1
|
Sun Y, Jiang W, Liao X, Wang D. Hallmarks of perineural invasion in pancreatic ductal adenocarcinoma: new biological dimensions. Front Oncol 2024; 14:1421067. [PMID: 39119085 PMCID: PMC11307098 DOI: 10.3389/fonc.2024.1421067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant tumor with a high metastatic potential. Perineural invasion (PNI) occurs in the early stages of PDAC with a high incidence rate and is directly associated with a poor prognosis. It involves close interaction among PDAC cells, nerves and the tumor microenvironment. In this review, we detailed discuss PNI-related pain, six specific steps of PNI, and treatment of PDAC with PNI and emphasize the importance of novel technologies for further investigation.
Collapse
Affiliation(s)
- Yaquan Sun
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Wei Jiang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Muñoz-Islas E, Santiago-SanMartin ED, Mendoza-Sánchez E, Torres-Rodríguez HF, Ramírez-Quintanilla LY, Peters CM, Jiménez-Andrade JM. Long-term effects of gestational diabetes mellitus on the pancreas of female mouse offspring. World J Diabetes 2024; 15:758-768. [PMID: 38680692 PMCID: PMC11045410 DOI: 10.4239/wjd.v15.i4.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Prolonged fetal exposure to hyperglycemia may increase the risk of developing abnormal glucose metabolism and type-2 diabetes during childhood, adolescence, and adulthood; however, the mechanisms by which gestational diabetes mellitus (GDM) predisposes offspring to metabolic disorders remain unknown. AIM To quantify the nerve axons, macrophages, and vasculature in the pancreas from adult offspring born from mouse dams with GDM. METHODS GDM was induced by i.p. administration of streptozotocin (STZ) in ICR mouse dams. At 12 wk old, fasting blood glucose levels were determined in offspring. At 15 wk old, female offspring born from dams with and without GDM were sacrificed and pancreata were processed for immunohistochemistry. We quantified the density of sensory [calcitonin gene-related peptide (CGRP)] and tyrosine hydroxylase (TH) axons, blood vessels (endomucin), and macro-phages (CD68) in the splenic pancreas using confocal microscopy. RESULTS Offspring mice born from STZ-treated dams had similar body weight and blood glucose values compared to offspring born from vehicle-treated dams. However, the density of CGRP+ and TH+ axons, endomucin+ blood vessels, and CD68+ macrophages in the exocrine pancreas was significantly greater in offspring from mothers with GDM vs control offspring. Likewise, the microvasculature in the islets was significantly greater, but not the number of macrophages within the islets of offspring born from dams with GDM compared to control mice. CONCLUSION GDM induces neuronal, vascular, and inflammatory changes in the pancreas of adult progeny, which may partially explain the higher propensity for offspring of mothers with GDM to develop metabolic diseases.
Collapse
Affiliation(s)
- Enriqueta Muñoz-Islas
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa 88740, Tamaulipas, Mexico
| | - Edgar David Santiago-SanMartin
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa 88740, Tamaulipas, Mexico
| | - Eduardo Mendoza-Sánchez
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa 88740, Tamaulipas, Mexico
| | - Héctor Fabián Torres-Rodríguez
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa 88740, Tamaulipas, Mexico
| | | | - Christopher Michael Peters
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston Salem, NC 27101, United States
| | - Juan Miguel Jiménez-Andrade
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa 88740, Tamaulipas, Mexico
| |
Collapse
|
3
|
Ren W, Hua M, Cao F, Zeng W. The Sympathetic-Immune Milieu in Metabolic Health and Diseases: Insights from Pancreas, Liver, Intestine, and Adipose Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306128. [PMID: 38039489 PMCID: PMC10885671 DOI: 10.1002/advs.202306128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/28/2023] [Indexed: 12/03/2023]
Abstract
Sympathetic innervation plays a crucial role in maintaining energy balance and contributes to metabolic pathophysiology. Recent evidence has begun to uncover the innervation landscape of sympathetic projections and sheds light on their important functions in metabolic activities. Additionally, the immune system has long been studied for its essential roles in metabolic health and diseases. In this review, the aim is to provide an overview of the current research progress on the sympathetic regulation of key metabolic organs, including the pancreas, liver, intestine, and adipose tissues. In particular, efforts are made to highlight the critical roles of the peripheral nervous system and its potential interplay with immune components. Overall, it is hoped to underscore the importance of studying metabolic organs from a comprehensive and interconnected perspective, which will provide valuable insights into the complex mechanisms underlying metabolic regulation and may lead to novel therapeutic strategies for metabolic diseases.
Collapse
Affiliation(s)
- Wenran Ren
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
| | - Meng Hua
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
| | - Fang Cao
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhou563000China
| | - Wenwen Zeng
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineTaiyuan030001China
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijing100084China
| |
Collapse
|
4
|
Zhu M, Luo F, Xu B, Xu J. Research Progress of Neural Invasion in Pancreatic Cancer. Curr Cancer Drug Targets 2024; 24:397-410. [PMID: 37592782 DOI: 10.2174/1568009623666230817105221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Pancreatic cancer is one of the highly malignant gastrointestinal tumors in humans, and patients suffer from cancer pain in the process of cancer. Most patients suffer from severe pain in the later stages of the disease. The latest studies have shown that the main cause of pain in patients with pancreatic cancer is neuroinflammation caused by tumor cells invading nerves and triggering neuropathic pain on this basis, which is believed to be the result of nerve invasion. Peripheral nerve invasion (PNI), defined as the presence of cancer cells along the nerve or in the epineurial, perineural, and endoneurial spaces of the nerve sheath, is a special way for cancer to spread to distant sites. However, due to limited clinical materials, the research on the mechanism of pancreatic cancer nerve invasion has not been carried out in depth. In addition, perineural invasion is considered to be one of the underlying causes of recurrence and metastasis after pancreatectomy and an independent predictor of prognosis. This article systematically reviewed the neural invasion of pancreatic cancer through bioinformatics analysis, clinical manifestations and literature reviews.
Collapse
Affiliation(s)
- Mengying Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P.R. China
| | - Feng Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, P.R. China
| | - Jian Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P.R. China
| |
Collapse
|
5
|
Ni B, Yin Y, Li Z, Wang J, Wang X, Wang K. Crosstalk Between Peripheral Innervation and Pancreatic Ductal Adenocarcinoma. Neurosci Bull 2023; 39:1717-1731. [PMID: 37347365 PMCID: PMC10603023 DOI: 10.1007/s12264-023-01082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy, characterized by late diagnosis, aggressive growth, and therapy resistance, leading to a poor overall prognosis. Emerging evidence shows that the peripheral nerve is an important non-tumor component in the tumor microenvironment that regulates tumor growth and immune escape. The crosstalk between the neuronal system and PDAC has become a hot research topic that may provide novel mechanisms underlying tumor progression and further uncover promising therapeutic targets. In this review, we highlight the mechanisms of perineural invasion and the role of various types of tumor innervation in the progression of PDAC, summarize the potential signaling pathways modulating the neuronal-cancer interaction, and discuss the current and future therapeutic possibilities for this condition.
Collapse
Affiliation(s)
- Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zekun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Junjin Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Kaiyuan Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
6
|
Capodanno Y, Hirth M. Targeting the Cancer-Neuronal Crosstalk in the Pancreatic Cancer Microenvironment. Int J Mol Sci 2023; 24:14989. [PMID: 37834436 PMCID: PMC10573820 DOI: 10.3390/ijms241914989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the most aggressive solid tumors with a dismal prognosis and an increasing incidence. At the time of diagnosis, more than 85% of patients are in an unresectable stage. For these patients, chemotherapy can prolong survival by only a few months. Unfortunately, in recent decades, no groundbreaking therapies have emerged for PDAC, thus raising the question of how to identify novel therapeutic druggable targets to improve prognosis. Recently, the tumor microenvironment and especially its neural component has gained increasing interest in the pancreatic cancer field. A histological hallmark of PDAC is perineural invasion (PNI), whereby cancer cells invade surrounding nerves, providing an alternative route for metastatic spread. The extent of PNI has been positively correlated with early tumor recurrence and reduced overall survival. Multiple studies have shown that mechanisms involved in PNI are also involved in tumor spread and pain generation. Targeting these pathways has shown promising results in alleviating pain and reducing PNI in preclinical models. In this review, we will describe the mechanisms and future treatment strategies to target this mutually trophic interaction between cancer cells to open novel avenues for the treatment of patients diagnosed with PDAC.
Collapse
Affiliation(s)
- Ylenia Capodanno
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69117 Heidelberg, Germany
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Michael Hirth
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Vertiprakhov VG, Grozina AA, Fisinin VI, Surai PF. Adaptation of chicken pancreatic secretory functions to feed composition. WORLD POULTRY SCI J 2023. [DOI: 10.1080/00439339.2023.2163042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- V. G. Vertiprakhov
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Moscow, Russia
| | - A. A. Grozina
- Department of Physiology and Biochemistry, Federal Scientific Center “All-Russian Research and Technological Poultry Institute” of Russian Academy of Sciences, Sergiev Posad, Russia
| | - V. I. Fisinin
- Department of Physiology and Biochemistry, Federal Scientific Center “All-Russian Research and Technological Poultry Institute” of Russian Academy of Sciences, Sergiev Posad, Russia
| | - P. F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol, UK
| |
Collapse
|
8
|
Chauvet S, Hubert F, Mann F, Mezache M. Tumorigenesis and axons regulation for the pancreatic cancer: A mathematical approach. J Theor Biol 2023; 556:111301. [PMID: 36270328 DOI: 10.1016/j.jtbi.2022.111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
The nervous system is today recognized to play an important role in the development of cancer. Indeed, neurons extend long processes (axons) that grow and infiltrate tumors in order to regulate the progression of the disease in a positive or negative way, depending on the type of neuron considered. Mathematical modeling of this biological process allows to formalize the nerve-tumor interactions and to test hypotheses in silico to better understand this phenomenon. In this work, we introduce a system of differential equations modeling the progression of pancreatic ductal adenocarcinoma (PDAC) coupled with associated changes in axonal innervation. The study of the asymptotic behavior of the model confirms the experimental observations that PDAC development is correlated with the type and densities of axons in the tissue. We study then the identifiability and the sensitivity of the model parameters. The identifiability analysis informs on the adequacy between the parameters of the model and the experimental data and the sensitivity analysis on the most contributing factors on the development of cancer. It leads to significant insights on the main neural checkpoints and mechanisms controlling the progression of pancreatic cancer. Finally, we give an example of a simulation of the effects of partial or complete denervation that sheds lights on complex correlation between the healthy, pre-cancerous and cancerous cell densities and axons with opposite functions.
Collapse
Affiliation(s)
- Sophie Chauvet
- Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living systems, Marseille, France
| | - Florence Hubert
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M (UMR 7373), Turing Centre for Living systems, Marseille, France
| | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living systems, Marseille, France
| | - Mathieu Mezache
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M (UMR 7373), Turing Centre for Living systems, Marseille, France; Université Paris-Saclay, INRAE, MaIAGE (UR 1404), 78350 Jouy-en-Josas, France.
| |
Collapse
|
9
|
Kotan R, Peto K, Deak A, Szentkereszty Z, Nemeth N. Hemorheological and Microcirculatory Relations of Acute Pancreatitis. Metabolites 2022; 13:metabo13010004. [PMID: 36676930 PMCID: PMC9863893 DOI: 10.3390/metabo13010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Acute pancreatitis still means a serious challenge in clinical practice. Its pathomechanism is complex and has yet to be fully elucidated. Rheological properties of blood play an important role in tissue perfusion and show non-specific changes in acute pancreatitis. An increase in blood and plasma viscosity, impairment of red blood cell deformability, and enhanced red blood cell aggregation caused by metabolic, inflammatory, free radical-related changes and mechanical stress contribute to the deterioration of the blood flow in the large vessels and also in the microcirculation. Revealing the significance of these changes in acute pancreatitis may better explain the pathogenesis and optimize the therapy. In this review, we give an overview of the role of impaired microcirculation by changes in hemorheological properties in acute pancreatitis.
Collapse
Affiliation(s)
- Robert Kotan
- Endocrine Surgery Unit, Linköping University Hospital, Universitetssjukhuset, 581 85 Linköping, Sweden
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Zsolt Szentkereszty
- Department of Surgery, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-416-915
| |
Collapse
|
10
|
Martinez-Sanchez N, Sweeney O, Sidarta-Oliveira D, Caron A, Stanley SA, Domingos AI. The sympathetic nervous system in the 21st century: Neuroimmune interactions in metabolic homeostasis and obesity. Neuron 2022; 110:3597-3626. [PMID: 36327900 PMCID: PMC9986959 DOI: 10.1016/j.neuron.2022.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
The sympathetic nervous system maintains metabolic homeostasis by orchestrating the activity of organs such as the pancreas, liver, and white and brown adipose tissues. From the first renderings by Thomas Willis to contemporary techniques for visualization, tracing, and functional probing of axonal arborizations within organs, our understanding of the sympathetic nervous system has started to grow beyond classical models. In the present review, we outline the evolution of these findings and provide updated neuroanatomical maps of sympathetic innervation. We offer an autonomic framework for the neuroendocrine loop of leptin action, and we discuss the role of immune cells in regulating sympathetic terminals and metabolism. We highlight potential anti-obesity therapeutic approaches that emerge from the modern appreciation of SNS as a neural network vis a vis the historical fear of sympathomimetic pharmacology, while shifting focus from post- to pre-synaptic targeting. Finally, we critically appraise the field and where it needs to go.
Collapse
Affiliation(s)
| | - Owen Sweeney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Davi Sidarta-Oliveira
- Physician-Scientist Graduate Program, Obesity and Comorbidities Research Center, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
11
|
Jimenez-Gonzalez M, Li R, Pomeranz LE, Alvarsson A, Marongiu R, Hampton RF, Kaplitt MG, Vasavada RC, Schwartz GJ, Stanley SA. Mapping and targeted viral activation of pancreatic nerves in mice reveal their roles in the regulation of glucose metabolism. Nat Biomed Eng 2022; 6:1298-1316. [PMID: 35835995 PMCID: PMC9669304 DOI: 10.1038/s41551-022-00909-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
A lack of comprehensive mapping of ganglionic inputs into the pancreas and of technology for the modulation of the activity of specific pancreatic nerves has hindered the study of how they regulate metabolic processes. Here we show that the pancreas-innervating neurons in sympathetic, parasympathetic and sensory ganglia can be mapped in detail by using tissue clearing and retrograde tracing (the tracing of neural connections from the synapse to the cell body), and that genetic payloads can be delivered via intrapancreatic injection to target sites in efferent pancreatic nerves in live mice through optimized adeno-associated viruses and neural-tissue-specific promoters. We also show that, in male mice, the targeted activation of parasympathetic cholinergic intrapancreatic ganglia and neurons doubled plasma-insulin levels and improved glucose tolerance, and that tolerance was impaired by stimulating pancreas-projecting sympathetic neurons. The ability to map the peripheral ganglia innervating the pancreas and to deliver transgenes to specific pancreas-projecting neurons will facilitate the examination of ganglionic inputs and the study of the roles of pancreatic efferent innervation in glucose metabolism.
Collapse
Affiliation(s)
- M Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Li
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L E Pomeranz
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, USA
| | - A Alvarsson
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - R F Hampton
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M G Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - R C Vasavada
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - G J Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - S A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Hampton RF, Jimenez-Gonzalez M, Stanley SA. Unravelling innervation of pancreatic islets. Diabetologia 2022; 65:1069-1084. [PMID: 35348820 PMCID: PMC9205575 DOI: 10.1007/s00125-022-05691-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
The central and peripheral nervous systems play critical roles in regulating pancreatic islet function and glucose metabolism. Over the last century, in vitro and in vivo studies along with examination of human pancreas samples have revealed the structure of islet innervation, investigated the contribution of sympathetic, parasympathetic and sensory neural pathways to glucose control, and begun to determine how the structure and function of pancreatic nerves are disrupted in metabolic disease. Now, state-of-the art techniques such as 3D imaging of pancreatic innervation and targeted in vivo neuromodulation provide further insights into the anatomy and physiological roles of islet innervation. Here, we provide a summary of the published work on the anatomy of pancreatic islet innervation, its roles, and evidence for disordered islet innervation in metabolic disease. Finally, we discuss the possibilities offered by new technologies to increase our knowledge of islet innervation and its contributions to metabolic regulation.
Collapse
Affiliation(s)
- Rollie F Hampton
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Guillot J, Dominici C, Lucchesi A, Nguyen HTT, Puget A, Hocine M, Rangel-Sosa MM, Simic M, Nigri J, Guillaumond F, Bigonnet M, Dusetti N, Perrot J, Lopez J, Etzerodt A, Lawrence T, Pudlo P, Hubert F, Scoazec JY, van de Pavert SA, Tomasini R, Chauvet S, Mann F. Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer. Nat Commun 2022; 13:1985. [PMID: 35418199 PMCID: PMC9007988 DOI: 10.1038/s41467-022-29659-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/23/2022] [Indexed: 01/06/2023] Open
Abstract
Neuronal nerve processes in the tumor microenvironment were highlighted recently. However, the origin of intra-tumoral nerves remains poorly known, in part because of technical difficulties in tracing nerve fibers via conventional histological preparations. Here, we employ three-dimensional (3D) imaging of cleared tissues for a comprehensive analysis of sympathetic innervation in a murine model of pancreatic ductal adenocarcinoma (PDAC). Our results support two independent, but coexisting, mechanisms: passive engulfment of pre-existing sympathetic nerves within tumors plus an active, localized sprouting of axon terminals into non-neoplastic lesions and tumor periphery. Ablation of the innervating sympathetic nerves increases tumor growth and spread. This effect is explained by the observation that sympathectomy increases intratumoral CD163+ macrophage numbers, which contribute to the worse outcome. Altogether, our findings provide insights into the mechanisms by which the sympathetic nervous system exerts cancer-protective properties in a mouse model of PDAC.
Collapse
Affiliation(s)
| | | | | | - Huyen Thi Trang Nguyen
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
- University of Science and Technology of Hanoi (USTH), VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | | | | | | | - Milesa Simic
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Jérémy Nigri
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Fabienne Guillaumond
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Martin Bigonnet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Nelson Dusetti
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Jimmy Perrot
- Department of Anatomopathology, Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jonathan Lopez
- Department of Biochemistry and Molecular Biology, Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon, France
- Faculty of Medicine Lyon-Est, Lyon 1 University, Université de Lyon, Lyon, France
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR5286, Lyon, France
| | - Anders Etzerodt
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
- Department of Biomedecine, Aarhus University, Aarhus, Denmark
| | - Toby Lawrence
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Pierre Pudlo
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
| | - Florence Hubert
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Richard Tomasini
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | | | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM, Marseille, France.
| |
Collapse
|
14
|
Krivova YS, Proshchina AE, Otlyga DA, Leonova OG, Saveliev SV. Prenatal development of sympathetic innervation of the human pancreas. Ann Anat 2021; 240:151880. [PMID: 34896557 DOI: 10.1016/j.aanat.2021.151880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The sympathetic nervous system plays an important role in the regulation of pancreatic exocrine and endocrine secretion. The results of experimental studies also demonstrate the involvement of the sympathetic nervous system in the regulation of endocrine cell differentiation and islet formation during the development of the pancreas. However, the prenatal development of sympathetic innervation of the human pancreas has not yet been studied. MATERIAL AND METHODS Pancreatic autopsy samples from 24 human fetuses were examined using immunohistochemistry with antibodies to tyrosine hydroxylase (TH). The density, concentration, and size (width, length, perimeter and area) of the TH-positive sympathetic nerves were compared in four developmental periods: pre-fetal (8-11 weeks post conception (w.p.c.), n = 6), early fetal (13-20 gestational weeks (g.w.), n = 7), middle fetal (21-28 g.w., n = 6) and late fetal (29-40 g.w., n = 5) using morphometric methods and statistical analysis (Multiple Comparisons p values). Double immunofluorescence with antibodies to TH and either insulin or glucagon and confocal microscopy were applied to analyze the interaction between the sympathetic nerves and endocrine cells, and the co-localization of TH with hormones. RESULTS TH-positive sympathetic nerves were detected in the fetal pancreas starting from the early stages (8 w.p.c.). The developmental dynamics of sympathetic nerves was follows: from the pre-fetal period, the amount of TH-positive nerves gradually increased and their branching occurred reaching the highest density and concentration in the middle fetal period, followed by a decrease in these parameters in the late fetal period. From the 14th g.w. onwards, thin TH-positive nerve fibers were mainly distributed in the vicinity of blood vessels and around the neurons of intrapancreatic ganglia, which is similar in adults. There were only rare TH-positive nerve fibers adjacent to acini or located at the periphery of some islets. The close interactions between the TH-positive nerve fibers and endocrine cells were observed in the neuro-insular complexes. Additionally, non-neuronal TH-containing cells were found in the pancreas of fetuses from the pre-fetal and early fetal periods. Some of these cells simultaneously contained glucagon. CONCLUSIONS The results demonstrate that sympathetic innervation of the human pancreas, including the formation of perivascular and intraganglionic nerve plexuses, extensively develops during prenatal period, while some processes, such as the formation of sympathetic innervation of islet capillaries, may occur postnatally. Non-neuronal TH-containing cells, as well as the interactions between the sympathetic terminals and endocrine cells observed in the fetal pancreas may be necessary for endocrine pancreas development in humans.
Collapse
Affiliation(s)
- Yuliya S Krivova
- Research Institute of Human Morphology, Tsurupy st., 3, 117418 Moscow, Russia.
| | | | - Dmitry A Otlyga
- Research Institute of Human Morphology, Tsurupy st., 3, 117418 Moscow, Russia.
| | - Ol'ga G Leonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova St. 32, 119991 Moscow, Russia.
| | - Sergey V Saveliev
- Research Institute of Human Morphology, Tsurupy st., 3, 117418 Moscow, Russia.
| |
Collapse
|
15
|
Wang J, Chen Y, Li X, Zou X. Perineural Invasion and Associated Pain Transmission in Pancreatic Cancer. Cancers (Basel) 2021; 13:4594. [PMID: 34572820 PMCID: PMC8467801 DOI: 10.3390/cancers13184594] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the cancers with the highest incidence of perineural invasion (PNI), which often indicates a poor prognosis. Aggressive tumor cells invade nerves, causing neurogenic inflammation; the tumor microenvironment also induces nerves to undergo a series of structural and functional reprogramming. In turn, neurons and the surrounding glial cells promote the development of pancreatic cancer through autocrine and/or paracrine signaling. In addition, hyperalgesia in PDAC patients implies alterations of pain transmission in the peripheral and central nervous systems. Currently, the studies on this topic are relatively limited. This review will elaborate on the mechanisms of tumor-neural interactions and its possible relationship with pain from several aspects that have been focused on in recent years.
Collapse
Affiliation(s)
| | | | | | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (J.W.); (Y.C.); (X.L.)
| |
Collapse
|
16
|
Lkhagvasuren B, Mee-Inta O, Zhao ZW, Hiramoto T, Boldbaatar D, Kuo YM. Pancreas-Brain Crosstalk. Front Neuroanat 2021; 15:691777. [PMID: 34354571 PMCID: PMC8329585 DOI: 10.3389/fnana.2021.691777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
The neural regulation of glucose homeostasis in normal and challenged conditions involves the modulation of pancreatic islet-cell function. Compromising the pancreas innervation causes islet autoimmunity in type 1 diabetes and islet cell dysfunction in type 2 diabetes. However, despite the richly innervated nature of the pancreas, islet innervation remains ill-defined. Here, we review the neuroanatomical and humoral basis of the cross-talk between the endocrine pancreas and autonomic and sensory neurons. Identifying the neurocircuitry and neurochemistry of the neuro-insular network would provide clues to neuromodulation-based approaches for the prevention and treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Battuvshin Lkhagvasuren
- Brain Science Institute, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Onanong Mee-Inta
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Zi-Wei Zhao
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Tetsuya Hiramoto
- Department of Psychosomatic Medicine, Fukuoka Hospital, National Hospital Organization, Fukuoka, Japan
| | - Damdindorj Boldbaatar
- Brain Science Institute, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan
| |
Collapse
|
17
|
Luo Y, Li Z, Ge P, Guo H, Li L, Zhang G, Xu C, Chen H. Comprehensive Mechanism, Novel Markers and Multidisciplinary Treatment of Severe Acute Pancreatitis-Associated Cardiac Injury - A Narrative Review. J Inflamm Res 2021; 14:3145-3169. [PMID: 34285540 PMCID: PMC8286248 DOI: 10.2147/jir.s310990] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is one of the common acute abdominal inflammatory diseases in clinic with acute onset and rapid progress. About 20% of the patients will eventually develop into severe acute pancreatitis (SAP) characterized by a large number of inflammatory cells infiltration, gland flocculus flaky necrosis and hemorrhage, finally inducing systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). Pancreatic enzyme activation, intestinal endotoxemia (IETM), cytokine activation, microcirculation disturbance, autonomic nerve dysfunction and autophagy dysregulation all play an essential role in the occurrence and progression of SAP. Organ dysfunction is the main cause of early death in SAP. Acute kidney injury (AKI) and acute lung injury (ALI) are common, while cardiac injury (CI) is not, but the case fatality risk is high. Many basic studies have observed obvious ultrastructure change of heart in SAP, including myocardial edema, cardiac hypertrophy, myocardial interstitial collagen deposition. Moreover, in clinical practice, patients with SAP often presented various abnormal electrocardiogram (ECG) and cardiac function. Cases complicated with acute myocardial infarction and pericardial tamponade have also been reported and even result in stress cardiomyopathy. Due to the molecular mechanisms underlying SAP-associated cardiac injury (SACI) remain poorly understood, and there is no complete, unified treatment and sovereign remedy at present, this article reviews reports referring to the pathogenesis, potential markers and treatment methods of SACI in recent years, in order to improve the understanding of cardiac injury in severe pancreatitis.
Collapse
Affiliation(s)
- YaLan Luo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - ZhaoXia Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Peng Ge
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - HaoYa Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - GuiXin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - CaiMing Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - HaiLong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
18
|
Campbell-Thompson M, Butterworth EA, Boatwright JL, Nair MA, Nasif LH, Nasif K, Revell AY, Riva A, Mathews CE, Gerling IC, Schatz DA, Atkinson MA. Islet sympathetic innervation and islet neuropathology in patients with type 1 diabetes. Sci Rep 2021; 11:6562. [PMID: 33753784 PMCID: PMC7985489 DOI: 10.1038/s41598-021-85659-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of glucagon secretion in type 1 diabetes (T1D) involves hypersecretion during postprandial states, but insufficient secretion during hypoglycemia. The sympathetic nervous system regulates glucagon secretion. To investigate islet sympathetic innervation in T1D, sympathetic tyrosine hydroxylase (TH) axons were analyzed in control non-diabetic organ donors, non-diabetic islet autoantibody-positive individuals (AAb), and age-matched persons with T1D. Islet TH axon numbers and density were significantly decreased in AAb compared to T1D with no significant differences observed in exocrine TH axon volume or lengths between groups. TH axons were in close approximation to islet α-cells in T1D individuals with long-standing diabetes. Islet RNA-sequencing and qRT-PCR analyses identified significant alterations in noradrenalin degradation, α-adrenergic signaling, cardiac β-adrenergic signaling, catecholamine biosynthesis, and additional neuropathology pathways. The close approximation of TH axons at islet α-cells supports a model for sympathetic efferent neurons directly regulating glucagon secretion. Sympathetic islet innervation and intrinsic adrenergic signaling pathways could be novel targets for improving glucagon secretion in T1D.
Collapse
Affiliation(s)
- Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .,Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, 32610, USA.
| | - Elizabeth A Butterworth
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - J Lucas Boatwright
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Malavika A Nair
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lith H Nasif
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kamal Nasif
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Andy Y Revell
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Ivan C Gerling
- Department of Medicine-Endocrinology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
19
|
Makhmutova M, Weitz J, Tamayo A, Pereira E, Boulina M, Almaça J, Rodriguez-Diaz R, Caicedo A. Pancreatic β-Cells Communicate With Vagal Sensory Neurons. Gastroenterology 2021; 160:875-888.e11. [PMID: 33121946 PMCID: PMC10009739 DOI: 10.1053/j.gastro.2020.10.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Destroying visceral sensory nerves impacts pancreatic islet function, glucose metabolism, and diabetes onset, but how islet endocrine cells interact with sensory neurons has not been studied. METHODS We characterized the anatomical pattern of pancreatic sensory innervation by combining viral tracing, immunohistochemistry, and reporter mouse models. To assess the functional interactions of β-cells with vagal sensory neurons, we recorded Ca2+ responses in individual nodose neurons in vivo while selectively stimulating β-cells with chemogenetic and pharmacologic approaches. RESULTS We found that pancreatic islets are innervated by vagal sensory axons expressing Phox2b, substance P, calcitonin-gene related peptide, and the serotonin receptor 5-HT3R. Centrally, vagal neurons projecting to the pancreas terminate in the commissural nucleus of the solitary tract. Nodose neurons responded in vivo to chemogenetic stimulation of β-cells and to pancreas infusion with serotonin, but were not sensitive to insulin. Responses to chemogenetic and pharmacologic stimulation of β-cells were blocked by a 5-HT3R antagonist and were enhanced by increasing serotonin levels in β-cells. We further confirmed directly in living pancreas slices that sensory terminals in the islet were sensitive to serotonin. CONCLUSIONS Our study establishes that pancreatic β-cells communicate with vagal sensory neurons, likely using serotonin signaling as a transduction mechanism. Serotonin is coreleased with insulin and may therefore convey information about the secretory state of β-cells via vagal afferent nerves.
Collapse
Affiliation(s)
- Madina Makhmutova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida; Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, Florida.
| | - Jonathan Weitz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Alejandro Tamayo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Maria Boulina
- Analytical Imaging Core Facility, Miller School of Medicine, University of Miami
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida; Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida; Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, Florida; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida; Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|
20
|
Saricaoglu ÖC, Teller S, Wang X, Wang S, Stupakov P, Heinrich T, Istvanffy R, Friess H, Ceyhan GO, Demir IE. Localisation analysis of nerves in the mouse pancreas reveals the sites of highest nerve density and nociceptive innervation. Neurogastroenterol Motil 2020; 32:e13880. [PMID: 32406093 DOI: 10.1111/nmo.13880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/03/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuropathy and neuro-inflammation drive the severe pain and disease progression in human chronic pancreatitis and pancreatic cancer. Mice, especially genetically induced-mouse models, have been increasingly utilized in mechanistic research on pancreatic neuropathy, but the normal "peripheral neurobiology" of the mouse pancreas has not yet been critically compared to human pancreas. METHODS We introduced a standardized tissue-harvesting technique that preserves the anatomic orientation of the mouse pancreas and allows complete sectioning in an anterior to posterior fashion. We applied immunohistochemistry and quantitative colorimetry of all nerves from the whole organ for studying pancreatic neuro-anatomy. KEY RESULTS Nerves in the mouse pancreas appeared as "clusters" of nerve trunks in contrast to singly distributed nerve trunks in the human pancreas. Nerve trunks in the mouse pancreas were exclusively found around intrapancreatic blood vessels, and around lymphoid structures. The majority of nerve trunks were located in the pancreatic head (0.15 ± 0.08% of tissue area) and the anterior/front surface of the corpus/body (0.17 ± 0.27%), thus significantly more than in the tail (0.02 ± 0.02%, P = .006). Nerves in the tail included a higher proportion of nociceptive fibers, but the absolute majority, ie, ca. 70%, of all nociceptive fibers, were localized in the head. Mice heterozygous for Bdnf knockout allele (Bdnf+/- ) exhibited enrichment of nitrergic nerve fibers specifically in the head and corpus. CONCLUSIONS & INFERENCES Neuro-anatomy of the "mesenteric type" mouse pancreas is highly different from the "compact" human pancreas. Studies that aim at reproducing human pancreatic neuro-phenomena in mouse models should pay diligent attention to these anatomic differences.
Collapse
Affiliation(s)
- Ömer Cemil Saricaoglu
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Steffen Teller
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Xiaobo Wang
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Shenghan Wang
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Pavel Stupakov
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Heinrich
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rouzanna Istvanffy
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| |
Collapse
|
21
|
Alvarsson A, Jimenez-Gonzalez M, Li R, Rosselot C, Tzavaras N, Wu Z, Stewart AF, Garcia-Ocaña A, Stanley SA. A 3D atlas of the dynamic and regional variation of pancreatic innervation in diabetes. SCIENCE ADVANCES 2020; 6:6/41/eaaz9124. [PMID: 33036983 PMCID: PMC7557000 DOI: 10.1126/sciadv.aaz9124] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/27/2020] [Indexed: 05/08/2023]
Abstract
Understanding the detailed anatomy of the endocrine pancreas, its innervation, and the remodeling that occurs in diabetes can provide new insights into metabolic disease. Using tissue clearing and whole-organ imaging, we identified the 3D associations between islets and innervation. This technique provided detailed quantification of α and β cell volumes and pancreatic nerve fibers, their distribution and heterogeneity in healthy tissue, canonical mouse models of diabetes, and samples from normal and diabetic human pancreata. Innervation was highly enriched in the mouse endocrine pancreas, with regional differences. Islet nerve density was increased in nonobese diabetic mice, in mice treated with streptozotocin, and in pancreata of human donors with type 2 diabetes. Nerve contacts with β cells were preserved in diabetic mice and humans. In summary, our whole-organ assessment allows comprehensive examination of islet characteristics and their innervation and reveals dynamic regulation of islet innervation in diabetes.
Collapse
Affiliation(s)
- Alexandra Alvarsson
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Jimenez-Gonzalez
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rosemary Li
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carolina Rosselot
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos Tzavaras
- The Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhuhao Wu
- Department of Cell, Developmental & Regenerative Biology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah A Stanley
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Guo D, Mizukami H, Osonoi S, Takahashi K, Ogasawara S, Kudo K, Sasaki T, Yagihashi S. Beneficial effects of combination therapy of canagliflozin and teneligliptin on diabetic polyneuropathy and β-cell volume density in spontaneously type 2 diabetic Goto-Kakizaki rats. Metabolism 2020; 107:154232. [PMID: 32302619 DOI: 10.1016/j.metabol.2020.154232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
AIMS Parasympathetic nerve (PN) signaling plays a crucial role in the maintenance of pancreatic β-cell volume density (Vβ). PN may be pathologically affected in diabetic polyneuropathy (DPN). However, the association between the reduction of PNs in islets and Vβ and the therapeutic effects of a DPP4 inhibitor (DPP4i) and an SGLT2 inhibitor (SGLT2i) in nonobese type 2 diabetes mellitus (T2DM) Goto-Kakizaki rats (GK) have not been investigated. MATERIALS AND METHODS We divided 5-week old male GK and Wistar rats (W) into a DPP4i-treated group (GKTe), SGLT2i-treated group (GKCa), and combination-treated group (GKCaTe). After 25 weeks, the pancreata was pathologically evaluated. RESULTS Vβ in GK was significantly decreased (p < 0.01 vs. W), whereas Vβ was the most well preserved in GKCaTe (p < 0.05 vs. GKTe), followed by GKTe (p < 0.05 vs. GK). The decreased amount of PNs in the islets and intraepidermal nerve fiber density (IENFD) in GK was significantly improved in the treated groups compared with GK (p < 0.05 vs. GKCa and GKTe and p < 0.01 vs. GKCaTe). PN density and IENFD were significantly correlated with Vβ (r = 0.55, p < 0.01 and r = 0.54, p < 0.01, respectively). IENFD was identified as a surrogate marker for the prediction of Vβ (cutoff value, 16.39). CONCLUSIONS The combination therapy of DPP4i and SGLT2i improved Vβ accompanied by PNs density and IENFD. IENFD was proportionally correlated with Vβ. Therefore, the prevention of DPN development may be concurrently beneficial for the preservation of Vβ in nonobese T2DM.
Collapse
Affiliation(s)
- Danyang Guo
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kazuhisa Takahashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kazuhiro Kudo
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
23
|
Abstract
The contribution of nerves to the pathogenesis of malignancies has emerged as an important component of the tumour microenvironment. Recent studies have shown that peripheral nerves (sympathetic, parasympathetic and sensory) interact with tumour and stromal cells to promote the initiation and progression of a variety of solid and haematological malignancies. Furthermore, new evidence suggests that cancers may reactivate nerve-dependent developmental and regenerative processes to promote their growth and survival. Here we review emerging concepts and discuss the therapeutic implications of manipulating nerves and neural signalling for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Ali H Zahalka
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
25
|
Watabe K, Yokawa S, Inoh Y, Suzuki T, Furuno T. Decreased intracellular granule movement and glucagon secretion in pancreatic α cells attached to superior cervical ganglion neurites. Mol Cell Biochem 2018; 446:83-89. [PMID: 29318457 DOI: 10.1007/s11010-018-3275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/04/2018] [Indexed: 11/25/2022]
Abstract
Autonomic neurons innervate pancreatic islets of Langerhans and participate in the maintenance of blood glucose concentrations by controlling hormone levels through attachment with islet cells. We previously found that stimulated superior cervical ganglia (SCG) could induce Ca2+ oscillation in α cells via neuropeptide substance P using an in vitro co-culture model. In this study, we studied the effect of SCG neurite adhesion on intracellular secretory granule movement and glucagon secretion in α cells stimulated by low glucose concentration. Spinning disk microscopic analysis revealed that the mean velocity of intracellular granules was significantly lower in α cells attached to SCG neurites than that in those without neurites under low (2 mM), middle (10 mM), and high (20 mM) glucose concentrations. Stimulation by a low (2 mM) glucose concentration significantly increased glucagon secretion in α cells lacking neurites but not in those bound to neurites. These results suggest that adhesion to SCG neurites decreases low glucose-induced glucagon secretion in pancreatic α cells by attenuating intracellular granule movement activity.
Collapse
Affiliation(s)
- Kiyoto Watabe
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Takahiro Suzuki
- School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Tadahide Furuno
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan.
| |
Collapse
|
26
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
27
|
|
28
|
Brereton MF, Vergari E, Zhang Q, Clark A. Alpha-, Delta- and PP-cells: Are They the Architectural Cornerstones of Islet Structure and Co-ordination? J Histochem Cytochem 2015. [PMID: 26216135 DOI: 10.1369/0022155415583535] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Islet non-β-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca(2+)-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-β-cells to central areas of the islet. In diabetes, the transdifferentiation of non-β-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-β-cells contribute to the control of islet function.
Collapse
Affiliation(s)
- Melissa F Brereton
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom. (MFB)
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, United Kingdom. (EV, QZ, AC)
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, United Kingdom. (EV, QZ, AC)
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, United Kingdom. (EV, QZ, AC)
| |
Collapse
|
29
|
Xiang L, Mittwede PN, Clemmer JS. Glucose Homeostasis and Cardiovascular Alterations in Diabetes. Compr Physiol 2015; 5:1815-39. [PMID: 26426468 DOI: 10.1002/cphy.c150001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Dolenšek J, Rupnik MS, Stožer A. Structural similarities and differences between the human and the mouse pancreas. Islets 2015; 7:e1024405. [PMID: 26030186 PMCID: PMC4589993 DOI: 10.1080/19382014.2015.1024405] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023] Open
Abstract
Mice remain the most studied animal model in pancreas research. Since the findings of this research are typically extrapolated to humans, it is important to understand both similarities and differences between the 2 species. Beside the apparent difference in size and macroscopic organization of the organ in the 2 species, there are a number of less evident and only recently described differences in organization of the acinar and ductal exocrine tissue, as well as in the distribution, composition, and architecture of the endocrine islets of Langerhans. Furthermore, the differences in arterial, venous, and lymphatic vessels, as well as innervation are potentially important. In this article, the structure of the human and the mouse pancreas, together with the similarities and differences between them are reviewed in detail in the light of conceivable repercussions for basic research and clinical application.
Collapse
Affiliation(s)
- Jurij Dolenšek
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
- Centre for Open Innovations and Research Core@UM; University of Maribor; Maribor, Slovenia
- Institute of Physiology; Center for Physiology and Pharmacology; Medical University of Vienna; Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
- Centre for Open Innovations and Research Core@UM; University of Maribor; Maribor, Slovenia
| |
Collapse
|
31
|
Westcott EB, Segal SS. Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling. Microcirculation 2013; 20:217-38. [PMID: 23289720 DOI: 10.1111/micc.12035] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/25/2012] [Indexed: 12/30/2022]
Abstract
The control of vascular resistance and tissue perfusion reflect coordinated changes in the diameter of feed arteries and the arteriolar networks they supply. Against a background of myogenic tone and metabolic demand, vasoactive signals originating from perivascular sympathetic and sensory nerves are integrated with endothelium-derived signals to produce vasodilation or vasoconstriction. PVNs release adrenergic, cholinergic, peptidergic, purinergic, and nitrergic neurotransmitters that lead to SMC contraction or relaxation via their actions on SMCs, ECs, or other PVNs. ECs release autacoids that can have opposing actions on SMCs. Respective cell layers are connected directly to each other through GJs at discrete sites via MEJs projecting through holes in the IEL. Whereas studies of intercellular communication in the vascular wall have centered on endothelium-derived signals that govern SMC relaxation, attention has increasingly focused on signaling from SMCs to ECs. Thus, via MEJs, neurotransmission from PVNs can evoke distinct responses from ECs subsequent to acting on SMCs. To integrate this emerging area of investigation in light of vasomotor control, the present review synthesizes current understanding of signaling events that originate within SMCs in response to perivascular neurotransmission in light of EC feedback. Although often ignored in studies of the resistance vasculature, PVNs are integral to blood flow control and can provide a physiological stimulus for myoendothelial communication. Greater understanding of these underlying signaling events and how they may be affected by aging and disease will provide new approaches for selective therapeutic interventions.
Collapse
Affiliation(s)
- Erika B Westcott
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|
32
|
Nakamura M, Inoh Y, Nakanishi M, Furuno T. Substance P plays an important role in cell adhesion molecule 1-mediated nerve–pancreatic islet α cell interaction. Biochem Biophys Res Commun 2013; 438:563-7. [DOI: 10.1016/j.bbrc.2013.07.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 01/08/2023]
|
33
|
Early manifestations of pancreatic cancer: The effect of cancer–nerve interaction. Med Hypotheses 2013; 81:180-2. [DOI: 10.1016/j.mehy.2013.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/09/2013] [Accepted: 05/15/2013] [Indexed: 12/25/2022]
|
34
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|
35
|
Udit S, Gautron L. Molecular anatomy of the gut-brain axis revealed with transgenic technologies: implications in metabolic research. Front Neurosci 2013; 7:134. [PMID: 23914153 PMCID: PMC3728986 DOI: 10.3389/fnins.2013.00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/12/2013] [Indexed: 01/05/2023] Open
Abstract
Neurons residing in the gut-brain axis remain understudied despite their important role in coordinating metabolic functions. This lack of knowledge is observed, in part, because labeling gut-brain axis neurons and their connections using conventional neuroanatomical methods is inherently challenging. This article summarizes genetic approaches that enable the labeling of distinct populations of gut-brain axis neurons in living laboratory rodents. In particular, we review the respective strengths and limitations of currently available genetic and viral approaches that permit the marking of gut-brain axis neurons without the need for antibodies or conventional neurotropic tracers. Finally, we discuss how these methodological advances are progressively transforming the study of the healthy and diseased gut-brain axis in the context of its role in chronic metabolic diseases, including diabetes and obesity.
Collapse
Affiliation(s)
- Swalpa Udit
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas Dallas, TX, USA
| | | |
Collapse
|
36
|
Coronel-Cruz C, Hernández-Tellez B, López-Vancell R, López-Vidal Y, Berumen J, Castell A, Pérez-Armendariz EM. Connexin 30.2 is expressed in mouse pancreatic beta cells. Biochem Biophys Res Commun 2013; 438:772-7. [PMID: 23831630 DOI: 10.1016/j.bbrc.2013.06.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 12/13/2022]
Abstract
Nowadays, connexin (Cx) 36 is considered the sole gap junction protein expressed in pancreatic beta cells. In the present research we investigated the expression of Cx30.2 mRNA and protein in mouse pancreatic islets. Cx30.2 mRNA and protein were identified in isolated islet preparations by qRT-PCR and Western blot, respectively. Immunohistochemical analysis showed that insulin-positive cells were stained for Cx30.2. Confocal images from double-labeled pancreatic sections revealed that Cx30.2 and Cx36 fluorescence co-localize at junctional membranes in islets from most pancreases. Abundant Cx30.2 tiny reactive spots were also found in cell cytoplasms. In beta cells cultured with stimulatory glucose concentrations, Cx30.2 was localized in both cytoplasms and cell membranes. In addition, Cx30.2 reactivity was localized at junctional membranes of endothelial or cluster of differentiation 31 (CD31) positive cells. Moreover, a significant reduction of Cx30.2 mRNA was found in islets preparations incubated for 24h in 22mM as compared with 3.3mM glucose. Therefore, it is concluded that Cx30.2 is expressed in beta and vascular endothelial cells of mouse pancreatic islets.
Collapse
Affiliation(s)
- C Coronel-Cruz
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México, DF 04510, México
| | | | | | | | | | | | | |
Collapse
|
37
|
TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis. J Neurosci 2013; 33:5603-11. [PMID: 23536075 DOI: 10.1523/jneurosci.1806-12.2013] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Visceral afferents expressing transient receptor potential (TRP) channels TRPV1 and TRPA1 are thought to be required for neurogenic inflammation and development of inflammatory hyperalgesia. Using a mouse model of chronic pancreatitis (CP) produced by repeated episodes (twice weekly) of caerulein-induced AP (AP), we studied the involvement of these TRP channels in pancreatic inflammation and pain-related behaviors. Antagonists of the two TRP channels were administered at different times to block the neurogenic component of AP. Six bouts of AP (over 3 wks) increased pancreatic inflammation and pain-related behaviors, produced fibrosis and sprouting of pancreatic nerve fibers, and increased TRPV1 and TRPA1 gene transcripts and a nociceptive marker, pERK, in pancreas afferent somata. Treatment with TRP antagonists, when initiated before week 3, decreased pancreatic inflammation and pain-related behaviors and also blocked the development of histopathological changes in the pancreas and upregulation of TRPV1, TRPA1, and pERK in pancreatic afferents. Continued treatment with TRP antagonists blocked the development of CP and pain behaviors even when mice were challenged with seven more weeks of twice weekly caerulein. When started after week 3, however, treatment with TRP antagonists was ineffective in blocking the transition from AP to CP and the emergence of pain behaviors. These results suggest: (1) an important role for neurogenic inflammation in pancreatitis and pain-related behaviors, (2) that there is a transition from AP to CP, after which TRP channel antagonism is ineffective, and thus (3) that early intervention with TRP channel antagonists may attenuate the transition to and development of CP effectively.
Collapse
|
38
|
Ellenbroek JH, Töns HA, de Graaf N, Loomans CJ, Engelse MA, Vrolijk H, Voshol PJ, Rabelink TJ, Carlotti F, de Koning EJ. Topologically heterogeneous beta cell adaptation in response to high-fat diet in mice. PLoS One 2013; 8:e56922. [PMID: 23441226 PMCID: PMC3575501 DOI: 10.1371/journal.pone.0056922] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/16/2013] [Indexed: 01/09/2023] Open
Abstract
Aims Beta cells adapt to an increased insulin demand by enhancing insulin secretion via increased beta cell function and/or increased beta cell number. While morphological and functional heterogeneity between individual islets exists, it is unknown whether regional differences in beta cell adaptation occur. Therefore we investigated beta cell adaptation throughout the pancreas in a model of high-fat diet (HFD)-induced insulin resistance in mice. Methods C57BL/6J mice were fed a HFD to induce insulin resistance, or control diet for 6 weeks. The pancreas was divided in a duodenal (DR), gastric (GR) and splenic (SR) region and taken for either histology or islet isolation. The capacity of untreated islets from the three regions to adapt in an extrapancreatic location was assessed by transplantation under the kidney capsule of streptozotocin-treated mice. Results SR islets showed 70% increased beta cell proliferation after HFD, whereas no significant increase was found in DR and GR islets. Furthermore, isolated SR islets showed twofold enhanced glucose-induced insulin secretion after HFD, as compared with DR and GR islets. In contrast, transplantation of islets isolated from the three regions to an extrapancreatic location in diabetic mice led to a similar decrease in hyperglycemia and no difference in beta cell proliferation. Conclusions HFD-induced insulin resistance leads to topologically heterogeneous beta cell adaptation and is most prominent in the splenic region of the pancreas. This topological heterogeneity in beta cell adaptation appears to result from extrinsic factors present in the islet microenvironment.
Collapse
Affiliation(s)
| | - Hendrica A. Töns
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Natascha de Graaf
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marten A. Engelse
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Vrolijk
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J. Voshol
- Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Ton J. Rabelink
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco J. de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Chiu YC, Hua TE, Fu YY, Pasricha PJ, Tang SC. 3-D imaging and illustration of the perfusive mouse islet sympathetic innervation and its remodelling in injury. Diabetologia 2012; 55:3252-61. [PMID: 22930160 DOI: 10.1007/s00125-012-2699-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/26/2012] [Indexed: 01/17/2023]
Abstract
AIMS/HYPOTHESIS Sympathetic nerves influence islet hormone levels in the circulation. Insights into islet sympathetic innervation and its remodelling in diabetes may impact future therapeutics. However, standard immunohistochemistry and microtome-based microscopy cannot provide an integral view of the islet neurovascular complex. We prepared transparent islet specimens to investigate the spatial relationship between sympathetic nerves, blood vessels and islet cells in normal, streptozotocin-injected and non-obese diabetic mouse models. METHODS Cardiac perfusion of fluorescent lectin was used to label pancreatic blood vessels. Tyrosine hydroxylase and nuclear staining were used to reveal islet sympathetic innervation and microstructure. Optical clearing (i.e. use of immersion solution to reduce scattering) was applied to enable 3-dimensional confocal microscopy of islets to visualise the sympathetic neurovascular complex in space. RESULTS Unlike previously reported morphology, we observed perfusive intra-islet, perivascular sympathetic innervation, in addition to peri-islet contacts of sympathetic nerves with alpha cells and sympathetic fibres encircling the adjacent arterioles. The intra-islet axons became markedly prominent in streptozotocin-injected mice (2 weeks after injection). In non-obese diabetic mice, lymphocytic infiltration remodelled the peri-islet sympathetic axons in early insulitis. CONCLUSIONS/INTERPRETATION We have established an imaging approach to reveal the spatial features of mouse islet sympathetic innervation. The neurovascular complex and sympathetic nerve-alpha cell contact suggest that sympathetic nerves modulate islet hormone secretion through blood vessels, in addition to acting directly on alpha cells. In islet injuries, sympathetic nerves undergo different remodelling in response to different pathophysiological cues.
Collapse
Affiliation(s)
- Y-C Chiu
- Connectomics Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Pancreatic nociception--revisiting the physiology and pathophysiology. Pancreatology 2012; 12:104-12. [PMID: 22487519 DOI: 10.1016/j.pan.2012.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/23/2012] [Accepted: 02/19/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pain management of many pancreatic diseases remains a major clinical concern. This problem reflects our poor understanding of pain signaling from the pancreas. OBJECTIVES This review provides an overview of our current knowledge, with emphasis on current pain management strategies and recent experimental findings. METHODS A systematic search of the scientific literature was carried out using EMBASE, PubMed/MEDLINE, and the Cochrane Central Register of Controlled Trials for the years 1965-2011 to obtain access to all publications, especially randomized controlled trials, systematic reviews, and meta-analyses exploring pain and its management in disease states such as acute pancreatitis (AP), chronic pancreatitis (CP) and pancreatic cancer (PC). RESULTS Over the last decade, numerous molecular mediators such as nerve growth factor and the transient receptor potential (TRP) cation channel family have been implicated in afferent nerve signaling. More recent animal studies have indicated the location of the receptive fields for the afferent nerves in the pancreas and shown that these are activated by agents including cholecystokinin octapeptide, 5-hydroxytryptamine and bradykinin. Studies with PC specimens have shown that neuro-immune interactions occur and numerous agents including TRP cation channel V1, artemin and fractalkine have been implicated. Experimental studies in the clinical setting have demonstrated impairment of inhibitory pain modulation from supraspinal structures and implicated neuropathic pain mechanisms. CONCLUSIONS Our knowledge in this area remains incomplete. Characterization of the mediators and receptors/ion channels on the sensory nerve terminals are required in order to facilitate the development of new pharmaceutical treatments for AP and CP.
Collapse
|
41
|
Gautron L, Sakata I, Udit S, Zigman JM, Wood JN, Elmquist JK. Genetic tracing of Nav1.8-expressing vagal afferents in the mouse. J Comp Neurol 2012; 519:3085-101. [PMID: 21618224 DOI: 10.1002/cne.22667] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nav1.8 is a tetrodotoxin-resistant sodium channel present in large subsets of peripheral sensory neurons, including both spinal and vagal afferents. In spinal afferents, Nav1.8 plays a key role in signaling different types of pain. Little is known, however, about the exact identity and role of Nav1.8-expressing vagal neurons. Here we generated mice with restricted expression of tdTomato fluorescent protein in all Nav1.8-expressing afferent neurons. As a result, intense fluorescence was visible in the cell bodies, central relays, and sensory endings of these neurons, revealing the full extent of their innervation sites in thoracic and abdominal viscera. For instance, vagal and spinal Nav1.8-expressing endings were seen clearly within the gastrointestinal mucosa and myenteric plexus, respectively. In the gastrointestinal muscle wall, labeled endings included a small subset of vagal tension receptors but not any stretch receptors. We also examined the detailed innervation of key metabolic tissues such as liver and pancreas and evaluated the anatomical relationship of Nav1.8-expressing vagal afferents with select enteroendocrine cells (i.e., ghrelin, glucagon, GLP-1). Specifically, our data revealed the presence of Nav1.8-expressing vagal afferents in several metabolic tissues and varying degrees of proximity between Nav1.8-expressing mucosal afferents and enteroendocrine cells, including apparent neuroendocrine apposition. In summary, this study demonstrates the power and versatility of the Cre-LoxP technology to trace identified visceral afferents, and our data suggest a previously unrecognized role for Nav1.8-expressing vagal neurons in gastrointestinal functions.
Collapse
Affiliation(s)
- Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Bayrakdar A, Yaman M, Atalar O, Gencer Tarakci B, Ceribasi S. Distribution of neuropeptides in endocrine and exocrine pancreas of long-legged buzzard (Buteo rufinus): An immunohistochemical study. ACTA ACUST UNITED AC 2011; 166:121-7. [DOI: 10.1016/j.regpep.2010.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/02/2010] [Accepted: 10/13/2010] [Indexed: 11/28/2022]
|
43
|
Burgi K, Cavalleri MT, Alves AS, Britto LRG, Antunes VR, Michelini LC. Tyrosine hydroxylase immunoreactivity as indicator of sympathetic activity: simultaneous evaluation in different tissues of hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2010; 300:R264-71. [PMID: 21148479 DOI: 10.1152/ajpregu.00687.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vasomotor control by the sympathetic nervous system presents substantial heterogeneity within different tissues, providing appropriate homeostatic responses to maintain basal/stimulated cardiovascular function both at normal and pathological conditions. The availability of a reproducible technique for simultaneous measurement of sympathetic drive to different tissues is of great interest to uncover regional patterns of sympathetic nerve activity (SNA). We propose the association of tyrosine hydroxylase immunoreactivity (THir) with image analysis to quantify norepinephrine (NE) content within nerve terminals in arteries/arterioles as a good index for regional sympathetic outflow. THir was measured in fixed arterioles of kidney, heart, and skeletal muscle of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) (123 ± 2 and 181 ± 4 mmHg, 300 ± 8 and 352 ± 8 beats/min, respectively). There was a differential THir distribution in both groups: higher THir was observed in the kidney and skeletal muscle (∼3-4-fold vs. heart arterioles) of WKY; in SHR, THir was increased in the kidney and heart (2.4- and 5.3-fold vs. WKY, respectively) with no change in the skeletal muscle arterioles. Observed THir changes were confirmed by either: 1) determination of NE content (high-performance liquid chromatography) in fresh tissues (SHR vs. WKY): +34% and +17% in kidney and heart, respectively, with no change in the skeletal muscle; 2) direct recording of renal (RSNA) and lumbar SNA (LSNA) in anesthetized rats, showing increased RSNA but unchanged LSNA in SHR vs. WKY. THir in skeletal muscle arterioles, NE content in femoral artery, and LSNA were simultaneously reduced by exercise training in the WKY group. Results indicate that THir is a valuable technique to simultaneously evaluate regional patterns of sympathetic activity.
Collapse
Affiliation(s)
- Katia Burgi
- Dept. of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
This short review outlines the physiology of glucagon in vivo, with an emphasis on its neural control, the author's area of interest. Glucagon is secreted from alpha cells, which are a minority of the pancreatic islet. Anatomically, they are down stream from the majority islet beta cells. Beta-cell secretory products restrain glucagon secretion. Activation of the autonomic nerves, which innervate the islet, increases glucagon secretion. Glucagon is secreted into the portal vein and thus has its major physiologic action at the liver to break down glycogen. Glucagon thereby maintains hepatic glucose production during fasting and increases hepatic glucose production during stress, including the clinically important stress of hypoglycemia. Three different mechanisms proposed to stimulate glucagon secreted during hypoglycemia are discussed: (1) a stimulatory effect of low glucose directly on the alpha cell, (2) withdrawal of an inhibitory effect of adjacent beta cells, and (3) a stimulatory effect of autonomic activation. In type 1 diabetes (T1DM), increased glucagon secretion contributes to the elevated ketones and acidosis present in diabetic ketoacidosis (DKA). It also contributes to the hyperglycemia seen with or without DKA. The glucagon response to insulin-induced hypoglycemia is impaired soon after the development of T1DM. The mediators of this impairment include loss of beta cells and loss of sympathetic nerves from the autoimmune diabetic islet.
Collapse
|
45
|
Long JB, Segal SS. Quantifying perivascular sympathetic innervation: regional differences in male C57BL/6 mice at 3 and 20 months. J Neurosci Methods 2009; 184:124-8. [PMID: 19651158 DOI: 10.1016/j.jneumeth.2009.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/09/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
Abstract
Perivascular sympathetic innervation density (PSID) is a key determinant of vasomotor responses to sympathetic nerve activity. However, total axonal length (for en passant neurotransmission) per vessel surface area has not been well defined, particularly while preserving 3-dimensional vascular structure. We developed a novel method for quantifying PSID using 3-dimensional anatomical reconstruction and compare a variety of blood vessels in Young (3 months) and Old (20 months) male C57BL/6 mice. Individual vessels were dissected and immunolabeled for tyrosine hydroxylase. The total length of fluorescent axons in defined vessel surface areas was quantified by mapping Z-stack images (magnification=760x). For Young mice, innervation densities (mum axon length/mum(2) vessel surface area) in mesenteric (0.075+/-0.002) and femoral (0.080+/-0.003) arteries were greater (P<0.05) than mesenteric veins (0.052+/-0.002) and gracilis muscle feed arteries (0.040+/-0.002). Carotid arteries and gracilis muscle veins were not immunoreactive nor were there significant differences in PSID between Young and Old animals. We demonstrate a novel approach to quantify sympathetic innervation of the vasculature while preserving its 3-dimensional structure and document regional variation in PSID that persists with aging in mice. This analytical approach may be used for quantifying PSID in other tissues that have superficial vessels which can be studied in situ or from which embedded vessels can be excised. With appropriate visualization of neuronal projections, it may also be applied to tissues that have other sources of superficial innervation.
Collapse
|
46
|
Fasanella KE, Christianson JA, Chanthaphavong RS, Davis BM. Distribution and neurochemical identification of pancreatic afferents in the mouse. J Comp Neurol 2008; 509:42-52. [PMID: 18418900 DOI: 10.1002/cne.21736] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dysfunction of primary afferents innervating the pancreas has been shown to contribute to the development of painful symptoms during acute and chronic pancreatitis. To investigate the distribution and neurochemical phenotype of pancreatic afferents, Alexa Fluor-conjugated cholera toxin B (CTB) was injected into the pancreatic head (CTB-488) and tail (CTB-555) of adult male mice to label neurons retrogradely in both the dorsal root ganglia (DRG) and nodose ganglia (NG). The NG and DRG (T5-T13) were processed for fluorescent immunohistochemistry and visualized by using confocal microscopy. Spinal pancreatic afferents were observed from T5 to T13, with the greatest contribution coming from T9-T12. The pancreatic afferents were equally distributed between right and left spinal ganglia; however, the innervation from the left NG was significantly greater than from the right. For both spinal and vagal afferents there was significantly greater innervation of the pancreatic head relative to the tail. The total number of retrogradely labeled afferents in the nodose was very similar to the total number of DRG afferents. The neurochemical phenotype of DRG neurons was dominated by transient receptor potential vanilloid 1 (TRPV1)-positive neurons (75%), GDNF family receptor alpha-3 (GFRalpha3)-positive neurons (67%), and calcitonin gene-related peptide (CGRP)-positive neurons(65%) neurons. In the NG, TRPV1-, GFRalpha3-, and CGRP-positive neurons constituted only 35%, 1%, and 15% of labeled afferents, respectively. The disparity in peptide and receptor expression between pancreatic afferents in the NG and DRG suggests that even though they contribute a similar number of primary afferents to the pancreas, these two populations may differ in regard to their nociceptive properties and growth factor dependency.
Collapse
Affiliation(s)
- Kenneth E Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
47
|
Schloithe AC, Sutherland K, Woods CM, Blackshaw LA, Davison JS, Toouli J, Saccone GTP. A novel preparation to study rat pancreatic spinal and vagal mechanosensitive afferents in vitro. Neurogastroenterol Motil 2008; 20:1060-9. [PMID: 18482253 DOI: 10.1111/j.1365-2982.2008.01141.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The management of pancreatic pain is a significant clinical problem so understanding of how sensory signals are generated in pancreatic tissue is fundamental. We aimed to characterize mechanosensitive and chemosensitive properties of pancreatic spinal and vagal afferents in vitro. Spinal and vagal afferent preparations from Sprague-Dawley rats were established incorporating the left splanchnic nerve or vagus nerves respectively. The common bile duct was cannulated for distension of the pancreatic duct with fluid. Nerve discharge evoked by blunt probing, duct distension or electrical stimulation was obtained from teased nerve bundles using standard extra-cellular recording. Discharge from 197 spinal afferent bundles was recorded, of which 57% displayed spontaneous activity. Blunt probing revealed 61 mechanosensitive receptive fields which were associated primarily with arteries/blood vessels (33/61) and the parenchyma (22/61). All mechanosensitive responses were slowly adapting, with 33% continuing to discharge after termination of the stimulus and 60% displaying a response threshold <10 g. Application of chemical mediators (bradykinin, histamine, 5-hydroxytryptamine, cholecystokinin octapeptide) evoked a response from 31/57 units, with 33% excitatory and 23% inhibitory. Spontaneous discharge was recorded from 72% of 135 vagal bundles. Mechanosensitive receptive fields were not identified in the pancreas but were evident in adjacent organs. No spinal or vagal afferent response to duct distension was obtained. In conclusion, pancreatic mechanosensitive spinal afferents are common, in contrast to pancreatic mechanosensitive vagal afferents indicating that pancreatic sensory innervation is predominantly spinal. Chemosensitive spinal afferent nerve endings are present in the pancreas and respond to a variety of inflammatory and physiological mediators.
Collapse
Affiliation(s)
- A C Schloithe
- Department of General and Digestive Surgery, Flinders University, Flinders Medical Centre, Adelaide, SA, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Burris RE, Hebrok M. Pancreatic innervation in mouse development and beta-cell regeneration. Neuroscience 2007; 150:592-602. [PMID: 18006238 DOI: 10.1016/j.neuroscience.2007.09.079] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 08/17/2007] [Accepted: 10/23/2007] [Indexed: 01/08/2023]
Abstract
Pancreatic innervation is being viewed with increasing interest with respect to pancreatic disease. At the same time, relatively little is currently known about innervation dynamics during development and disease. The present study employs confocal microscopy to analyze the growth and development of sympathetic and sensory neurons and astroglia during pancreatic organogenesis and maturation. Our research reveals that islet innervation is closely linked to the process of islet maturation-neural cell bodies undergo intrapancreatic migration/shuffling in tandem with endocrine cells, and close neuro-endocrine contacts are established quite early in pancreatic development. In addition, we have assayed the effects of large-scale beta-cell loss and repopulation on the maintenance of islet innervation with respect to particular neuron types. We demonstrate that depletion of the beta-cell population in the rat insulin promoter (RIP)-cmyc(ER) mouse line has cell-type-specific effects on postganglionic sympathetic neurons and pancreatic astroglia. This study contributes to a greater understanding of how cooperating physiological systems develop together and coordinate their functions, and also helps to elucidate how permutation of one organ system through stress or disease can specifically affect parallel systems in an organism.
Collapse
Affiliation(s)
- R E Burris
- University of California, San Francisco, Diabetes Center, San Francisco, CA 94143-0540, USA
| | | |
Collapse
|
49
|
Fasanella KE, Davis B, Lyons J, Chen Z, Lee KK, Slivka A, Whitcomb DC. Pain in chronic pancreatitis and pancreatic cancer. Gastroenterol Clin North Am 2007; 36:335-64, ix. [PMID: 17533083 DOI: 10.1016/j.gtc.2007.03.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic, debilitating abdominal pain is arguably the most important component of chronic pancreatitis, leading to significant morbidity and disability. Attempting to treat this pain, which is too often unsuccessful, is a frustrating experience for physician and patient. Multiple studies to improve understanding of the pathophysiology that causes pain in some patients but not in others have been performed since the most recent reviews on this topic. In addition, new treatment modalities have been developed and evaluated in this population. This review discusses new advances in neuroscience and the study of visceral pain mechanisms, as well as genetic factors that may play a role. Updates of established therapies, as well as new techniques used in addressing pain from chronic pancreatitis, are reviewed. Lastly, outcome measures, which have been highly variable in this field over the years, are addressed.
Collapse
Affiliation(s)
- Kenneth E Fasanella
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Mezzanine level 2, C-wing, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Gram DX, Ahrén B, Nagy I, Olsen UB, Brand CL, Sundler F, Tabanera R, Svendsen O, Carr RD, Santha P, Wierup N, Hansen AJ. Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur J Neurosci 2007; 25:213-23. [PMID: 17241282 DOI: 10.1111/j.1460-9568.2006.05261.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The system that regulates insulin secretion from beta-cells in the islet of Langerhans has a capsaicin-sensitive inhibitory component. As calcitonin gene-related peptide (CGRP)-expressing primary sensory fibers innervate the islets, and a major proportion of the CGRP-containing primary sensory neurons is sensitive to capsaicin, the islet-innervating sensory fibers may represent the capsaicin-sensitive inhibitory component. Here, we examined the expression of the capsaicin receptor, vanilloid type 1 transient receptor potential receptor (TRPV1) in CGRP-expressing fibers in the pancreatic islets, and the effect of selective elimination of capsaicin-sensitive primary afferents on the decline of glucose homeostasis and insulin secretion in Zucker diabetic fatty (ZDF) rats, which are used to study various aspects of human type 2 diabetes mellitus. We found that CGRP-expressing fibers in the pancreatic islets also express TRPV1. Furthermore, we also found that systemic capsaicin application before the development of hyperglycemia prevents the increase of fasting, non-fasting, and mean 24-h plasma glucose levels, and the deterioration of glucose tolerance assessed on the fifth week following the injection. These effects were accompanied by enhanced insulin secretion and a virtually complete loss of CGRP- and TRPV1-coexpressing islet-innervating fibers. These data indicate that CGRP-containing fibers in the islets are capsaicin sensitive, and that elimination of these fibers contributes to the prevention of the deterioration of glucose homeostasis through increased insulin secretion in ZDF rats. Based on these data we propose that the activity of islet-innervating capsaicin-sensitive fibers may have a role in the development of reduced insulin secretion in human type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Dorte X Gram
- Research and Development, Novo Nordisk A/S, Novo Nordisk Park, F6.1.30, DK-2760 Måløv, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|