1
|
Kim YS, Lee BK, Kim CS, Lee YS, Lee YJ, Kim KW, Lee DY, Jung YS. Sedum kamtschaticum Exerts Hypnotic Effects via the Adenosine A 2A Receptor in Mice. Nutrients 2024; 16:2611. [PMID: 39203748 PMCID: PMC11357430 DOI: 10.3390/nu16162611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Insomnia is a common sleep disorder with significant societal and economic impacts. Current pharmacotherapies for insomnia are often accompanied by side effects, necessitating the development of new therapeutic drugs. In this study, the hypnotic effects and mechanisms of Sedum kamtschaticum 30% ethanol extract (ESK) and one of its active compounds, myricitrin, were investigated using pentobarbital-induced sleep experiments, immunohistochemistry (IHC), receptor binding assays, and enzyme-linked immunosorbent assay (ELISA). The pentobarbital-induced sleep experiments revealed that ESK and myricitrin reduced sleep latency and prolonged total sleep time in a dose-dependent manner. Based on c-Fos immunostaining, ESK, and myricitrin enhanced the GABAergic neural activity in sleep-promoting ventrolateral preoptic nucleus (VLPO) GABAergic. By measuring the level of GABA released from VLPO GABAergic neurons, ESK and myricitrin were found to increase GABA release in the hypothalamus. These effects were significantly inhibited by SCH. Moreover, ESK exhibited a concentration-dependent binding affinity for the adenosine A2A receptors (A2AR). In conclusion, ESK and myricitrin have hypnotic effects, and their underlying mechanisms may be related to the activation of A2AR.
Collapse
Affiliation(s)
- Yeon-Soo Kim
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (Y.-S.K.); (B.K.L.)
| | - Bo Kyung Lee
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (Y.-S.K.); (B.K.L.)
| | - Cha Soon Kim
- Research and Development Department, Genencell Co., Ltd., Yongin 16950, Republic of Korea;
| | - Young-Seob Lee
- Development of Herbal Crop Research, Rural Development Administration (RDA), Eumseong 27709, Republic of Korea; (Y.-S.L.); (Y.J.L.); (K.-W.K.)
| | - Yoon Ji Lee
- Development of Herbal Crop Research, Rural Development Administration (RDA), Eumseong 27709, Republic of Korea; (Y.-S.L.); (Y.J.L.); (K.-W.K.)
| | - Kwan-Woo Kim
- Development of Herbal Crop Research, Rural Development Administration (RDA), Eumseong 27709, Republic of Korea; (Y.-S.L.); (Y.J.L.); (K.-W.K.)
| | - Dae Young Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yi-Sook Jung
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (Y.-S.K.); (B.K.L.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Kim H, Park KT, Jo H, Shin Y, Chung G, Ko SG, Jin YH, Kim W. The effect of ginger extract on cisplatin-induced acute anorexia in rats. Front Pharmacol 2023; 14:1267254. [PMID: 38026983 PMCID: PMC10665510 DOI: 10.3389/fphar.2023.1267254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic agent widely used to treat various cancers. However, several side effects have been reported in treated patients. Among these, acute anorexia is one of the most severe secondary effects. In this study, a single oral administration of 100 or 500 mg/kg ginger extract (GE) significantly alleviated the cisplatin-induced decrease in food intake in rats. However, these body weight and water intake decreases were reversed in the 100 mg/kg group rats. To elucidate the underlying mechanism of action, serotonin (5-HT) and 5-HT2C, 3A, and 4 receptors in the nodose ganglion of the vagus nerve were investigated. The results showed that cisplatin-induced increases in serotonin levels in both the blood and nodose ganglion tissues were significantly decreased by100 and 500 mg/kg of GE administration. On 5-HT receptors, 5-HT3A and 4, but not 2C receptors, were affected by cisplatin, and GE 100 and 500 mg/kg succeeded in downregulating the evoked upregulated gene of these receptors. Protein expression of 5-HT3A and 4 receptors were also reduced in the 100 mg/kg group. Furthermore, the injection of 5-HT3A, and 4 receptors antagonists (palonostron, 0.1 mg/kg, i.p.; piboserod, 1 mg/kg, i.p., respectively) in cisplatin treated rats prevented the decrease in food intake. Using high-performance liquid chromatography (HPLC) analysis, [6]-gingerol and [6]-shogaol were identified and quantified as the major components of GE, comprising 4.12% and 2.15% of the GE, respectively. Although [6]-gingerol or [6]-shogaol alone failed to alleviate the evoked anorexia, when treated together, the effect was significant on the cisplatin-induced decrease in food intake. These results show that GE can be considered a treatment option to alleviate cisplatin-induced anorexia.
Collapse
Affiliation(s)
- Hyeonah Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Heejoon Jo
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yuchan Shin
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Ho Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
4
|
The inactivation of extracellular signal-regulated kinase by glucagon-like peptide-1 contributes to neuroprotection against oxidative stress. Neurosci Lett 2016; 616:105-10. [PMID: 26827720 DOI: 10.1016/j.neulet.2016.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 01/17/2023]
Abstract
Glucagon-like peptide-1 (GLP-1), an insulinotropic peptide secreted from enteroendocrine cells, has been known to have a neuroprotective effect. However, it is not fully understood the intracellular mediator of GLP-1 signaling in neuronal cells. In the present study, we examined the change in intracellular signaling of cortical neurons after GLP-1 application and luminal glucose stimulation in vitro and in vivo. GLP-1 receptor was highly expressed in cultured cortical neurons and brain tissues including the prefrontal cortex and hippocampus. The activation of GLP-1 receptor (5min) significantly decreased levels of phosphorylated extracellular signal-regulated kinase (pERK), which is involved in neuronal cell survival and death, in cultured cortical neurons. Oral glucose administration also rapidly reduced pERK levels in the prefrontal cortex, while intraperitoneal glucose injection did not show such an effect. Further, GLP-1 attenuated hydrogen peroxide-induced cell death and hyperactivity of ERK in cultured cortical neurons. It is possible that increased GLP-1 by luminal glucose stimulation affects cortical system including the maintenance of neuronal cell survival.
Collapse
|
5
|
Browning KN. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology. Front Neurosci 2015; 9:413. [PMID: 26578870 PMCID: PMC4625078 DOI: 10.3389/fnins.2015.00413] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022] Open
Abstract
Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine Hershey, PA, USA
| |
Collapse
|
6
|
Herrity AN, Petruska JC, Stirling DP, Rau KK, Hubscher CH. The effect of spinal cord injury on the neurochemical properties of vagal sensory neurons. Am J Physiol Regul Integr Comp Physiol 2015; 308:R1021-33. [PMID: 25855310 DOI: 10.1152/ajpregu.00445.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/01/2015] [Indexed: 12/29/2022]
Abstract
The vagus nerve is composed primarily of nonmyelinated sensory neurons whose cell bodies are located in the nodose ganglion (NG). The vagus has widespread projections that supply most visceral organs, including the bladder. Because of its nonspinal route, the vagus nerve itself is not directly damaged from spinal cord injury (SCI). Because most viscera, including bladder, are dually innervated by spinal and vagal sensory neurons, an impact of SCI on the sensory component of vagal circuitry may contribute to post-SCI visceral pathologies. To determine whether SCI, in male Wistar rats, might impact neurochemical characteristics of NG neurons, immunohistochemical assessments were performed for P2X3 receptor expression, isolectin B4 (IB4) binding, and substance P expression, three known injury-responsive markers in sensory neuronal subpopulations. In addition to examining the overall population of NG neurons, those innervating the urinary bladder also were assessed separately. All three of the molecular markers were represented in the NG from noninjured animals, with the majority of the neurons binding IB4. In the chronically injured rats, there was a significant increase in the number of NG neurons expressing P2X3 and a significant decrease in the number binding IB4 compared with noninjured animals, a finding that held true also for the bladder-innervating population. Overall, these results indicate that vagal afferents, including those innervating the bladder, display neurochemical plasticity post-SCI that may have implications for visceral homeostatic mechanisms and nociceptive signaling.
Collapse
Affiliation(s)
- April N Herrity
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Jeffrey C Petruska
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Department of Neurological Surgery, University of Louisville, Louisville, Kentucky; Department of Microbiology & Immunology, University of Louisville School of Medicine, Louisville, Kentucky; and
| | - Kristofer K Rau
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Department of Anesthesiology, University of Louisville, Louisville, Kentucky
| | - Charles H Hubscher
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky;
| |
Collapse
|
7
|
Luo XJ, Liu B, Dai Z, Yang ZC, Peng J. Stimulation of calcitonin gene-related peptide release through targeting capsaicin receptor: a potential strategy for gastric mucosal protection. Dig Dis Sci 2013; 58:320-5. [PMID: 22918689 DOI: 10.1007/s10620-012-2362-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/04/2012] [Indexed: 12/27/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a predominant neurotransmitter from capsaicin-sensitive sensory nerves, which are widely distributed in the gastrointestinal system. These sensory nerves are reported to be involved in the protection of gastric mucosa against damage by various stimuli, and CGRP is a potential mediator in this process. In addition to increase in gastric mucosal blood flow, the beneficial effects of CGRP on gastric mucosa include inhibition of gastric acid secretion, prevention of cellular apoptosis and oxidative injury. The synthesis and release of CGRP is regulated by the capsaicin receptor which is known as transient receptor potential vanilloid subfamily member 1 (TRPV1) and the agonists of TRPV1 have the potential for gastric mucosal protection. So far, multiple TRPV1 agonists, including capsaicin, capsiate, anandamide and rutaecarpine are reported to exert beneficial effects on gastric mucosal injury induced by various stimuli. Therefore, the TRPV1/CGRP pathway represents a novel target for therapeutic intervention in human gastric mucosal injury.
Collapse
Affiliation(s)
- Xiu-Ju Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, 110 Xiang-Ya Road, Changsha, 410078, China
| | | | | | | | | |
Collapse
|
8
|
Grabauskas G, Zhou SY, Lu Y, Song I, Owyang C. Essential elements for glucosensing by gastric vagal afferents: immunocytochemistry and electrophysiology studies in the rat. Endocrinology 2013; 154:296-307. [PMID: 23211706 PMCID: PMC3529375 DOI: 10.1210/en.2012-1382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glucosensing nodose ganglia neurons mediate the effects of hyperglycemia on gastrointestinal motility. We hypothesized that the glucose-sensing mechanisms in the nodose ganglia are similar to those of hypothalamic glucose excited neurons, which sense glucose through glycolysis. Glucose metabolism leads to ATP-sensitive potassium channel (K(ATP)) channel closure and membrane depolarization. We identified glucosensing elements in the form of glucose transporters (GLUTs), glucokinase (GK), and K(ATP) channels in rat nodose ganglia and evaluated their physiological significance. In vitro stomach-vagus nerve preparations demonstrated the gastric vagal afferent response to elevated glucose. Western blots and RT-PCR revealed the presence of GLUT1, GLUT3, GLUT4, GK, and Kir6.2 in nodose ganglia neurons and gastric branches of the vagus nerve. Immunocytochemistry confirmed the expression of GLUT3, GK, and Kir6.2 in nodose ganglia neurons (46.3 ± 3%). Patch-clamp studies detected glucose excitation in 30% (25 of 83) of gastric-projecting nodose ganglia neurons, which was abolished by GLUT3 or GK short hairpin RNA transfections. Silencing GLUT1 or GLUT4 in nodose ganglia neurons did not prevent the excitatory response to glucose. Elevated glucose elicited a response from 43% of in vitro nerve preparations. A dose-dependent response was observed, reaching maximum at a glucose level of 250 mg/dl. The gastric vagal afferent responses to glucose were inhibited by diazoxide, a K(ATP) channel opener. In conclusion, a subset of neurons in the nodose ganglia and gastric vagal afferents are glucoresponsive. Glucosensing requires a GLUT, GK, and K(ATP) channels. These elements are transported axonally to the gastric vagal afferents, which can be activated by elevated glucose through modulation of K(ATP) channels.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, 3912 Taubman Center, SPC 5362, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
9
|
Anatomical characterization of a rabbit cerebellar eyeblink premotor pathway using pseudorabies and identification of a local modulatory network in anterior interpositus. J Neurosci 2012; 32:12472-87. [PMID: 22956838 DOI: 10.1523/jneurosci.2088-12.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rabbit eyeblink conditioning is a well characterized model of associative learning. To identify specific neurons that are part of the eyeblink premotor pathway, a retrograde transsynaptic tracer (pseudorabies virus) was injected into the orbicularis oculi muscle. Four time points (3, 4, 4.5, and 5 d) were selected to identify sequential segments of the pathway and a map of labeled structures was generated. At 3 d, labeled first-order motor neurons were found in dorsolateral facial nucleus ipsilaterally. At 4 d, second-order premotor neurons were found in reticular nuclei, and sensory trigeminal, auditory, vestibular, and motor structures, including contralateral red nucleus. At 4.5 d, labeled third-order premotor neurons were found in the pons, midbrain, and cerebellum, including dorsolateral anterior interpositus nucleus and rostral fastigial nucleus. At 5 d, labeling revealed higher-order premotor structures. Labeled fourth-order Purkinje cells were found in ipsilateral cerebellar cortex in cerebellar lobule HVI and in lobule I. The former has been implicated in eyeblink conditioning and the latter in vestibular control. Labeled neurons in anterior interpositus were studied, using neurotransmitter immunoreactivity to classify individual cell types and delineate their interconnectivity. Labeled third-order premotor neurons were immunoreactive for glutamate and corresponded to large excitatory projection neurons. Labeled fourth-order premotor interneurons were immunoreactive for GABA (30%), glycine (18%), or both GABA and glycine (52%) and form a functional network within anterior interpositus involved in modulation of motor commands. These results identify a complete eyeblink premotor pathway, deep cerebellar interconnectivity, and specific neurons responsible for the generation of eyeblink responses.
Collapse
|
10
|
Heldsinger A, Lu Y, Zhou SY, Wu X, Grabauskas G, Song I, Owyang C. Cocaine- and amphetamine-regulated transcript is the neurotransmitter regulating the action of cholecystokinin and leptin on short-term satiety in rats. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1042-51. [PMID: 22936273 PMCID: PMC3517666 DOI: 10.1152/ajpgi.00231.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vagal CCK-A receptors (CCKARs) and leptin receptors (LRbs) interact synergistically to mediate short-term satiety. Cocaine- and amphetamine-regulated transcript (CART) peptide is expressed by vagal afferent neurons. We sought to demonstrate that this neurotransmitter regulates CCK and leptin actions on short-term satiety. We also examined the signal transduction pathways responsible for mediating the CART release from the nodose ganglia (NG). ELISA studies coupled with gene silencing of NG neurons by RNA interference elucidated intracellular signaling pathways responsible for CCK/leptin-stimulated CART release. Feeding studies followed by gene silencing of CART in NG established the role of CART in mediating short-term satiety. Immunohistochemistry was performed on rat NG neurons to confirm colocalization of CCKARs and LRbs; 63% of these neurons contained CART. Coadministration of CCK-8 and leptin caused a 2.2-fold increase in CART release that was inhibited by CCK-OPE, a low-affinity CCKAR antagonist. Transfection of cultured NG neurons with steroid receptor coactivator (SRC) or phosphatidylinositol 3-kinase (PI3K) small-interfering RNA (siRNA) or STAT3 lentiviral short hairpin RNA inhibited CCK/leptin-stimulated CART release. Silencing the expression of the EGR-1 gene inhibited the CCK/leptin-stimulated CART release but had no effect on CCK/leptin-stimulated neuronal firing. Electroporation of NG with CART siRNA inhibited CCK/leptin stimulated c-Fos expression in rat hypothalamus. Feeding studies following electroporation of the NG with CART or STAT3 siRNA abolished the effects of CCK/leptin on short-term satiety. We conclude that the synergistic interaction of low-affinity vagal CCKARs and LRbs mediates CART release from the NG, and CART is the principal neurotransmitter mediating short-term satiety. CART release from the NG involves interaction between CCK/SRC/PI3K cascades and leptin/JAK2/PI3K/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Andrea Heldsinger
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yuanxu Lu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shi-Yi Zhou
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xiaoyin Wu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Il Song
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Page AJ, Symonds E, Peiris M, Blackshaw LA, Young RL. Peripheral neural targets in obesity. Br J Pharmacol 2012; 166:1537-58. [PMID: 22432806 PMCID: PMC3419899 DOI: 10.1111/j.1476-5381.2012.01951.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/15/2022] Open
Abstract
Interest in pharmacological treatments for obesity that act in the brain to reduce appetite has increased exponentially over recent years, but failures of clinical trials and withdrawals due to adverse effects have so far precluded any success. Treatments that do not act within the brain are, in contrast, a neglected area of research and development. This is despite the fact that a vast wealth of molecular mechanisms exists within the gut epithelium and vagal afferent system that could be manipulated to increase satiety. Here we discuss mechano- and chemosensory pathways from the gut involved in appetite suppression, and distinguish between gastric and intestinal vagal afferent pathways in terms of their basic physiology and activation by enteroendocrine factors. Gastric bypass surgery makes use of this system by exposing areas of the intestine to greater nutrient loads resulting in greater satiety hormone release and reduced food intake. A non-surgical approach to this system is preferable for many reasons. This review details where the opportunities may lie for such approaches by describing nutrient-sensing mechanisms throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Amanda J Page
- Nerve-Gut Research Laboratory, Discipline of Medicine, South Australia, Australia
| | | | | | | | | |
Collapse
|
12
|
Young RL. Sensing via intestinal sweet taste pathways. Front Neurosci 2011; 5:23. [PMID: 21519398 PMCID: PMC3080736 DOI: 10.3389/fnins.2011.00023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 02/10/2011] [Indexed: 12/15/2022] Open
Abstract
The detection of nutrients in the gastrointestinal (GI) tract is of fundamental significance to the control of motility, glycemia and energy intake, and yet we barely know the most fundamental aspects of this process. This is in stark contrast to the mechanisms underlying the detection of lingual taste, which have been increasingly well characterized in recent years, and which provide an excellent starting point for characterizing nutrient detection in the intestine. This review focuses on the form and function of sweet taste transduction mechanisms identified in the intestinal tract; it does not focus on sensors for fatty acids or proteins. It examines the intestinal cell types equipped with sweet taste transduction molecules in animals and humans, their location, and potential signals that transduce the presence of nutrients to neural pathways involved in reflex control of GI motility.
Collapse
Affiliation(s)
- Richard L Young
- Discipline of Medicine, School of Medicine, University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
13
|
Li Y, Wu X, Zhou S, Owyang C. Low-affinity CCK-A receptors are coexpressed with leptin receptors in rat nodose ganglia: implications for leptin as a regulator of short-term satiety. Am J Physiol Gastrointest Liver Physiol 2011; 300:G217-27. [PMID: 21109591 PMCID: PMC3043649 DOI: 10.1152/ajpgi.00356.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The paradigm for the control of feeding behavior has changed significantly. Research has shown that leptin, in the presence of CCK, may mediate the control of short-term food intake. This interaction between CCK and leptin occurs at the vagus nerve. In the present study, we aimed to characterize the interaction between CCK and leptin in the vagal primary afferent neurons. Single neuronal discharges of vagal primary afferent neurons innervating the gastrointestinal tract were recorded from rat nodose ganglia. Three groups of nodose ganglia neurons were identified: group 1 responded to CCK-8 but not leptin; group 2 responded to leptin but not CCK-8; group 3 responded to high-dose CCK-8 and leptin. In fact, the neurons in group 3 showed CCK-8 and leptin potentiation, and they responded to gastric distention. To identify the CCK-A receptor (CCKAR) affinity states that colocalize with the leptin receptor OB-Rb, we used CCK-JMV-180, a high-affinity CCKAR agonist and low-affinity CCKAR antagonist. As expected, immunohistochemical studies showed that CCK-8 administration significantly potentiated the increase in the number of c-Fos-positive neurons stimulated by leptin in vagal nodose ganglia. Administration of CCK-JMV-180 eliminated the synergistic interaction between CCK-8 and leptin. We conclude that both low- and high-affinity CCKAR are expressed in nodose ganglia. Many nodose neurons bearing low-affinity CCKAR express OB-Rb. These neurons also respond to mechanical distention. An interaction between CCKAR and OB-Rb in these neurons likely facilitates leptin mediation of short-term satiety.
Collapse
Affiliation(s)
- Ying Li
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xiaoyin Wu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shiyi Zhou
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Meal size can be decreased in obese subjects through pharmacological acceleration of gastric emptying (The OBERYTH trial). Int J Obes (Lond) 2010; 35:829-37. [PMID: 20938444 DOI: 10.1038/ijo.2010.210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Entry of nutrients into the small intestine activates neuro-hormonal signals that regulate food intake through induction of satiation. OBJECTIVE To evaluate whether caloric intake can be decreased by pharmacologically accelerating gastric emptying (GE) of nutrients into the small intestine. METHODS Subjects were tested in 2 days, at baseline (day1) and after randomly receiving, in a double-blind manner, a 1 h infusion of erythromycin (3 mg Kg(-1), to accelerate GE) or placebo (day 2). Ad libitum caloric intake and postprandial gastrointestinal symptoms were evaluated using a validated nutrient drink test, simultaneously measuring gastric emptying [corrected] by scintigraphy. Plasma levels of satiation factors were also measured to evaluate their role in the modification of caloric intake and postprandial symptoms. Acceleration of GE was assessed as the difference in percentage emptied between day 2 and day 1 (DGE). The effects of DGE on caloric intake and symptoms were evaluated using multiple (lineal) regression. RESULTS Among 30 overweight/obese subjects (24F and 6 M), 15 received erythromycin and 15 placebo. The overall median age was 36 years (IQR: 30-42) and body mass index was 30 Kg m(-2) (IQR: 27-36). Subjects receiving erythromycin on day 2 presented accelerated GE as compared with placebo (P = 0.0002). DGE at 15 min after initiating eating had a significant effect on prospective caloric intake (P = 0.004). From the best-fitted regression model (R (2) = 81%, P < 0.0001), a 10% increase in GE at 15 min induced on an average a 135 ± 43.5 Kcal decrease in caloric intake. Postprandial increase in cholecystokinin (CCK) (P = 0.03) and insulin (P = 0.02) was associated with decreased caloric intake. Acceleration of GE at 60 min after initiating eating increased postprandial symptom scores measured 30 min after the completion of food consumption (P = 0.01). Postprandial increase in CCK (P = 0.002) and PP (P = 0.02) was associated with postprandial symptoms. CONCLUSION Meal size can be reduced in overweight/obese subjects by pharmacologically accelerating GE. This may be a reasonable target in obesity management.
Collapse
|
15
|
Darmani NA, Ray AP. Evidence for a re-evaluation of the neurochemical and anatomical bases of chemotherapy-induced vomiting. Chem Rev 2009; 109:3158-99. [PMID: 19522506 DOI: 10.1021/cr900117p] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766-1854, USA.
| | | |
Collapse
|
16
|
Shin JW, Loewy AD. Gastric afferents project to the aldosterone-sensitive HSD2 neurons of the NTS. Brain Res 2009; 1301:34-43. [PMID: 19747470 DOI: 10.1016/j.brainres.2009.08.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/24/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
The HSD2 (11-beta-hydroxysteroid dehydrogenase-type 2 enzyme) containing neurons of the nucleus tractus solitarius (NTS) become activated during low-sodium and high-aldosterone states such as hypovolemia. This response may be due to hormonal and/or neural signals. Hormonal signals may activate neurons in the area postrema that innervate the HSD2 neurons. The vagus nerve projects directly to the HSD2 neurons and this could be another route whereby these neurons receive information about systemic sodium/aldosterone status. The peripheral sites of origin that contribute to this vagal projection remain unknown, and in the present study, we injected the transganglionic tracer, cholera toxin beta-subunit-horseradish peroxidase (CTb-HRP), into wall of various gastrointestinal organs (stomach, small and large intestine) or liver of rats. Confocal microscopy of brainstem sections stained by a double immunohistochemical procedure was used to analyze whether the HSD2 neurons received axonal contacts from specific gastrointestinal structures. The major source of afferents arose from the stomach, mainly from its pyloric antrum, but a weaker input originated from the fundus region. A trace amount originated from the duodenum. The terminal part of the small intestine and large intestine did not to contribute to this projection. Similarly, no afferent inputs from the liver or portal vein were found. In conclusion, HSD2 neurons receive an input mainly from the stomach and these results are considered as potential sites affecting sodium intake.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
17
|
Lenard NR, Berthoud HR. Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity (Silver Spring) 2008; 16 Suppl 3:S11-22. [PMID: 19190620 PMCID: PMC2687326 DOI: 10.1038/oby.2008.511] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A changing environment and lifestyle on the background of evolutionary engraved and perinatally imprinted physiological response patterns is the foremost explanation for the current obesity epidemic. However, it is not clear what the mechanisms are by which the modern environment overrides the physiological controls of appetite and homeostatic body-weight regulation. Food intake and energy expenditure are controlled by complex, redundant, and distributed neural systems involving thousands of genes and reflecting the fundamental biological importance of adequate nutrient supply and energy balance. There has been much progress in identifying the important role of hypothalamus and caudal brainstem in the various hormonal and neural mechanisms by which the brain informs itself about availability of ingested and stored nutrients and, in turn, generates behavioral, autonomic, and endocrine output. Some of the genes involved in this "homeostatic" regulator are crucial for energy balance as manifested in the well-known monogenic obesity models. However, it can be clearly demonstrated that much larger portions of the nervous system of animals and humans, including the cortex, basal ganglia, and the limbic system, are concerned with the procurement of food as a basic and evolutionarily conserved survival mechanism to defend the lower limits of adiposity. By forming representations and reward expectancies through processes of learning and memory, these systems evolved to engage powerful emotions for guaranteed supply with, and ingestion of, beneficial foods from a sparse and often hostile environment. They are now simply overwhelmed with an abundance of food and food cues no longer contested by predators and interrupted by famines. The anatomy, chemistry, and functions of these elaborate neural systems and their interactions with the "homeostatic" regulator in the hypothalamus are poorly understood, and many of the genes involved are either unknown or not well characterized. This is regrettable because these systems are directly and primarily involved in the interactions of the modern environment and lifestyle with the human body. They are no less "physiological" than metabolic-regulatory mechanisms that have attracted most of the research during the past 15 years.
Collapse
Affiliation(s)
- Natalie R. Lenard
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
18
|
Abstract
Studying communication between the gut and the brain is as relevant and exciting as it has been since Pavlov's discoveries a century ago. Although the efferent limb of this communication has witnessed significant advances, it is the afferent, or sensory, limb that has recently made for exciting news. It is now clear that signals from the gut are crucial for the control of appetite and the regulation of energy balance, glucose homeostasis, and more. Ghrelin, discovered just a few years ago, is the first gut hormone that increases appetite, and it may be involved in eating disorders. The stable analogue of glucagon-like peptide-1 has rapidly advanced to one of the most promising treatment options for type-2 diabetes. Changes in the signalling patterns of these and other gut hormones best explain the remarkable capacity of gastric bypass surgery to lower food intake and excess body weight. Given the enormous societal implications of the obesity epidemic, these are no small feats. Together with the older gut hormone cholecystokinin and abundant vagal mechanosensors, the gut continuously sends information to the brain regarding the quality and quantity of ingested nutrients, not only important for satiation and meal termination, but also for the appetitive phase of ingestive behaviour and the patterning of meals within given environmental constraints. By acting not only on brainstem and hypothalamus, this stream of sensory information from the gut to the brain is in a position to generate a feeling of satisfaction and happiness as observed after a satiating meal and exploited in vagal afferent stimulation for depression.
Collapse
Affiliation(s)
- H-R Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
19
|
Abstract
Food intake and energy expenditure are controlled by complex, redundant, and distributed neural systems that reflect the fundamental biological importance of adequate nutrient supply and energy balance. Much progress has been made in identifying the various hormonal and neural mechanisms by which the brain informs itself about availability of ingested and stored nutrients and, in turn, generates behavioral, autonomic, and endocrine output. While hypothalamus and caudal brainstem play crucial roles in this homeostatic function, areas in the cortex and limbic system are important for processing information regarding prior experience with food, reward, and emotion, as well as social and environmental context. Most vertebrates can store a considerable amount of energy as fat for later use, and this ability has now become one of the major health risks for many human populations. The predisposition to develop obesity can theoretically result from any pathological malfunction or lack of adaptation to changing environments of this highly complex system.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
| | | |
Collapse
|
20
|
The vagus nerve, food intake and obesity. ACTA ACUST UNITED AC 2008; 149:15-25. [PMID: 18482776 DOI: 10.1016/j.regpep.2007.08.024] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 08/08/2007] [Indexed: 01/01/2023]
Abstract
Food interacts with sensors all along the alimentary canal to provide the brain with information regarding its composition, energy content, and beneficial effect. Vagal afferents innervating the gastrointestinal tract, pancreas, and liver provide a rapid and discrete account of digestible food in the alimentary canal, as well as circulating and stored fuels, while vagal efferents, together with the sympathetic nervous system and hormonal mechanisms, codetermine the rate of nutrient absorption, partitioning, storage, and mobilization. Although vagal sensory mechanisms play a crucial role in the neural mechanism of satiation, there is little evidence suggesting a significant role in long-term energy homeostasis. However, increasing recognition of vagal involvement in the putative mechanisms making bariatric surgeries the most effective treatment for obesity should greatly stimulate future research to uncover the many details regarding the specific transduction mechanisms in the periphery and the inter- and intra-neuronal signaling cascades disseminating vagal information across the neuraxis.
Collapse
|
21
|
Boschmann M, Steiniger J, Franke G, Birkenfeld AL, Luft FC, Jordan J. Water drinking induces thermogenesis through osmosensitive mechanisms. J Clin Endocrinol Metab 2007; 92:3334-7. [PMID: 17519319 DOI: 10.1210/jc.2006-1438] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Recently, we showed that drinking 500 ml water induces thermogenesis in normal-weight men and women. OBJECTIVE We now repeated these studies in a randomized, controlled, crossover trial in overweight or obese otherwise healthy subjects (eight men and eight women), comparing also the effects of 500 ml isoosmotic saline or 50 ml water. RESULTS Only 500 ml water increased energy expenditure by 24% over the course of 60 min after ingestion, whereas isoosmotic saline and 50 ml water had no effect. Heart rate and blood pressure did not change in these young, healthy subjects. CONCLUSIONS Our data exclude volume-related effects or gastric distension as the mediator of the thermogenic response to water drinking. Instead, we hypothesize the existence of a portal osmoreceptor, most likely an ion channel.
Collapse
Affiliation(s)
- Michael Boschmann
- Franz Volhard Clinical Research Center and Helios-Klinikum-Berlin, Charité Campus Buch, Universitary Medicine Berlin, Wiltbergstrasse 50, Hs. 129, D-13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Ghosh C, Storey-Workley M, Usip S, Hafemeister J, Miller KE, Papka RE. Glutamate and metabotropic glutamate receptors associated with innervation of the uterine cervix during pregnancy: Receptor antagonism inhibits c-fos expression in rat lumbosacral spinal cord at parturition. J Neurosci Res 2007; 85:1318-35. [PMID: 17304580 DOI: 10.1002/jnr.21225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dorsal root ganglia (DRG) neurons connect the spinal cord and uterine cervix, and are activated at parturition with subsequent stimulation of secondary neurons in the spinal dorsal horn and autonomic areas. Neuropeptide neurotransmitters and receptors have been studied in these areas, but amino acid transmitters, e.g., glutamate, an excitatory neurotransmitter involved in sensory and nociceptive processing, have not been characterized. To determine if glutamate is involved in innervation of the cervix, rats were examined for markers of glutamatergic neurons in the L6-S1 spinal cord, DRG and cervix. Metabotropic glutamate receptors mGluR5 in the spinal dorsal horn and their expression over pregnancy were examined in pregnant rats and pregnant rats treated continuously with an antagonist of mGluR5, 2-methyl-6-(phenylethynyl) pyridine (MPEP). Rats were allowed to deliver pups to determine if the antagonist altered the expression of an early response gene protein, Fos, in the L6-S1 cord. Immunohistochemistry showed glutamate- and vesicular glutamate transporter1 (VGluT1)-positive fibers in the cervix, glutamate- and VGluT1-expressing neurons in the DRG, some of which also exhibited retrograde tracer from cervical injections, and VGluT1 and mGluR5 immunoreactivities in the L6-S1 spinal dorsal horns. Expression of mGluR5 receptors increased over pregnancy. Fos-positive neurons were present among mGluR5-immunoreactivity in the spinal dorsal horn. Parturition-induced Fos-positive neurons in the spinal cords were abundant in control rats, but were reduced by 70% in MPEP-treated animals. These results suggest that glutamate is likely involved in the transmission of sensory signals, possibly pain, from the cervix to the spinal cord at parturition.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Northeastern Ohio Universities College of Medicine, Department of Neurobiology, Rootstown, OH 44272, USA
| | | | | | | | | | | |
Collapse
|
23
|
Savastano DM, Hayes MR, Covasa M. Serotonin-type 3 receptors mediate intestinal lipid-induced satiation and Fos-like immunoreactivity in the dorsal hindbrain. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1063-70. [PMID: 17110529 DOI: 10.1152/ajpregu.00699.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several gastrointestinal stimuli, including some intestinal nutrients, have been shown to exert their satiating effect via activation of serotonin type-3 (5-HT(3)) receptors. The presence of lipids in the small intestine potently suppresses food intake; however, whether 5-HT(3) receptors play a role in this response has not been directly examined. Therefore, using the selective 5-HT(3) receptor antagonist ondansetron, we tested the hypothesis that duodenal infusion of lipid suppresses intake of both sucrose solution and chow through 5-HT(3) receptor activation. Rats duodenally infused with 72 and 130 mM Intralipid suppressed 1-h 15% sucrose intake by 33 and 67%, respectively. Suppression of sucrose intake by 72 mM Intralipid was significantly attenuated by ondansetron at all doses tested (0.5, 1.0, 2.0, and 5.0 mg/kg ip), whereas the lowest effective dose of ondansetron to attenuate suppression of intake by 130 mM Intralipid was 1.0 mg/kg. Furthermore, infusion of 130 mM Intralipid suppressed 1- and 4-h chow intake by 35 and 20%, respectively. Ondansetron administered as low as 0.5 mg/kg significantly attenuated 1-h Intralipid-induced suppression of chow intake and completely reversed the suppression by 4 h. Administration of ondansetron alone did not alter sucrose or chow intake compared with vehicle injection at any time. Finally, to test whether Intralipid-induced neuronal activation of the dorsal vagal complex is mediated by 5-HT(3) receptors, Fos-like immunoreactivity (Fos-LI) was quantified in ondansetron-pretreated rats following intestinal lipid infusion. Ondansetron (1 mg/kg) significantly attenuated duodenal intralipid-induced Fos-LI in the dorsal hindbrain. These data support the hypothesis that 5-HT(3) receptors mediate both satiation, as well as hindbrain neuronal responses evoked by intestinal lipids.
Collapse
MESH Headings
- Animals
- Area Postrema/drug effects
- Dose-Response Relationship, Drug
- Fat Emulsions, Intravenous/administration & dosage
- Immunohistochemistry
- Infusions, Intravenous
- Injections, Intraventricular
- Intestine, Small/drug effects
- Intestine, Small/physiology
- Lipids/administration & dosage
- Male
- Ondansetron/administration & dosage
- Ondansetron/pharmacology
- Proto-Oncogene Proteins c-fos/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Serotonin, 5-HT3/drug effects
- Receptors, Serotonin, 5-HT3/physiology
- Rhombencephalon/physiology
- Satiety Response/drug effects
- Serotonin Antagonists/administration & dosage
- Serotonin Antagonists/pharmacology
- Solitary Nucleus/drug effects
- Sucrose/administration & dosage
- Sucrose/metabolism
Collapse
Affiliation(s)
- David M Savastano
- Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, 126 South Henderson, University Park, PA 16802, USA
| | | | | |
Collapse
|
24
|
Raj SR, Biaggioni I, Black BK, Rali A, Jordan J, Taneja I, Harris PA, Robertson D. Sodium Paradoxically Reduces the Gastropressor Response in Patients With Orthostatic Hypotension. Hypertension 2006; 48:329-34. [PMID: 16785332 DOI: 10.1161/01.hyp.0000229906.27330.4f] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Orthostatic hypotension (OH) can cause syncope that is difficult to treat. We have found that 473 mL (16 oz) of water can increase systolic blood pressure (SBP) by >30 mm Hg in many OH patients (the gastropressor response). OH patients are routinely advised to increase their sodium intake to augment their blood volume. We tested the hypothesis that the ingestion of salt with water would increase the magnitude of the acute pressor response compared with water alone in patients with OH. Patients with OH (n=9; female=5; 65±3 years) underwent a randomized crossover trial of drinking water (H
2
O) and salt water (NaCl-H
2
O). Noninvasive heart rate and BP were measured with the patient seated for ≥60 minutes after ingestion. The area under the curve for SBP was greater with H
2
O than NaCl-H
2
O for the 30 minutes (714±388 mm Hg×min versus 364±369 mm Hg×min;
P
=0.002) and 60 minutes (1454±827 mm Hg×min versus 812±734 mm Hg×min;
P
=0.048) after ingestion. The increase in SBP with H
2
O was greater than with NaCl-H
2
O at 30 minutes (37±6 versus 18±5 mm Hg;
P
=0.006) but not at 60 minutes (17±6 versus 10±6 mm Hg;
P
=0.4). Norepinephrine increased after H
2
O (
P
=0.018) but not after NaCl-H
2
O (
P
=0.195). Both oral water and salt water increase BP in patients with OH. Instead of augmenting the gastropressor response, the additional salt paradoxically attenuates the pressor response to water. These data suggest a potentially important role for gastrointestinal osmolality in the activation of the sympathetic nervous system leading to cardiovascular reflexes responsible for the gastropressor response.
Collapse
Affiliation(s)
- Satish R Raj
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lin LH, Talman WT. Vesicular glutamate transporters and neuronal nitric oxide synthase colocalize in aortic depressor afferent neurons. J Chem Neuroanat 2006; 32:54-64. [PMID: 16735103 DOI: 10.1016/j.jchemneu.2006.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/11/2006] [Accepted: 04/11/2006] [Indexed: 11/24/2022]
Abstract
The aortic depressor nerve (ADN) primarily transmits baroreceptor signals from the aortic arch to the nucleus tractus solitarii. Cell bodies of neurons that send peripheral fibers to form the ADN are located in the nodose ganglion (NG). Studies have implicated glutamate and nitric oxide in transmission of baroreflex signals; therefore, we tested the hypothesis that ADN neurons contain either vesicular glutamate transporters (VGLUTs) or neuronal nitric oxide synthase (nNOS) or both. We applied a fluorescent tracer, tetramethyl rhodamine dextran (TRD), to rat ADN to identify ADN neurons and then performed immunofluorescent labeling for nNOS and VGLUTs 1, 2, and 3 in NG sections. We found that VGLUT2-immunoreactivity (IR) and VGLUT3-IR was present in a significantly higher proportion of TRD positive neurons than in TRD negative neurons. In contrast, the percentage of TRD positive neurons containing VGLUT1-IR or nNOS-IR did not differ from that of TRD negative neurons. We also observed that the percentage of TRD positive neurons containing both VGLUT2-IR and nNOS-IR and the percentage of TRD positive neurons containing both VGLUT3-IR and nNOS-IR were significantly higher than that of TRD negative neurons. On the other hand, colocalization of VGLUT1-IR and nNOS-IR in TRD positive neurons did not differ from that of TRD negative neurons. These results support our hypothesis and suggest prominent roles of VGLUT2-IR containing neurons and VGLUT3-IR containing neurons in transmitting cardiovascular signals via the ADN to the brain stem.
Collapse
Affiliation(s)
- L H Lin
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
26
|
Li Y, Wu X, Yao H, Owyang C. Secretin activates vagal primary afferent neurons in the rat: evidence from electrophysiological and immunohistochemical studies. Am J Physiol Gastrointest Liver Physiol 2005; 289:G745-52. [PMID: 15920018 DOI: 10.1152/ajpgi.00039.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, we evaluated the vagal afferent response to secretin at physiological concentrations and localized the site of secretin's action on vagal afferent pathways in the rat. The discharge of sensory neurons supplying the gastrointestinal tract was recorded from nodose ganglia. Of 91 neurons activated by electrical vagal stimulation, 19 neurons showed an increase in firing rate in response to intestinal perfusion of 5-HT (from 1.5 +/- 0.2 to 25 +/- 4 impulses/20 s) but no response to intestinal distension. A close intra-arterial injection of secretin (2.5 and 5.0 pmol) elicited responses in 15 of these 19 neurons (from 1.5 +/- 0.2 impulses/20 s at basal to 21 +/- 4 and 43 +/- 5 impulses/20 s, respectively). Subdiaphragmatic vagotomy and perivagal application of capsaicin, but not supranodose vagotomy, completely abolished the secretin-elicited vagal nodose neuronal response. In a separate study, 9 tension receptor afferents among 91 neurons responded positively to intestinal distension but failed to respond to luminal 5-HT. These nine neurons also showed no response to administration of secretin. As expected, immunohistochemical studies showed that secretin administration significantly increased the number of Fos-positive neurons in vagal nodose ganglia. In conclusion, we demonstrated for the first time that vagal sensory neurons are activated by secretin at physiological concentrations. A subpopulation of secretin-sensitive vagal afferent fibers is located in the intestinal mucosa, many of which are responsive to luminal 5-HT.
Collapse
Affiliation(s)
- Ying Li
- Gastroenterology Research Unit, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|