular machinery required to specify the distinct neuronal types emanating from these progenitor zones is still unclear. Here, we uncover the transcription factor Olig3 as a major determinant in generating the earliest neuronal derivatives emanating from both progenitor zones in mice. In the rhombic lip, Olig3 regulates progenitor cell proliferation. In the ventricular zone, Olig3 safeguards Purkinje cell specification by curtailing the expression of Pax2, a transcription factor that suppresses the Purkinje cell differentiation program. Our work thus defines Olig3 as a key factor in early cerebellar development.
Collapse
Affiliation(s)
| | - Aleksandra Rusanova
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Jonas Stelzer
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Adrian E Schroer
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ekaterina Epifanova
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Francesca Bladt
- Max-Delbrück-Centrum in the Helmholtz Association, Berlin, Germany
| | - Eser Göksu Isik
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Buchert
- Max-Delbrück-Centrum in the Helmholtz Association, Berlin, Germany
| | - Shiqi Jia
- Max-Delbrück-Centrum in the Helmholtz Association, Berlin, Germany.,The First Affiliated Hospital of Jinan University, Guangzhou province, Guangzhou, China
| | - Victor Tarabykin
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Luis R Hernandez-Miranda
- Max-Delbrück-Centrum in the Helmholtz Association, Berlin, Germany.,Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
McDonough A, Elsen GE, Daza RM, Bachleda AR, Pizzo D, DelleTorri OM, Hevner RF. Unipolar (Dendritic) Brush Cells Are Morphologically Complex and Require Tbr2 for Differentiation and Migration. Front Neurosci 2021; 14:598548. [PMID: 33488348 PMCID: PMC7820753 DOI: 10.3389/fnins.2020.598548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/04/2020] [Indexed: 01/21/2023] Open
Abstract
Previous studies demonstrated specific expression of transcription factor Tbr2 in unipolar brush cells (UBCs) of the cerebellum during development and adulthood. To further study UBCs and the role of Tbr2 in their development we examined UBC morphology in transgenic mouse lines (reporter and lineage tracer) and also examined the effects of Tbr2 deficiency in Tbr2 (MGI: Eomes) conditional knock-out (cKO) mice. In Tbr2 reporter and lineage tracer cerebellum, UBCs exhibited more complex morphologies than previously reported including multiple dendrites, bifurcating dendrites, and up to four dendritic brushes. We propose that “dendritic brush cells” (DBCs) may be a more apt nomenclature. In Tbr2 cKO cerebellum, mature UBCs were completely absent. Migration of UBC precursors from rhombic lip to cerebellar cortex and other nuclei was impaired in Tbr2 cKO mice. Our results indicate that UBC migration and differentiation are sensitive to Tbr2 deficiency. To investigate whether UBCs develop similarly in humans as in rodents, we studied Tbr2 expression in mid-gestational human cerebellum. Remarkably, Tbr2+ UBC precursors migrate along the same pathways in humans as in rodent cerebellum and disperse to create the same “fountain-like” appearance characteristic of UBCs exiting the rhombic lip.
Collapse
Affiliation(s)
- Ashley McDonough
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Gina E Elsen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Ray M Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pathology, University of California, San Diego, CA, United States
| | - Amelia R Bachleda
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Donald Pizzo
- Department of Pathology, University of California, San Diego, CA, United States
| | - Olivia M DelleTorri
- California Institute for Regenerative Medicine, California State University San Marcos, San Marcos, CA, United States
| | - Robert F Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pathology, University of California, San Diego, CA, United States.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Abstract
Astrocytes, initially described as merely support cells, are now known as a heterogeneous population of cells actively involved in a variety of biological functions such as: neuronal migration and differentiation; regulation of cerebral blood flow; metabolic control of extracellular potassium concentration; and modulation of synapse formation and elimination; among others. Cerebellar glial cells have been shown to play a significant role in proliferation, differentiation, migration, and synaptogenesis. However, less evidence is available about the role of neuron-astrocyte interactions during cerebellar development and their impact on diseases of the cerebellum. In this review, we will focus on the mechanisms underlying cellular interactions, specifically neuron-astrocyte interactions, during cerebellar development, function, and disease. We will discuss how cerebellar glia, astrocytes, and Bergmann glia play a fundamental role in several steps of cerebellar development, such as granule cell migration, axonal growth, neuronal differentiation, and synapse formation, and in diseases associated with the cerebellum. We will focus on how astrocytes and thyroid hormones impact cerebellar development. Furthermore, we will provide evidence of how growth factors secreted by glial cells, such as epidermal growth factor and transforming growth factors, control cerebellar organogenesis. Finally, we will argue that glia are a key mediator of cerebellar development and that identification of molecules and pathways involved in neuron-glia interactions may contribute to a better understanding of cerebellar development and associated disorders.
Collapse
|
10
|
Willett RT, Bayin NS, Lee AS, Krishnamurthy A, Wojcinski A, Lao Z, Stephen D, Rosello-Diez A, Dauber-Decker KL, Orvis GD, Wu Z, Tessier-Lavigne M, Joyner AL. Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth. eLife 2019; 8:e50617. [PMID: 31742552 PMCID: PMC6890462 DOI: 10.7554/elife.50617] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
For neural systems to function effectively, the numbers of each cell type must be proportioned properly during development. We found that conditional knockout of the mouse homeobox genes En1 and En2 in the excitatory cerebellar nuclei neurons (eCN) leads to reduced postnatal growth of the cerebellar cortex. A subset of medial and intermediate eCN are lost in the mutants, with an associated cell non-autonomous loss of their presynaptic partner Purkinje cells by birth leading to proportional scaling down of neuron production in the postnatal cerebellar cortex. Genetic killing of embryonic eCN throughout the cerebellum also leads to loss of Purkinje cells and reduced postnatal growth but throughout the cerebellar cortex. Thus, the eCN play a key role in scaling the size of the cerebellum by influencing the survival of their Purkinje cell partners, which in turn regulate production of granule cells and interneurons via the amount of sonic hedgehog secreted.
Collapse
Affiliation(s)
- Ryan T Willett
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - N Sumru Bayin
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Andrew S Lee
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Neuroscience ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Anjana Krishnamurthy
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Neuroscience ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | | | - Zhimin Lao
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Daniel Stephen
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | | | | | - Grant D Orvis
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Zhuhao Wu
- The Laboratory of Brain Development and RepairThe Rockefeller UniversityNew YorkUnited States
| | - Marc Tessier-Lavigne
- The Laboratory of Brain Development and RepairThe Rockefeller UniversityNew YorkUnited States
| | - Alexandra L Joyner
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Neuroscience ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Biochemistry, Cell and Molecular Biology ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
| |
Collapse
|
11
|
Balmer TS, Trussell LO. Selective targeting of unipolar brush cell subtypes by cerebellar mossy fibers. eLife 2019; 8:44964. [PMID: 30994458 PMCID: PMC6469928 DOI: 10.7554/elife.44964] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 01/26/2023] Open
Abstract
In vestibular cerebellum, primary afferents carry signals from single vestibular end organs, whereas secondary afferents from vestibular nucleus carry integrated signals. Selective targeting of distinct mossy fibers determines how the cerebellum processes vestibular signals. We focused on vestibular projections to ON and OFF classes of unipolar brush cells (UBCs), which transform single mossy fiber signals into long-lasting excitation or inhibition respectively, and impact the activity of ensembles of granule cells. To determine whether these contacts are indeed selective, connectivity was traced back from UBC to specific ganglion cell, hair cell and vestibular organ subtypes in mice. We show that a specialized subset of primary afferents contacts ON UBCs, but not OFF UBCs, while secondary afferents contact both subtypes. Striking anatomical differences were observed between primary and secondary afferents, their synapses, and the UBCs they contact. Thus, each class of UBC functions to transform specific signals through distinct anatomical pathways. While out jogging, you have no trouble keeping your eyes fixed on objects in the distance even though your head and eyes are moving with every step. Humans owe this stability of the visual world partly to a region of the brain called the vestibular cerebellum. From its position underneath the rest of the brain, the vestibular cerebellum detects head motion and then triggers compensatory movements to stabilize the head, body and eyes. The vestibular cerebellum receives sensory input from the body via direct and indirect routes. The direct input comes from five structures within the inner ear, each of which detects movement of the head in one particular direction. The indirect input travels to the cerebellum via the brainstem, which connects the brain with the spinal cord. The indirect input contains information on head movements in multiple directions combined with input from other senses such as vision. By studying the mouse brain, Balmer and Trussell have now mapped the direct and indirect circuits that carry sensory information to the vestibular cerebellum. Both types of input activate cells within the vestibular cerebellum called unipolar brush cells (UBCs). There are two types of UBCs: ON and OFF. Direct sensory input from the inner ear activates only ON UBCs. These cells respond to the arrival of sensory input by increasing their activity. Indirect input from the brainstem activates both ON UBCs and OFF UBCs. The latter respond to the input by decreasing their activity. The vestibular cerebellum thus processes direct and indirect inputs via segregated pathways containing different types of UBCs. The next step in understanding how the cerebellum maintains a stable visual world is to identify the circuitry beyond the UBCs. Understanding these circuits will ultimately provide insights into balance disorders, such as vertigo.
Collapse
Affiliation(s)
- Timothy S Balmer
- Vollum Institute and Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
| | - Laurence O Trussell
- Vollum Institute and Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
| |
Collapse
|
12
|
Rodríguez-Vázquez L, Martí J. An Animal Model for Assessing the Effects of Hydroxyurea Exposure Suggests That the Administration of This Agent to Pregnant Women and Young Infants May Not Be as Safe as We Thought. Int J Mol Sci 2018; 19:E3986. [PMID: 30544930 PMCID: PMC6320814 DOI: 10.3390/ijms19123986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/30/2022] Open
Abstract
The cytostatic agent hydroxyurea (HU) has proven to be beneficial for a variety of conditions in the disciplines of oncology, hematology, infectious disease and dermatology. It disrupts the S phase of the cell cycle by inhibiting the ribonucleotide reductase enzyme, thus blocking the transformation of ribonucleotides into deoxyribonucleotides, a rate limiting step in DNA synthesis. HU is listed as an essential medicine by the World Health Organization. Several studies have indicated that HU is well tolerated and safe in pregnant women and very young pediatric patients. To our knowledge, only a few controlled studies on the adverse effects of HU therapy have been done in humans. Despite this, the prevalence of central nervous system abnormalities, including ischemic lesions and stenosis have been reported. This review will summarize and present the effects of HU exposure on the prenatal and perinatal development of the rat cerebellar cortex and deep cerebellar nuclei neurons. Our results call for the necessity to better understand HU effects and define the administration of this drug to gestating women and young pediatric patients.
Collapse
Affiliation(s)
- Lucía Rodríguez-Vázquez
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Joaquín Martí
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
13
|
Mennink LM, Van Dijk JMC, Van Der Laan BF, Metzemaekers JD, Van Laar PJ, Van Dijk P. The relation between flocculus volume and tinnitus after cerebellopontine angle tumor surgery. Hear Res 2018; 361:113-120. [DOI: 10.1016/j.heares.2018.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
|
14
|
Molina V, Rodríguez-Vázquez L, Owen D, Valero O, Martí J. Cell cycle analysis in the rat external granular layer evaluated by several bromodeoxyuridine immunoperoxidase staining protocols. Histochem Cell Biol 2017; 148:477-488. [PMID: 28681271 DOI: 10.1007/s00418-017-1593-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2017] [Indexed: 10/19/2022]
Abstract
An important step in bromodeoxyuridine (BrdU) immunohistochemistry is the production of single-stranded DNA to make the incorporated BrdU accessible to the antibodies. This paper examines the effect of distinct DNA denaturation pretreatments (DNase I, sodium citrate buffer, endonuclease Eco RI and exonuclease III, and HCl hydrolysis) on detection of BrdU. We found that all the methods used in the partial denaturation of DNA combined good nuclear immunostaining with acceptable tissue integrity. We also observed that these immunohistochemical protocols revealed a spatial pattern in the distribution of DNA-synthesizing cells within the cerebellar external granular layer (EGL) of 10-day-old rats, allowing us to estimate the fraction of S-phase cells. Our results indicate that detection of BrdU-stained cells is affected by the distinct histological procedures used in such detection. Additionally, as the duration and phases of the cell cycle in EGL neuroblasts are estimated in accordance with BrdU detection, an effect on this detection can render the measurement of cell cycle inaccurate. The present work shows that DNase I and citrate buffer, at appropriate conditions, may be good alternatives for acid denaturation. However, they are less sensitive than autoradiographic techniques that use 3H-thymidine administration. Finally, current data reveal that short survival times after a single BrdU exposure do not seem to affect the cell cycle progression of the EGL neuroblasts.
Collapse
Affiliation(s)
- Vanesa Molina
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Lucía Rodríguez-Vázquez
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - David Owen
- Departament de Filologia Anglesa i de Germanística, Àrea de Filologia Anglesa, Bellaterra, 08193, Barcelona, Spain
| | - Oliver Valero
- Servei d'Estadística Aplicada, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Joaquín Martí
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
15
|
Early Purkinje Cell Development and the Origins of Cerebellar Patterning. CONTEMPORARY CLINICAL NEUROSCIENCE 2017. [DOI: 10.1007/978-3-319-59749-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
16
|
Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerková G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJT, Hawkes R. Consensus Paper: Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2016; 15:789-828. [PMID: 26439486 PMCID: PMC4846577 DOI: 10.1007/s12311-015-0724-2] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy.
| | - Marife Arancillo
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Esther B E Becker
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN, 37232, USA
| | - Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
- Department of Pediatrics, Genetics Division, University of Washington, Seattle, WA, USA
| | - Isabelle Dusart
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Institut de Biologie Paris Seine, France, 75005, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR8246, INSERM U1130, Neuroscience Paris Seine, France, 75005, Paris, France
| | - Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, 10065, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daniel L Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Salvador Martinez
- Department Human Anatomy, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Karl Schilling
- Anatomie und Zellbiologie, Anatomisches Institut, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Gabriella Sekerková
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy V Sillitoe
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Constantino Sotelo
- Institut de la Vision, UPMC Université de Paris 06, Paris, 75012, France
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Annika Wefers
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4NI, AB, Canada
| |
Collapse
|
17
|
Hensbroek RA, Ruigrok TJH, van Beugen BJ, Maruta J, Simpson JI. Visuo-vestibular information processing by unipolar brush cells in the rabbit flocculus. THE CEREBELLUM 2016; 14:578-83. [PMID: 26280650 PMCID: PMC4612327 DOI: 10.1007/s12311-015-0710-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The unipolar brush cell (UBC) is a glutamatergic granular layer interneuron that is predominantly located in the vestibulocerebellum and parts of the vermis. In rat and rabbit, we previously found using juxtacellular labeling combined with spontaneous activity recording that cells with highly regular spontaneous activity belong to the UBC category. Making use of this signature, we recorded from floccular UBCs in both anesthetized and awake rabbits while delivering visuo-vestibular stimulation by using sigmoidal rotation of the whole animal. In the anesthetized rabbit, the activity of the presumed UBC units displayed a wide variety of modulation profiles that could be related to aspects of head velocity or acceleration. These modulation profiles could also be found in the awake rabbit where, in addition, they could also carry an eye position signal. Furthermore, units in the awake rabbit could demonstrate rather long response latencies of up to 0.5 s. We suggest that the UBCs recorded in this study mostly belong to the type I UBC category (calretinin-positive) and that they can play diverse roles in floccular visuo-vestibular information processing, such as transformation of velocity-related signals to acceleration-related signals.
Collapse
Affiliation(s)
- Robert A Hensbroek
- Department of Neuroscience & Physiology, New York University Medical School, New York, NY, 10016, USA
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, 3000 CA, Rotterdam, Netherlands.
| | | | - Jun Maruta
- Brain Trauma Foundation, 1 Broadway, New York, NY, 10004, USA
| | - John I Simpson
- Department of Neuroscience & Physiology, New York University Medical School, New York, NY, 10016, USA
| |
Collapse
|
18
|
Martí J, Santa-Cruz MC, Serra R, Hervás JP. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons. Neurotox Res 2016; 30:563-580. [PMID: 27401826 DOI: 10.1007/s12640-016-9649-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022]
Abstract
The current paper analyzes the development of the male and female rat cerebellum exposed to hydroxyurea (HU) (300 or 600 mg/kg) as embryo and collected at postnatal day 90. Our study reveals that the administration of this drug compromises neither the cytoarchitecture of the cerebellar cortex nor deep nuclei (DCN). However, in comparison with the saline group, we observed that several cerebellar parameters were lower in the HU injected groups. These parameters included area of the cerebellum, cerebellar cortex length, molecular layer area, Purkinje cell number, granule cell counts, internal granular layer, white matter and cerebellar nuclei areas, and number of deep cerebellar nuclei neurons. These features were larger in the rats injected with saline, smaller in those exposed to 300 mg/kg of HU and smallest in the group receiving 600 mg/kg of this agent. No sex differences in the effect of the HU were observed. In addition, we infer the neurogenetic timetables and the neurogenetic gradients of PCs and DCN neurons in rats exposed to either saline or HU as embryos. For this purpose, 5-bromo-2'-deoxyuridine was injected into pregnant rats previously administered with saline or HU. This thymidine analog was administered following a progressively delayed cumulative labeling method. The data presented here show that systematic differences exist in the pattern of neurogenesis and in the spatial location of cerebellar neurons between rats injected with saline or HU. No sex differences in the effect of the HU were observed. These findings have implications for the administration of this compound to women in gestation as the effects of HU on the development of the cerebellum might persist throughout their offsprings' life.
Collapse
Affiliation(s)
- Joaquín Martí
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - M C Santa-Cruz
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Roger Serra
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - José P Hervás
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
19
|
Cocito C, Merighi A, Giacobini M, Lossi L. Alterations of Cell Proliferation and Apoptosis in the Hypoplastic Reeler Cerebellum. Front Cell Neurosci 2016; 10:141. [PMID: 27252624 PMCID: PMC4879145 DOI: 10.3389/fncel.2016.00141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/10/2016] [Indexed: 12/24/2022] Open
Abstract
A mutation of the reln gene gives rise to the Reeler mouse (reln−∕−) displaying an ataxic phenotype and cerebellar hypoplasia. We have characterized the neurochemistry of postnatal (P0–P60) reln−∕− mouse cerebella with specific attention to the intervention of cell proliferation and apoptosis in the P0–P25 interval. Homozygous reln−∕− mice and age-matched controls were analyzed by immunofluorescence using primary antibodies against NeuN, calbindin, GFAP, vimentin, SMI32, and GAD67. Proliferation and apoptosis were detected after a single intraperitoneal BrdU injection and by the TUNEL assay with anti-digoxigenin rhodamine-conjugated antibodies. Quantitative analysis with descriptive and predictive statistics was used to calculate cell densities (number/mm2) after fluorescent nuclear stain (TCD, total cell density), labeling with BrdU (PrCD, proliferating cell density), or TUNEL (ApoCD, apoptotic cell density). By this approach we first have shown that the temporal pattern of expression of neuronal/glial markers in postnatal cerebellum is not affected by the Reeler mutation. Then, we have demonstrated that the hypoplasia in the Reeler mouse cerebellum is consequent to reduction of cortical size and cellularity (TCD), and that TCD is, in turn, linked to quantitative differences in the extent of cell proliferation and apoptosis, as well as derangements in their temporal trends during postnatal maturation. Finally, we have calculated that PrCD is the most important predictive factor to determine TCD in the cerebellar cortex of the mutants. These results support the notion that, beside the well-known consequences onto the migration of the cerebellar neurons, the lack of Reelin results in a measurable deficit in neural proliferation.
Collapse
Affiliation(s)
- Carolina Cocito
- Laboratory of Neuroscience, Department of Veterinary Sciences, University of Turin Grugliasco, Italy
| | - Adalberto Merighi
- Laboratory of Neuroscience, Department of Veterinary Sciences, University of Turin Grugliasco, Italy
| | - Mario Giacobini
- Laboratory of Dynamical Systems and Epidemiology, Department of Veterinary Sciences, University of Turin Grugliasco, Italy
| | - Laura Lossi
- Laboratory of Neuroscience, Department of Veterinary Sciences, University of Turin Grugliasco, Italy
| |
Collapse
|
20
|
Martí J, Santa-Cruz MC, Serra R, Hervás JP. Systematic differences in time of cerebellar-neuron origin derived from bromodeoxyuridine immunoperoxidase staining protocols and tritiated thymidine autoradiography: A comparative study. Int J Dev Neurosci 2015; 47:216-28. [PMID: 26434379 DOI: 10.1016/j.ijdevneu.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/19/2015] [Accepted: 09/01/2015] [Indexed: 01/17/2023] Open
Abstract
As exogenous markers of DNA synthesis, 5-bromo-2'-deoxyuridine (BrdU) and tritiated thymidine ([(3)H]TdR) have revolutionized our ability to identify proliferating neuroblasts and follow their fate during the development of the central nervous system. The effect of the incorporation of these molecules into DNA on cell proliferation, migration and differentiation is frequently neglected (Duque and Rakic, 2011. J. Neurosci. 31, 15205-15217). By a progressively delayed cumulative labeling method, the current paper analyzes the development of the cerebellum in mice exposed to either BrdU or [(3)H]TdR as embryos and collected at postnatal day 90. We observed that, in comparison to the saline group, several parameters of the cerebellum such as length of the cerebellar cortex, the area of the molecular layer, Purkinje cell (PCs) number, the areas of the cerebellar nuclei, and the number of the deep cerebellar nuclei (DCN) neurons were lower in the BrdU injected group. No consequence of [(3)H]TdR administration was observed. On the other hand, we also studied whether immunohistochemical methods, including BrdU antibodies from different vendors (Sigma and Dako), partial DNA denaturation procedures and trypsin pretreatments, alter the neurogenetic timetables of PC and DCN neurons that resulted from analysis of these tissue specimens. Our analysis revealed that the generative programs of these macroneurons were unrelated to differences in the sensibility of BrdU antibodies but were dependent on the partial denaturation of DNA and trypsin digestion protocols. Finally, we also compare the generation and spatial distribution of PC and DCN neurons in mice exposed to either BrdU or [(3)H]TdR to assess whether the results obtained by these two markers are quantitatively similar. The data presented here show that systematic differences exist in the pattern of neurogenesis and the spatial location of cerebellar neurons between mice injected with BrdU or [(3)H]TdR. These findings have implications for the interpretation of results obtained by both exogenous makers as an index of the production, migration and settling of neurons in the developing central nervous system.
Collapse
Affiliation(s)
- Joaquín Martí
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - M C Santa-Cruz
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Roger Serra
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - José P Hervás
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
21
|
Affiliation(s)
| | - Richard Hawkes
- Department of Cell Biology and Anatomy, Genes and Development Research Group and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary
| |
Collapse
|
22
|
Sawada K, Saito S, Horiuchi-Hirose M, Mori Y, Yoshioka Y, Murase K. Dose-related cerebellar abnormality in rats with prenatal exposure to X-irradiation by magnetic resonance imaging volumetric analysis. Congenit Anom (Kyoto) 2013; 53:127-30. [PMID: 23998266 DOI: 10.1111/cga.12016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 11/30/2022]
Abstract
Cerebellar abnormalities in 4-week-old rats with a single whole body X-irradiation at a dose of 0.5, 1.0, or 1.5 Gy on embryonic day (ED) 15 were examined by magnetic resonance imaging (MRI) volumetry. A 3D T2 W-MRI anatomical sequence with high-spatial resolution at 11.7-tesla was acquired from the fixed rat heads. By MRI volumetry, whole cerebellar volumes decreased dose-dependently. Multiple linear regression analysis revealed that the cortical volume (standardized β=0.901; P<0.001) was a major explanatory variable for the whole cerebellar volume, whereas both volumes of the white matter and deep cerebellar nuclei also decreased depending on the X-irradiation dose. The present MRI volumetric analysis revealed a dose-related cerebellar cortical hypoplasia by prenatal exposure to X-irradiation on E15.
Collapse
Affiliation(s)
- Kazuhiko Sawada
- Department of Physical Therapy, Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Buffo A, Rossi F. Origin, lineage and function of cerebellar glia. Prog Neurobiol 2013; 109:42-63. [PMID: 23981535 DOI: 10.1016/j.pneurobio.2013.08.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022]
Abstract
The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum.
Collapse
Affiliation(s)
- Annalisa Buffo
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello, 30, 10125 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Neuroscience Institute of Turin, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy.
| | | |
Collapse
|
24
|
Kita Y, Kawakami K, Takahashi Y, Murakami F. Development of cerebellar neurons and glias revealed by in utero electroporation: Golgi-like labeling of cerebellar neurons and glias. PLoS One 2013; 8:e70091. [PMID: 23894597 PMCID: PMC3720936 DOI: 10.1371/journal.pone.0070091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Cerebellar cortical functions rely on precisely arranged cytoarchitectures composed of several distinct types of neurons and glias. Studies have indicated that cerebellar excitatory and inhibitory neurons have distinct spatial origins, the upper rhombic lip (uRL) and ventricular zone (VZ), respectively, and that different types of neurons have different birthdates. However, the spatiotemporal relationship between uRL/VZ progenitors and their final phenotype remains poorly understood due to technical limitations. To address this issue, we performed in utero electroporation (IUE) of fluorescent protein plasmids using mouse embryos to label uRL/VZ progenitors at specific developmental stages, and observed labeled cells at maturity. To overcome any potential dilution of the plasmids caused by progenitor division, we also utilized constructs that enable permanent labeling of cells. Cerebellar neurons and glias were labeled in a Golgi-like manner enabling ready identification of labeled cells. Five types of cerebellar neurons, namely Purkinje, Golgi, Lugaro and unipolar brush cells, large-diameter deep nuclei (DN) neurons, and DN astrocytes were labeled by conventional plasmids, whereas plasmids that enable permanent labeling additionally labeled stellate, basket, and granule cells as well as three types of glias. IUE allows us to label uRL/VZ progenitors at different developmental stages. We found that the five types of neurons and DN astrocytes were labeled in an IUE stage-dependent manner, while stellate, basket, granule cells and three types of glias were labeled regardless of the IUE stage. Thus, the results indicate the IUE is an efficient method to track the development of cerebellar cells from uRL/VZ progenitors facing the ventricular lumen. They also indicate that while the generation of the five types of neurons by uRL/VZ progenitors is regulated in a time-dependent manner, the progenitor pool retains multipotency throughout embryonic development.
Collapse
Affiliation(s)
- Yoshiaki Kita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Yoshiko Takahashi
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Kyoto, Japan
| | - Fujio Murakami
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
25
|
Bauer CA, Wisner KW, Baizer JS, Brozoski TJ. Tinnitus, unipolar brush cells, and cerebellar glutamatergic function in an animal model. PLoS One 2013; 8:e64726. [PMID: 23785405 PMCID: PMC3681784 DOI: 10.1371/journal.pone.0064726] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/17/2013] [Indexed: 11/18/2022] Open
Abstract
Unipolar brush cells (UBCs) are excitatory interneurons found in the dorsal cochlear nucleus (DCN) and the granule cell layer of cerebellar cortex, being particularly evident in the paraflocculus (PFL) and flocculus (FL). UBCs receive glutamatergic inputs and make glutamatergic synapses with granule cells and other UBCs. It has been hypothesized that UBCs comprise local networks of tunable feed-forward amplifiers. In the DCN they might also participate in feed-back amplification of signals from higher auditory centers. Recently it has been shown that UBCs, in the vestibulocerebellum and DCN of adult rats, express doublecortin (DCX), previously considered a marker of newborn and migrating neurons. In an animal model, both the DCN, and more recently the PFL, have been implicated in contributing to the sensation of acoustic-exposure-induced tinnitus. These studies support the working hypothesis that tinnitus emerges after loss of peripheral sensitivity because inhibitory processes homeostatically down regulate, and excitatory processes up regulate. Here we report the results of two sequential experiments that examine the potential role of DCN and cerebellar UBCs in tinnitus, and the contribution of glutamatergic transmission in the PFL. In Experiment 1 it was shown that adult rats with psychophysical evidence of tinnitus induced by a single unilateral high-level noise exposure, had elevated DCX in the DCN and ventral PFL. In Experiment 2 it was shown that micro-quantities of glutamatergic antagonists, delivered directly to the PFL, reversibly reduced chronically established tinnitus, while similarly applied glutamatergic agonists induced tinnitus-like behavior in non-tinnitus controls. These results are consistent with the hypothesis that UBC up regulation and enhanced glutamatergic transmission in the cerebellum contribute to the pathophysiology of tinnitus.
Collapse
Affiliation(s)
- Carol A. Bauer
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Kurt W. Wisner
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Joan S. Baizer
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, United States of America
| | - Thomas J. Brozoski
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- * E-mail:
| |
Collapse
|
26
|
Kim JA, Sekerková G, Mugnaini E, Martina M. Electrophysiological, morphological, and topological properties of two histochemically distinct subpopulations of cerebellar unipolar brush cells. THE CEREBELLUM 2013; 11:1012-25. [PMID: 22528965 DOI: 10.1007/s12311-012-0380-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Unipolar brush cells (UBCs) are excitatory cerebellar granular layer interneurons whose brush-like dendrites receive one-to-one mossy fiber inputs. Subclasses of UBCs differ primarily by expressing metabotropic glutamate receptor (mGluR) 1α or calretinin. We used GENSAT Tg(Grp-EGFP) BAC transgenic mice, which selectively express enhanced green fluorescent protein (EGFP) in mGluR1α-positive UBCs to compare the functional properties of the two subclasses. Compared to EGFP-negative UBCs, which include the calretinin-positive cells, EGFP-positive UBCs had smaller somata (area 48 vs 63 μm(2)), lower specific membrane resistance (6.4 vs. 13.7 KΩ cm(2)), were less prone to intrinsic firing, and showed more irregular firing (in cell-attached ~49 % were firing vs. ~88 %, and the CV was 0.53 vs. 0.32 for EGFP-negative cells). Some of these differences are attributable to higher density of background K(+) currents in EGFP-positive cells (at -120 mV, the barium-sensitive current was 94 vs. 37 pA in EGFP-negative cells); Ih, on the contrary, was more abundantly expressed in EGFP-negative cells (at -140 mV, it was -122 vs. -54 pA in EGFP-positive neurons); furthermore, while group II mGluR modulation of the background potassium current in EGFP-negative UBCs was maintained after intracellular dialysis, mGluR modulation in EGFP-positive UBCs was lost in whole-cell recordings. Finally, cell-attached firing was reversibly abolished by the GABA(B) activation in EGFP-positive, but not in EGFP-negative UBCs. Immunohistochemistry showed that EGFP-negative UBCs express GIRK2 at high density, while mGluR1α UBCs are GIRK2 negative, suggesting that GIRK2 mediates the mGluR-sensitive current in EGFP-negative UBCs. These data suggest that the two subclasses perform different functions in the cerebellar microcircuits.
Collapse
Affiliation(s)
- Jin-Ah Kim
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL, 60611, USA
| | | | | | | |
Collapse
|
27
|
Sekerková G, Watanabe M, Martina M, Mugnaini E. Differential distribution of phospholipase C beta isoforms and diaglycerol kinase-beta in rodents cerebella corroborates the division of unipolar brush cells into two major subtypes. Brain Struct Funct 2013; 219:719-49. [PMID: 23503970 DOI: 10.1007/s00429-013-0531-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/19/2013] [Indexed: 11/26/2022]
Abstract
Sublineage diversification of specific neural cell classes occurs in complex as well as simply organized regions of the central and peripheral nervous systems; the significance of the phenomenon, however, remains insufficiently understood. The unipolar brush cells (UBCs) are glutamatergic cerebellar interneurons that occur at high density in vestibulocerebellum. As they are classified into subsets that differ in chemical phenotypes, intrinsic properties, and lobular distribution, they represent a valuable neuronal model to study subclass diversification. In this study, we show that cerebellar UBCs of adult rats and mice form two subclasses-type I and type II UBCs-defined by somatodendritic expression of calretinin (CR), mGluR1α, phospholipases PLCβ1 and PLCβ4, and diacylglycerol kinase-beta (DGKβ). We demonstrate that PLCβ1 is associated only with the CR(+) type I UBCs, while PLCβ4 and DGKβ are exclusively present in mGluR1α(+) type II UBCs. Notably, all PLCβ4(+) UBCs, representing about 2/3 of entire UBC population, also express mGluR1α. Furthermore, our data show that the sum of CR(+) type I UBCs and mGluR1α(+) type II UBCs accounts for the entire UBC class identified with Tbr2 immunolabeling. The two UBC subtypes also show a very different albeit somehow overlapping topographical distribution as illustrated by detailed cerebellar maps in this study. Our data not only complement and extend the previous knowledge on the diversity and subclass specificity of the chemical phenotypes within the UBC population, but also provide a new angle to the understanding of the signaling networks in type I and type II UBCs.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, 5-465 Searle bldg. 320 E. Superior str, Chicago, IL, 60611, USA,
| | | | | | | |
Collapse
|
28
|
Consalez GG, Hawkes R. The compartmental restriction of cerebellar interneurons. Front Neural Circuits 2013; 6:123. [PMID: 23346049 PMCID: PMC3551280 DOI: 10.3389/fncir.2012.00123] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/26/2012] [Indexed: 11/13/2022] Open
Abstract
The Purkinje cells (PC's) of the cerebellar cortex are subdivided into multiple different molecular phenotypes that form an elaborate array of parasagittal stripes. This array serves as a scaffold around which afferent topography is organized. The ways in which cerebellar interneurons may be restricted by this scaffolding are less well-understood. This review begins with a brief survey of cerebellar topography. Next, it reviews the development of stripes in the cerebellum with a particular emphasis on the embryological origins of cerebellar interneurons. These data serve as a foundation to discuss the hypothesis that cerebellar compartment boundaries also restrict cerebellar interneurons, both excitatory [granule cells, unipolar brush cells (UBCs)] and inhibitory (e.g., Golgi cells, basket cells). Finally, it is proposed that the same PC scaffold that restricts afferent terminal fields to stripes may also act to organize cerebellar interneurons.
Collapse
Affiliation(s)
- G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy
| | | |
Collapse
|
29
|
White JJ, Sillitoe RV. Development of the cerebellum: from gene expression patterns to circuit maps. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:149-64. [DOI: 10.1002/wdev.65] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Leto K, Rolando C, Rossi F. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms. Front Neuroanat 2012; 6:6. [PMID: 22363268 PMCID: PMC3282257 DOI: 10.3389/fnana.2012.00006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/03/2012] [Indexed: 11/15/2022] Open
Abstract
All cerebellar neurons derive from progenitors that proliferate in two germinal neuroepithelia: the ventricular zone (VZ) generates GABAergic neurons, whereas the rhombic lip is the origin of glutamatergic types. Among VZ-derivatives, GABAergic projection neurons, and interneurons are generated according to distinct strategies. Projection neurons (Purkinje cells and nucleo-olivary neurons) are produced at the onset of cerebellar neurogenesis by discrete progenitor pools located in distinct VZ microdomains. These cells are specified within the VZ and acquire mature phenotypes according to cell-autonomous developmental programs. On the other hand, the different categories of inhibitory interneurons derive from a single population of Pax-2-positive precursors that delaminate into the prospective white matter (PWM), where they continue to divide up to postnatal development. Heterotopic/heterochronic transplantation experiments indicate that interneuron progenitors maintain full developmental potentialities up to the end of cerebellar development and acquire mature phenotypes under the influence of environmental cues present in the PWM. Furthermore, the final fate choice occurs in postmitotic cells, rather than dividing progenitors. Extracerebellar cells grafted to the prospective cerebellar white matter are not responsive to local neurogenic cues and fail to adopt clear cerebellar identities. Conversely, cerebellar cells grafted to extracerebellar regions retain typical phenotypes of cerebellar GABAergic interneurons, but acquire type-specific traits under the influence of local cues. These findings indicate that interneuron progenitors are multipotent and sensitive to spatio-temporally patterned environmental signals that regulate the genesis of different categories of interneurons, in precise quantities and at defined times and places.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience, Neuroscience Institute of Turin, University of Turin Turin, Italy
| | | | | |
Collapse
|
31
|
Expression of doublecortin, a neuronal migration protein, in unipolar brush cells of the vestibulocerebellum and dorsal cochlear nucleus of the adult rat. Neuroscience 2011; 202:169-83. [PMID: 22198017 DOI: 10.1016/j.neuroscience.2011.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 11/22/2022]
Abstract
Doublecortin (DCX) is a microtubule-associated protein that is critical for neuronal migration and the development of the cerebral cortex. In the adult, it is expressed in newborn neurons in the subventricular and subgranular zones, but not in the mature neurons of the cerebral cortex. By contrast, neurogenesis and neuronal migration of cells in the cerebellum continue into early postnatal life; migration of one class of cerebellar interneuron, unipolar brush cells (UBCs), may continue into adulthood. To explore the possibility of continued neuronal migration in the adult cerebellum, closely spaced sections through the brainstem and cerebellum of adult (3-16 months old) Sprague-Dawley rats were immunolabeled for DCX. Neurons immunoreactive (ir) to DCX were present in the granular cell layer of the vestibulocerebellum, most densely in the transition zone (tz), the region between the flocculus (FL) and ventral paraflocculus (PFL), as well as in the dorsal cochlear nucleus (DCN). These DCX-ir cells had the morphological appearance of UBCs with oval somata and a single dendrite ending in a brush. There were many examples of colocalization of DCX with Eps8 or calretinin, UBC markers. We also identified DCX-ir elements along the fourth ventricle and its lateral recess that had labeled somata but lacked the dendritic structure characteristic of UBCs. Labeled UBCs were seen in nearby white matter. These results suggest that there may be continued neurogenesis and/or migration of UBCs in the adult. Another possibility is that UBCs maintain DCX expression even after migration and maturation, reflecting a role of DCX in adult neuronal plasticity in addition to a developmental role in migration.
Collapse
|
32
|
Chung SH, Marzban H, Aldinger K, Dixit R, Millen K, Schuurmans C, Hawkes R. Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Dev 2011. [PMID: 21592321 DOI: 10.1186/1749‐8104‐6‐25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The cerebellum is composed of a diverse array of neuronal subtypes. Here we have used a candidate approach to identify Zac1, a tumor suppressor gene encoding a zinc finger transcription factor, as a new player in the transcriptional network required for the development of a specific subset of cerebellar nuclei and a population of Golgi cells in the cerebellar cortex. RESULTS We found that Zac1 has a complex expression profile in the developing cerebellum, including in two proliferating progenitor populations; the cerebellar ventricular zone and the external granular layer overlying posterior cerebellar lobules IX and X. Zac1 is also expressed in some postmitotic cerebellar neurons, including a subset of GABAergic interneurons in the medial cerebellar nuclei. Notably, GABAergic interneurons in the cerebellar nuclei are derived from the cerebellar ventricular zone, where Zac1 is also expressed, consistent with a lineage relationship between these two Zac1+ populations. Zac1 is also expressed in a small subset of cells in the posterior vermis, including some neurogranin-immunoreactive (NG+) Golgi cells, which, based on short-term birthdating, are derived from the EGL, where Zac1 is also expressed. However, Zac1+ cells and NG+ Golgi cells in the cerebellar cortex also display unique properties, as they are generated within different, albeit overlapping, time windows. Finally, consistent with the expression profile of Zac1, two conspicuous abnormalities were found in the cerebellum of Zac1 null mice: the medial cerebellar nuclei, and not the others, were significantly reduced in size; and the number of Golgi cells in cerebellar lobule IX was reduced by approximately 60% compared to wild-type littermates. CONCLUSIONS The data presented here indicate that the tumor suppressor gene Zac1 is expressed in a complex fashion in the developing cerebellum, including in two dividing progenitor populations and in specific subsets of postmitotic neurons, including Golgi cells and GABAergic neurons in the medial nuclei, which require Zac1 for their differentiation. We thus conclude that Zac1 is a critical regulator of normal cerebellar development, adding a new transcriptional regulator to the growing list of factors involved in generating neuronal diversity in the developing cerebellum.
Collapse
Affiliation(s)
- Seung-Hyuk Chung
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | |
Collapse
|
33
|
Chung SH, Marzban H, Aldinger K, Dixit R, Millen K, Schuurmans C, Hawkes R. Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Dev 2011; 6:25. [PMID: 21592321 PMCID: PMC3113315 DOI: 10.1186/1749-8104-6-25] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/18/2011] [Indexed: 11/20/2022] Open
Abstract
Background The cerebellum is composed of a diverse array of neuronal subtypes. Here we have used a candidate approach to identify Zac1, a tumor suppressor gene encoding a zinc finger transcription factor, as a new player in the transcriptional network required for the development of a specific subset of cerebellar nuclei and a population of Golgi cells in the cerebellar cortex. Results We found that Zac1 has a complex expression profile in the developing cerebellum, including in two proliferating progenitor populations; the cerebellar ventricular zone and the external granular layer overlying posterior cerebellar lobules IX and X. Zac1 is also expressed in some postmitotic cerebellar neurons, including a subset of GABAergic interneurons in the medial cerebellar nuclei. Notably, GABAergic interneurons in the cerebellar nuclei are derived from the cerebellar ventricular zone, where Zac1 is also expressed, consistent with a lineage relationship between these two Zac1+ populations. Zac1 is also expressed in a small subset of cells in the posterior vermis, including some neurogranin-immunoreactive (NG+) Golgi cells, which, based on short-term birthdating, are derived from the EGL, where Zac1 is also expressed. However, Zac1+ cells and NG+ Golgi cells in the cerebellar cortex also display unique properties, as they are generated within different, albeit overlapping, time windows. Finally, consistent with the expression profile of Zac1, two conspicuous abnormalities were found in the cerebellum of Zac1 null mice: the medial cerebellar nuclei, and not the others, were significantly reduced in size; and the number of Golgi cells in cerebellar lobule IX was reduced by approximately 60% compared to wild-type littermates. Conclusions The data presented here indicate that the tumor suppressor gene Zac1 is expressed in a complex fashion in the developing cerebellum, including in two dividing progenitor populations and in specific subsets of postmitotic neurons, including Golgi cells and GABAergic neurons in the medial nuclei, which require Zac1 for their differentiation. We thus conclude that Zac1 is a critical regulator of normal cerebellar development, adding a new transcriptional regulator to the growing list of factors involved in generating neuronal diversity in the developing cerebellum.
Collapse
Affiliation(s)
- Seung-Hyuk Chung
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | |
Collapse
|
34
|
Chung SH, Calafiore M, Plane JM, Pleasure DE, Deng W. Apoptosis inducing factor deficiency causes reduced mitofusion 1 expression and patterned Purkinje cell degeneration. Neurobiol Dis 2011; 41:445-57. [PMID: 20974255 PMCID: PMC3014456 DOI: 10.1016/j.nbd.2010.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/07/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022] Open
Abstract
Alteration in mitochondrial dynamics has been implicated in many neurodegenerative diseases. Mitochondrial apoptosis inducing factor (AIF) plays a key role in multiple cellular and disease processes. Using immunoblotting and flow cytometry analysis with Harlequin mutant mice that have a proviral insertion in the AIF gene, we first revealed that mitofusion 1 (Mfn1), a key mitochondrial fusion protein, is significantly diminished in Purkinje cells of the Harlequin cerebellum. Next, we investigated the cerebellar pathology of Harlequin mice in an age-dependent fashion, and identified a striking process of progressive and patterned Purkinje cell degeneration. Using immunohistochemistry with zebrin II, the most studied compartmentalization marker in the cerebellum, we found that zebrin II-negative Purkinje cells first started to degenerate at 7 months of age. By 11 months of age, almost half of the Purkinje cells were degenerated. Subsequently, most of the Purkinje cells disappeared in the Harlequin cerebellum. The surviving Purkinje cells were concentrated in cerebellar lobules IX and X, where these cells were positive for heat shock protein 25 and resistant to degeneration. We further showed that the patterned Purkinje cell degeneration was dependent on caspase but not poly(ADP-ribose) polymerase-1 (PARP-1) activation, and confirmed the marked decrease of Mfn1 in the Harlequin cerebellum. Our results identified a previously unrecognized role of AIF in Purkinje cell degeneration, and revealed that AIF deficiency leads to altered mitochondrial fusion and caspase-dependent cerebellar Purkinje cell loss in Harlequin mice. This study is the first to link AIF and mitochondrial fusion, both of which might play important roles in neurodegeneration.
Collapse
Affiliation(s)
- Seung-Hyuk Chung
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Sacramento, California 95817
| | - Marco Calafiore
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Sacramento, California 95817
| | - Jennifer M. Plane
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Sacramento, California 95817
| | - David E. Pleasure
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, California 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California 95817
| | - Wenbin Deng
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Sacramento, California 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California 95817
| |
Collapse
|
35
|
Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. BRAIN RESEARCH REVIEWS 2011; 66:220-45. [PMID: 20937306 PMCID: PMC3030675 DOI: 10.1016/j.brainresrev.2010.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/17/2022]
Abstract
Unipolar brush cells (UBC) are small, glutamatergic neurons residing in the granular layer of the cerebellar cortex and the granule cell domain of the cochlear nuclear complex. Recent studies indicate that this neuronal class consists of three or more subsets characterized by distinct chemical phenotypes, as well as by intrinsic properties that may shape their synaptic responses and firing patterns. Yet, all UBCs have a unique morphology, as both the dendritic brush and the large endings of the axonal branches participate in the formation of glomeruli. Although UBCs and granule cells may share the same excitatory and inhibitory inputs, the two cell types are distinctively differentiated. Typically, whereas the granule cell has 4-5 dendrites that are innervated by different mossy fibers, and an axon that divides only once to form parallel fibers after ascending to the molecular layer, the UBC has but one short dendrite whose brush engages in synaptic contact with a single mossy fiber terminal, and an axon that branches locally in the granular layer; branches of UBC axons form a non-canonical, cortex-intrinsic category of mossy fibers synapsing with granule cells and other UBCs. This is thought to generate a feed-forward amplification of single mossy fiber afferent signals that would reach the overlying Purkinje cells via ascending granule cell axons and their parallel fibers. In sharp contrast to other classes of cerebellar neurons, UBCs are not distributed homogeneously across cerebellar lobules, and subsets of UBCs also show different, albeit overlapping, distributions. UBCs are conspicuously rare in the expansive lateral cerebellar areas targeted by the cortico-ponto-cerebellar pathway, while they are a constant component of the vermis and the flocculonodular lobe. The presence of UBCs in cerebellar regions involved in the sensorimotor processes that regulate body, head and eye position, as well as in regions of the cochlear nucleus that process sensorimotor information suggests a key role in these critical functions; it also invites further efforts to clarify the cellular biology of the UBCs and their specific functions in the neuronal microcircuits in which they are embedded. High density of UBCs in specific regions of the cerebellar cortex is a feature largely conserved across mammals and suggests an involvement of these neurons in fundamental aspects of the input/output organization as well as in clinical manifestation of focal cerebellar disease.
Collapse
Affiliation(s)
- Enrico Mugnaini
- Department of Cellular and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
36
|
Rolando C, Gribaudo S, Yoshikawa K, Leto K, De Marchis S, Rossi F. Extracerebellar progenitors grafted to the neurogenic milieu of the postnatal rat cerebellum adapt to the host environment but fail to acquire cerebellar identities. Eur J Neurosci 2010; 31:1340-51. [DOI: 10.1111/j.1460-9568.2010.07167.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, Sasai Y, Ono Y. Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev Biol 2010; 338:202-14. [DOI: 10.1016/j.ydbio.2009.11.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/12/2009] [Accepted: 11/30/2009] [Indexed: 02/02/2023]
|
38
|
Phospholipase Cbeta4 expression identifies a novel subset of unipolar brush cells in the adult mouse cerebellum. THE CEREBELLUM 2009; 8:267-76. [PMID: 19165551 DOI: 10.1007/s12311-009-0092-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Unipolar brush cells (UBCs) are glutamatergic cerebellar interneurons of the granular layer. Previous studies have shown that there are two distinct subsets of UBCs present in the mice cerebellar cortex: calcium-binding protein calretinin (CR) positive and metabotropic glutamate receptor (mGluR)1alpha positive. In this study, we identify phospholipase C (PLC) beta4 as an antigenic marker of a novel subset of UBCs. Double immunolabeling reveals that none of the CR+ subset expresses PLCbeta4. In contrast, most members of the mGluR1alpha subset also express PLCbeta4. In addition, 65% of the PLCbeta4+ subset does not express mGluR1alpha. Thus, there are three distinct UBC subsets in the mouse cerebellum: CR+/PLCbeta4-/mGluR1alpha-, PLCbeta4+/mGluR1alpha-/CR-, and mGluR1alpha+/PLCbeta4+/CR-. Each has a different topographical distribution, both between lobules and mediolaterally within the vermis. The development of PLCbeta4 expression in UBCs is exclusively postnatal--first seen only at P12 and mature at about 3 weeks. A distinct subset of PLCbeta4+ UBCs is also present in primary cerebellar cultures.
Collapse
|
39
|
Development of cerebellar GABAergic interneurons: origin and shaping of the "minibrain" local connections. THE CEREBELLUM 2009; 7:523-9. [PMID: 19002744 DOI: 10.1007/s12311-008-0079-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellar circuits comprise a limited number of neuronal phenotypes embedded in a defined cytoarchitecture and generated according to specific spatio-temporal patterns. The local GABAergic network is composed of several interneuron phenotypes that play essential roles in information processing by modulating the activity of cerebellar cortical inputs and outputs. A major issue in the study of cerebellar development is to understand the mechanisms that underlie the generation of different interneuron classes and regulate their placement in the cerebellar architecture and integration in the cortico-nuclear network. Recent findings indicate that the variety of cerebellar interneurons derives from a single population of multipotent progenitors whose fate choices are determined by instructive environmental information. Such a strategy, which is unique for the cerebellum along the neuraxis, allows great flexibility in the control of the quality and quantity of GABAergic interneurons that are produced, thus facilitating the adaptive shaping of the cerebellar network to specific functional demands.
Collapse
|
40
|
Basic molecular fingerprinting of immature cerebellar cortical inhibitory interneurons and their precursors. Neuroscience 2008; 159:69-82. [PMID: 19141316 DOI: 10.1016/j.neuroscience.2008.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/06/2008] [Accepted: 12/09/2008] [Indexed: 11/21/2022]
Abstract
While the development of cerebellar granule and Purkinje neurons has been extensively studied, little is known about the developmental mechanisms that lead to the generation and diversification of inhibitory GABAergic interneurons of the cerebellar cortex. To address this issue, we compared gene expression in complete, early postnatal murine cerebella to that in cerebella from which immature inhibitory interneurons and their precursors had been stripped based on their expression of green fluorescent protein (GFP) from the Pax2 locus. We identified some 300 candidate genes selectively enriched within immature cerebellar cortical inhibitory interneurons and/or their precursors, many of which were also expressed in their adult descendants and/or the embryonic cerebellar ventricular epithelium that gives rise to these cells. None of the genes identified, among them Tcfap2alpha, Tcfap2beta, Lbxcor1 and Lbx1, was cell-type specific. Rather, gene expression, and also splicing, changed dynamically during development and rather reflects stage of differentiation than lineage. Consistently, cluster analysis of transcriptional regulators and genes specific for adult cerebellar GABAergic cells does not suggest a hierarchical lineage relationship or an early commitment of subtypes of cerebellar cortical inhibitory interneurons. Together, these data support the notion that diversification of cerebellar inhibitory interneurons is highly regulative and subject to local signaling to postmigratory precursors.
Collapse
|
41
|
Russo MJ, Yau HJ, Nunzi MG, Mugnaini E, Martina M. Dynamic metabotropic control of intrinsic firing in cerebellar unipolar brush cells. J Neurophysiol 2008; 100:3351-60. [PMID: 18945818 DOI: 10.1152/jn.90533.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal firing is regulated by the complex interaction of multiple depolarizing and hyperpolarizing currents; intrinsic firing, which defines the neuronal ability to generate action potentials in the absence of synaptic excitation, is particularly sensitive to modulation by currents that are active below the action potential threshold. Cerebellar unipolar brush cells (UBCs) are excitatory granule layer interneurons that are capable of intrinsic firing; here we show that, in acute mouse cerebellar slices, barium-sensitive background potassium channels of UBCs effectively regulate intrinsic firing. We also demonstrate that these channels are regulated by group II metabotropic glutamate receptors (mGluRs), which we show to be present in both of the known subsets of UBCs, one of which expresses calretinin and the other mGluR1alpha. Finally, we show that background potassium currents controlling UBCs' firing are mediated by at least two channel types, one of which is sensitive and the other insensitive to the GIRK blocker tertiapin. Thus in UBCs, glutamatergic transmission appears to have a complex bimodal effect: although it increases spontaneous firing through activation of ionotropic receptors, it also has inhibitory effects through the mGluR-dependent activation of tertiapin-sensitive and -insensitive background potassium currents.
Collapse
Affiliation(s)
- Marco J Russo
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
42
|
Schilling K, Oberdick J, Rossi F, Baader SL. Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol 2008; 130:601-15. [PMID: 18677503 DOI: 10.1007/s00418-008-0483-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2008] [Indexed: 01/29/2023]
Abstract
Ever since the groundbreaking work of Ramon y Cajal, the cerebellar cortex has been recognized as one of the most regularly structured and wired parts of the brain formed by a rather limited set of distinct cells. Its rather protracted course of development, which persists well into postnatal life, the availability of multiple natural mutants, and, more recently, the availability of distinct molecular genetic tools to identify and manipulate discrete cell types have suggested the cerebellar cortex as an excellent model to understand the formation and working of the central nervous system. However, the formulation of a unifying model of cerebellar function has so far proven to be a most cantankerous problem, not least because our understanding of the internal cerebellar cortical circuitry is clearly spotty. Recent research has highlighted the fact that cerebellar cortical interneurons are a quite more diverse and heterogeneous class of cells than generally appreciated, and have provided novel insights into the mechanisms that underpin the development and histogenetic integration of these cells. Here, we provide a short overview of cerebellar cortical interneuron diversity, and we summarize some recent results that are hoped to provide a primer on current understanding of cerebellar biology.
Collapse
Affiliation(s)
- Karl Schilling
- Anatomisches Institut, Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Nussalle 10, 53115 Bonn, Germany.
| | | | | | | |
Collapse
|
43
|
Distribution and phenotypes of unipolar brush cells in relation to the granule cell system of the rat cochlear nucleus. Neuroscience 2008; 154:29-50. [PMID: 18343594 DOI: 10.1016/j.neuroscience.2008.01.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 01/16/2008] [Indexed: 11/21/2022]
Abstract
In most mammals the cochlear nuclear complex (CN) contains a distributed system of granule cells (GCS), whose parallel fiber axons innervate the dorsal cochlear nucleus (DCN). Like their counterpart in cerebellum, CN granules are innervated by mossy fibers of various origins. The GCS is complemented by unipolar brush (UBCs) and Golgi cells, and by stellate and cartwheel cells of the DCN. This cerebellum-like microcircuit modulates the activity of the DCN's main projection neurons, the pyramidal, giant and tuberculoventral neurons, and is thought to improve auditory performance by integrating acoustic and proprioceptive information. In this paper, we focus on the rat UBCs, a chemically heterogeneous neuronal population, using antibodies to calretinin, metabotropic glutamate receptor 1alpha (mGluR1alpha), epidermal growth factor substrate 8 (Eps8) and the transcription factor T-box gene Tbr2 (Tbr2). Eps8 and Tbr2 labeled most of the CN's UBCs, if not the entire population, while calretinin and mGluR1alpha distinguished two largely separate subsets with overlapping distributions. By double labeling with antibodies to Tbr2 and the alpha6 GABA receptor A (GABAA) subunit, we found that UBCs populate all regions of the GCS and occur at remarkably high densities in the DCN and subpeduncular corner, but rarely in the lamina. Although GCS subregions likely share the same microcircuitry, their dissimilar UBC densities suggest they may be functionally distinct. UBCs and granules are also present in regions previously not included in the GCS, namely the rostrodorsal magnocellular portions of ventral cochlear nucleus, vestibular nerve root, trapezoid body, spinal tract and sensory and principal nuclei of the trigeminal nerve, and cerebellar peduncles. The UBC's dendritic brush receives AMPA- and NMDA-mediated input from an individual mossy fiber, favoring singularity of input, and its axon most likely forms several mossy fiber-like endings that target numerous granule cells and other UBCs, as in the cerebellum. The UBCs therefore, may amplify afferent signals temporally and spatially, synchronizing pools of target neurons.
Collapse
|
44
|
Abstract
In the past few years, genetic fate mapping experiments have changed our vision of cerebellar development, particularly in redefining the origin of gabaergic and glutamatergic neurons of the cerebellar cortex and highlighting the precise spatio-temporal sequence of their generation. Here the authors review cerebellar neurogenesis and discuss the fate mapping studies with other new information stemming from transplantation experiments, in an effort to link the developmental potential of neural progenitor populations of the cerebellum with their spatio-temporal origin. NEUROSCIENTIST 14(1):91—100, 2008.
Collapse
Affiliation(s)
- Barbara Carletti
- Department of Neuroscience and Rita Levi Montalcini Centre for Brain Repair, National Institute of Neuroscience, University of Turin, Italy.
| | | |
Collapse
|
45
|
Diana MA, Otsu Y, Maton G, Collin T, Chat M, Dieudonné S. T-type and L-type Ca2+ conductances define and encode the bimodal firing pattern of vestibulocerebellar unipolar brush cells. J Neurosci 2007; 27:3823-38. [PMID: 17409247 PMCID: PMC6672410 DOI: 10.1523/jneurosci.4719-06.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cerebellar unipolar brush cells (UBCs) are glutamatergic interneurons that receive direct input from vestibular afferents in the form of a unique excitatory synapse on their dendritic brush. UBCs constitute independent relay lines for vestibular signals, and their inherent properties most likely determine how vestibular activity is encoded by the cerebellar cortex. We now demonstrate that UBCs are bimodal cells; they can either fire high-frequency bursts of action potentials when stimulated from hyperpolarized potentials or discharge tonically during sustained depolarizations. The two functional states can be triggered by physiological-like activity of the excitatory input and are encoded by distinct Ca2+-signaling systems. By combining complementary strategies, consisting of molecular and electrophysiological analysis and of ultrafast acousto-optical deflector-based two-photon imaging, we unraveled the identity and the subcellular localization of the Ca2+ conductances activating in each mode. Fast inactivating T-type Ca2+ channels produce low-threshold spikes, which trigger the high-frequency bursts and generate powerful Ca2+ transients in the brush and, to a much lesser extent, in the soma. The tonic firing mode is encoded by a signalization system principally composed of L-type channels. Ca2+ influx during tonic firing produces a linear representation of the spike rate of the cell in the form of a widespread and sustained Ca2+ concentration increase and regulates cellular excitability via BK potassium channels. The bimodal firing pattern of UBCs may underlie different coding strategies of the vestibular input by the cerebellum, thus likely increasing the computational power of this structure.
Collapse
Affiliation(s)
- Marco A Diana
- Laboratoire de Neurobiologie, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8544, Ecole Normale Supérieure, 75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
46
|
Sekerková G, Diño MR, Ilijic E, Russo M, Zheng L, Bartles JR, Mugnaini E. Postsynaptic enrichment of Eps8 at dendritic shaft synapses of unipolar brush cells in rat cerebellum. Neuroscience 2007; 145:116-29. [PMID: 17223277 PMCID: PMC1892609 DOI: 10.1016/j.neuroscience.2006.11.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 11/17/2006] [Accepted: 11/20/2006] [Indexed: 01/07/2023]
Abstract
Epidermal growth factor receptor pathway substrate 8 (Eps8) is a widely expressed multidomain signaling protein that coordinates two disparate GTPase-dependent mechanisms: actin reorganization via Ras/Rac pathways and receptor trafficking via Rab5. Expression of Eps8, the gene encoding the founding member of the Eps8 family of proteins, was found in cerebellum by virtual Northern analysis and in situ hybridization. Because the cerebellum has a well-known cellular architecture and is a favored model to study synaptic plasticity and actin dynamics, we sought to analyze Eps8 localization in rat cerebellar neurons and synapses by light and electron microscopy. Specificity of Eps8-antibody was demonstrated by immunoblots and in brain sections. In cerebellum, unipolar brush cells (UBCs) were densely Eps8 immunopositive and granule cells were moderately immunostained. In both types of neuron immunoreaction product was localized to the somatodendritic and axonal compartments. Postsynaptic immunostained foci were demonstrated in the glomeruli in correspondence of the synapses formed by mossy fiber terminals with granule cell and UBC dendrites. These foci appeared especially evident in the UBC brush, which contains an extraordinary postsynaptic apparatus of actin microfilaments facing synaptic junctions of the long and segmented varieties. Eps8 immunoreactivity was conspicuously absent in Purkinje cells and their actin-rich dendritic spines, in all types of inhibitory interneurons of the cerebellum, cerebellar nuclei neurons, and astrocytes. In conclusion, Eps8 protein in cerebellum is expressed exclusively by excitatory cortical interneurons and is intracellularly compartmentalized in a cell-class specific manner. This is the first demonstration of the presence of a member of the Eps8 protein family in UBCs and its enrichment at postsynaptic sites.
Collapse
Affiliation(s)
- G Sekerková
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Leto K, Carletti B, Williams IM, Magrassi L, Rossi F. Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci 2006; 26:11682-94. [PMID: 17093090 PMCID: PMC6674781 DOI: 10.1523/jneurosci.3656-06.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Different cerebellar phenotypes are generated according to a precise spatiotemporal schedule, in which projection neurons precede local interneurons. Glutamatergic neurons develop from the rhombic lip, whereas GABAergic neurons originate from the ventricular neuroepithelium. Progenitors in these germinal layers are committed toward specific phenotypes already at early ontogenetic stages. GABAergic interneurons are thought to derive from a subset of ventricular zone cells, which migrate in the white matter and proliferate up to postnatal life. During this period, different interneuron categories are produced according to an inside-out sequence, from the deep nuclei to the molecular layer (we show here that nuclear interneurons are also born during late embryonic and early postnatal days, after glutamatergic and GABAergic projection neurons). To ask whether distinct interneuron phenotypes share common precursors or derive from multiple fate-restricted progenitors, we examined the behavior of embryonic and postnatal rat cerebellar cells heterotopically/heterochronically transplanted to syngenic hosts. In all conditions, donor cells achieved a high degree of integration in the cerebellar cortex and deep nuclei and acquired GABAergic interneuron phenotypes appropriate for the host age and engraftment site. Therefore, contrary to other cerebellar types, which derive from dedicated precursors, GABAergic interneurons are produced by a common pool of progenitors, which maintain their full developmental potentialities up to late ontogenetic stages and adopt mature identities in response to local instructive cues. In this way, the numbers and types of inhibitory interneurons can be set by spatiotemporally patterned signals to match the functional requirements of developing cerebellar circuits.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience and Rita Levi Montalcini Centre for Brain Repair, University of Turin, 10125 Turin, Italy, and
| | - Barbara Carletti
- Department of Neuroscience and Rita Levi Montalcini Centre for Brain Repair, University of Turin, 10125 Turin, Italy, and
| | - Ian Martin Williams
- Department of Neuroscience and Rita Levi Montalcini Centre for Brain Repair, University of Turin, 10125 Turin, Italy, and
| | - Lorenzo Magrassi
- Neurosurgery, Department of Surgery, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Ferdinando Rossi
- Department of Neuroscience and Rita Levi Montalcini Centre for Brain Repair, University of Turin, 10125 Turin, Italy, and
| |
Collapse
|
48
|
Englund C, Kowalczyk T, Daza RAM, Dagan A, Lau C, Rose MF, Hevner RF. Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 2006; 26:9184-95. [PMID: 16957075 PMCID: PMC6674506 DOI: 10.1523/jneurosci.1610-06.2006] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Unipolar brush cells (UBCs) are glutamatergic interneurons in the cerebellar cortex and dorsal cochlear nucleus. We studied the development of UBCs, using transcription factor Tbr2/Eomes as a marker for UBCs and their progenitors in embryonic and postnatal mouse cerebellum. Tbr2+ UBCs appeared to migrate out of the upper rhombic lip via two cellular streams: a dorsal pathway into developing cerebellar white matter, where the migrating cells dispersed widely before entering the internal granular layer, and a rostral pathway along the cerebellar ventricular zone toward the brainstem. Ablation of the rhombic lip in organotypic slice cultures substantially reduced the production of Tbr2+ UBCs. In coculture experiments, Tbr2+ UBCs migrated from rhombic lip explants directly into the developing white matter of adjacent cerebellar slices. The origin of Tbr2+ UBCs was confirmed by colocalization with beta-galactosidase expressed from the Math1 locus, a molecular marker of rhombic lip lineages. Moreover, the production of Tbr2+ UBCs was Math1 dependent, as Tbr2+ UBCs were severely reduced in Math1-null cerebellum. In reeler mutant mice, Tbr2+ UBCs accumulated near the rhombic lip, consistent with impaired migration through developing white matter. Our results suggest that UBCs arise from the rhombic lip and migrate via novel pathways to their final destinations in the cerebellum and dorsal cochlear nucleus. Our findings support a model of cerebellar neurogenesis, in which glutamatergic and GABAergic neurons are produced from separate progenitor pools located mainly in the rhombic lip and the cerebellar ventricular zone, respectively.
Collapse
Affiliation(s)
- Chris Englund
- Department of Pathology, University of Washington, Seattle, Washington 98104, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Larouche M, Hawkes R. From clusters to stripes: The developmental origins of adult cerebellar compartmentation. THE CEREBELLUM 2006; 5:77-88. [PMID: 16818382 DOI: 10.1080/14734220600804668] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many aspects of the adult cerebellum are organized into parasagittal stripes, including several types of neurons and prominent afferent and efferent projections. Purkinje cells are the best-studied example of parasagittal organization in the cerebellum and, in particular, zebrin II/aldolase C is the stereotypical molecular marker of Purkinje cell stripe heterogeneity in the adult. Zebrin II is a member of the so-called 'late-onset' class of parasagittal markers, which are first expressed shortly after the birth of the mouse and do not reach maturity until 2-3 weeks postnatal. In contrast, 'early-onset' pattern markers are expressed in ordered Purkinje cell clusters in the embryonic cerebellum but become expressed homogeneously shortly after birth. The approximately 10 day temporal gap between the patterned expression of early and late markers has impeded the identification of putative genealogical relationships between clusters and stripes. This review will describe Purkinje cell patterns and their transitions, and critically discuss the evidence for genealogical relationships between early and late patterns.
Collapse
Affiliation(s)
- Matt Larouche
- Department of Cell Biology and Anatomy, Genes and Development Research Group, Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
50
|
Fink AJ, Englund C, Daza RAM, Pham D, Lau C, Nivison M, Kowalczyk T, Hevner RF. Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 2006; 26:3066-76. [PMID: 16540585 PMCID: PMC6673970 DOI: 10.1523/jneurosci.5203-05.2006] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The deep cerebellar nuclei (DCN) are the main output centers of the cerebellum, but little is known about their development. Using transcription factors as cell type-specific markers, we found that DCN neurons in mice are produced in the rhombic lip and migrate rostrally in a subpial stream to the nuclear transitory zone (NTZ). The rhombic lip-derived cells express transcription factors Pax6, Tbr2, and Tbr1 sequentially as they enter the NTZ. A subset of rhombic lip-derived cells also express reelin, a key regulator of Purkinje cell migrations. In organotypic slice cultures, the rhombic lip was necessary and sufficient to produce cells that migrate in the subpial stream, enter the NTZ, and express Pax6, Tbr2, Tbr1, and reelin. In later stages of development, the subpial stream is replaced by the external granular layer, and the NTZ organizes into distinct DCN nuclei. Tbr1 expression persists to adulthood in a subset of medial DCN projection neurons. In reeler mutant mice, which have a severe cerebellar malformation, rhombic lip-derived cells migrated to the NTZ, despite reelin deficiency. Studies in Tbr1 mutant mice suggested that Tbr1 plays a role in DCN morphogenesis but is not required for reelin expression, glutamatergic differentiation, or the initial formation of efferent axon pathways. Our findings reveal underlying similarities in the transcriptional programs for glutamatergic neuron production in the DCN and the cerebral cortex, and they support a model of cerebellar neurogenesis in which glutamatergic and GABAergic neurons are produced from separate progenitor compartments.
Collapse
|