1
|
Bischof H, Maier S, Koprowski P, Kulawiak B, Burgstaller S, Jasińska J, Serafimov K, Zochowska M, Gross D, Schroth W, Matt L, Juarez Lopez DA, Zhang Y, Bonzheim I, Büttner FA, Fend F, Schwab M, Birkenfeld AL, Malli R, Lämmerhofer M, Bednarczyk P, Szewczyk A, Lukowski R. mitoBK Ca is functionally expressed in murine and human breast cancer cells and potentially contributes to metabolic reprogramming. eLife 2024; 12:RP92511. [PMID: 38808578 PMCID: PMC11136494 DOI: 10.7554/elife.92511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BKCa splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBKCa). Through a combination of genetic knockdown and knockout along with a cell permeable BKCa channel blocker, we show that mitoBKCa modulates overall cellular and mitochondrial energy production, and mediates the metabolic rewiring referred to as the 'Warburg effect', thereby promoting BC cell proliferation in the presence and absence of oxygen. Additionally, we detect mitoBKCa and BKCa transcripts in low or high abundance, respectively, in clinical BC specimens. Together, our results emphasize, that targeting mitoBKCa could represent a treatment strategy for selected BC patients in future.
Collapse
Affiliation(s)
- Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| | - Selina Maier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
- Dr Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Sandra Burgstaller
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingenGermany
- Center for Medical Research, CF Bioimaging, Medical University of GrazGrazAustria
| | - Joanna Jasińska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of TübingenTübingenGermany
| | - Monika Zochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Dominic Gross
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| | - Werner Schroth
- Dr Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| | | | - Ying Zhang
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital TübingenTübingenGermany
| | - Florian A Büttner
- Dr Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital TübingenTübingenGermany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
- iFIT Cluster of Excellence (EXC 2180) “Image-guided and Functionally Instructed Tumor Therapies”, University of TübingenTübingenGermany
- Department of Clinical Pharmacology, Universityhostpital of TübingenTübingenGermany
- Department of Biochemistry and Pharmacy, University of TübingenTübingenGermany
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site TübingenTübingenGermany
| | - Andreas L Birkenfeld
- Medical Clinic IV, University Hospital TübingenTübingenGermany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, University of TübingenTübingenGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Roland Malli
- Center for Medical Research, CF Bioimaging, Medical University of GrazGrazAustria
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of GrazGrazAustria
- BioTechMed GrazGrazAustria
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of TübingenTübingenGermany
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW)WarsawPoland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| |
Collapse
|
2
|
Maliszewska-Olejniczak K, Bednarczyk P. Novel insights into the role of ion channels in cellular DNA damage response. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108488. [PMID: 38266668 DOI: 10.1016/j.mrrev.2024.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
The DNA damage response (DDR) is a complex and highly regulated cellular process that detects and repairs DNA damage. The integrity of the DNA molecule is crucial for the proper functioning and survival of cells, as DNA damage can lead to mutations, genomic instability, and various diseases, including cancer. The DDR safeguards the genome by coordinating a series of signaling events and repair mechanisms to maintain genomic stability and prevent the propagation of damaged DNA to daughter cells. The study of an ion channels in the context of DDR is a promising avenue in biomedical research. Lately, it has been reported that the movement of ions through channels plays a crucial role in various physiological processes, including nerve signaling, muscle contraction, cell signaling, and maintaining cell membrane potential. Knowledge regarding the involvement of ion channels in the DDR could support refinement of our approach to several pathologies, mainly cancer, and perhaps lead to innovative therapies. In this review, we focused on the ion channel's possible role in the DDR. We present an analysis of the involvement of ion channels in DDR, their role in DNA repair mechanisms, and cellular outcomes. By addressing these areas, we aim to provide a comprehensive perspective on ion channels in the DDR and potentially guide future research in this field. It is worth noting that the interplay between ion channels and the cellular DDR is complex and multifaceted. More research is needed to fully understand the underlying mechanisms and potential therapeutic implications of these interactions.
Collapse
Affiliation(s)
- Kamila Maliszewska-Olejniczak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
3
|
Bränström R, Vukojević V, Lu M, Shabo I, Mun HC, Conigrave AD, Farnebo LO, Larsson C. Ca 2+-activated K + channels modulate membrane potential in the human parathyroid cell: Possible role in exocytosis. Exp Cell Res 2023; 433:113858. [PMID: 37995920 DOI: 10.1016/j.yexcr.2023.113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The relationships between parathyroid hormone (PTH) secretion and parathyroid cell membrane potential, including the identities and roles of K+ channels that regulate and/or modulate membrane potential are not well defined. Here we have used Western blot/immunohistochemistry as well as patch-clamp and perifusion techniques to identify and localize specific K+ channels in parathyroid cells and to investigate their roles in the control of membrane potential and PTH secretion. We also re-investigated the relationship between membrane potential and exocytosis. We showed that in single human parathyroid cells K+ current is dependent on at least two types of Ca2+-activated K+ channels: a small-conductance Ca2+-activated K+ channel (KSK) and a large-conductance voltage and Ca2+-activated K+ channel (KBK). These channels were sensitive to specific peptide blocking toxins including apamin, charybdotoxin, and iberiotoxin. These channels confer sensitivity of the membrane potential in single cells to high extracellular K+, TEA, and peptide toxins. Blocking of KBK potently inhibited K+ channel current, and KBK was shown to be expressed in the plasma membrane of parathyroid cells. In addition, when using the capacitance technique as an indicator of exocytosis, clamping the parathyroid cell at -60 mV prevented exocytosis, whereas holding the membrane potential at 0 mV facilitated it. Taken together, the results show that human parathyroid cells have functional KBK and KSK channels but the data presented herein suggest that KBK/KSK channels likely contribute to the maintenance of the membrane potential, and that membrane potential, per se, modulates exocytosis independently of [Ca2+]i.
Collapse
Affiliation(s)
- Robert Bränström
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ming Lu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Shabo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hee-Chang Mun
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW, Australia
| | - Arthur D Conigrave
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW, Australia
| | - Lars-Ove Farnebo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Głuchowska A, Kalenik B, Kulawiak B, Wrzosek A, Szewczyk A, Bednarczyk P, Mosieniak G. Lack of activity of the mitochondrial large-conductance calcium-regulated potassium channels in senescent vascular smooth muscle cells. Mech Ageing Dev 2023; 215:111871. [PMID: 37689317 DOI: 10.1016/j.mad.2023.111871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A limited number of studies have shown functional changes in mitochondrial ion channels in aging and senescent cells. We have identified, for the first time, mitochondrial large-conductance calcium-regulated potassium channels in human smooth muscle mitochondria. This channel, with a conductance of 273 pS, was regulated by calcium ions and membrane potential. Additionally, it was activated by the potassium channel opener NS11021 and blocked by paxilline. Importantly, we have shown that senescence of these cells induced by hydrogen peroxide treatment leads to the disappearance of potassium channel protein levels and channel activity measured by the single channel patch-clamp technique. Our data suggest that disturbances in the expression of mitochondrial large conductance calcium-regulated potassium channels may be hallmarks of cellular senescence and contribute to the misregulation of mitochondrial function in senescent cells.
Collapse
Affiliation(s)
- Agata Głuchowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Barbara Kalenik
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Grażyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| |
Collapse
|
5
|
Szabo I, Szewczyk A. Mitochondrial Ion Channels. Annu Rev Biophys 2023; 52:229-254. [PMID: 37159294 DOI: 10.1146/annurev-biophys-092622-094853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
6
|
The Effect of 40-Hz White LED Therapy on Structure-Function of Brain Mitochondrial ATP-Sensitive Ca-Activated Large-Conductance Potassium Channel in Amyloid Beta Toxicity. Neurotox Res 2022; 40:1380-1392. [PMID: 36057039 DOI: 10.1007/s12640-022-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/07/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Photobiomodulation therapy has become the focus of medical research in many areas such as Alzheimer's disease (AD), because of its modulatory effect on cellular processes through light energy absorption via photoreceptors/chromophores located in the mitochondria. However, there are still many questions around the underlying mechanisms. This study was carried out to unravel whether the function-structure of ATP-sensitive mitoBKCa channels, as crucial components for maintenance of mitochondrial homeostasis, can be altered subsequent to light therapy in AD. Induction of Aβ neurotoxicity in male Wistar rats was done by intracerebroventricular injection of Aβ1-42. After a week, light-treated rats were exposed to 40-Hz white light LEDs, 15 min for 7 days. Electrophysiological properties of mitoBKCa channel were investigated using a channel incorporated into the bilayer lipid membrane, and mitoBKCa-β2 subunit expression was determined using western blot analysis in Aβ-induced toxicity and light-treated rats. Our results describe that conductance and open probability (Po) of mitoBKCa channel decreased significantly and was accompanied by a Po curve rightward shift in mitochondrial preparation in Aβ-induced toxicity rats. We also showed a significant reduction in expression of mitoBKCa-β2 subunit, which is partly responsible for a leftward shift in BKCa Po curve in low calcium status. Interestingly, we provided evidence of a significant improvement in channel conductance and Po after light therapy. We also found that light therapy improved mitoBKCa-β2 subunit expression, increasing it close to saline group. The current study explains a light therapy improvement in brain mitoBKCa channel function in the Aβ-induced neurotoxicity rat model, an effect that can be linked to increased expression of β2 subunit.
Collapse
|
7
|
Moderate Ethanol-Preconditioning Offers Ischemic Tolerance Against Focal Cerebral Ischemic/Reperfusion: Role of Large Conductance Calcium-Activated Potassium Channel. Neurochem Res 2022; 47:3647-3658. [PMID: 35790697 DOI: 10.1007/s11064-022-03661-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
The mechanism underlying moderate ethanol (EtOH)-preconditioning (PC) against ischemic brain injury remains unclear. We evaluated the role of large conductance calcium-sensitive potassium (BKCa) channels in EtOH-PC. Almost one hundred and ninety normal adult SD rats (8 to 10 weeks, 320-350 g) were enrolled in this study. Ischemic/reperfusion (I/R) brain injury was induced in rats by middle cerebral artery occlusion for 2 h followed by reperfusion for 24 h. EtOH or the BKCa channel opener, NS11021, was administered 24 h before I/R with or without pre-treatment with the BKCa channel blocker, paxilline. Infarct volumes were measured by tissue staining and imaging, and neurological functions were assessed by a scoring system. The expression of BKCa channel subunit α was detected by Western blotting, and cell apoptosis was assessed using staining. Prior (24 h) administration of ethanol that produced a peak plasma concentration of ~ 45 mg/dl in rats would offer neuroprotection after cerebral I/R. In addition, the expression of BKCa channel α-subunit was significantly increased 24 h after EtOH-PC (n = 10; control: 2.00 ± 0.09, EtOH: 1.00 ± 0.06; P < 0.5). Compared to I/R, EtOH-PC enhanced the expression of BKCa channel α-subunit both in the penumbra (n = 10; 24 h: I/R: 1.25 ± 0.10, EtOH-PC + I/R: 1.99 ± 0.12; P < 0.01; 4 h: I/R: 1.03 ± 0.03, EtOH-PC + I/R: 1.49 ± 0.05; P < 0.001) and infarct core (n = 10; 4 h: I/R: 1.04 ± 0.04, EtOH-PC + I/R: 1.42 ± 0.05; P < 0.001), improved the neurological function (n = 10; I/R: 14.00 (12.75-15.00), EtOH-PC + I/R: 7.00 (4.75-8.25); P < 0.001), attenuated the apoptosis (n = 10; I/R: 26.80 ± 0.69, EtOH-PC + I/R: 8.46 ± 0.31; P < 0.001), and decreased the infarct volume (n = 10; I/R: 244.00 ± 26.24, EtOH-PC + I/R: 70.09 ± 14.69; P < 0.001) after experimental cerebral I/R. These changes were reversed by paxilline administration. The moderate EtOH-PC protects against I/R-induced brain damage dependent on the upregulation BKCa channels.
Collapse
|
8
|
Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022; 27:299. [PMID: 35011530 PMCID: PMC8746388 DOI: 10.3390/molecules27010299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Anna Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland;
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| |
Collapse
|
9
|
González-Sanabria N, Echeverría F, Segura I, Alvarado-Sánchez R, Latorre R. BK in Double-Membrane Organelles: A Biophysical, Pharmacological, and Functional Survey. Front Physiol 2021; 12:761474. [PMID: 34764886 PMCID: PMC8577798 DOI: 10.3389/fphys.2021.761474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 12/04/2022] Open
Abstract
In the 1970s, calcium-activated potassium currents were recorded for the first time. In 10years, this Ca2+-activated potassium channel was identified in rat skeletal muscle, chromaffin cells and characterized in skeletal muscle membranes reconstituted in lipid bilayers. This calcium- and voltage-activated potassium channel, dubbed BK for “Big K” due to its large ionic conductance between 130 and 300 pS in symmetric K+. The BK channel is a tetramer where the pore-forming α subunit contains seven transmembrane segments. It has a modular architecture containing a pore domain with a highly potassium-selective filter, a voltage-sensor domain and two intracellular Ca2+ binding sites in the C-terminus. BK is found in the plasma membrane of different cell types, the inner mitochondrial membrane (mitoBK) and the nuclear envelope’s outer membrane (nBK). Like BK channels in the plasma membrane (pmBK), the open probability of mitoBK and nBK channels are regulated by Ca2+ and voltage and modulated by auxiliary subunits. BK channels share common pharmacology to toxins such as iberiotoxin, charybdotoxin, paxilline, and agonists of the benzimidazole family. However, the precise role of mitoBK and nBK remains largely unknown. To date, mitoBK has been reported to play a role in protecting the heart from ischemic injury. At the same time, pharmacology suggests that nBK has a role in regulating nuclear Ca2+, membrane potential and expression of eNOS. Here, we will discuss at the biophysical level the properties and differences of mitoBK and nBK compared to those of pmBK and their pharmacology and function.
Collapse
Affiliation(s)
- Naileth González-Sanabria
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Echeverría
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ignacio Segura
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sánchez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramon Latorre
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
10
|
Kulawiak B, Bednarczyk P, Szewczyk A. Multidimensional Regulation of Cardiac Mitochondrial Potassium Channels. Cells 2021; 10:1554. [PMID: 34205420 PMCID: PMC8235349 DOI: 10.3390/cells10061554] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria play a fundamental role in the energetics of cardiac cells. Moreover, mitochondria are involved in cardiac ischemia/reperfusion injury by opening the mitochondrial permeability transition pore which is the major cause of cell death. The preservation of mitochondrial function is an essential component of the cardioprotective mechanism. The involvement of mitochondrial K+ transport in this complex phenomenon seems to be well established. Several mitochondrial K+ channels in the inner mitochondrial membrane, such as ATP-sensitive, voltage-regulated, calcium-activated and Na+-activated channels, have been discovered. This obliges us to ask the following question: why is the simple potassium ion influx process carried out by several different mitochondrial potassium channels? In this review, we summarize the current knowledge of both the properties of mitochondrial potassium channels in cardiac mitochondria and the current understanding of their multidimensional functional role. We also critically summarize the pharmacological modulation of these proteins within the context of cardiac ischemia/reperfusion injury and cardioprotection.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| |
Collapse
|
11
|
Gałecka S, Kulawiak B, Bednarczyk P, Singh H, Szewczyk A. Single channel properties of mitochondrial large conductance potassium channel formed by BK-VEDEC splice variant. Sci Rep 2021; 11:10925. [PMID: 34035423 PMCID: PMC8149700 DOI: 10.1038/s41598-021-90465-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/10/2021] [Indexed: 01/15/2023] Open
Abstract
The activation of mitochondrial large conductance calcium-activated potassium (mitoBKCa) channels increases cell survival during ischemia/reperfusion injury of cardiac cells. The basic biophysical and pharmacological properties of mitoBKCa correspond to the properties of the BKCa channels from the plasma membrane. It has been suggested that the VEDEC splice variant of the KCNMA1 gene product encoding plasma membrane BKCa is targeted toward mitochondria. However there has been no direct evidence that this protein forms a functional channel in mitochondria. In our study, we used HEK293T cells to express the VEDEC splice variant and observed channel activity in mitochondria using the mitoplast patch-clamp technique. For the first time, we found that transient expression with the VEDEC isoform resulted in channel activity with the conductance of 290 ± 3 pS. The channel was voltage-dependent and activated by calcium ions. Moreover, the activity of the channel was stimulated by the potassium channel opener NS11021 and inhibited by hemin and paxilline, which are known BKCa channel blockers. Immunofluorescence experiments confirmed the partial colocalization of the channel within the mitochondria. From these results, we conclude that the VEDEC isoform of the BKCa channel forms a functional channel in the inner mitochondrial membrane. Additionally, our data show that HEK293T cells are a promising experimental model for expression and electrophysiological studies of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw, University of Life Sciences-SGGW, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
12
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
13
|
Signaling pathways targeting mitochondrial potassium channels. Int J Biochem Cell Biol 2020; 125:105792. [PMID: 32574707 DOI: 10.1016/j.biocel.2020.105792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
In this review, we describe key signaling pathways regulating potassium channels present in the inner mitochondrial membrane. The signaling cascades covered here include phosphorylation, redox reactions, modulation by calcium ions and nucleotides. The following types of potassium channels have been identified in the inner mitochondrial membrane of various tissues: ATP-sensitive, Ca2+-activated, voltage-gated and two-pore domain potassium channels. The direct roles of these channels involve regulation of mitochondrial respiration, membrane potential and synthesis of reactive oxygen species (ROS). Changes in channel activity lead to diverse pro-life and pro-death responses in different cell types. Hence, characterizing the signaling pathways regulating mitochondrial potassium channels will facilitate understanding the physiological role of these proteins. Additionally, we describe in this paper certain regulatory mechanisms, which are unique to mitochondrial potassium channels.
Collapse
|
14
|
Kravenska Y, Nieznanska H, Nieznanski K, Lukyanetz E, Szewczyk A, Koprowski P. The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBK Ca channels by a membrane-mediated mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183337. [PMID: 32380169 DOI: 10.1016/j.bbamem.2020.183337] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
Abstract
A causative agent of Alzheimer's disease (AD) is a short amphipathic peptide called amyloid beta (Aβ). Aβ monomers undergo structural changes leading to their oligomerization or fibrillization. The monomers as well as all aggregated forms of Aβ, i.e., oligomers, and fibrils, can bind to biological membranes, thereby modulating membrane mechanical properties. It is also known that some isoforms of the large-conductance calcium-activated potassium (BKCa) channel, including the mitochondrial BKCa (mitoBKCa) channel, respond to mechanical changes in the membrane. Here, using the patch-clamp technique, we investigated the impact of full-length Aβ (Aβ1-42) and its fragment, Aβ25-35, on the activity of mitoBKCa channels. We found that all forms of Aβ inhibited the activity of the mitoBKCa channel in a concentration-dependent manner. Since monomers, oligomers, and fibrils of Aβ exhibit different molecular characteristics and structures, we hypothesized that the inhibition was not due to direct peptide-protein interactions but rather to membrane-binding of the Aβ peptides. Our findings supported this hypothesis by showing that Aβ peptides block mitoBKCa channels irrespective of the side of the membrane to which they are applied. In addition, we found that the enantiomeric peptide, D-Aβ1-42, demonstrated similar inhibitory activity towards mitoBKCa channels. As a result, we proposed a general model in which all Aβ forms i.e., monomers, oligomers, and amyloid fibrils, contribute to the progression of AD by exerting a modulatory effect on mechanosensitive membrane components.
Collapse
Affiliation(s)
- Yevheniia Kravenska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland; Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine.
| | - Hanna Nieznanska
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Krzysztof Nieznanski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Elena Lukyanetz
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| |
Collapse
|
15
|
Mitochondrial BK Channel Openers CGS7181 and CGS7184 Exhibit Cytotoxic Properties. Int J Mol Sci 2018; 19:ijms19020353. [PMID: 29370072 PMCID: PMC5855575 DOI: 10.3390/ijms19020353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 02/08/2023] Open
Abstract
Potassium channel openers (KCOs) have been shown to play a role in cytoprotection through the activation of mitochondrial potassium channels. Recently, in several reports, a number of data has been described as off-target actions for KCOs. In the present study, we investigated the effects of BKCa channel openers CGS7181, CGS7184, NS1619, and NS004 in neuronal cells. For the purpose of this research, we used a rat brain, the mouse hippocampal HT22 cells, and the human astrocytoma U-87 MG cell line. We showed that CGS7184 activated the mitochondrial BKCa (mitoBKCa) channel in single-channel recordings performed on astrocytoma mitoplasts. Moreover, when applied to the rat brain homogenate or isolated rat brain mitochondria, CGS7184 increased the oxygen consumption rate, and can thus be considered a potentially cytoprotective agent. However, experiments on intact neuronal HT22 cells revealed that both CGS7181 and CGS7184 induced HT22 cell death in a concentration- and time-dependent manner. By contrast, we did not observe cell death when NS1619 or NS004 was applied. CGS7184 toxicity was not abolished by BKCa channel inhibitors, suggesting that the observed effects were independent of a BKCa-type channel activity. CGS7184 treatment resulted in an increase of cytoplasmic Ca2+ concentration that likely involved efflux from internal calcium stores and the activation of calpains (calcium-dependent proteases). The cytotoxic effect of the channel opener was partially reversed by a calpain inhibitor. Our data show that KCOs under study not only activate mitoBKCa channels from brain tissue, but also induce cell death when used in cellular models.
Collapse
|
16
|
Dai H, Wang M, Patel PN, Kalogeris T, Liu Y, Durante W, Korthuis RJ. Preconditioning with the BK Ca channel activator NS-1619 prevents ischemia-reperfusion-induced inflammation and mucosal barrier dysfunction: roles for ROS and heme oxygenase-1. Am J Physiol Heart Circ Physiol 2017; 313:H988-H999. [PMID: 28822969 DOI: 10.1152/ajpheart.00620.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Activation of large-conductance Ca2+-activated K+ (BKCa) channels evokes cell survival programs that mitigate intestinal ischemia and reperfusion (I/R) inflammation and injury 24 h later. The goal of the present study was to determine the roles of reactive oxygen species (ROS) and heme oxygenase (HO)-1 in delayed acquisition of tolerance to I/R induced by pretreatment with the BKCa channel opener NS-1619. Superior mesentery arteries were occluded for 45 min followed by reperfusion for 70 min in wild-type (WT) or HO-1-null (HO-1-/-) mice that were pretreated with NS-1619 or saline vehicle 24 h earlier. Intravital microscopy was used to quantify the numbers of rolling and adherent leukocytes. Mucosal permeability, tumor necrosis factor-α (TNF-α) levels, and HO-1 activity and expression in jejunum were also determined. I/R induced leukocyte rolling and adhesion, increased intestinal TNF-α levels, and enhanced mucosal permeability in WT mice, effects that were largely abolished by pretreatment with NS-1619. The anti-inflammatory and mucosal permeability-sparing effects of NS-1619 were prevented by coincident treatment with the HO-1 inhibitor tin protoporphyrin-IX or a cell-permeant SOD mimetic, Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), in WT mice. NS-1619 also increased jejunal HO-1 activity in WT animals, an effect that was attenuated by treatment with the BKCa channel antagonist paxilline or MnTBAP. I/R also increased postischemic leukocyte rolling and adhesion and intestinal TNF-α levels in HO-1-/- mice to levels comparable to those noted in WT animals. However, NS-1619 was ineffective in preventing these effects in HO-1-deficient mice. In summary, our data indicate that NS-1619 induces the development of an anti-inflammatory phenotype and mitigates postischemic mucosal barrier disruption in the small intestine by a mechanism that may involve ROS-dependent HO-1 activity.NEW & NOTEWORTHY Antecedent treatment with the large-conductance Ca2+-activated K+ channel opener NS-1619 24 h before ischemia-reperfusion limits postischemic tissue injury by an oxidant-dependent mechanism. The present study shows that NS-1619-induced oxidant production prevents ischemia-reperfusion-induced inflammation and mucosal barrier disruption in the small intestine by provoking increases in heme oxygenase-1 activity.
Collapse
Affiliation(s)
- Hongyan Dai
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Meifang Wang
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Parag N Patel
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Theodore Kalogeris
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Yajun Liu
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - William Durante
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
17
|
Krabbendam IE, Honrath B, Culmsee C, Dolga AM. Mitochondrial Ca 2+-activated K + channels and their role in cell life and death pathways. Cell Calcium 2017; 69:101-111. [PMID: 28818302 DOI: 10.1016/j.ceca.2017.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
Abstract
Ca2+-activated K+ channels (KCa) are expressed at the plasma membrane and in cellular organelles. Expression of all KCa channel subtypes (BK, IK and SK) has been detected at the inner mitochondrial membrane of several cell types. Primary functions of these mitochondrial KCa channels include the regulation of mitochondrial ROS production, maintenance of the mitochondrial membrane potential and preservation of mitochondrial calcium homeostasis. These channels are therefore thought to contribute to cellular protection against oxidative stress through mitochondrial mechanisms of preconditioning. In this review, we summarize the current knowledge on mitochondrial KCa channels, and their role in mitochondrial function in relation to cell death and survival pathways. More specifically, we systematically discuss studies on the role of these mitochondrial KCa channels in pharmacological preconditioning, and according protective effects on ischemic insults to the brain and the heart.
Collapse
Affiliation(s)
- Inge E Krabbendam
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Birgit Honrath
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.
| | - Amalia M Dolga
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
18
|
Voltage-Sensitive Potassium Channels of the BK Type and Their Coding Genes Are Alcohol Targets in Neurons. Handb Exp Pharmacol 2017; 248:281-309. [PMID: 29204711 DOI: 10.1007/164_2017_78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among all members of the voltage-gated, TM6 ion channel superfamily, the proteins that constitute calcium- and voltage-gated potassium channels of large conductance (BK) and their coding genes are unique for their involvement in ethanol-induced disruption of normal physiology and behavior. Moreover, in vitro studies document that BK activity is modified by ethanol with an EC50~23 mM, which is near blood alcohol levels considered legal intoxication in most states of the USA (0.08 g/dL = 17.4 mM). Following a succinct introduction to our current understanding of BK structure and function in central neurons, with a focus on neural circuits that contribute to the neurobiology of alcohol use disorders (AUD), we review the modifications in organ physiology by alcohol exposure via BK and the different molecular elements that determine the ethanol response of BK in alcohol-naïve systems, including the role of an ethanol-recognizing site in the BK-forming slo1 protein, modulation of accessory BK subunits, and their coding genes. The participation of these and additional elements in determining the response of a system or an organism to protracted ethanol exposure is consequently analyzed, with insights obtained from invertebrate and vertebrate models. Particular emphasis is put on the role of BK and coding genes in different forms of tolerance to alcohol exposure. We finally discuss genetic results on BK obtained in invertebrate organisms and rodents in light of possible extrapolation to human AUD.
Collapse
|
19
|
Su F, Guo AC, Li WW, Zhao YL, Qu ZY, Wang YJ, Wang Q, Zhu YL. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca 2+-Activated K + Channels In Vitro. Neurosci Bull 2016; 33:28-40. [PMID: 27854008 DOI: 10.1007/s12264-016-0080-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/27/2016] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion; however, the underlying mechanism has not been elucidated. In the present study, we showed that expression of the neuronal large-conductance, Ca2+-activated K+ channel (BKCa) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) compared with controls. Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R, attenuated the OGD/R-induced elevation of cytosolic Ca2+ levels, and reduced the number of apoptotic neurons. Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax. The protective effect of ethanol preconditioning was antagonized by a BKCa channel inhibitor, paxilline. Inside-out patches in primary neurons also demonstrated the direct activation of the BKCa channel by 10 mmol/L ethanol. The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca2+ and preventing neuronal apoptosis, and this is mediated by BKCa channel activation.
Collapse
Affiliation(s)
- Fang Su
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China
| | - An-Chen Guo
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Wei-Wei Li
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Yi-Long Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Zheng-Yi Qu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yong-Jun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Yu-Lan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
20
|
A large-conductance calcium-regulated K+ channel in human dermal fibroblast mitochondria. Biochem J 2016; 473:4457-4471. [PMID: 27729542 DOI: 10.1042/bcj20160732] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/23/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023]
Abstract
Potassium channels have been found in the inner mitochondrial membrane of various cells. These channels regulate the mitochondrial membrane potential, respiration and production of reactive oxygen species. In the present study, we identified the activity of a mitochondrial large-conductance Ca2+-regulated potassium channel (mitoBKCa channel) in mitoplasts isolated from a primary human dermal fibroblast cell line. A potassium selective current was recorded with a mean conductance of 280 ± 2 pS in a symmetrical 150 mM KCl solution. The mitoBKCa channel was activated by the Ca2+ and by potassium channel opener NS1619. The channel activity was irreversibly inhibited by paxilline, a selective inhibitor of the BKCa channels. In isolated fibroblast mitochondria NS1619 depolarized the mitochondrial membrane potential, stimulated nonphosphorylating respiration and decreased superoxide formation. Additionally, the α- and β-subunits (predominantly the β3-form) of the BKCa channels were identified in fibroblast mitochondria. Our findings indicate, for the first time, the presence of a large-conductance Ca2+-regulated potassium channel in the inner mitochondrial membrane of human dermal fibroblasts.
Collapse
|
21
|
Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:685-707. [PMID: 27289382 PMCID: PMC5045486 DOI: 10.1007/s00249-016-1143-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.
Collapse
Affiliation(s)
| | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
22
|
Łukasiak A, Skup A, Chlopicki S, Łomnicka M, Kaczara P, Proniewski B, Szewczyk A, Wrzosek A. SERCA, complex I of the respiratory chain and ATP-synthase inhibition are involved in pleiotropic effects of NS1619 on endothelial cells. Eur J Pharmacol 2016; 786:137-147. [PMID: 27262382 DOI: 10.1016/j.ejphar.2016.05.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
A large conductance potassium (BKCa) channel opener, NS1619 (1,3-dihydro-1- [2-hydroxy-5-(trifluoromethyl) phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one), is well known for its protective effects against ischemia-reperfusion injury; however, the exact mode of its action remains unclear. The aim of this study was to characterize the effect of NS1619 on endothelial cells. The endothelial cell line EA.hy926, guinea pig hearts and submitochondrial particles isolated from the heart were used. In the isolated guinea pig hearts, which were perfused using the Langendorff technique, NS1619 caused a dose-dependent increase in coronary flow that was inhibited by L-NAME. In EA.hy926 cells, NS1619 also caused a dose-dependent increase in the intracellular calcium ion concentration [Ca(2+)]i, as measured using the FURA-2 fluorescent probe. Moreover, NS1619 decreased the oxygen consumption rate in EA.hy926 cells, as assessed using a Clark-type oxygen electrode. However, when NS1619 was applied in the presence of oligomycin, the oxygen consumption increased. NS1619 also decreased the mitochondrial membrane potential, as measured using a JC-1 fluorescent probe in the presence and absence of oligomycin. Additionally, the application of NS1619 to submitochondrial particles inhibited ATP synthase. In summary, NS1619 has pleiotropic actions on EA.hy926 cells and acts not only as an opener of the BKCa channel in EA.hy926 cells but also as an inhibitor of the respiratory chain component, sarcoplasmic reticulum ATPase, which leads to the release of Ca(2+) from the endoplasmic reticulum. Furthermore, NS1619 has the oligomycin-like property of inhibiting mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Agnieszka Łukasiak
- Department of Biophysics, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.
| | - Agata Skup
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University, Medical College, 16 Grzegorzecka, 31-531 Krakow, Poland
| | - Magdalena Łomnicka
- Chair of Pharmacology, Jagiellonian University, Medical College, 16 Grzegorzecka, 31-531 Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland
| | - Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland
| |
Collapse
|
23
|
Li B, Gao TM. Functional Role of Mitochondrial and Nuclear BK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:163-91. [PMID: 27238264 DOI: 10.1016/bs.irn.2016.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BK channels are important for the regulation of many cell functions. The significance of plasma membrane BK channels in the control of action potentials, resting membrane potential, and neurotransmitter release is well established; however, the composition and functions of mitochondrial and nuclear BK (nBK) channels are largely unknown. In this chapter, we summarize the recent findings on the subcellular localization, biophysical, and pharmacological properties of mitochondrial and nBK channels and discuss their molecular identity and physiological functions.
Collapse
Affiliation(s)
- B Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - T-M Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Brain mitochondrial ATP-insensitive large conductance Ca⁺²-activated K⁺ channel properties are altered in a rat model of amyloid-β neurotoxicity. Exp Neurol 2015; 269:8-16. [PMID: 25828534 DOI: 10.1016/j.expneurol.2014.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/01/2014] [Accepted: 12/20/2014] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is a hallmark of amyloid-beta (Aβ)-induced neuronal toxicity in Alzheimer's disease (AD). However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was undertaken to investigate whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive-IbTx-sensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a rat model of Aβ neurotoxicity. Aβ1-42 (4 μg/μl) was intracerebroventricularly injected in male Wistar rats (220-250 g). Brain Aβ accumulation was confirmed two weeks later on the basis of an immunohistochemistry staining assay, and physiological impacts measured in passive avoidance task cognitive performance experiments. Brain mitochondrial inner membranes were then extracted and membrane vesicles prepared for channel incorporation into bilayer lipid. Purity of the cell fraction was confirmed by Western blot using specific markers of mitochondria, plasma membrane, endoplasmic reticulum, and Golgi. Our results first provide evidence for differences in mitoBKCa ion permeation properties with channels coming from Aβ vesicle preparations characterized by an inward rectifying I-V curve, in contrast to control mitoBKCa channels which showed a linear I-V relationship under the same ionic conditions (200 mM cis/50mM trans). More importantly the open probability of channels from Aβ vesicles appeared 1.5 to 2.5 smaller compared to controls, the most significant decrease being observed at depolarizing potentials (30 mV to 50 mV). Because BKCa-β4 subunit has been documented to shift the BKCa channel voltage dependence curve, a Western blot analysis was undertaken where expression of mitoBKCa α and β4 subunits was estimated using anti-α and β4 subunit antibodies. Our results indicated a significant increase in mitoBKCa-β4 subunit expression coupled to a decrease in the expression of α subunit. Our results thus demonstrate a modification in the mitoBKCa channel gating properties in membrane preparations coming from a rat model of Aβ neurotoxicity, an effect potentially linked to a change in mitoBKCa-β4 and -α subunits expression or increased ROS production due to an enhanced Aβ mitochondrial accumulation. Our results may provide new insights into the cellular mechanisms underlying mitochondrial dysfunctions in Aβ neurotoxicity.
Collapse
|
25
|
Laskowski M, Kicinska A, Szewczyk A, Jarmuszkiewicz W. Mitochondrial large-conductance potassium channel from Dictyostelium discoideum. Int J Biochem Cell Biol 2015; 60:167-75. [DOI: 10.1016/j.biocel.2015.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/02/2014] [Accepted: 01/07/2015] [Indexed: 12/23/2022]
|
26
|
Impairment of brain mitochondrial charybdotoxin- and ATP-insensitive BK channel activities in diabetes. Neuromolecular Med 2014; 16:862-71. [PMID: 25344764 DOI: 10.1007/s12017-014-8334-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
Existing evidence indicates an impairment of mitochondrial functions and alterations in potassium channel activities in diabetes. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a streptozotocin (STZ) model of diabetes. Using ion channel incorporation of brain mitochondrial inner membrane into the bilayer lipid membrane, we provide in this work evidence for modifications of the mitoBKCa ion permeation properties with channels from vesicles preparations coming from diabetic rats characterized by a significant decrease in conductance. More importantly, the open probability of channels from diabetic rats was reduced 1.5-2.5 fold compared to control, the most significant decrease being observed at depolarizing potentials. Because BKCa β4 subunit has been documented to left shift the BKCa channel voltage dependence curve in high Ca(2+) conditions, a Western blot analysis was undertaken where the expression of mitoBKCa α and β4 subunits was estimated using of anti-α and β4 subunit antibodies. Our results indicated a significant decrease in mitoBKCa β4 subunit expression coupled to a decrease in the expression of α subunit, an observation compatible with the observed decrease in Ca(2+) sensitivity. Our results thus demonstrate a modification in the mitoBKCa channel gating properties in membrane preparations coming from STZ model of diabetic rats, an effect potentially linked to a change in mitoBKCa β4 and α subunits expression and/or to an increase in reactive oxygen species production in high glucose conditions.
Collapse
|
27
|
Soltysinska E, Bentzen BH, Barthmes M, Hattel H, Thrush AB, Harper ME, Qvortrup K, Larsen FJ, Schiffer TA, Losa-Reyna J, Straubinger J, Kniess A, Thomsen MB, Brüggemann A, Fenske S, Biel M, Ruth P, Wahl-Schott C, Boushel RC, Olesen SP, Lukowski R. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury. PLoS One 2014; 9:e103402. [PMID: 25072914 PMCID: PMC4114839 DOI: 10.1371/journal.pone.0103402] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/01/2014] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs) in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK-/- permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS) production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK-/- hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R) injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK-/- hearts upon I/R injury in the absence of ischemic pre-conditioning (IP), but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK-/- hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of cardiomyocytes at normoxia and upon re-oxygenation after prolonged anoxia and that IP might indeed favor survival of the myocardium upon I/R injury in a BK-dependent mode stemming from both mitochondrial post-anoxic ROS modulation and non-mitochondrial localizations.
Collapse
MESH Headings
- Animals
- Cell Hypoxia
- Disease Models, Animal
- Energy Metabolism
- Indoles/pharmacology
- Ischemic Preconditioning
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism
- Large-Conductance Calcium-Activated Potassium Channels/chemistry
- Large-Conductance Calcium-Activated Potassium Channels/genetics
- Large-Conductance Calcium-Activated Potassium Channels/metabolism
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Myocardium/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Oxidative Phosphorylation/drug effects
- Reactive Oxygen Species/metabolism
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Tetrazoles/pharmacology
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
Collapse
Affiliation(s)
- Ewa Soltysinska
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Hjorth Bentzen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Maria Barthmes
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
- Nanion Technologies GmbH, Munich, Germany
| | - Helle Hattel
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A. Brianne Thrush
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Klaus Qvortrup
- Department of Biomedical Sciences, Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip J. Larsen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas A. Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jose Losa-Reyna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Straubinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Angelina Kniess
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Morten Bækgaard Thomsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Stefanie Fenske
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Christian Wahl-Schott
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Robert Christopher Boushel
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren-Peter Olesen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (SPO); (RL)
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
- * E-mail: (SPO); (RL)
| |
Collapse
|
28
|
Li B, Jie W, Huang L, Wei P, Li S, Luo Z, Friedman AK, Meredith AL, Han MH, Zhu XH, Gao TM. Nuclear BK channels regulate gene expression via the control of nuclear calcium signaling. Nat Neurosci 2014; 17:1055-63. [PMID: 24952642 PMCID: PMC4115017 DOI: 10.1038/nn.3744] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/19/2014] [Indexed: 12/15/2022]
Abstract
Ion channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum and lysosomal ion channels in the regulation of Ca(2+) is well established. In contrast, surprisingly little is known about the function of ion channels on the nuclear envelope (NE). Here we demonstrate the presence of functional large-conductance, calcium-activated potassium channels (BK channels) on the NE of rodent hippocampal neurons. Functionally, blockade of nuclear BK channels (nBK channels) induces NE-derived Ca(2+) release, nucleoplasmic Ca(2+) elevation and cyclic AMP response element binding protein (CREB)-dependent transcription. More importantly, blockade of nBK channels regulates nuclear Ca(2+)-sensitive gene expression and promotes dendritic arborization in a nuclear Ca(2+)-dependent manner. These results suggest that the nBK channel functions as a molecular link between neuronal activity and nuclear Ca(2+) to convey signals from synapse to nucleus and is a new modulator, operating at the NE, of synaptic activity-dependent neuronal functions.
Collapse
Affiliation(s)
- Boxing Li
- 1] State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. [2] Key Laboratory of Neuroplasticity of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Wei Jie
- 1] State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. [2] Key Laboratory of Neuroplasticity of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Lianyan Huang
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Peng Wei
- 1] State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. [2] Key Laboratory of Neuroplasticity of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Shuji Li
- 1] State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. [2] Key Laboratory of Neuroplasticity of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Zhengyi Luo
- 1] State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. [2] Key Laboratory of Neuroplasticity of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Allyson K Friedman
- Department of Pharmacology and Systems Therapeutics, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ming-Hu Han
- Department of Pharmacology and Systems Therapeutics, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xin-Hong Zhu
- 1] State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. [2] Key Laboratory of Neuroplasticity of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- 1] State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. [2] Key Laboratory of Neuroplasticity of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
30
|
Gu XQ, Pamenter ME, Siemen D, Sun X, Haddad GG. Mitochondrial but not plasmalemmal BK channels are hypoxia-sensitive in human glioma. Glia 2014; 62:504-13. [PMID: 24446243 DOI: 10.1002/glia.22620] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/05/2022]
Abstract
Tumor cells are resistant to hypoxia but the underlying mechanism(s) of this tolerance remain poorly understood. In healthy brain cells, plasmalemmal Ca(2+)-activated K(+) channels ((plasma)BK) function as oxygen sensors and close under hypoxic conditions. Similarly, BK channels in the mitochondrial inner membrane ((mito)BK) are also hypoxia sensitive and regulate reactive oxygen species production and also permeability transition pore formation. Both channel populations are therefore well situated to mediate cellular responses to hypoxia. In tumors, BK channel expression increases with malignancy, suggesting these channels contribute to tumor growth; therefore, we hypothesized that the sensitivity of (plasma)BK and/or (mito)BK to hypoxia differs between glioma and healthy brain cells. To test this, we examined the electrophysiological properties of (plasma)BK and (mito)BK from a human glioma cell line during normoxia and hypoxia. We observed single channel activities in whole cells and isolated mitoplasts with slope conductance of 199 ± 8 and 278 ± 10 pA, respectively. These currents were Ca(2+)- and voltage-dependent, and were inhibited by the BK channel antagonist charybdotoxin (0.1 μM). (plasma)BK could only be activated at membrane potentials >+40 mV and had a low open probability (NPo) that was unchanged by hypoxia. Conversely, (mito)BK were active across a range of membrane potentials (-40 to +40 mV) and their NPo increased during hypoxia. Activating (plasma)BK, but not (mito)BK induced cell death and this effect was enhanced during hypoxia. We conclude that unlike in healthy brain cells, glioma (mito)BK channels, but not (plasma)BK channels are oxygen sensitive.
Collapse
Affiliation(s)
- Xiang Q Gu
- Section of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California
| | | | | | | | | |
Collapse
|
31
|
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2013; 2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.
Collapse
Affiliation(s)
- Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
32
|
Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain. PLoS One 2013; 8:e68125. [PMID: 23826369 PMCID: PMC3694950 DOI: 10.1371/journal.pone.0068125] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 05/30/2013] [Indexed: 01/10/2023] Open
Abstract
Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+)-regulated potassium channel (mitoBKCa channel) was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma) U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+) at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.
Collapse
|
33
|
Bednarczyk P, Koziel A, Jarmuszkiewicz W, Szewczyk A. Large-conductance Ca²⁺-activated potassium channel in mitochondria of endothelial EA.hy926 cells. Am J Physiol Heart Circ Physiol 2013; 304:H1415-27. [PMID: 23542921 DOI: 10.1152/ajpheart.00976.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the present study, we describe the existence of a large-conductance Ca²⁺-activated potassium (BKCa) channel in the mitochondria of the human endothelial cell line EA.hy926. A single-channel current was recorded from endothelial mitoplasts (i.e., inner mitochondrial membrane) using the patch-clamp technique in the mitoplast-attached mode. A potassium-selective current was recorded with a mean conductance equal to 270 ± 10 pS in a symmetrical 150/150 mM KCl isotonic solution. The channel activity, which was determined as the open probability, increased with the addition of calcium ions and the potassium channel opener NS1619. Conversely, the activity of the channel was irreversibly blocked by paxilline and iberiotoxin, BKCa channel inhibitors. The open-state probability was found to be voltage dependent. The substances known to modulate BKCa channel activity influenced the bioenergetics of mitochondria isolated from human endothelial EA.hy926 cells. In isolated mitochondria, 100 μM Ca²⁺, 10 μM NS1619, and 0.5 μM NS11021 depolarized the mitochondrial membrane potential and stimulated nonphosphorylating respiration. These effects were blocked by iberiotoxin and paxilline in a potassium-dependent manner. Under phosphorylating conditions, NS1619-induced, iberiotoxin-sensitive uncoupling diverted energy from ATP synthesis during the phosphorylating respiration of the endothelial mitochondria. Immunological analysis with antibodies raised against proteins of the plasma membrane BKCa channel identified a pore-forming α-subunit and an auxiliary β₂-subunit of the channel in the endothelial mitochondrial inner membrane. In conclusion, we show for the first time that the inner mitochondrial membrane in human endothelial EA.hy926 cells contains a large-conductance calcium-dependent potassium channel with properties similar to those of the surface membrane BKCa channel.
Collapse
Affiliation(s)
- Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
34
|
Stowe DF, Gadicherla AK, Zhou Y, Aldakkak M, Cheng Q, Kwok WM, Jiang MT, Heisner JS, Yang M, Camara AKS. Protection against cardiac injury by small Ca(2+)-sensitive K(+) channels identified in guinea pig cardiac inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:427-42. [PMID: 22982251 DOI: 10.1016/j.bbamem.2012.08.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 11/24/2022]
Abstract
We tested if small conductance, Ca(2+)-sensitive K(+) channels (SK(Ca)) precondition hearts against ischemia reperfusion (IR) injury by improving mitochondrial (m) bioenergetics, if O(2)-derived free radicals are required to initiate protection via SK(Ca) channels, and, importantly, if SK(Ca) channels are present in cardiac cell inner mitochondrial membrane (IMM). NADH and FAD, superoxide (O(2)(-)), and m[Ca(2+)] were measured in guinea pig isolated hearts by fluorescence spectrophotometry. SK(Ca) and IK(Ca) channel opener DCEBIO (DCEB) was given for 10 min and ended 20 min before IR. Either TBAP, a dismutator of O(2)()(-), NS8593, an antagonist of SK(Ca) isoforms, or other K(Ca) and K(ATP) channel antagonists, were given before DCEB and before ischemia. DCEB treatment resulted in a 2-fold increase in LV pressure on reperfusion and a 2.5 fold decrease in infarct size vs. non-treated hearts associated with reduced O(2)(-) and m[Ca(2+)], and more normalized NADH and FAD during IR. Only NS8593 and TBAP antagonized protection by DCEB. Localization of SK(Ca) channels to mitochondria and IMM was evidenced by a) identification of purified mSK(Ca) protein by Western blotting, immuno-histochemical staining, confocal microscopy, and immuno-gold electron microscopy, b) 2-D gel electrophoresis and mass spectroscopy of IMM protein, c) [Ca(2+)]-dependence of mSK(Ca) channels in planar lipid bilayers, and d) matrix K(+) influx induced by DCEB and blocked by SK(Ca) antagonist UCL1684. This study shows that 1) SK(Ca) channels are located and functional in IMM, 2) mSK(Ca) channel opening by DCEB leads to protection that is O(2)(-) dependent, and 3) protection by DCEB is evident beginning during ischemia.
Collapse
Affiliation(s)
- David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The large conductance calcium- and voltage-activated potassium channel (BK(Ca)) is widely expressed at the plasma membrane. This channel is involved in a variety of fundamental cellular functions including excitability, smooth muscle contractility, and Ca(2+) homeostasis, as well as in pathological situations like proinflammatory responses in rheumatoid arthritis, and cancer cell proliferation. Immunochemical, biochemical and pharmacological studies from over a decade have intermittently shown the presence of BK(Ca) in intracellular organelles. To date, intracellular BK(Ca) (iBK(Ca)) has been localized in the mitochondria, endoplasmic reticulum, nucleus and Golgi apparatus but its functional role remains largely unknown except for the mitochondrial BK(Ca) whose opening is thought to play a role in protecting the heart from ischaemic injury. In the nucleus, pharmacology suggests a role in regulating nuclear Ca(2+), membrane potential and eNOS expression. Establishing the molecular correlates of iBK(Ca), the mechanisms defining iBK(Ca) organelle-specific targeting, and their modulation are challenging questions. This review summarizes iBK(Ca) channels, their possible functions, and efforts to identify their molecular correlates.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
36
|
Kajma A, Szewczyk A. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1867-78. [PMID: 22406520 DOI: 10.1016/j.bbabio.2012.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/13/2022]
Abstract
Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Anna Kajma
- Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
37
|
Liu Y, Kalogeris T, Wang M, Zuidema M(Y, Wang Q, Dai H, Davis MJ, Hill MA, Korthuis RJ. Hydrogen sulfide preconditioning or neutrophil depletion attenuates ischemia-reperfusion-induced mitochondrial dysfunction in rat small intestine. Am J Physiol Gastrointest Liver Physiol 2012; 302:G44-54. [PMID: 21921289 PMCID: PMC3345957 DOI: 10.1152/ajpgi.00413.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The objectives of this study were to determine whether neutrophil depletion with anti-neutrophil serum (ANS) or preconditioning with the hydrogen sulfide (H(2)S) donor NaHS (NaHS-PC) 24 h prior to ischemia-reperfusion (I/R) would prevent postischemic mitochondrial dysfunction in rat intestinal mucosa and, if so, whether calcium-activated, large conductance potassium (BK(Ca)) channels were involved in this protective effect. I/R was induced by 45-min occlusion of the superior mesenteric artery followed by 60-min reperfusion in rats preconditioned with NaHS (NaHS-PC) or a BK(Ca) channel activator (NS-1619-PC) 24 h earlier or treated with ANS. Mitochondrial function was assessed by measuring mitochondrial membrane potential, mitochondrial dehydrogenase function, and cytochrome c release. Mucosal myeloperoxidase (MPO) and TNF-α levels were also determined, as measures of postischemic inflammation. BK(Ca) expression in intestinal mucosa was detected by immunohistochemistry and Western blotting. I/R induced mitochondrial dysfunction and increased tissue MPO and TNF-α levels. Although mitochondrial dysfunction was attenuated by NaHS-PC or NS-1619-PC, the postischemic increases in mucosal MPO and TNF-α levels were not. The protective effect of NaHS-PC or NS-1619-PC on postischemic mitochondrial function was abolished by coincident treatment with BK(Ca) channel inhibitors. ANS prevented the I/R-induced increase in tissue MPO levels and reversed mitochondrial dysfunction. These data indicate that neutrophils play an essential role in I/R-induced mucosal mitochondrial dysfunction. In addition, NaHS-PC prevents postischemic mitochondrial dysfunction (but not inflammation) by a BK(Ca) channel-dependent mechanism.
Collapse
Affiliation(s)
- Yajun Liu
- 1Department of Medical Pharmacology and Physiology,
| | | | - Meifang Wang
- 1Department of Medical Pharmacology and Physiology,
| | - Mozow (Yusof) Zuidema
- 1Department of Medical Pharmacology and Physiology, ,2Dalton Cardiovascular Research Center, and ,3Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Qun Wang
- 1Department of Medical Pharmacology and Physiology,
| | - Hongyan Dai
- 1Department of Medical Pharmacology and Physiology,
| | - Michael J. Davis
- 1Department of Medical Pharmacology and Physiology, ,2Dalton Cardiovascular Research Center, and ,3Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Michael A. Hill
- 1Department of Medical Pharmacology and Physiology, ,3Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Ronald J. Korthuis
- 1Department of Medical Pharmacology and Physiology, ,2Dalton Cardiovascular Research Center, and
| |
Collapse
|
38
|
How many types of large conductance Ca+2-activated potassium channels exist in brain mitochondrial inner membrane: evidence for a new mitochondrial large conductance Ca2+-activated potassium channel in brain mitochondria. Neuroscience 2011; 199:125-32. [DOI: 10.1016/j.neuroscience.2011.09.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 11/24/2022]
|
39
|
Szabò I, Leanza L, Gulbins E, Zoratti M. Physiology of potassium channels in the inner membrane of mitochondria. Pflugers Arch 2011; 463:231-46. [PMID: 22089812 DOI: 10.1007/s00424-011-1058-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 10/30/2011] [Indexed: 02/06/2023]
Abstract
The inner membrane of the ATP-producing organelles of endosymbiotic origin, mitochondria, has long been considered to be poorly permeable to cations and anions, since the strict control of inner mitochondrial membrane permeability is crucial for efficient ATP synthesis. Over the past 30 years, however, it has become clear that various ion channels--along with antiporters and uniporters--are present in the mitochondrial inner membrane, although at rather low abundance. These channels are important for energy supply, and some are a decisive factor in determining whether a cell lives or dies. Their electrophysiological and pharmacological characterisations have contributed importantly to the ongoing elucidation of their pathophysiological roles. This review gives an overview of recent advances in our understanding of the functions of the mitochondrial potassium channels identified so far. Open issues concerning the possible molecular entities giving rise to the observed activities and channel protein targeting to mitochondria are also discussed.
Collapse
Affiliation(s)
- Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|
40
|
Abstract
INTRODUCTION Epilepsies are disorders of neuronal excitability characterized by spontaneous and recurrent seizures. Ion channels are critical for regulating neuronal excitability and, therefore, can contribute significantly to epilepsy pathophysiology. In particular, large conductance, Ca2+-activated K+ (BKCa) channels play an important role in seizure etiology. These channels are activated by both membrane depolarization and increased intracellular Ca2+. This unique coupling of Ca2+ signaling to membrane depolarization is important in controlling neuronal hyperexcitability, as outward K+ current through BKCa channels hyperpolarizes neurons. AREAS COVERED BKCa channel structure-function and the role of these channels in epilepsy pathophysiology. EXPERT OPINION Loss-of-function BKCa channel mutations contribute to neuronal hyperexcitability that can lead to temporal lobe epilepsy, tonic-clonic seizures and alcohol withdrawal seizures. Similarly, BKCa channel blockade can trigger seizures and status epilepticus. Paradoxically, some mutations in BKCa channel subunit can give rise to channel gain-of-function that leads to development of idiopathic epilepsy (primarily absence epilepsy). Seizures themselves also enhance BKCa channel currents associated with neuronal hyperexcitability, and blocking BKCa channels suppresses generalized tonic-clonic seizures. Thus, both loss-of-function and gain-of-function BKCa channels might serve as molecular targets for drugs to suppress certain seizure phenotypes including temporal lobe seizures and absence seizures, respectively.
Collapse
Affiliation(s)
- Prosper N'Gouemo
- Georgetown University Medical Center, Interdisciplinary Program in Neuroscience and Department of Pediatrics, Washington, DC 20057, USA.
| |
Collapse
|
41
|
Bosco A, Steele MR, Vetter ML. Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol 2011; 519:599-620. [PMID: 21246546 DOI: 10.1002/cne.22516] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Changes in microglial cell activation and distribution are associated with neuronal decline in the central nervous system (CNS), particularly under pathological conditions. Activated microglia converge on the initial site of axonal degeneration in human glaucoma, yet their part in its pathophysiology remains unresolved. To begin with, it is unknown whether microglia activation precedes or is a late consequence of retinal ganglion cell (RGC) neurodegeneration. Here we address this critical element in DBA/2J (D2) mice, an established model of chronic inherited glaucoma, using as a control the congenic substrain DBA/2J Gpnmb(+/SjJ) (D2G), which is not affected by glaucoma. We analyzed the spatial distribution and timecourse of microglial changes in the retina, as well as within the proximal optic nerve prior to and throughout ages when neurodegeneration has been reported. Exclusively in D2 mice, we detected early microglia clustering in the inner central retina and unmyelinated optic nerve regions, with microglia activation peaking by 3 months of age. Between 5 and 8 months of age, activated microglia persisted and concentrated in the optic disc, but also localized to the retinal periphery. Collectively, our findings suggest microglia activation is an early alteration in the retina and optic nerve in D2 glaucoma, potentially contributing to disease onset or progression. Ultimately, detection of microglial activation may have value in early disease diagnosis, while modulation of microglial responses may alter disease progression.
Collapse
Affiliation(s)
- Alejandra Bosco
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | |
Collapse
|
42
|
Seidel KN, Derst C, Salzmann M, HöLtje M, Priller J, Markgraf R, Heinemann SH, Heilmann H, Skatchkov SN, Eaton MJ, Veh RW, Prüss H. Expression of the voltage- and Ca2+-dependent BK potassium channel subunits BKβ1 and BKβ4 in rodent astrocytes. Glia 2011; 59:893-902. [DOI: 10.1002/glia.21160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 01/20/2011] [Indexed: 11/08/2022]
|
43
|
Fahanik-babaei J, Eliassi A, Jafari A, Sauve R, Salari S, Saghiri R. Electro-pharmacological profile of a mitochondrial inner membrane big-potassium channel from rat brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:454-60. [DOI: 10.1016/j.bbamem.2010.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/25/2010] [Accepted: 10/12/2010] [Indexed: 11/16/2022]
|
44
|
Zuidema MY, Yang Y, Wang M, Kalogeris T, Liu Y, Meininger CJ, Hill MA, Davis MJ, Korthuis RJ. Antecedent hydrogen sulfide elicits an anti-inflammatory phenotype in postischemic murine small intestine: role of BK channels. Am J Physiol Heart Circ Physiol 2010; 299:H1554-67. [PMID: 20833953 DOI: 10.1152/ajpheart.01229.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The objectives of this study were to determine the role of calcium-activated, small (SK), intermediate (IK), and large (BK) conductance potassium channels in initiating the development of an anti-inflammatory phenotype elicited by preconditioning with an exogenous hydrogen sulfide (H(2)S) donor, sodium hydrosulfide (NaHS). Intravital microscopy was used to visualize rolling and firmly adherent leukocytes in vessels of the small intestine of mice preconditioned with NaHS (in the absence and presence of SK, IK, and BK channel inhibitors, apamin, TRAM-34, and paxilline, respectively) or SK/IK (NS-309) or BK channel activators (NS-1619) 24 h before ischemia-reperfusion (I/R). I/R induced marked increases in leukocyte rolling and adhesion, effects that were largely abolished by preconditioning with NaHS, NS-309, or NS-1619. The postischemic anti-inflammatory effects of NaHS-induced preconditioning were mitigated by BKB channel inhibitor treatment coincident with NaHS, but not by apamin or TRAM-34, 24 h before I/R. Confocal imaging and immunohistochemistry were used to demonstrate the presence of BKα subunit staining in both endothelial and vascular smooth muscle cells of isolated, pressurized mesenteric venules. Using patch-clamp techniques, we found that BK channels in cultured endothelial cells were activated after exposure to NaHS. Bath application of the same concentration of NaHS used in preconditioning protocols led to a rapid increase in a whole cell K(+) current; specifically, the component of K(+) current blocked by the selective BK channel antagonist iberiotoxin. The activation of BK current by NaHS could also be demonstrated in single channel recording mode where it was independent of a change in intracellular Ca(+) concentration. Our data are consistent with the concept that H(2)S induces the development of an anti-adhesive state in I/R in part mediated by a BK channel-dependent mechanism.
Collapse
Affiliation(s)
- Mozow Y Zuidema
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zivkovic G, Buck LT. Regulation of AMPA receptor currents by mitochondrial ATP-sensitive K+ channels in anoxic turtle neurons. J Neurophysiol 2010; 104:1913-22. [PMID: 20685922 DOI: 10.1152/jn.00506.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mammalian neurons rapidly undergo excitotoxic cell death during anoxia, whereas neurons from the anoxia-tolerant painted turtle survive without oxygen for hours and offer a unique model to study mechanisms to reduce the severity of cerebral stroke. An anoxia-mediated decrease in whole cell N-methyl-D-aspartate receptor and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) currents are an important part of the turtle's natural defense. Here we investigate the role of mitochondrial ATP-sensitive K(+) (mK(ATP)) channels in the regulation of AMPAR. Whole cell AMPAR currents were stable over 90 min of normoxic recording; however, anoxia resulted in a 52% decrease in AMPAR currents. Pharmacological activation of mK(ATP) channels with diazoxide or levcromakalim resulted in a 46% decrease in normoxic AMPAR currents and the decrease was abolished with application of the antagonists 5-hydroxydecanoic acid and glibenclamide, whereas mK(ATP) antagonists blocked the anoxia-mediated decrease. Mitochondrial K(Ca) channel modulators responded similarly. The Ca(2+)-uniporter antagonist ruthenium red reduced AMPAR currents by 38% and was blocked with the agonist spermine. The calcium chelator BAPTA in the recording electrode during anoxia or diazoxide perfusion also abolished the reduction in AMPAR currents. We conclude that the mK(ATP) channel is involved in the anoxia-mediated down-regulation of AMPAR activity during anoxia and that it is a common mechanism to reduce glutamatergic excitability.
Collapse
Affiliation(s)
- George Zivkovic
- University of Toronto, Department of Cell and Systems Biology, 25 Harbord Street, RW 329, Toronto, ON, Canada
| | | |
Collapse
|
46
|
Zhang J, Chen L, He Y, Ding Y, Zhou H, Hu H, Tang Y, Zheng Y. Large-conductance calcium-activated potassium channels in the neurons of pre-Bötzinger complex and their participation in the regulation of central respiratory activity in neonatal rats. Neurosci Lett 2010; 481:159-63. [PMID: 20599472 DOI: 10.1016/j.neulet.2010.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/31/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
Abstract
The present study was conducted to test our hypothesis that the large-conductance calcium-activated potassium channels (BK(Ca) channels) exist in the neurons of the pre-Bötzinger complex (PBC), a brainstem region that may generate respiratory rhythm in mammals, and play roles in central regulation of respiratory activity in neonatal rats. Immunohistochemical technique revealed that BK(Ca) channels expressed in the neurons of PBC region. Whole cell voltage clamp recordings from the neurons in the PBC showed that BK(Ca) channels could be activated by membrane depolarization and blocked by 1mM tetraethylammonium (TEA) or 10microM paxilline in the preparation of thin (about 300microm) medullary slices of neonatal rats. The rhythmic respiratory-like discharge of hypoglossal rootlets could be changed by perfusing the thick (700-900microm) medullary slices with 1mM TEA or 10microM paxilline. Both TEA and paxilline could prolong the inspiratory duration, shorten the expiratory duration and increase the respiratory frequency. The results suggest that BK(Ca) channels exist in the PBC neurons and may be involved in the central control of rhythmic respiration in the neonatal rats.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Szewczyk A, Kajma A, Malinska D, Wrzosek A, Bednarczyk P, Zabłocka B, Dołowy K. Pharmacology of mitochondrial potassium channels: dark side of the field. FEBS Lett 2010; 584:2063-9. [PMID: 20178786 DOI: 10.1016/j.febslet.2010.02.048] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/25/2010] [Accepted: 02/15/2010] [Indexed: 11/25/2022]
Abstract
Mitochondrial potassium channels play an important role in cytoprotection. Potassium channels in the inner mitochondrial membrane are modulated by inhibitors and activators (potassium channel openers) previously described for plasma membrane potassium channels. The majority of mitochondrial potassium channel modulators exhibit a broad spectrum of off-target effects. These include uncoupling properties, inhibition of the respiratory chain and effects on cellular calcium homeostasis. Therefore, the rational application of channel inhibitors or activators is crucial to understanding the cellular consequences of mitochondrial channel inhibition or activation. Moreover, understanding their side-effects should facilitate the design of a specific mitochondrial channel opener with cytoprotective properties. In this review, we discuss the complex interactions of potassium channel inhibitors and activators with cellular structures.
Collapse
Affiliation(s)
- Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
48
|
A large-conductance calcium-activated potassium channel in potato (Solanum tuberosum) tuber mitochondria. Biochem J 2009; 424:307-16. [DOI: 10.1042/bj20090991] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study, we describe the existence of a novel potassium channel in the plant [potato (Solanum tuberosum) tuber] mitochondrial inner membrane. We found that substances known to modulate large-conductance calcium-activated potassium channel activity influenced the bioenergetics of potato tuber mitochondria. In isolated mitochondria, Ca2+ and NS1619 {1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-ben-zimidazole-2-one; a potassium channel opener} were found to depolarize the mitochondrial membrane potential and to stimulate resting respiration. These effects were blocked by iberiotoxin (a potassium channel inhibitor) in a potassium-dependent manner. Additionally, the electrophysiological properties of the large-conductance potassium channel present in the potato tuber inner mitochondrial membrane are described in a reconstituted system, using planar lipid bilayers. After incorporation in 50/450 mM KCl gradient solutions, we recorded large-conductance potassium channel activity with conductance from 502±15 to 615±12 pS. The probability of channel opening was increased by Ca2+ and reduced by iberiotoxin. Immunological analysis with antibodies raised against the mammalian plasma-membrane large-conductance Ca2+-dependent K+ channel identified a pore-forming α subunit and an auxiliary β2 subunit of the channel in potato tuber mitochondrial inner membrane. These results suggest that a large-conductance calcium-activated potassium channel similar to that of mammalian mitochondria is present in potato tuber mitochondria.
Collapse
|
49
|
Demory ML, Boerner JL, Davidson R, Faust W, Miyake T, Lee I, Hüttemann M, Douglas R, Haddad G, Parsons SJ. Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem 2009; 284:36592-36604. [PMID: 19840943 DOI: 10.1074/jbc.m109.000760] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Co-overexpression of the epidermal growth factor (EGF) receptor (EGFR) and c-Src frequently occurs in human tumors and is linked to enhanced tumor growth. In experimental systems this synergistic growth requires EGF-dependent association of c-Src with the EGFR and phosphorylation of Tyr-845 of the receptor by c-Src. A search for signaling mediators of Tyr(P)-845 revealed that mitochondrial cytochrome c oxidase subunit II (CoxII) binds EGFR in a Tyr(P)-845- and EGF-dependent manner. In cells this association involves translocation of EGFR to the mitochondria, but regulation of this process is ill-defined. The current study demonstrates that c-Src translocates to the mitochondria with similar kinetics as EGFR and that the catalytic activity of EGFR and c-Src as well as endocytosis and a mitochondrial localization signal are required for these events. CoxII can be phosphorylated by EGFR and c-Src, and EGF stimulation reduces Cox activity and cellular ATP, an event that is dependent in large part on EGFR localized to the mitochondria. These findings suggest EGFR plays a novel role in modulating mitochondrial function via its association with, and modification of CoxII.
Collapse
Affiliation(s)
- Michelle L Demory
- Department of Microbiology and the Cancer Center, University of Virginia, Charlottesville, Virginia 22908
| | - Julie L Boerner
- Department of Microbiology and the Cancer Center, University of Virginia, Charlottesville, Virginia 22908; Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201; Department of Pharmacology, Wayne State University, Detroit, Michigan 48201
| | - Robert Davidson
- Department of Microbiology and the Cancer Center, University of Virginia, Charlottesville, Virginia 22908
| | - William Faust
- Department of Microbiology and the Cancer Center, University of Virginia, Charlottesville, Virginia 22908
| | - Tsuyoshi Miyake
- Department of Microbiology and the Cancer Center, University of Virginia, Charlottesville, Virginia 22908
| | - Icksoo Lee
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Maik Hüttemann
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Robert Douglas
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093
| | - Gabriel Haddad
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093; Department of Neuroscience, University of California, San Diego, La Jolla, California 92093
| | - Sarah J Parsons
- Department of Microbiology and the Cancer Center, University of Virginia, Charlottesville, Virginia 22908.
| |
Collapse
|
50
|
Choma K, Bednarczyk P, Koszela-Piotrowska I, Kulawiak B, Kudin A, Kunz WS, Dołowy K, Szewczyk A. Single channel studies of the ATP-regulated potassium channel in brain mitochondria. J Bioenerg Biomembr 2009; 41:323-34. [PMID: 19821034 DOI: 10.1007/s10863-009-9233-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/21/2009] [Indexed: 01/17/2023]
Abstract
Mitochondrial potassium channels in the brain have been suggested to have an important role in neuroprotection. The single channel activity of mitochondrial potassium channels was measured after reconstitution of the purified inner membrane from rat brain mitochondria into a planar lipid bilayer. In addition to a large conductance potassium channel that was described previously, we identified a potassium channel that has a mean conductance of 219 +/- 15 pS. The activity of this channel was inhibited by ATP/Mg(2+) and activated by the potassium channel opener BMS191095. Channel activity was not influenced either by 5-hydroxydecanoic acid, an inhibitor of mitochondrial ATP-regulated potassium channels, or by the plasma membrane ATP-regulated potassium channel blocker HMR1098. Likewise, this mitochondrial potassium channel was unaffected by the large conductance potassium channel inhibitor iberiotoxin or by the voltage-dependent potassium channel inhibitor margatoxin. The amplitude of the conductance was lowered by magnesium ions, but the opening ability was unaffected. Immunological studies identified the Kir6.1 channel subunit in the inner membrane from rat brain mitochondria. Taken together, our results demonstrate for the first time the single channel activity and properties of an ATP-regulated potassium channel from rat brain mitochondria.
Collapse
Affiliation(s)
- Katarzyna Choma
- Department of Biophysics, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska St., 02-776, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|