1
|
Lee W, Lee JW, Kim S, Kim JM, Youn DH, Park SH, Kwon CH, Choi SO. Discriminative stimulus and reinforcing effects of diclazepam in rodents. Pharmacol Biochem Behav 2024; 235:173687. [PMID: 38016594 DOI: 10.1016/j.pbb.2023.173687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Diclazepam, a designer benzodiazepine, is a lesser-known novel anxiolytic substance and a structural analog of diazepam. Although several case studies have reported the adverse effects of diclazepam, their potential impacts remain unknown. Therefore, this study aimed to determine the effects of diclazepam in rodents using drug discrimination, locomotor activity, self-administration (SA), and conditioned place preference (CPP) tests. Sprague-Dawley rats (male, 8 weeks old, weighing 220-450 g, n = 12 per group) and C57BL/6 mice (male, 7 weeks old, weighing 20-25 g, n = 7-8 per group) were administered alprazolam, morphine, and diclazepam. Diclazepam fully elicited alprazolam-appropriate dose-dependent lever responses (>80 %) similar to those of alprazolam. In rats administered 0.5 mg/kg of morphine, a partial substitution (80 %-20 %) was observed. Mice receiving intraperitoneal injections of diclazepam (0.05, 0.2, and 2 mg/kg) showed decreased locomotor activity. In the SA experiment, mice that self-administered intravenous diclazepam (2 μg/kg/infusion) showed significantly higher infusion and active lever responses compared to the vehicle group. No statistically significant rewarding effects of diclazepam at the doses of 0.2 and 2 mg/kg evaluated using the CPP paradigm were found. In conclusion, diclazepam has reinforcing effects and shares the interoceptive effects of alprazolam. Therefore, legal restrictions on the use of diclazepam should be carefully considered.
Collapse
Affiliation(s)
- Wonjong Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju 28159, Republic of Korea
| | - Jung Won Lee
- Division of in Vitro Diagnostic Devices National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju 28159, Republic of Korea
| | - Sungsun Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju 28159, Republic of Korea
| | - Jin Mook Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju 28159, Republic of Korea
| | - Dong-Hyun Youn
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju 28159, Republic of Korea
| | - Seong Hye Park
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju 28159, Republic of Korea
| | - Chan Hyeok Kwon
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju 28159, Republic of Korea
| | - Sun-Ok Choi
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju 28159, Republic of Korea.
| |
Collapse
|
2
|
Lee W, Lee JW, Kim JM, Hong YK, Kim MS, Choi SO, Kang MS. The abuse potential of prolintane in rodents: Behavioral pharmacology approaches. Neuropharmacology 2021; 205:108917. [PMID: 34896117 DOI: 10.1016/j.neuropharm.2021.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/28/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
Prolintane (1-Phenyl-2-pyrrolidinylpentane), a synthetic central nervous system (CNS) stimulant, is structurally similar to amphetamine but pharmacologically acts as a dopamine reuptake inhibitor like cocaine. While several case studies reported adverse effects and recreational use of prolintane, the abuse potential of the drug has not been systemically examined yet. In the present study, we evaluated the behavioral effects of prolintane regarding its abuse liability in rodents using locomotor activity, conditioned place preference (CPP), self-administration (SA), and drug discrimination paradigms, as well as in-vivo microdialysis experiment. First, acute prolintane (10 and 20 mg/kg, intraperitoneal injection) increased locomotor activity (distance traveled, cm) in mice but to a lesser degree than methamphetamine (as a positive control). We also found that a single and solitary injection of prolintane (20 mg/kg, IP) significantly increased extracellular dopamine in the striatum. The following result suggests that its stimulatory effects might be associated with the mesolimbic dopaminergic pathway. Further, prolintane produced a significant drug-paired place preference at doses of both 10 and 20 mg/kg. In the SA experiment, the mice that self-administered prolintane intravenously (4 mg/kg/inf) showed a higher infusion and active lever responses but not inactive lever responses. Additionally, cumulative doses of prolintane partially elicited cocaine-appropriate lever responses (38.57% at doses up to 10 mg/kg) in rats. These results implied that prolintane has not only rewarding and reinforcing effects but also interoceptive stimulus properties, which are similar to cocaine at a moderate level. Taken together, this study was the first to show, to our knowledge, that prolintane has a certain level of abuse potential and should be considered carefully as a valuable basis for legal restrictions on use.
Collapse
Affiliation(s)
- Wonjong Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea
| | - Jung Won Lee
- Scientific Officer Division of in Vitro Diagnostic Devices National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea
| | - Jin Mook Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea
| | - Young-Ki Hong
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea
| | - Mi-Seon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea
| | - Sun Ok Choi
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea
| | - Mi Sun Kang
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea.
| |
Collapse
|
3
|
Limanaqi F, Busceti CL, Celli R, Biagioni F, Fornai F. Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Prog Neurobiol 2021; 204:102112. [PMID: 34171442 DOI: 10.1016/j.pneurobio.2021.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
As a major eukaryotic cell clearing machinery, autophagy grants cell proteostasis, which is key for neurotransmitter release, synaptic plasticity, and neuronal survival. In line with this, besides neuropathological events, autophagy dysfunctions are bound to synaptic alterations that occur in mental disorders, and early on, in neurodegenerative diseases. This is also the case of methamphetamine (METH) abuse, which leads to psychiatric disturbances and neurotoxicity. While consistently altering the autophagy machinery, METH produces behavioral and neurotoxic effects through molecular and biochemical events that can be recapitulated by autophagy blockade. These consist of altered physiological dopamine (DA) release, abnormal stimulation of DA and glutamate receptors, as well as oxidative, excitotoxic, and neuroinflammatory events. Recent molecular insights suggest that METH early impairs the autophagy machinery, though its functional significance remains to be investigated. Here we discuss evidence suggesting that alterations of DA transmission and autophagy are intermingled within a chain of events underlying behavioral alterations and neurodegenerative phenomena produced by METH. Understanding how METH alters the autophagy machinery is expected to provide novel insights into the neurobiology of METH addiction sharing some features with psychiatric disorders and parkinsonism.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy
| | | | - Roberta Celli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
4
|
Lei K, Kwok C, Darevsky D, Wegner SA, Yu J, Nakayama L, Pedrozo V, Anderson L, Ghotra S, Fouad M, Hopf FW. Nucleus Accumbens Shell Orexin-1 Receptors Are Critical Mediators of Binge Intake in Excessive-Drinking Individuals. Front Neurosci 2019; 13:88. [PMID: 30814925 PMCID: PMC6381036 DOI: 10.3389/fnins.2019.00088] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022] Open
Abstract
Excessive, binge alcohol drinking is a potent and pernicious obstacle to treating alcohol use disorder (AUD), and heavy-drinking humans are responsible for much of the substantial costs and harms of AUD. Thus, identifying key mechanisms that drive intake in higher-drinking individuals may provide important, translationally useful therapeutic interventions. Orexin-1-receptors (Ox1Rs) promote states of high motivation, and studies with systemic Ox1R inhibition suggest a particular role in individuals with higher intake levels. However, little has been known about circuits where Ox1Rs promote pathological intake, especially excessive alcohol consumption. We previously discovered that binge alcohol drinking requires Ox1Rs in medial nucleus accumbens shell (Shell), using two-bottle-choice Drinking-in-the-Dark (2bc-DID) in adult, male C57BL/6 mice. Here, we show that Shell Ox1Rs promoted intake during intermittent-access alcohol drinking as well as 2bc-DID, and that Shell inhibition with muscimol/baclofen also suppressed 2bc-DID intake. Importantly, with this large data set, we were able to demonstrate that Shell Ox1Rs and overall activity were particularly important for driving alcohol consumption in higher-drinking individuals, with little overall impact in moderate drinkers. Shell inhibition results were compared with control data combined from drug treatments that did not reduce intake, including NMDAR or PKC inhibition in Shell, Ox1R inhibition in accumbens core, and systemic inhibition of dopamine-1 receptors; these were used to understand whether more specific Shell Ox1R contributions in higher drinkers might simply result from intrinsic variability in mouse drinking. Ineffectiveness of Shell inhibition in moderate-drinkers was not due to a floor effect, since systemic baclofen reduced alcohol drinking regardless of basal intake levels, without altering concurrent water intake or saccharin consumption. Finally, alcohol intake in the first exposure predicted consumption levels weeks later, suggesting that intake level may be a stable trait in each individual. Together, our studies indicate that Shell Ox1Rs are critical mediators of binge alcohol intake in higher-drinking individuals, with little net contribution to alcohol drinking in more moderate bingers, and that targeting Ox1Rs may substantially reduce AUD-related harms.
Collapse
Affiliation(s)
- Kelly Lei
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Claudina Kwok
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - David Darevsky
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Scott A Wegner
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - JiHwan Yu
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Lisa Nakayama
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Vincent Pedrozo
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Lexy Anderson
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Shahbaj Ghotra
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Mary Fouad
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Frederic W Hopf
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Shin EJ, Dang DK, Hwang YG, Tran HQ, Sharma N, Jeong JH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Cadet JL, Kim HC. Significance of protein kinase C in the neuropsychotoxicity induced by methamphetamine-like psychostimulants. Neurochem Int 2019; 124:162-170. [PMID: 30654115 DOI: 10.1016/j.neuint.2019.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The abuse of methamphetamine (MA), an amphetamine (AMPH)-type stimulant, has been demonstrated to be associated with various neuropsychotoxicity, including memory impairment, psychiatric morbidity, and dopaminergic toxicity. Compelling evidence from preclinical studies has indicated that protein kinase C (PKC), a large family of serine/threonine protein kinases, plays an important role in MA-induced neuropsychotoxicity. PKC-mediated N-terminal phosphorylation of dopamine transporter has been identified as one of the prerequisites for MA-induced synaptic dopamine release. Consistently, it has been shown that PKC is involved in MA (or AMPH)-induced memory impairment and mania-like behaviors as well as MA drug dependence. Direct or indirect regulation of factors related to neuronal plasticity seemed to be critical for these actions of PKC. In addition, PKC-mediated mitochondrial dysfunction, oxidative stress or impaired antioxidant defense system has been suggested to play a role in psychiatric and cognitive disturbance induced by MA (or AMPH). In MA-induced dopaminergic toxicity, particularly PKCδ has been shown to trigger oxidative stress, mitochondrial dysfunction, pro-apoptotic changes, and neuroinflammation. Importantly, PKCδ may be a key mediator in the positive feedback loop composed of these detrimental events to potentiate MA-induced dopaminergic toxicity. This review outlines the role of PKC and its individual isozymes in MA-induced neuropsychotoxicity. Better understanding on the molecular mechanism of PKCs might provide a great insight for the development of potential therapeutic or preventive candidates for MA (or AMPH)-associated neuropsychotoxicity.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Young Gwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake 470-1192, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Kanazawa University Venture Business Laboratory, Kanazawa, Ishikawa 920-1192, Japan
| | - Jean Lud Cadet
- NIDA Intramural Program, Molecular Neuropsychiatry Research Branch, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
6
|
Pena DA, Duarte ML, Pramio DT, Devi LA, Schechtman D. Exploring Morphine-Triggered PKC-Targets and Their Interaction with Signaling Pathways Leading to Pain via TrkA. Proteomes 2018; 6:proteomes6040039. [PMID: 30301203 PMCID: PMC6313901 DOI: 10.3390/proteomes6040039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
It is well accepted that treatment of chronic pain with morphine leads to μ opioid receptor (MOR) desensitization and the development of morphine tolerance. MOR activation by the selective peptide agonist, D-Ala2, N-MePhe4, Gly-ol]-enkephalin(DAMGO), leads to robust G protein receptor kinase activation, β-arrestin recruitment, and subsequent receptor endocytosis, which does not occur in an activation by morphine. However, MOR activation by morphine induces receptor desensitization, in a Protein kinase C (PKC) dependent manner. PKC inhibitors have been reported to decrease receptor desensitization, reduce opiate tolerance, and increase analgesia. However, the exact role of PKC in these processes is not clearly delineated. The difficulties in establishing a particular role for PKC have been, in part, due to the lack of reagents that allow the selective identification of PKC targets. Recently, we generated a conformation state-specific anti-PKC antibody that preferentially recognizes the active state of this kinase. Using this antibody to selectively isolate PKC substrates and a proteomics strategy to establish the identity of the proteins, we examined the effect of morphine treatment on the PKC targets. We found an enhanced interaction of a number of proteins with active PKC, in the presence of morphine. In this article, we discuss the role of these proteins in PKC-mediated MOR desensitization and analgesia. In addition, we posit a role for some of these proteins in mediating pain by TrKA activation, via the activation of transient receptor potential cation channel subfamily V member 1 (TRPV1). Finally, we discuss how these new PKC interacting proteins and pathways could be targeted for the treatment of pain.
Collapse
Affiliation(s)
- Darlene A Pena
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Sao Paulo 05508-220, Brazil.
| | - Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Dimitrius T Pramio
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Sao Paulo 05508-220, Brazil.
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Sao Paulo 05508-220, Brazil.
| |
Collapse
|
7
|
Cha HJ, Jeon SY, Jang HJ, Shin J, Kim YH, Suh SK. Rewarding and reinforcing effects of 4-chloro-2,5-dimethoxyamphetamine and AH-7921 in rodents. Neurosci Lett 2018; 676:66-70. [PMID: 29626650 DOI: 10.1016/j.neulet.2018.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
New psychoactive substances (NPSs), i.e., newly designed substances with chemical residues that are slightly different from those of known psychoactive substances, have been emerging since the late 2000s, and social problems related to the use of these substances are increasing globally. Two such NPSs are 4-chloro-2,5-dimethoxyamphetamine (DOC), a psychedelic substance that is structurally related to amphetamine, and AH-7921, an opioid analgesic that is used for recreational purposes and has a potency similar to that of morphine. Currently, scientific evidence for the dependence liability or toxicity of NPSs is lacking. Therefore, in this study, we performed animal behavioral tests to evaluate the dependence liability of DOC and AH-7921. The rewarding and reinforcing effects of DOC and AH-7921 were evaluated using the conditioned place preference (CPP) paradigm in mice and the self-administration (SA) procedure in rats. Both DOC and AH-7921 increased the preference for the drug-paired compartment in the CPP test at a dose of 0.3 mg/kg and increased the number of responses to the active lever in the SA test at 0.01 mg/(kg·infusion). Collectively, the data suggest that DOC and AH-7921 may have both rewarding and reinforcing effects. Further studies are needed to confirm the reinforcing effects in broader dose ranges with various schedules.
Collapse
Affiliation(s)
- Hye Jin Cha
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea.
| | - Seo Young Jeon
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Hwa Jin Jang
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Jisoon Shin
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Soo Kyung Suh
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| |
Collapse
|
8
|
Mai HN, Sharma N, Shin EJ, Nguyen BT, Nguyen PT, Jeong JH, Jang CG, Cho EH, Nah SY, Kim NH, Nabeshima T, Kim HC. Exposure to far-infrared rays attenuates methamphetamine-induced recognition memory impairment via modulation of the muscarinic M1 receptor, Nrf2, and PKC. Neurochem Int 2018; 116:63-76. [PMID: 29572053 DOI: 10.1016/j.neuint.2018.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/15/2023]
Abstract
We demonstrated that activation of protein kinase Cδ (PKCδ) and inactivation of the glutathione peroxidase-1 (GPx-1)-dependent systems are critical for methamphetamine (MA)-induced recognition memory impairment. We also demonstrated that exposure to far-infrared rays (FIR) causes induction of the glutathione (GSH)-dependent system, including induction of the GPx-1 gene. Here, we investigated whether exposure to FIR rays affects MA-induced recognition memory impairment and whether it modulates PKC, cholinergic receptors, and the GSH-dependent system. Because the PKC activator bryostatin-1 mainly induces PKCα, PKCε, and PKCδ, we assessed expression of these proteins after MA treatment. MA treatment selectively increased PKCδ expression and its phosphorylation. Exposure to FIR rays significantly attenuated MA-induced increases in PKCδ phosphorylation. Importantly, bryostatin-1 potentiated MA-induced phosphorylation of PKCδ. MA treatment significantly decreased M1, M3, and M4 muscarinic acetylcholine receptors (mAChRs) and β2 nicotinic acetylcholine receptor expression. Of these, the decrease was most pronounced in M1 mAChR. Exposure to FIR significantly attenuated MA-induced decreases in the M1 mAChR and phospho-ERK1/2, while it facilitated Nrf2-dependent GSH induction. Dicyclomine, an M1 mAChR antagonist, and l-buthionine-(S, R)-sulfoximine (BSO), an inhibitor of GSH synthesis, counteracted against the protective potentials mediated by FIR. More importantly, the memory-enhancing potential of FIR rays was significantly counteracted by bryostatin-1, dicyclomine, and BSO. Our results suggest that exposure to FIR rays attenuates MA-induced impairment in recognition memory via up-regulation of M1 mAChR, Nrf2-dependent GSH induction, and ERK1/2 phosphorylation by inhibiting PKCδ phosphorylation by bryostatin-1.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Phuong Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, KonKuk University, Seoul 05029, Republic of Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon 24341, Republic of Korea.
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan; Aino University, Ibaragi, 567-0012, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
9
|
Mai HN, Sharma N, Shin EJ, Nguyen BT, Nguyen PT, Jeong JH, Cho EH, Lee YJ, Kim NH, Jang CG, Nabeshima T, Kim HC. Exposure to far-infrared ray attenuates methamphetamine-induced impairment in recognition memory through inhibition of protein kinase C δ in male mice: Comparison with the antipsychotic clozapine. J Neurosci Res 2018; 96:1294-1310. [PMID: 29476655 DOI: 10.1002/jnr.24228] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
Abstract
We have previously demonstrated that repeated treatment with methamphetamine (MA) results in a recognition memory impairment via upregulation of protein kinase C (PKC) δ and downregulation of the glutathione peroxidase-1 (GPx-1)-dependent antioxidant system. We also demonstrated that far-infrared ray (FIR) attenuates acute restraint stress via induction of the GPx-1 gene. Herein, we investigated whether exposure to FIR modulates MA-induced recognition memory impairment in male mice, and whether cognitive potentials mediated by FIR require modulation of the PKCδ gene, extracellular signal-regulated kinase (ERK) 1/2, and glutathione-dependent system. Repeated treatment with MA significantly increased PKCδ expression and its phosphorylation out of PKC isoenzymes (i.e., PKCα, PKCβI, PKCβII, PKCζ, and PKCδ expression) in the prefrontal cortex of mice. Exposure to FIR significantly attenuated MA-induced increase in phospho-PKCδ and decrease in phospho-ERK 1/2. In addition, FIR further facilitated the nuclear factor E2-related factor 2 (Nrf2)-dependent glutathione synthetic system. Moreover, L-buthionine-(S, R)-sulfoximine, an inhibitor of glutathione synthesis, counteracted the FIR-mediated phospho-ERK 1/2 induction and memory-enhancing activity against MA insult. More important, positive effects of FIR are comparable to those of genetic depletion of PKCδ or the antipsychotic clozapine. Our results indicate that FIR protects against MA-induced memory impairment via activations of the Nrf2-dependent glutathione synthetic system, and ERK 1/2 signaling by inhibition of the PKCδ gene.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Phuong Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon, Republic of Korea
| | - Yu Jeung Lee
- Clinical Pharmacology, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University Suwon, Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, Japan.,Aino University, Ibaragi, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| |
Collapse
|
10
|
Yun J, Lee KW, Eom JH, Kim YH, Shin J, Han K, Park HK, Kim HS, Cha HJ. Potential for Dependence on Lisdexamfetamine - In vivo and In vitro Aspects. Biomol Ther (Seoul) 2017; 25:659-664. [PMID: 28190317 PMCID: PMC5685436 DOI: 10.4062/biomolther.2016.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/30/2016] [Accepted: 11/15/2016] [Indexed: 11/18/2022] Open
Abstract
Although lisdexamfetamine is used as a recreational drug, little research exists regarding its potential for dependence or its precise mechanisms of action. This study aims to evaluate the psychoactivity and dependence profile of lisdexamfetamine using conditioned place preference and self-administration paradigms in rodents. Additionally, biochemical techniques are used to assess alterations in the dopamine levels in striatal synaptosomes following administration of lisdexamfetamine. Lisdexamfetamine increased both conditioned place preference and self-administration. Moreover, after administration of the lisdexamfetamine, dopamine levels in the striatal synaptosomes were significantly increased. Although some modifications should be made to the analytical methods, performing high performance liquid chromatography studies on synaptosomes can aid in predicting dependence liability when studying new psychoactive substances in the future. Collectively, lisdexamfetamine has potential for dependence possible via dopaminergic pathway.
Collapse
Affiliation(s)
- Jaesuk Yun
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Kwang-Wook Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Jang-Hyeon Eom
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Jisoon Shin
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Kyoungmoon Han
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Hye-Kyung Park
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Hyung Soo Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Hye Jin Cha
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| |
Collapse
|
11
|
Tran TV, Shin EJ, Nguyen LTT, Lee Y, Kim DJ, Jeong JH, Jang CG, Nah SY, Toriumi K, Nabeshima T, Yamada K, Kim HC. Protein Kinase Cδ Gene Depletion Protects Against Methamphetamine-Induced Impairments in Recognition Memory and ERK1/2 Signaling via Upregulation of Glutathione Peroxidase-1 Gene. Mol Neurobiol 2017; 55:4136-4159. [DOI: 10.1007/s12035-017-0638-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 05/24/2017] [Indexed: 11/28/2022]
|
12
|
Mikelman S, Mardirossian N, Gnegy ME. Tamoxifen and amphetamine abuse: Are there therapeutic possibilities? J Chem Neuroanat 2016; 83-84:50-58. [PMID: 27585851 DOI: 10.1016/j.jchemneu.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/05/2016] [Accepted: 08/14/2016] [Indexed: 12/11/2022]
Abstract
Although best known as a selective estrogen receptor modulator (SERM), tamoxifen is a drug with a wide range of activities. Tamoxifen has demonstrated some efficacy has a therapeutic for bipolar mania and is believed to exert these effects through inhibition of protein kinase C (PKC). As the symptoms of amphetamine treatment in rodents are believed to mimic the symptoms of a manic episode, many of the preclinical studies for this indication have demonstrated that tamoxifen inhibits amphetamine action. The amphetamine-induced increase in extracellular dopamine which gives rise to the 'manic' effects is due to interaction of amphetamine with the dopamine transporter. We and others have demonstrated that PKC reduces amphetamine-induced reverse transport through the dopamine transporter. In this review, we will outline the actions of tamoxifen as a SERM and further detail another known action of tamoxifen-inhibition of PKC. We will summarize the literature showing how tamoxifen affects amphetamine action. Finally, we will present our hypothesis that tamoxifen, or an analog, could be used therapeutically to reduce amphetamine abuse in addition to treating mania.
Collapse
Affiliation(s)
- Sarah Mikelman
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States
| | - Natalie Mardirossian
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States
| | - Margaret E Gnegy
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States.
| |
Collapse
|
13
|
Cha HJ, Lee KW, Eom JH, Kim YH, Shin J, Yun J, Han K, Kim HS. 5-(2-Aminopropyl)benzofuran and phenazepam demonstrate the possibility of dependence by increasing dopamine levels in the brain. Pharmacol Biochem Behav 2016; 149:17-22. [PMID: 27502147 DOI: 10.1016/j.pbb.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/02/2016] [Accepted: 08/05/2016] [Indexed: 12/31/2022]
Abstract
Although 5-(2-aminopropyl)benzofuran (5-APB) and 7-bromo-5-(2-chlorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one (phenazepam) are being used as recreational drugs, research on their dependence liability or mechanisms of action is lacking. The present study aimed to evaluate the behavioral effects and dependence liability of these drugs using conditioned place preference and self-administration paradigms in rodents. Additionally, biochemical techniques were used to assess the substance-induced alterations in synaptosome-released dopamine. While both of the tested substances elicited increases in conditioned place preference and dopamine, neither of them facilitated self-administration, suggesting that 5-APB and phenazepam have rewarding effects, rather than reinforcing effects.
Collapse
Affiliation(s)
- Hye Jin Cha
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea.
| | - Kwang-Wook Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Jang-Hyeon Eom
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Jisoon Shin
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Jaesuk Yun
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Kyoungmoon Han
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Hyung Soo Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| |
Collapse
|
14
|
Ortinski PI, Briand LA, Pierce RC, Schmidt HD. Cocaine-seeking is associated with PKC-dependent reduction of excitatory signaling in accumbens shell D2 dopamine receptor-expressing neurons. Neuropharmacology 2015; 92:80-9. [PMID: 25596492 PMCID: PMC4346508 DOI: 10.1016/j.neuropharm.2015.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/07/2015] [Indexed: 01/11/2023]
Abstract
Stimulation of D1-like dopamine receptors (D1DRs) or D2-like dopamine receptors (D2DRs) in the nucleus accumbens (NAc) shell reinstates cocaine seeking in rats, an animal model of relapse. D2DRs and D1DRs activate protein kinase C (PKC) and recent studies indicate that activation of PKC in the NAc plays an important role in the reinstatement of drug seeking induced by a systemic cocaine priming injection. In the present study, pharmacological inhibition of PKC in the NAc shell attenuated cocaine seeking induced by intra-accumbens shell microinjection of a D2DR agonist, but not a D1DR agonist. D1DRs and D2DRs are primarily expressed on different accumbens medium spiny (MSN) neurons. Neuronal signaling and activity were assessed in these two populations of NAc neurons with transgenic mice expressing fluorescent labels under the control of D1DR and D2DR promoters. Following the extinction of cocaine self-administration, bath application of a PKC inhibitor produced similar effects on single evoked excitatory and inhibitory post-synaptic currents in D1DR- and D2DR-positive MSNs in the NAc shell. However, inhibition of PKC preferentially improved the ability of excitatory, but not inhibitory, synapses to sustain responding to brief train of stimuli specifically in D2DR-positive MSNs. This effect did not appear to involve modulation of presynaptic release mechanisms. Taken together, these findings indicate that the reinstatement of cocaine seeking is at least partially due to D2DR-dependent increases in PKC signaling in the NAc shell, which reduce excitatory synaptic efficacy in D2DR-expressing MSNs.
Collapse
Affiliation(s)
- Pavel I Ortinski
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Lisa A Briand
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - R Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heath D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Schmidt HD, Kimmey BA, Arreola AC, Pierce RC. Group I metabotropic glutamate receptor-mediated activation of PKC gamma in the nucleus accumbens core promotes the reinstatement of cocaine seeking. Addict Biol 2015; 20:285-96. [PMID: 24506432 PMCID: PMC4380181 DOI: 10.1111/adb.12122] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging evidence indicates that type I metabotropic glutamate receptors (mGluRs) in the nucleus accumbens play a critical role in cocaine seeking. The present study sought to determine the role of accumbens core mGluR1, mGluR5 and protein kinase C (PKC) in cocaine priming-induced reinstatement of drug seeking. Here, we show that intra-accumbens core administration of the mGluR1/5 agonist DHPG (250 μM) promoted cocaine seeking in rats. Consistent with these results, administration of an mGluR1 (50.0 μM YM 298198) or mGluR5 (9.0 μM MPEP) antagonist directly into the accumbens core prior to a priming injection of cocaine (10 mg/kg) attenuated the reinstatement of drug seeking. mGluR1/5 stimulation activates a signaling cascade including PKC. Intracore microinjection of PKC inhibitors (10 μM Ro 31-8220 or 30.0 μM chelerythrine) also blunted cocaine seeking. In addition, cocaine priming-induced reinstatement of drug seeking was associated with increased phosphorylation of PKCγ, but not PKCα or PKCβII, in the core. There were no effects of pharmacological inhibition of mGluR1, mGluR5 or PKC in the accumbens core on sucrose seeking. Together, these findings indicate that mGluR1 and mGluR5 activation in the accumbens core promotes cocaine seeking and that these effects are reinforcer specific. Furthermore, stimulation of mGluR1 and mGluR5 in the accumbens core may regulate cocaine seeking, in part, through activation of PKCγ.
Collapse
Affiliation(s)
- Heath D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
16
|
Cha HJ, Song MJ, Lee KW, Kim EJ, Kim YH, Lee Y, Seong WK, Hong SI, Jang CG, Yoo HS, Jeong HS. Dependence potential of tramadol: behavioral pharmacology in rodents. Biomol Ther (Seoul) 2014; 22:558-62. [PMID: 25489425 PMCID: PMC4256037 DOI: 10.4062/biomolther.2014.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/10/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022] Open
Abstract
Tramadol is an opioid analgesic agent that has been the subject of a series of case reports suggesting potential for misuse or abuse. However, it is not a controlled substance and is not generally considered addictive in Korea. In this study, we examined the dependence potential and abuse liability of tramadol as well as its effect on the dopaminergic and serotonergic systems in rodents. In animal behavioral tests, tramadol did not show any positive effects on the experimental animals in climbing, jumping, and head twitch tests. However, in the conditioned place preference and self-administration tests, the experimental animals showed significant positive responses. Taken together, tramadol affected the neurological systems related to abuse liability and has the potential to lead psychological dependence.
Collapse
Affiliation(s)
- Hye Jin Cha
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709 ; Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min Ji Song
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| | - Kwang-Wook Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| | - Eun Jung Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| | - Yunje Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| | - Won-Keun Seong
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| | - Sa-Ik Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ho-Sang Jeong
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| |
Collapse
|
17
|
Cha HJ, Lee KW, Song MJ, Hyeon YJ, Hwang JY, Jang CG, Ahn JI, Jeon SH, Kim HU, Kim YH, Seong WK, Kang H, Yoo HS, Jeong HS. Dependence Potential of the Synthetic Cannabinoids JWH-073, JWH-081, and JWH-210: In Vivo and In Vitro Approaches. Biomol Ther (Seoul) 2014; 22:363-9. [PMID: 25143817 PMCID: PMC4131522 DOI: 10.4062/biomolther.2014.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/13/2014] [Accepted: 06/02/2014] [Indexed: 11/26/2022] Open
Abstract
Synthetic cannabinoids (CBs) such as the JWH series have caused social problems concerning their abuse liability. Because the JWH series produces euphoric and hallucinogenic effects, they have been distributed illegally under street names such as “Spice” and “Smoke”. Many countries including Korea have started to schedule some of the JWH series compounds as controlled substances, but there are a number of JWH series chemicals that remain uncontrolled by law. In this study, three synthetic CBs with different binding affinities to the CB1 receptor (JWH-073, 081, and 210) and Δ9-tetrahydrocannabinol (Δ9-THC) were evaluated for their potential for psychological dependence. The conditioned place preference test (unbiased method) and self-administration test (fixed ratio of 1) using rodents were conducted. Ki values of the three synthetic cannabinoids were calculated as supplementary data using a receptor binding assay and overexpressed CB1 protein membranes to compare dependence potential with CB1 receptor binding affinity. All mice administered JWH-073, 081, or 210 showed significantly increased time spent at unpreferred space in a dose-dependence manner in the conditioned place preference test. In contrast, all tested substances except Δ9-THC showed aversion phenomenon at high doses in the conditioned place preference test. The order of affinity to the CB1 receptor in the receptor binding assay was JWH-210 > JWH-081 >> JWH-073, which was in agreement with the results from the conditioned place preference test. However, no change in self-administration was observed. These findings suggest the possibility to predict dependence potential of synthetic CBs through a receptor binding assay at the screening level.
Collapse
Affiliation(s)
- Hye Jin Cha
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 363-700 ; Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kwang-Wook Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 363-700
| | - Min-Ji Song
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 363-700
| | - Yang-Jin Hyeon
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 363-700
| | - Ji-Young Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746
| | - Joon-Ik Ahn
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 363-700
| | - Seol-Hee Jeon
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 363-700
| | - Hyun-Uk Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 363-700
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 363-700
| | - Won-Keun Seong
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 363-700
| | - Hoil Kang
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 363-700
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ho-Sang Jeong
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 363-700
| |
Collapse
|
18
|
Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, Methamphetamine and MDMA. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
19
|
Cha HJ, Lee HA, Ahn JI, Jeon SH, Kim EJ, Jeong HS. Dependence potential of quetiapine: behavioral pharmacology in rodents. Biomol Ther (Seoul) 2013; 21:307-12. [PMID: 24244816 PMCID: PMC3819904 DOI: 10.4062/biomolther.2013.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 12/18/2022] Open
Abstract
Quetiapine is an atypical or second-generation antipsychotic agent and has been a subject of a series of case report and suggested to have the potential for misuse or abuse. However, it is not a controlled substance and is not generally considered addictive. In this study, we examined quetiapine’s dependence potential and abuse liability through animal behavioral tests using rodents to study the mechanism of quetiapine. Molecular biology techniques were also used to find out the action mechanisms of the drug. In the animal behavioral tests, quetiapine did not show any positive effect on the experimental animals in the climbing, jumping, and conditioned place preference tests. However, in the head twitch and self-administration tests, the experimental animals showed significant positive responses. In addition, the action mechanism of quetiapine was found being related to dopamine and serotonin release. These results demonstrate that quetiapine affects the neurological systems related to abuse liability and has the potential to lead psychological dependence, as well.
Collapse
Affiliation(s)
- Hye Jin Cha
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungwon 363-700, Republic of Korea
| | | | | | | | | | | |
Collapse
|
20
|
Haleem DJ, Ikram H, Haider S, Parveen T, Haleem MA. Enhancement and inhibition of apomorphine-induced sensitization in rats exposed to immobilization stress: Relationship with adaptation to stress. Pharmacol Biochem Behav 2013; 112:22-8. [DOI: 10.1016/j.pbb.2013.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/06/2013] [Accepted: 09/22/2013] [Indexed: 10/26/2022]
|
21
|
Cha HJ, Cha JH, Cho HY, Chung EY, Kwon KJ, Lee JY, Jeong HS, Kim HS, Chung HJ, Kim EJ. Dependence potential of propofol: behavioral pharmacology in rodents. Biomol Ther (Seoul) 2013; 20:234-8. [PMID: 24116301 PMCID: PMC3792224 DOI: 10.4062/biomolther.2012.20.2.234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 11/05/2022] Open
Abstract
Propofol is an anesthetic commonly used to provide sedation or to induce and maintain an anesthetic stated. However, there are reports which indicate propofol may cause psychological dependence or be abused. In the present study, we used various behavioral tests including climbing test, jumping test, conditioned place preference, and self-administration test to assess the dependence potential and abuse liability of propofol compared to a positive control (methamphetamine) or a negative control (saline or intralipid). Among the tests, the conditioned place preference test was conducted with a biased method, and the selfadministration test was performed under a fixed ratio (FR) 1 schedule, 1 h per session. No difference was found in the climbing test and jumping test, but propofol (30 mg/kg, i.p.) increased the rewarding effect in the conditioned place preference test, and it showed a positive reinforcing effect compared to the vehicle. These results indicate that propofol tends to show psychological dependence rather than physical dependence, and it seems not to be related with dopaminergic system.
Collapse
Affiliation(s)
- Hye Jin Cha
- National Institute of Food and Drug Safety Evaluation
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Haleem DJ. Extending therapeutic use of psychostimulants: focus on serotonin-1A receptor. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:170-80. [PMID: 23906987 DOI: 10.1016/j.pnpbp.2013.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/02/2013] [Accepted: 07/16/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Despite a number of medicinally important pharmacological effects, the therapeutic use of psychostimulants is limited because of abuse potential and psychosis following long term use. Development of pharmacological agents for improving and extending therapeutic use of psychostimulants in narcolepsy, attention deficit hyperactivity disorder, Parkinson's disease, obesity and as cognitive enhancer is an important research imperative. In this regard, one potential target system is the 5-hydroxytryptamine (5-HT; serotonin) neurotransmitter system. The focus of the present article is to evaluate a potential role of 5-HT-1A receptor in the alleviation of abuse potential and psychosis-induced by prescription psychostimulants amphetamines and apomorphine. METHOD Synaptic contacts between dopamine systems and 5-HT-1A receptors are traced. Studies on serotonin-1A influences on the modulation of dopamine neurotransmission and psychostimulant-induced behavioral sensitization are accumulated. RESULTS Inhibition of amphetamine and apomorphine-induced behavioral sensitization by co administration of 5-HT-1A agonists cannot be explained in terms of direct activation of 5-HT-1A receptors, because activation of pre- as well as postsynaptic 5-HT-1A receptors tends to increase dopamine neurotransmission. CONCLUSION Long term use of amphetamine and apomorphine produces adaptive changes in 5-HT-1A receptor mediated functions, which are prevented by the co-use of 5-HT-1A agonists. In view of extending medicinal use of psychostimulants, it is important to evaluate the effects of co-use of 5-HT-1A agonists on potential therapeutic profile of amphetamine and apomorphine in preclinical research. It is also important to evaluate the functional significance of 5-HT-1A receptors on psychostimulant-induced behaviors in other addiction models such as drug self-administration and reinstatement of drug seeking behavior.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
23
|
Schmidt HD, Schassburger RL, Guercio LA, Pierce RC. Stimulation of mGluR5 in the accumbens shell promotes cocaine seeking by activating PKC gamma. J Neurosci 2013; 33:14160-9. [PMID: 23986250 PMCID: PMC3756760 DOI: 10.1523/jneurosci.2284-13.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/01/2013] [Accepted: 07/26/2013] [Indexed: 12/13/2022] Open
Abstract
Recent studies indicate a critical role for metabotropic glutamate receptor 5 (mGluR5) in the reinstatement of cocaine seeking. However, the signal transduction pathways through which mGluR5s regulate cocaine seeking have not been identified. Here, we show that intra-accumbens shell administration of an mGluR5 (9.0 μm MPEP), but not mGluR1 (50.0 μm YM 298198), antagonist before a priming injection of cocaine (10 mg/kg) attenuated the reinstatement of drug seeking in rats. Consistent with these results, intra-shell microinjection of the mGluR1/5 agonist DHPG (250 μm) promoted cocaine seeking. Intra-shell administration of a phospholipase C (PLC) inhibitor (40.0 μm U73122) or a protein kinase C (PKC) inhibitor (10.0 μm Ro 31-8220 or 30.0 μm chelerythrine chloride) attenuated cocaine seeking. Pharmacological inhibition of PKC in the shell also blocked intra-shell DHPG-induced reinstatement of cocaine seeking. In addition, cocaine priming-induced reinstatement of drug seeking was associated with increased phosphorylation of PKCγ, but not PKCα or PKCβII, in the shell. Cocaine seeking previously was linked to increased phosphorylation of GluA2 at Ser880, a PKC phosphorylation site, which promotes the endocytosis of GluA2-containing AMPA receptors via interactions with Protein Associated with C Kinase (PICK1). The present results indicated that inhibition of PICK1 (100 μm FSC-231) in the shell attenuated cocaine seeking. There were no effects of any drug treatment in the shell on sucrose seeking. Together, these findings indicate that accumbens shell mGluR5 activation promotes cocaine seeking, in part, through activation of PLC and PKCγ. Moreover, the endocytosis of shell GluA2-containing AMPARs during cocaine seeking may depend on interactions with PKCγ and PICK1.
Collapse
Affiliation(s)
- Heath D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
24
|
Shibasaki M, Masukawa D, Ishii K, Yamagishi Y, Mori T, Suzuki T. Involvement of the K+-Cl- co-transporter KCC2 in the sensitization to morphine-induced hyperlocomotion under chronic treatment with zolpidem in the mesolimbic system. J Neurochem 2013; 125:747-55. [PMID: 23565710 DOI: 10.1111/jnc.12258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/14/2013] [Accepted: 03/25/2013] [Indexed: 11/30/2022]
Abstract
Benzodiazepines are commonly used as sedatives, sleeping aids, and anti-anxiety drugs. However, chronic treatment with benzodiazepines is known to induce dependence, which is considered related to neuroplastic changes in the mesolimbic system. This study investigated the involvement of K(+) -Cl(-) co-transporter 2 (KCC2) in the sensitization to morphine-induced hyperlocomotion after chronic treatment with zolpidem [a selective agonist of γ-aminobutyric acid A-type receptor (GABAA R) α1 subunit]. In this study, chronic treatment with zolpidem enhanced morphine-induced hyperlocomotion, which is accompanied by the up-regulation of KCC2 in the limbic forebrain. We also found that chronic treatment with zolpidem induced the down-regulation of protein phosphatase-1 (PP-1) as well as the up-regulation of phosphorylated protein kinase C γ (pPKCγ). Furthermore, PP-1 directly associated with KCC2 and pPKCγ, whereas pPKCγ did not associate with KCC2. On the other hand, pre-treatment with furosemide (a KCC2 inhibitor) suppressed the enhancing effects of zolpidem on morphine-induced hyperlocomotion. These results suggest that the mesolimbic dopaminergic system could be amenable to neuroplastic change through a pPKCγ-PP-1-KCC2 pathway by chronic treatment with zolpidem.
Collapse
Affiliation(s)
- Masahiro Shibasaki
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Panenka WJ, Procyshyn RM, Lecomte T, MacEwan GW, Flynn SW, Honer WG, Barr AM. Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend 2013; 129:167-79. [PMID: 23273775 DOI: 10.1016/j.drugalcdep.2012.11.016] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022]
Abstract
Methamphetamine (MA) is a highly addictive psychostimulant drug that principally affects the monoamine neurotransmitter systems of the brain and results in feelings of alertness, increased energy and euphoria. The drug is particularly popular with young adults, due to its wide availability, relatively low cost, and long duration of psychoactive effects. Extended use of MA is associated with many health problems that are not limited to the central nervous system, and contribute to increased morbidity and mortality in drug users. Numerous studies, using complementary techniques, have provided evidence that chronic MA use is associated with substantial neurotoxicity and cognitive impairment. These pathological effects of the drug, combined with the addictive properties of MA, contribute to a spectrum of psychosocial issues that include medical and legal problems, at-risk behaviors and high societal costs, such as public health consequences, loss of family support and housing instability. Treatment options include pharmacological, psychological or combination therapies. The present review summarizes the key findings in the literature spanning from molecular through to clinical effects.
Collapse
Affiliation(s)
- William J Panenka
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Oxytocin directly administered into the nucleus accumbens core or subthalamic nucleus attenuates methamphetamine-induced conditioned place preference. Behav Brain Res 2011; 228:185-93. [PMID: 22155611 DOI: 10.1016/j.bbr.2011.11.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 11/22/2022]
Abstract
Accumulating evidence indicates that the neuropeptide oxytocin (OXY) may modulate reward-related behavioural responses to methamphetamine (METH) administration. Limited research has examined the effect of OXY on METH-induced conditioned place preference (CPP) and little is known about the neural mechanisms involved. A Fos immunohistochemistry study recently demonstrated that peripheral OXY administration reduced METH-induced Fos expression within the nucleus accumbens (NAc) core and subthalamic nucleus (STh) in rats. The current study aimed to (i) investigate the effect of systemically administered OXY on METH-induced CPP, (ii) determine the effectiveness of a single-trial CPP procedure with METH, in order to (iii) evaluate whether pretreatment with OXY injected directly into the NAc core or the STh attenuates METH-induced CPP. Results showed that male Sprague Dawley rats learned to associate unique compartmental cues with METH (1 mg/kg, i.p.) such that they spent more time in the METH-paired compartment and less time in the saline-paired compartment. Pretreatment with systemic OXY (0.6 mg, i.p.), or OXY (0.6 ng, i.c.) microinjected into the NAc core or the STh prior to METH administration attenuated the formation of a CPP to METH. This provides further evidence that OXY acts within either the NAc core or the STh to reduce the rewarding effects of METH administration.
Collapse
|
27
|
Xue B, Guo ML, Jin DZ, Mao LM, Wang JQ. Cocaine facilitates PKC maturation by upregulating its phosphorylation at the activation loop in rat striatal neurons in vivo. Brain Res 2011; 1435:146-53. [PMID: 22208647 DOI: 10.1016/j.brainres.2011.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/01/2011] [Accepted: 11/08/2011] [Indexed: 11/17/2022]
Abstract
Newly synthesized protein kinase C (PKC) undergoes a series of phosphorylation to render a mature form of the enzyme. It is this mature PKC that possesses the catalytic competence to respond to second messengers for activation and downstream signaling. The first and rate-limiting phosphorylation occurs at a threonine residue in the activation loop (AL), which triggers the rest maturation processing of PKC and regulates PKC activity in response to cellular stimulation. Given the fact that PKC is enriched in striatal neurons, we investigated the regulation of PKC phosphorylation at the AL site in the rat striatum by the psychostimulant cocaine in vivo. We found that PKC was phosphorylated at the AL site at a moderate level in the normal rat brain. Acute systemic injection of cocaine increased the PKC-AL phosphorylation in the two striatal structures (caudate putamen and nucleus accumbens). Cocaine also elevated the PKC-AL phosphorylation in the medial prefrontal cortex. The cocaine-stimulated PKC phosphorylation in the striatum is rapid and transient. A reliable increase in PKC phosphorylation was seen 7 min after drug injection, which declined to the normal level by 1h. This kinetics corresponds to that seen for another striatum-enriched protein kinase, mitogen-activated protein kinase/extracellular signal-regulated kinase, in response to cocaine. This study suggests a new model for exploring the impact of cocaine on protein kinases in striatal neurons. By modifying PKC phosphorylation at the AL site, cocaine is believed to possess the ability to alter the maturation processing of the kinase in striatal neurons in vivo.
Collapse
Affiliation(s)
- Bing Xue
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
28
|
Xue B, J Berry T, Guo ML, Jin DZ, E Fibuch E, Sang Choe E, Mao LM, Q Wang J. WITHDRAWN: Upregulation of conventional protein kinase C phosphorylation and translocation in the rat nucleus accumbens following cocaine administration. Neuroscience 2011:S0306-4522(11)01277-2. [PMID: 22100275 DOI: 10.1016/j.neuroscience.2011.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 11/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Bing Xue
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
A Role for the PKC Signaling System in the Pathophysiology and Treatment of Mood Disorders: Involvement of a Functional Imbalance? Mol Neurobiol 2011; 44:407-19. [DOI: 10.1007/s12035-011-8210-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/20/2011] [Indexed: 12/15/2022]
|
30
|
Shibasaki M, Mizuno K, Kurokawa K, Ohkuma S. L-type voltage-dependent calcium channels facilitate acetylation of histone H3 through PKCγ phosphorylation in mice with methamphetamine-induced place preference. J Neurochem 2011; 118:1056-66. [DOI: 10.1111/j.1471-4159.2011.07387.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Kurokawa K, Shibasaki M, Mizuno K, Ohkuma S. Gabapentin blocks methamphetamine-induced sensitization and conditioned place preference via inhibition of α₂/δ-1 subunits of the voltage-gated calcium channels. Neuroscience 2010; 176:328-35. [PMID: 21182903 DOI: 10.1016/j.neuroscience.2010.11.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/25/2010] [Accepted: 11/30/2010] [Indexed: 11/19/2022]
Abstract
Our previous investigation demonstrated that repeated administration of morphine significantly enhanced α(2)/δ-1 subunit expression in the frontal cortex and limbic forebrain of mice as well as morphine-induced place preference. However, little is known about regulatory mechanisms of α(2)/δ-1 subunit expression in conditioned place preference by methamphetamine (METH). In the present study, we investigated the role of α(2)/δ-1 subunit of voltage-gated calcium channels (VGCCs) in the mouse brain under repeated treatment with METH. The level of α(2)/δ-1 subunit increased significantly in the limbic forebrain including the nucleus accumbens and the frontal cortex of mice showing METH-induced sensitization. Under these conditions, the development of behavioral sensitization induced by the intermittent administration of METH was significantly suppressed by the co-administration of gabapentin (GBP) with binding activity to an exofacial epitope of α(2)/δ-1 subunit. Furthermore, GBP administered i.c.v. caused a dose-dependent inhibition of the METH-induced place preference. Chronic GBP treatment at the dose alleviating sensitization and place preference significantly reduced the elevation of α(2)/δ-1 subunit of VGCC induced by the repeated administration of METH in the limbic forebrain and frontal cortex, whereas there were no changes in the increase of α(2)/δ-1 subunit mRNA. These findings indicate that α(2)/δ-1 subunit plays a critical role in the development of METH-induced place preference following neuronal plasticity, and that GBP, which significantly suppressed METH-induced place preference by its possible inhibitory action of α(2)/δ subunit to neuronal membrane, may possibly be used as an alternative drug to treat or prevent drug dependence.
Collapse
Affiliation(s)
- K Kurokawa
- Department of Pharmacology, Kawasaki Medical School, Matsushima 577, Kurashiki, Okayama 701-0192, Japan
| | | | | | | |
Collapse
|
32
|
Protein kinase C isozymes as regulators of sensitivity to and self-administration of drugs of abuse-studies with genetically modified mice. Behav Pharmacol 2010; 21:493-9. [PMID: 20671547 DOI: 10.1097/fbp.0b013e32833d8bb7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Studies using targeted gene deletion in mice have revealed distinct roles for individual isozymes of the protein kinase C (PKC) family of enzymes in regulating sensitivity to various drugs of abuse. These changes in drug sensitivity are associated with altered patterns of drug self-administration. The purpose of this review is to summarize behavioral studies conducted on mice carrying targeted deletions of genes encoding specific PKC isozymes (namely the beta, gamma, delta, and epsilon isozymes), and to critically evaluate the possibility of using pharmacological inhibitors of specific PKC isozymes as modulators of the sensitivity to various drugs of abuse, as well as potential aids in the treatment of substance use disorders.
Collapse
|
33
|
Liang J, Chen JH, Chen XH, Peng YH, Zheng XG. Gene expression of conditioned locomotion and context-specific locomotor sensitization controlled by morphine-associated environment. Behav Brain Res 2010; 216:321-31. [PMID: 20727914 DOI: 10.1016/j.bbr.2010.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 11/16/2022]
Abstract
The nucleus accumbens (NAc) is involved in contextual drug associations, which might be particularly important for environmental cue-induced relapse to drug seeking. In the present study, rats were first administered repeated morphine for 5 days (5 mg/kg, i.p.) in a contextually paired and unpaired design. After reexposure to the morphine-associated environment, which induced conditioned locomotor activity in the morphine-paired group, we performed a rat 27k 70-mer oligo array to profile gene expression in the NAc. One hundred fifty-five upregulated and 88 downregulated genes were found in the paired group compared with the unpaired group. Eight gene transcripts were then selected to confirm their alterations by quantitative real-time polymerase chain reaction (qRT-PCR). The identified genes generally play important roles in neuroactive receptor-ligand interactions, synapse plasticity, ion transport, and protein phosphorylation. Furthermore, the expression of the eight selected genes that were identified and confirmed to show significant fold changes in the first microarray experiment were again measured with qRT-PCR after morphine challenge (2 mg/kg, i.p.). As expected, 2 mg/kg morphine-induced context-specific sensitization. Meanwhile, mRNA expression of the selected genes showed marked upregulation in the morphine-paired group compared with the unpaired and acute groups. These results suggest that alterations in the expression of the identified genes in the NAc may contribute to the neuroplasticity underlying contextual cue-induced relapse to drug use.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beishatan, Chaoyang District, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
34
|
Futamura T, Akiyama S, Sugino H, Forbes A, McQuade RD, Kikuchi T. Aripiprazole attenuates established behavioral sensitization induced by methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1115-9. [PMID: 20561555 DOI: 10.1016/j.pnpbp.2010.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 11/25/2022]
Abstract
Psychostimulant-induced behavioral sensitization is an experimental model of the stimulant psychosis and the vulnerability to relapse in schizophrenia. This study investigated the effects of aripiprazole, an antipsychotic drug that has dopamine D2 receptor partial agonist activity, on established sensitization induced by methamphetamine (MAP) in mice. Repeated treatment with MAP (1.0mg/kg, s.c.) for 10 days progressively increased the ability of MAP to increase locomotor activity. The enhanced locomotion induced by a challenge dose of MAP (0.24 mg/kg, s.c.) also occurred after withdrawal from MAP pretreatment. Repeated treatment with aripiprazole from days 10 to 14 during withdrawal from MAP administration attenuated the effect of MAP pretreatment, enhancing the motor response to a challenge dose of stimulant 3 days after the aripiprazole preparation. In contrast, sulpiride, a dopamine D2 receptor specific antagonist, and risperidone, a serotonin 5-HT2 and dopamine D2 receptor antagonist, did not show effects similar to aripiprazole. The attenuation effect of aripiprazole was blocked by pretreatment with the specific serotonin 5-HT1A antagonist WAY100635. These results of aripiprazole suggest that the attenuation effect of aripiprazole was mediated by 5-HT1A receptors and imply that aripiprazole may have therapeutic value in treating drug-induced psychosis and schizophrenia.
Collapse
Affiliation(s)
- Takashi Futamura
- Q's Research Institute, Otsuka Pharmaceutical Co, Ltd, Tokushima 771-0192, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Kurokawa K, Shibasaki M, Ohkuma S. Methamphetamine-induced up-regulation of α2/δ subunit of voltage-gated calcium channels is regulated by DA receptors. Synapse 2010; 64:822-8. [DOI: 10.1002/syn.20797] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Abstract
In 1993, Robinson and Berridge published their first review that laid out the incentive sensitization theory of addiction (Robinson and Berridge 1993 Brain Res Rev 18:247). Its basic point is that repeated exposure to drugs of abuse causes hypersensitivity to drugs and drug-associated stimuli of the neural circuits mediating incentive salience, an important way in which motivational stimuli influence behavior. In laymen's terms, it states that this drug-induced hypersensitivity of motivational circuitry would mediate an increase in drug "wanting," thus being responsible for the dramatically exaggerated motivation for drugs displayed by addicts. This theory has been exceptionally influential, as evidenced by the fact that the original review paper about this theory (Robinson and Berridge 1993 Brain Res Rev 18:247) has been cited 2,277 times so far, and subsequent updates of this view (Robinson and Berridge 2000 Addiction 95(Suppl 2):S91; Robinson and Berridge 2001 Addiction 96:103; Robinson and Berridge 2003 Ann Rev Psychol 54:25) have been cited 274, 297, and 365 times, respectively, adding up to more than 3,200 citations within 15 years. The present chapter aims to delineate the merits and limitations of the incentive sensitization view of addiction, and whether incentive sensitization occurs in humans. We conclude that since incentive sensitization most prominently occurs after the first few drug exposures, it may represent an important initial step in the addiction process. During the expression of full-blown addiction, characterized by loss of control over drug intake and use of large quantities of drugs, the expression of incentive sensitization may be transiently suppressed. However, detoxification and the gradual disappearance of tolerance and withdrawal symptoms may unmask sensitization, which could then play an important role in the high risk of relapse.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | |
Collapse
|
37
|
Protein kinases A and C in post-mortem prefrontal cortex from persons with major depression and normal controls. Int J Neuropsychopharmacol 2009; 12:1223-32. [PMID: 19573263 PMCID: PMC3832297 DOI: 10.1017/s1461145709000285] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major depression (MDD) is a common and potentially life-threatening condition. Widespread neurobiological abnormalities suggest abnormalities in fundamental cellular mechanisms as possible physiological mediators. Cyclic AMP-dependent protein kinase [also known as protein kinase A (PKA)] and protein kinase C (PKC) are important components of intracellular signal transduction cascades that are linked to G-coupled receptors. Previous research using both human peripheral and post-mortem brain tissue specimens suggests that a subset of depressed patients exhibit reduced PKA and PKC activity, which has been associated with reduced levels of specific protein isoforms. Prior research also suggests that specific clinical phenotypes, particularly melancholia and suicide, may be particularly associated with low activity. This study examined PKA and PKC protein levels in human post-mortem brain tissue samples from persons with MDD (n=20) and age- and sex-matched controls (n=20). Specific PKA subunits and PKC isoforms were assessed using Western blot analysis in post-mortem samples from Brodmann area 10, which has been implicated in reinforcement and reward mechanisms. The MDD sample exhibited significantly lower protein expression of PKA regulatory Ialpha (RIalpha), PKA catalytic alpha (Calpha) and Cbeta, PKCbeta1, and PKCepsilon relative to controls. The melancholic subgroup showed low PKA RIalpha and PKA Cbeta, while the portion of the MDD sample who died by suicide had low PKA RIalpha and PKA Calpha. These data continue to support the significance of abnormalities of these two key kinases, and suggest linkages between molecular endophenotypes and specific clinical phenotypes.
Collapse
|
38
|
Bubenikova-Valesova V, Kacer P, Syslova K, Rambousek L, Janovsky M, Schutova B, Hruba L, Slamberova R. Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. Int J Dev Neurosci 2009; 27:525-30. [PMID: 19591914 DOI: 10.1016/j.ijdevneu.2009.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/17/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022] Open
Abstract
Methamphetamine is a commonly abused psychostimulant that causes addiction and is often abused by pregnant women. Acute or chronic administration of methamphetamine elevates the levels of the extracellular monoamine neurotransmitters, such as dopamine. The aim of the present study was to show whether prenatal exposure to methamphetamine (5mg/kg, entire gestation) or saline in Wistar rats induces changes in dopamine levels and its metabolites in the nucleus accumbens, and in behavior (locomotor activity, rearing, and immobility) after the administration of a challenge dose of methamphetamine (1mg/kg) or saline in male offspring. We found that adult offspring prenatally exposed to methamphetamine had higher basal levels of dopamine (about 288%), dihydroxyphenylacetic acid (about 67%) and homovanillic acid (about 74%) in nucleus accumbens. An increased basal level of dopamine corresponds to lower basal immobility in offspring prenatally exposed to methamphetamine. The acute injection of methamphetamine in adulthood increased the level of dopamine in the nucleus accumbens, which is related to an increase of locomotion and rearing (exploration). In addition, prenatally methamphetamine-exposed rats showed higher response to the challenge dose of methamphetamine, when compared to prenatally saline-exposed rats. In conclusion, rats exposed to methamphetamine in utero have shown changes in the mesolimbic dopaminergic system and were more sensitive to the administration of the acute dose of methamphetamine in adulthood.
Collapse
Affiliation(s)
- Vera Bubenikova-Valesova
- Prague Psychiatric Center, Department of Biochemistry and Brain Pathophysiology, Ustavní 91, 181 03 Prague 8, Bohnice, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yuan L, Seo JS, Kang NS, Keinan S, Steele SE, Michelotti GA, Wetsel WC, Beratan DN, Gong YD, Lee TH, Hong J. Identification of 3-hydroxy-2-(3-hydroxyphenyl)-4H-1-benzopyran-4-ones as isoform-selective PKC-zeta inhibitors and potential therapeutics for psychostimulant abuse. MOLECULAR BIOSYSTEMS 2009; 5:927-30. [PMID: 19668856 DOI: 10.1039/b903036k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From a screen of small molecule libraries to identify potential therapeutics for psychostimulant abuse, 3-hydroxy-2-(3-hydroxyphenyl)-4H-1-benzopyran-4-ones were shown to be isoform-selective PKC-zeta inhibitors.
Collapse
Affiliation(s)
- Langtian Yuan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kita T, Miyazaki I, Asanuma M, Takeshima M, Wagner GC. Dopamine-Induced Behavioral Changes and Oxidative Stress in Methamphetamine-Induced Neurotoxicity. NEW CONCEPTS OF PSYCHOSTIMULANT INDUCED NEUROTOXICITY 2009; 88:43-64. [DOI: 10.1016/s0074-7742(09)88003-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Narita M, Suzuki M, Kuzumaki N, Miyatake M, Suzuki T. Implication of activated astrocytes in the development of drug dependence: differences between methamphetamine and morphine. Ann N Y Acad Sci 2008; 1141:96-104. [PMID: 18991953 DOI: 10.1196/annals.1441.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Astrocytes are a subpopulation of glial cells that directly affect neuronal function. This review focuses on the potential functional roles of astrocytes in the development of behavioral sensitization and rewarding effects induced by chronic treatment with drugs of abuse. In vitro treatment of cortical neuron/glia cocultures with either methamphetamine or morphine caused activation of astrocytes via protein kinase C (PKC). Purified cortical astrocytes were markedly activated by methamphetamine, whereas morphine had no such effect. Methamphetamine, but not morphine, caused a long-lasting astrocytic activation in cortical neuron/glia cocultures. Morphine-induced behavioral sensitization, assessed as hyperlocomotion, was reversed by 2 months of withdrawal from intermittent morphine administration, whereas behavioral sensitization to methamphetamine-induced hyperlocomotion was maintained even after 2 months of withdrawal. In vivo treatment with methamphetamine, which was associated with behavioral sensitization, caused PKC-dependent astrocytic activation in the mouse cingulate cortex and nucleus accumbens. Furthermore, the glial modulator propentofylline dramatically diminished the activation of astrocytes and the rewarding effect induced by methamphetamine and morphine. On the other hand, intra-nucleus accumbens and intra-cingulate cortex administration of astrocyte-conditioned medium aggravated the development of rewarding effects induced by methamphetamine and morphine. Furthermore, astrocyte-conditioned medium, but not methamphetamine itself, clearly induced differentiation of neural stem cells into astrocytes. These findings provide direct evidence that astrocytes may, at least in part, contribute to the development of the rewarding effects induced by drugs of abuse in the nucleus accumbens and cingulate cortex.
Collapse
Affiliation(s)
- Minoru Narita
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
42
|
McNamara RK, Able J, Jandacek R, Rider T, Tso P. Inbred C57BL/6J and DBA/2J mouse strains exhibit constitutive differences in regional brain fatty acid composition. Lipids 2008; 44:1-8. [PMID: 18923861 DOI: 10.1007/s11745-008-3244-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
Abstract
Major behavioral and neurochemical features observed between inbred C57BL/6 and DBA/2 mouse strains can be reproduced within rodent strains following dietary-induced reductions in brain docosahexaenoic acid (DHA, 22:6n-3) composition. It was therefore hypothesized that C57BL/6 and DBA/2 mice exhibit constitutive differences in brain DHA composition that are independent of diet. To test this, adult C57BL/6J and DBA/2J prefrontal cortex, hippocampus, ventral striatum, and midbrain fatty acid composition was determined by gas chromatography. After correction for multiple comparisons, C57BL/6J mice exhibited significantly lower DHA composition in the hippocampus and ventral striatum, but not prefrontal cortex or midbrain, and significantly greater regional arachidonic acid (ARA, 20:4n-6):DHA ratios, relative to DBA/2J mice. C57BL/6J mice also exhibited significantly lower regional adrenic acid (ADA, 22:4n-6) composition, and a significantly smaller ADA:ARA ratio, relative to DBA/2J mice. C57BL/6J mice exhibited significantly smaller oleic acid:stearic acid ratio in the hippocampus and ventral striatum relative to DBA/2J mice. Among all mice, DHA composition was positively correlated with the ADA:ARA ratio and inversely correlated with the oleic acid:stearic acid ratio. These data demonstrate that inbred C57BL/6J and DBA/2J mouse strains exhibit constitutive and region-specific differences in fatty acid composition independent of diet, and suggest that heritable genetic factors are an important determinant of central fatty acid composition.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0516, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharmacotherapies to treat drug addiction.
Collapse
Affiliation(s)
- Anna M Lee
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville, CA 94608, USA
| | | |
Collapse
|
44
|
Yang MH, Kim S, Jung MS, Shim JH, Ryu NK, Yook YJ, Jang CG, Bahk YY, Kim KW, Park JH. Proteomic analysis of methamphetamine-induced reinforcement processes within the mesolimbic dopamine system. Addict Biol 2008; 13:287-94. [PMID: 18279499 DOI: 10.1111/j.1369-1600.2007.00090.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT Methamphetamine (MAP) is a commonly used, addictive drug, and a powerful stimulant that dramatically affects the central nervous system. In this study, we used the conditioned place preference (CPP) paradigm in order to study the reinforcing properties of MAP and the herewith associated changes in proteins within the mesolimbic dopamine system. A CPP was induced by MAP after three intermittent intraperitoneal injections (1 mg/kg) in rats and protein profiles in the nucleus accumbens, striatum, prefrontal cortex, cingulate cortex and hippocampus were compared with a saline-treated control group. In addition, a group of animals was run through extinction and protein profiles were compared with a non-extinguished group. Protein screening was conducted using two-dimensional electrophoresis analysis which identified 27 proteins in the group that showed MAP-induced CPP. Some of the proteins were confirmed by Western lot analysis. Identified proteins had functions related to the cytoskeleton, transport/endocytosis or exocytosis (e.g. profilin-2 and syntaxin-binding protein), and signal transduction, among others.
Collapse
Affiliation(s)
- Moon Hee Yang
- Department of Biological Science, Sookmyung Women's University, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McNamara RK, Sullivan J, Richtand NM. Omega-3 fatty acid deficiency augments amphetamine-induced behavioral sensitization in adult mice: prevention by chronic lithium treatment. J Psychiatr Res 2008; 42:458-68. [PMID: 17628596 DOI: 10.1016/j.jpsychires.2007.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 05/14/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Emerging data suggests that omega-3 fatty acid deficiency may be a risk factor for bipolar disorder. In the present study, we determined the effects of chronic dietary-induced omega-3 fatty acid deficiency and/or concomitant chronic lithium chloride (LiCl) treatment on amphetamine (AMPH)-induced behavioral sensitization, a phenomenon that may recruit neuroplastic mechanisms relevant to the pathophysiology of bipolar disorder. METHOD Adult male C57BL/6J mice were randomly assigned to one four diets: Control (alpha-linolenic-fortified), Control+LiCl (0.255%), alpha-linolenic-Deficient, or Deficient+LiCl (0.255%), and behavioral testing initiated 65 days later. Locomotor activity was determined following 3 intermittent (separated by 7d) injections of amphetamine (AMPH) (1mg/kg). After behavioral testing, red blood cell (RBC) and regional brain (prefrontal cortex, hippocampus, ventral striatum) fatty acid composition was determined by gas chromatography. RESULTS Each diet group exhibited comparable locomotor activity following acute AMPH treatment. However, the development of sensitization following repeated AMPH treatment was significantly augmented in Deficient mice relative to controls, and this augmented response was prevented by chronic LiCl treatment. Relative to controls, Deficient mice exhibited deficits in RBC and regional brain docosahexaenoic acid (DHA, 22:6n-3) composition, reciprocal elevations in vaccenic acid (18:1n-7), arachidonic acid (AA, 20:4n-6), and docosapentaenoic acid (DPA, 22:5n-6) compositions, and elevations in AA:DHA, oleic acid:DHA, and DPA:DHA ratios. The fatty acid abnormalities in Deficient mice were not altered by concurrent chronic lithium treatment. Mice fed the Control+LiCl diet exhibited a significant increase in AA composition in RBC and all brain regions, and an elevated AA:DHA ratio in the prefrontal cortex and hippocampus, relative to Controls. Fatty acid composition in RBC and different brain regions were predominantly positively correlated. Within the ventral striatum, DHA composition was inversely correlated, and AA:DHA and oleic acid:DHA ratios positively correlated, with total distance traveled following the final AMPH treatment. CONCLUSION These data indicate that alterations in fatty acid composition resulting from dietary-induced omega-3 fatty acid deficiency augment the development of AMPH-induced behavioral sensitization in a manner that is prevented by chronic lithium treatment. The implications of these findings for understanding the contribution of omega-3 fatty acid deficiency to the pathophysiology and progression of bipolar disorder are discussed.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States.
| | | | | |
Collapse
|
46
|
Paletzki RF, Myakishev MV, Polesskaya O, Orosz A, Hyman SE, Vinson C. Inhibiting activator protein-1 activity alters cocaine-induced gene expression and potentiates sensitization. Neuroscience 2008; 152:1040-53. [PMID: 18355967 DOI: 10.1016/j.neuroscience.2008.01.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 01/07/2008] [Accepted: 01/18/2008] [Indexed: 11/26/2022]
Abstract
We have expressed A-FOS, an inhibitor of activator protein-1 (AP-1) DNA binding, in adult mouse striatal neurons. We observed normal behavior including locomotion and exploratory activities. Following a single injection of cocaine, locomotion increased similarly in both the A-FOS expressing and littermate controls. However, following repeated injections of cocaine, the A-FOS expressing mice showed increased locomotion relative to littermate controls, an increase that persisted following a week of withdrawal and subsequent cocaine administration. These results indicate that AP-1 suppresses this behavioral response to cocaine. We analyzed mRNA from the striatum before and 4 and 24 h after a single cocaine injection in both A-FOS and control striata using Affymetrix microarrays (430 2.0 Array) to identify genes mis-regulated by A-FOS that may mediate the increased locomotor sensitization to cocaine. A-FOS expression did not change gene expression in the basal state or 4 h following cocaine treatment relative to controls. However, 24 h after an acute cocaine treatment, 84 genes were identified that were differentially expressed between the A-FOS and control mice. Fifty-six genes are down-regulated while 28 genes are up-regulated including previously identified candidates for addiction including brain-derived neurotrophic factor and period homolog 1. Using a random sample of identified genes, quantitative PCR was used to verify the microarray studies. The chromosomal location of these 84 genes was compared with human genome scans of addiction to identify potential genes in humans that are involved in addiction.
Collapse
Affiliation(s)
- R F Paletzki
- Laboratory of Molecular Pathophysiology, National Institute of Neurological Disorders and Stroke, NIH, Building 36, Room 4C-24, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
47
|
Ago Y, Nakamura S, Baba A, Matsuda T. Neuropsychotoxicity of abused drugs: effects of serotonin receptor ligands on methamphetamine- and cocaine-induced behavioral sensitization in mice. J Pharmacol Sci 2008; 106:15-21. [PMID: 18198473 DOI: 10.1254/jphs.fm0070121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Repeated administration of psychostimulants elicits a progressive enhancement of locomotor activity known as behavioral sensitization. Central dopamine (DA) neurons play key roles as the neural substrates mediating behavioral sensitization, but the role of the serotonin (5-HT) system in the sensitization is not fully elucidated. We have recently demonstrated that osemozotan, a specific 5-HT(1A)-receptor agonist, and ritanserin, a 5-HT(2)-receptor antagonist, inhibited the expression and development of both methamphetamine- and cocaine-induced behavioral sensitization in mice and that these drugs attenuated the maintenance of behavioral sensitization of methamphetamine, but not that of cocaine. We also found that azasetron, a 5-HT(3)-receptor antagonist, inhibited the expression and development of the sensitization induced by methamphetamine and cocaine, respectively. Neurochemical studies using a microdialysis technique showed that repeated methamphetamine enhanced the methamphetamine-induced increase in 5-HT release in the prefrontal cortex. The sensitization of 5-HT release in methamphetamine-treated mice was attenuated by osemozotan and ritanserin. These findings suggest that the 5-HT system plays an important role in methamphetamine- and cocaine-induced behavioral sensitization in mice and imply that 5-HT(1A)-receptor agonists and 5-HT(2)-receptor antagonists may have a potential therapeutic value for the treatment of methamphetamine abuse or psychosis.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
48
|
Fukakusa A, Nagai T, Mizoguchi H, Otsuka N, Kimura H, Kamei H, Kim HC, Nabeshima T, Takuma K, Yamada K. Role of tissue plasminogen activator in the sensitization of methamphetamine-induced dopamine release in the nucleus accumbens. J Neurochem 2007; 105:436-44. [PMID: 18036193 DOI: 10.1111/j.1471-4159.2007.05142.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously demonstrated that repeated, but not acute, methamphetamine (METH) treatment increases tissue plasminogen activator (tPA) activity in the brain, which is associated with the development of behavioral sensitization to METH. In this study, we investigated whether the tPA-plasmin system is involved in the development of sensitization in METH-induced dopamine release in the nucleus accumbens (NAc). There was no difference in acute METH-induced increase in extracellular dopamine levels in the NAc between wild-type and tPA-deficient (tPA-/-) mice. Repeated METH treatment resulted in a significant enhancement of METH- induced dopamine release in wild-type mice, but not tPA-/- mice. Microinjection of exogenous tPA or plasmin into the NAc of wild-type mice significantly potentiated acute METH- induced dopamine release. Degradation of laminin was evident in brain tissues incubated with tPA plus plasminogen or plasmin in vitro although tPA or plasminogen alone had no effect. Immunohistochemical analysis revealed that microinjection of plasmin into the NAc reduced laminin immunoreactivity without neuronal damage. Our findings suggest that the tPA-plasmin system participates in the development of behavioral sensitization induced by repeated METH treatment, by regulating the processes underlying the sensitization of METH-induced dopamine release in the NAc, in which degradation of laminin by plasmin may play a role.
Collapse
Affiliation(s)
- Ayumi Fukakusa
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nakayama H, Kitaichi K, Ito Y, Hashimoto K, Takagi K, Yokoi T, Takagi K, Ozaki N, Yamamoto T, Hasegawa T. The role of organic cation transporter-3 in methamphetamine disposition and its behavioral response in rats. Brain Res 2007; 1184:260-9. [PMID: 17988657 DOI: 10.1016/j.brainres.2007.09.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
Organic cation transporter-3 (OCT3) is expressed in several tissues including the brain. We have previously demonstrated that rats with behavioral sensitization to methamphetamine (METH) increased the brain penetration of METH with decreased expression of OCT3 in brain. Considering the earlier in vitro studies demonstrating that 1) OCT3 could transport dopamine (DA) and 2) the specific transport via OCT3 could be inhibited by METH, these results suggest that decreased OCT3 might decrease the efflux of METH and/or DA from brain, subsequently causing the development of behavioral sensitization. Thus, in the present study, behavioral task related to DA and pharmacokinetic experiment were performed using rats treated with antisense against OCT3 (OCT3-AS) since no specific ligands for OCT3 are still available. The continuous infusion of OCT3-AS into the third ventricle significantly decreased the expression of OCT3 in choroid plexus (CP) epithelial cells. Both METH-induced hyperlocomotion and METH-induced extracellular DA levels in nucleus accumbens and prefrontal cortex were significantly increased in OCT3-AS-treated rats. Moreover, the concentrations of METH were significantly increased in cerebrospinal fluid as well as extracellular areas at the nucleus accumbens in OCT3-AS-treated rats. These results suggested that decreased OCT3 elevated the concentration of METH and/or DA in brain, subsequently enhancing dopaminergic neuronal transmission and increasing METH-induced hyperlocomotion. In summary, OCT3 at the CP could regulate the effect of METH by controlling the levels of METH and/or DA in brain. Thus, these results suggest that OCT3 may be a new molecular target to treat METH-related disorders such as drug abuse and schizophrenia.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12:227-462. [PMID: 17678505 DOI: 10.1111/j.1369-1600.2007.00070.x] [Citation(s) in RCA: 1015] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conditioned place preference (CPP) continues to be one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. This is obvious from a steady year-to-year increase in the number of publications reporting the use this model. Since the compilation of the preceding review in 1998, more than 1000 new studies using place conditioning have been published, and the aim of the present review is to provide an overview of these recent publications. There are a number of trends and developments that are obvious in the literature of the last decade. First, as more and more knockout and transgenic animals become available, place conditioning is increasingly used to assess the motivational effects of drugs or non-drug rewards in genetically modified animals. Second, there is a still small but growing literature on the use of place conditioning to study the motivational aspects of pain, a field of pre-clinical research that has so far received little attention, because of the lack of appropriate animal models. Third, place conditioning continues to be widely used to study tolerance and sensitization to the rewarding effects of drugs induced by pre-treatment regimens. Fourth, extinction/reinstatement procedures in place conditioning are becoming increasingly popular. This interesting approach is thought to model certain aspects of relapse to addictive behavior and has previously almost exclusively been studied in drug self-administration paradigms. It has now also become established in the place conditioning literature and provides an additional and technically easy approach to this important phenomenon. The enormous number of studies to be covered in this review prevented in-depth discussion of many methodological, pharmacological or neurobiological aspects; to a large extent, the presentation of data had to be limited to a short and condensed summary of the most relevant findings.
Collapse
Affiliation(s)
- Thomas M Tzschentke
- Grünenthal GmbH, Preclinical Research and Development, Department of Pharmacology, Aachen, Germany.
| |
Collapse
|