1
|
Asogwa CN, Zhao C, Polzin BJ, Maksimoski AN, Heimovics SA, Riters LV. Distinct patterns of activity within columns of the periaqueductal gray are associated with functionally distinct birdsongs. Ann N Y Acad Sci 2023; 1530:161-181. [PMID: 37800392 PMCID: PMC10841217 DOI: 10.1111/nyas.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Male songbirds produce female-directed songs in spring that convey a state of sexual motivation. Many songbirds also sing in fall flocks in affiliative/gregarious contexts in which song is linked to an intrinsic positive affective state. The periaqueductal gray (PAG) in mammals, which is organized into functional columns, integrates information from multiple brain regions and relays this information to vocal motor areas so that an animal emits a vocal signal reflective of its affective state. Here, we test the hypothesis that distinct columns in the songbird PAG play roles in the distinct affective states communicated by sexually motivated and gregarious song. We quantified the numbers of immediate early gene ZENK-positive cells in 16 PAG subregions in male European starlings (Sturnus vulgaris) after singing gregarious or sexually motivated song. Results suggest that distinct PAG columns in songbirds context-specifically regulate song, agonistic, and courtship behaviors. A second exploratory, functional tract-tracing study also demonstrated that inputs to the PAG from specific subregions of the medial preoptic nucleus may contribute to gregarious song and behaviors indicative of social dominance. Together, findings suggest that conserved PAG columns and inputs from the preoptic nucleus may play a role in context-specific vocal and other social behaviors.
Collapse
Affiliation(s)
- Chinweike N. Asogwa
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Brandon J. Polzin
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alyse N. Maksimoski
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sarah A. Heimovics
- Department of Biology, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Freiler MK, Smith GT. Neuroendocrine mechanisms contributing to the coevolution of sociality and communication. Front Neuroendocrinol 2023; 70:101077. [PMID: 37217079 PMCID: PMC10527162 DOI: 10.1016/j.yfrne.2023.101077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/19/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Communication is inherently social, so signaling systems should evolve with social systems. The 'social complexity hypothesis' posits that social complexity necessitates communicative complexity and is generally supported in vocalizing mammals. This hypothesis, however, has seldom been tested outside the acoustic modality, and comparisons across studies are confounded by varying definitions of complexity. Moreover, proximate mechanisms underlying coevolution of sociality and communication remain largely unexamined. In this review, we argue that to uncover how sociality and communication coevolve, we need to examine variation in the neuroendocrine mechanisms that coregulate social behavior and signal production and perception. Specifically, we focus on steroid hormones, monoamines, and nonapeptides, which modulate both social behavior and sensorimotor circuits and are likely targets of selection during social evolution. Lastly, we highlight weakly electric fishes as an ideal system in which to comparatively address the proximate mechanisms underlying relationships between social and signal diversity in a novel modality.
Collapse
Affiliation(s)
- Megan K Freiler
- Department of Biology, Indiana University, Bloomington, IN, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States.
| | - G Troy Smith
- Department of Biology, Indiana University, Bloomington, IN, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
Ben-Tov M, Duarte F, Mooney R. A neural hub for holistic courtship displays. Curr Biol 2023; 33:1640-1653.e5. [PMID: 36944337 PMCID: PMC10249437 DOI: 10.1016/j.cub.2023.02.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Courtship displays often involve the concerted production of several distinct courtship behaviors. The neural circuits that enable the concerted production of the component behaviors of a courtship display are not well understood. Here, we identify a midbrain cell group (A11) that enables male zebra finches to produce their learned songs in concert with various other behaviors, including female-directed orientation, pursuit, and calling. Anatomical mapping reveals that A11 is at the center of a complex network including the song premotor nucleus HVC as well as brainstem regions crucial to calling and locomotion. Notably, lesioning A11 terminals in HVC blocked female-directed singing but did not interfere with female-directed calling, orientation, or pursuit. In contrast, lesioning A11 cell bodies strongly reduced and often abolished all female-directed courtship behaviors. However, males with either type of lesion still produced songs when in social isolation. Lastly, imaging calcium-related activity in A11 terminals in HVC showed that during courtship, A11 signals HVC about female-directed calls and during female-directed singing, about the transition from simpler introductory notes to the acoustically more complex syllables that depend intimately on HVC for their production. These results show how a brain region important to reproduction in both birds and mammals enables holistic courtship displays in male zebra finches, which include learning songs, calls, and other non-vocal behaviors.
Collapse
Affiliation(s)
- Mor Ben-Tov
- Department of Neurobiology, Duke University, 311 Research Drive, Durham, NC 27710, USA.
| | - Fabiola Duarte
- Department of Neurobiology, Duke University, 311 Research Drive, Durham, NC 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University, 311 Research Drive, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Gonzalez Abreu JA, Rosenberg AE, Fricker BA, Wallace KJ, Seifert AW, Kelly AM. Species-typical group size differentially influences social reward neural circuitry during nonreproductive social interactions. iScience 2022; 25:104230. [PMID: 35521530 PMCID: PMC9062245 DOI: 10.1016/j.isci.2022.104230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/24/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
We investigated whether nonreproductive social interactions may be rewarding for colonial but not non-colonial species. We found that the colonial spiny mouse (Acomys cahirinus) is significantly more gregarious, more prosocial, and less aggressive than its non-colonial relative, the Mongolian gerbil (Meriones unguiculatus). In an immediate-early gene study, we examined oxytocin (OT) and tyrosine hydroxylase (TH) neural responses to interactions with a novel, same-sex conspecific or a novel object. The paraventricular nucleus of the hypothalamus (PVN) OT cell group was more responsive to interactions with a conspecific compared to a novel object in both species. However, the ventral tegmental area (VTA) TH cell group showed differential responses only in spiny mice. Further, PVN OT and VTA TH neural responses positively correlated in spiny mice, suggesting functional connectivity. These results suggest that colonial species may have evolved neural mechanisms associated with reward in novel, nonreproductive social contexts to promote large group-living.
Collapse
Affiliation(s)
| | - Ashley E. Rosenberg
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Brandon A. Fricker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Kelly J. Wallace
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, 675 Rose Street, Lexington, KY 40506, USA
| | - Aubrey M. Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Campos SM, Erley A, Ashraf Z, Wilczynski W. Signaler's Vasotocin Alters the Relationship between the Responder's Forebrain Catecholamines and Communication Behavior in Lizards (Anolis carolinensis). BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:184-196. [PMID: 35320812 DOI: 10.1159/000524217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Dynamic fluctuations in the distribution of catecholamines across the brain modulate the responsiveness of vertebrates to social stimuli. Previous work demonstrates that green anoles (Anolis carolinensis) increase chemosensory behavior in response to males treated with exogenous arginine vasotocin (AVT), but the neurochemical mechanisms underlying this behavioral shift remains unclear. Since central catecholamine systems, including dopamine, rapidly activate in response to social stimuli, we tested whether exogenous AVT in signalers (stimulus animals) impacts catecholamine concentrations in the forebrain (where olfactory and visual information are integrated and processed) of untreated lizard responders. We also tested whether AVT influences the relationship between forebrain catecholamine concentrations and communication behavior in untreated receivers. We measured global catecholamine (dopamine = DA, epinephrine = Epi, and norepinephrine = NE) concentrations in the forebrain of untreated responders using high-performance liquid chromatography-mass spectrometry following either a 30-min social interaction with a stimulus male or a period of social isolation. Stimulus males were injected with exogenous AVT or vehicle saline (SAL). We found that global DA, but not Epi or NE, concentrations were elevated in lizards responding to SAL-males relative to isolated lizards. Lizards interacting with AVT-males had DA, Epi and NE concentrations that were not significantly different from SAL or isolated groups. For behavior, we found a significant effect of social treatment (AVT vs. SAL) on the relationships between (1) DA concentrations and the motivation to perform a chemical display (latency to tongue flick) and (2) Epi concentrations and time spent displaying mostly green body coloration. We also found a significant negative correlation between DA concentrations and the latency to perform a visual display but found no effect of social treatment on this relationship. These data suggest that catecholamine concentrations in the forebrain of untreated responders are associated with chemical and visual communication in lizards and that signaler AVT alters this relationship for some, but not all, aspects of social communication.
Collapse
Affiliation(s)
- Stephanie M Campos
- Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA
| | | | - Zoha Ashraf
- Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Walter Wilczynski
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Singh Alvarado J, Goffinet J, Michael V, Liberti W, Hatfield J, Gardner T, Pearson J, Mooney R. Neural dynamics underlying birdsong practice and performance. Nature 2021; 599:635-639. [PMID: 34671166 PMCID: PMC9118926 DOI: 10.1038/s41586-021-04004-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/07/2021] [Indexed: 11/09/2022]
Abstract
Musical and athletic skills are learned and maintained through intensive practice to enable precise and reliable performance for an audience. Consequently, understanding such complex behaviours requires insight into how the brain functions during both practice and performance. Male zebra finches learn to produce courtship songs that are more varied when alone and more stereotyped in the presence of females1. These differences are thought to reflect song practice and performance, respectively2,3, providing a useful system in which to explore how neurons encode and regulate motor variability in these two states. Here we show that calcium signals in ensembles of spiny neurons (SNs) in the basal ganglia are highly variable relative to their cortical afferents during song practice. By contrast, SN calcium signals are strongly suppressed during female-directed performance, and optogenetically suppressing SNs during practice strongly reduces vocal variability. Unsupervised learning methods4,5 show that specific SN activity patterns map onto distinct song practice variants. Finally, we establish that noradrenergic signalling reduces vocal variability by directly suppressing SN activity. Thus, SN ensembles encode and drive vocal exploration during practice, and the noradrenergic suppression of SN activity promotes stereotyped and precise song performance for an audience.
Collapse
Affiliation(s)
| | - Jack Goffinet
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Valerie Michael
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - William Liberti
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, USA
| | - Jordan Hatfield
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Timothy Gardner
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - John Pearson
- Department of Neurobiology, Duke University, Durham, NC, USA.
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| | - Richard Mooney
- Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Mitra S, Basu S, Singh O, Lechan RM, Singru PS. Cocaine- and amphetamine-regulated transcript peptide- and dopamine-containing systems interact in the ventral tegmental area of the zebra finch, Taeniopygia guttata, during dynamic changes in energy status. Brain Struct Funct 2021; 226:2537-2559. [PMID: 34392422 DOI: 10.1007/s00429-021-02348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
The mesolimbic dopamine (DA)-pathway regulates food-reward, feeding-related behaviour and energy balance. Evidence underscores the importance of feeding-related neuropeptides in modulating activity of these DA neurons. The neuropeptide, CART, a crucial regulator of energy balance, modulates DA-release, and influences the activity of ventral tegmental area (VTA) DAergic neurons in the mammalian brain. Whether CART- and DA-containing systems interact at the level of VTA to regulate energy balance, however, is poorly understood. We explored the interaction between CART- and DA-containing systems in midbrain of the zebra finch, Taeniopygia guttata, an interesting model to study dynamic changes in energy balance due to higher BMR/daytime body temperature, and rapid responsiveness of the feeding-related neuropeptides to changes in energy state. Further, its midbrain DA-neurons share similarities with those in mammals. In the midbrain, tyrosine hydroxylase-immunoreactive (TH-i) neurons were seen in the substantia nigra (SN) and VTA [anterior (VTAa), mid (VTAm) and caudal (VTAc)]; those in VTA were smaller. In the VTA, CART-immunoreactive (CART-i)-fibers densely innervated TH-i neurons, and both CART-immunoreactivity (CART-ir) and TH-immunoreactivity (TH-ir) responded to energy status-dependent changes. Compared to fed and fasted birds, refeeding dramatically enhanced TH-ir and the percentage of TH-i neurons co-expressing FOS in the VTA. Increased prepro-CART-mRNA, CART-ir and a transient appearance of CART-i neurons was observed in VTAa of fasted, but not fed birds. To test the functional interaction between CART- and DA-containing systems, ex-vivo superfused midbrain-slices were treated with CART-peptide and changes in TH-ir analysed. Compared to control tissues, CART-treatment increased TH-ir in VTA but not SN. We propose that CART is a potential regulator of VTA DA-neurons and energy balance in T. guttata.
Collapse
Affiliation(s)
- Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA.,Department of Neuroscience, Tufts University School of Medicine, Boston, USA
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, P.O. Jatni, Khurda, Odisha, 752050, India. .,Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
8
|
Burns-Cusato M, Rieskamp J, Nagy M, Rana A, Hawkins W, Panting S. A role for endogenous opiates in incubation behavior in ring neck doves (Streptopelia risoria). Behav Brain Res 2020; 399:113052. [PMID: 33279638 DOI: 10.1016/j.bbr.2020.113052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/20/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Incubation of eggs is a critical component of parental care in avian species. However, we do not fully understand the neuroendocrine mechanisms underlying this vital behavior. While prolactin is clearly involved, it alone cannot explain the fine-tuning of incubation behavior. The present experiments explored the possibility that incubation is reinforced through a hedonic system in which contact with eggs elicited an opiate-mediated reinforcing state. Blockade of opiate receptors with naloxone reduced time ring neck doves (Streptopelia risoria) spent on the nest, possibly by uncoupling the opiate-receptor mediated hedonic experience of contact with eggs from nest-sitting behavior. Likewise, activation of opiate receptors with morphine also reduced time spent on the nest, possibly by activating an opiate-receptor mediated hedonic experience, hence rendering the eliciting behavior (contact with eggs) unnecessary. Taken together, the results suggest that the opiate system may play a previously unrecognized role in facilitating incubation through reinforcement.
Collapse
Affiliation(s)
| | | | - Madeleine Nagy
- Centre College, Department of Behavioral Neuroscience, USA
| | - Arpit Rana
- Centre College, Department of Behavioral Neuroscience, USA
| | | | - Sierra Panting
- Centre College, Department of Behavioral Neuroscience, USA
| |
Collapse
|
9
|
Engert F. Neuromodulation: How Dopaminergic Neurons Shape and Modulate Behavior. Curr Biol 2020; 30:R1422-R1425. [DOI: 10.1016/j.cub.2020.09.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Kisspeptin-1 regulates forebrain dopaminergic neurons in the zebrafish. Sci Rep 2020; 10:19361. [PMID: 33168887 PMCID: PMC7652893 DOI: 10.1038/s41598-020-75777-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023] Open
Abstract
The habenula is a phylogenetically conserved epithalamic structure, which conveys negative information via inhibition of mesolimbic dopamine neurons. We have previously shown the expression of kisspeptin (Kiss1) in the habenula and its role in the modulation of fear responses in the zebrafish. In this study, to investigate whether habenular Kiss1 regulates fear responses via dopamine neurons in the zebrafish, Kiss1 peptides were intracranially administered close to the habenula, and the expression of dopamine-related genes (th1, th2 and dat) were examined in the brain using real-time PCR and dopamine levels using LC–MS/MS. th1 mRNA levels and dopamine levels were significantly increased in the telencephalon 24-h and 30-min after Kiss1 administration, respectively. In fish administered with Kiss1, expression of neural activity marker gene, npas4a and kiss1 gene were significantly decreased in the ventral habenula. Application of neural tracer into the median raphe, site of habenular Kiss1 neural terminal projections showed tracer-labelled projections in the medial forebrain bundle towards the telencephalon where dopamine neurons reside. These results suggest that Kiss1 negatively regulates its own neuronal activity in the ventral habenula via autocrine action. This, in turn affects neurons of the median raphe via interneurons, which project to the telencephalic dopaminergic neurons.
Collapse
|
11
|
Barrios JP, Wang WC, England R, Reifenberg E, Douglass AD. Hypothalamic Dopamine Neurons Control Sensorimotor Behavior by Modulating Brainstem Premotor Nuclei in Zebrafish. Curr Biol 2020; 30:4606-4618.e4. [PMID: 33007241 DOI: 10.1016/j.cub.2020.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023]
Abstract
Dopamine (DA)-producing neurons are critically involved in the production of motor behaviors in multiple circuits that are conserved from basal vertebrates to mammals. Although there is increasing evidence that DA neurons in the hypothalamus play a locomotor role, their precise contributions to behavior and the circuit mechanisms by which they are achieved remain unclear. Here, we demonstrate that tyrosine-hydroxylase-2-expressing (th2+) DA neurons in the zebrafish hypothalamus fire phasic bursts of activity to acutely promote swimming and modulate audiomotor behaviors on fast timescales. Their anatomy and physiology reveal two distinct functional DA modules within the hypothalamus. The first comprises an interconnected set of cerebrospinal-fluid-contacting DA nuclei surrounding the 3rd ventricle, which lack distal projections outside of the hypothalamus and influence locomotion through unknown means. The second includes neurons in the preoptic nucleus, which send long-range projections to targets throughout the brain, including the mid- and hindbrain, where they activate premotor circuits involved in swimming and sensorimotor integration. These data suggest a broad regulation of motor behavior by DA neurons within multiple hypothalamic nuclei and elucidate a novel functional mechanism for the preoptic DA neurons in the initiation of movement.
Collapse
Affiliation(s)
- Joshua P Barrios
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Wei-Chun Wang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Roman England
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Erica Reifenberg
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Rendon NM, Petersen CL, Munley KM, Amez AC, Boyes DL, Kingsbury MA, Demas GE. Seasonal patterns of melatonin alter aggressive phenotypes of female Siberian hamsters. J Neuroendocrinol 2020; 32:e12894. [PMID: 32808694 DOI: 10.1111/jne.12894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Many animal species exhibit year-round aggression, a behaviour that allows individuals to compete for limited resources in their environment (eg, food and mates). Interestingly, this high degree of territoriality persists during the non-breeding season, despite low levels of circulating gonadal steroids (ie, testosterone [T] and oestradiol [E2 ]). Our previous work suggests that the pineal hormone melatonin mediates a 'seasonal switch' from gonadal to adrenal regulation of aggression in Siberian hamsters (Phodopus sungorus); solitary, seasonally breeding mammals that display increased aggression during the short, 'winter-like' days (SDs) of the non-breeding season. To test the hypothesis that melatonin elevates non-breeding aggression by increasing circulating and neural steroid metabolism, we housed female hamsters in long days (LDs) or SDs, administered them timed or mis-timed melatonin injections (mimic or do not mimic a SD-like signal, respectively), and measured aggression, circulating hormone profiles and aromatase (ARO) immunoreactivity in brain regions associated with aggressive or reproductive behaviours (paraventricular hypothalamic nucleus [PVN], periaqueductal gray [PAG] and ventral tegmental area [VTA]). Females that were responsive to SD photoperiods (SD-R) and LD females given timed melatonin injections (Mel-T) exhibited gonadal regression and reduced circulating E2 , but increased aggression and circulating dehydroepiandrosterone (DHEA). Furthermore, aggressive challenges differentially altered circulating hormone profiles across seasonal phenotypes; reproductively inactive females (ie, SD-R and Mel-T females) reduced circulating DHEA and T, but increased E2 after an aggressive interaction, whereas reproductively active females (ie, LD females, SD non-responder females and LD females given mis-timed melatonin injections) solely increased circulating E2 . Although no differences in neural ARO abundance were observed, LD and SD-R females showed distinct associations between ARO cell density and aggressive behaviour in the PVN, PAG and VTA. Taken together, these results suggest that melatonin increases non-breeding aggression by elevating circulating steroid metabolism after an aggressive encounter and by regulating behaviourally relevant neural circuits in a region-specific manner.
Collapse
Affiliation(s)
- Nikki M Rendon
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | | | - Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Andrea C Amez
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Daniel L Boyes
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Marcy A Kingsbury
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
13
|
Fazekas EA, Morvai B, Zachar G, Dóra F, Székely T, Pogány Á, Dobolyi A. Neuronal activation in zebra finch parents associated with reintroduction of nestlings. J Comp Neurol 2019; 528:363-379. [PMID: 31423585 DOI: 10.1002/cne.24761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/23/2022]
Abstract
Recent studies of the brain mechanisms of parental behaviors have mainly focused on rodents. Using other vertebrate taxa, such as birds, can contribute to a more comprehensive, evolutionary view. In the present study, we investigated a passerine songbird, the zebra finch (Taeniopygia guttata), with a biparental caring system. Parenting-related neuronal activation was induced by first temporarily removing the nestlings, and then, either reuniting the focal male or female parent with the nestlings (parental group) or not (control group). To identify activated neurons, the immediate early gene product, Fos protein, was labeled. Both parents showed an increased level of parental behavior following reunion with the nestlings, and no sexual dimorphism occurred in the neuronal activation pattern. Offspring-induced parental behavior-related neuronal activation was found in the preoptic, ventromedial (VMH), paraventricular hypothalamic nuclei, and in the bed nucleus of the stria terminalis. In addition, the number of Fos-immunoreactive (Fos-ir) neurons in the nucleus accumbens predicted the frequency of the feeding of the nestlings. No difference was found in Fos expression when the effect of isolation or the presence of the mate was examined. Thus, our study identified a number of nuclei involved in parental care in birds and suggests similar regulatory mechanisms in caring females and males. The activated brain regions show similarities to rodents, while a generally lower number of brain regions were activated in the zebra finch. Furthermore, future studies are necessary to establish the role of the apparently avian-specific neuronal activation in the VMH of zebra finch parents.
Collapse
Affiliation(s)
- Emese A Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungary Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.,Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Boglárka Morvai
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Fanni Dóra
- SE-NAP-Human Brain Tissue Bank Microdissection Laboratory and Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Tamás Székely
- Milner Center for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Ákos Pogány
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungary Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
14
|
Eswine SL, Pontinen JK, Heimovics SA. Competitive ability during mate competition relates to unique patterns of dopamine-related gene expression in the social decision-making network of male zebra finches. Neurosci Lett 2019; 706:30-35. [PMID: 31051224 DOI: 10.1016/j.neulet.2019.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Aggressive interactions usually reveal individual differences in the competitive ability of contest participants. Individuals with higher competitive ability often gain priority access to resources such as food, territory, and/or mates. Individuals with lower competitive ability usually have reduced access to these resources and limited mating opportunities. Despite the importance of contest performance to the reproductive success of individuals, the neuroendocrine factors associated with individual differences in competitive ability have not been fully elucidated. Here, we investigate the relationship between dopamine (DA)-related gene expression and competitive ability during mate competition in male zebra finches. Males demonstrating high competitive ability (HCA) had higher tyrosine hydroxylase mRNA levels in the ventral tegmental area and higher D1 receptor (D1-R) mRNA levels in the preoptic area than low competitive ability (LCA) males. Additionally, HCA males had lower levels of D1-R mRNA in the anterior hypothalamus relative to LCA males. These data suggest that there are dynamic and region-specific changes in DA function that relate to variation in competitive ability during mate competition.
Collapse
Affiliation(s)
- Stephanie L Eswine
- Department of Biology and Interdisciplinary Neuroscience Program, University of St. Thomas, St. Paul, MN, USA
| | - Jill K Pontinen
- Department of Biology and Interdisciplinary Neuroscience Program, University of St. Thomas, St. Paul, MN, USA
| | - Sarah A Heimovics
- Department of Biology and Interdisciplinary Neuroscience Program, University of St. Thomas, St. Paul, MN, USA.
| |
Collapse
|
15
|
Ghahramani ZN, Timothy M, Varughese J, Sisneros JA, Forlano PM. Dopaminergic neurons are preferentially responsive to advertisement calls and co-active with social behavior network nuclei in sneaker male midshipman fish. Brain Res 2018; 1701:177-188. [PMID: 30217439 DOI: 10.1016/j.brainres.2018.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
Abstract
Vocal species use acoustic signals to facilitate diverse behaviors such as mate attraction and territorial defense. However, little is known regarding the neural substrates that interpret such divergent conspecific signals. Using the plainfin midshipman fish model, we tested whether specific catecholaminergic (i.e., dopaminergic and noradrenergic) nuclei and nodes of the social behavior network (SBN) are differentially responsive following exposure to playbacks of divergent social signals in sneaker males. We chose sneaker (type II) males since they attempt to steal fertilizations from territorial type I males who use an advertisement call (hum) to attract females yet are also subjected to vocal agonistic behavior (grunts) by type I males. We demonstrate that induction of cFos (an immediate early gene product and proxy for neural activation) in two forebrain dopaminergic nuclei is greater in sneaker males exposed to hums but not grunts compared to ambient noise, suggesting hums preferentially activate these nuclei, further asserting dopamine as an important regulator of social-acoustic behaviors. Moreover, acoustic exposure to social signals with divergent salience engendered contrasting shifts in functional connectivity between dopaminergic nuclei and nodes of the SBN, supporting the idea that interactions between these two circuits may underlie adaptive decision-making related to intraspecific male competition.
Collapse
Affiliation(s)
- Zachary N Ghahramani
- Department of Biology, Brooklyn College, Brooklyn, NY, United States; Doctoral Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York, New York, NY, United States.
| | - Miky Timothy
- Department of Biology, Brooklyn College, Brooklyn, NY, United States
| | - Joshua Varughese
- Department of Biology, Brooklyn College, Brooklyn, NY, United States
| | - Joseph A Sisneros
- Department of Biology, University of Washington, Seattle, WA, United States; Department of Psychology, University of Washington, Seattle, WA, United States; Virginia Bloedel Hearing Research Center, Seattle, WA, United States
| | - Paul M Forlano
- Department of Biology, Brooklyn College, Brooklyn, NY, United States; Aquatic Research and Environmental Assessment Center (AREAC), Brooklyn College, Brooklyn, NY, United States; Doctoral Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York, New York, NY, United States; Doctoral Subprogram in Neuroscience, The Graduate Center, City University of New York, New York, NY, United States; Doctoral Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
16
|
Differences in neural activity, but not behavior, across social contexts in guppies, Poecilia reticulata. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2548-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Rodríguez-Saltos CA, Lyons SM, Sockman KW, Maney DL. Sound-induced monoaminergic turnover in the auditory forebrain depends on endocrine state in a seasonally-breeding songbird. J Neuroendocrinol 2018; 30:e12606. [PMID: 29738608 PMCID: PMC6365208 DOI: 10.1111/jne.12606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Sensory responses to courtship signals can be altered by reproductive hormones. In seasonally-breeding female songbirds, for example, sound-induced immediate early gene expression in the auditory pathway is selective for male song over behaviourally irrelevant sounds only when plasma estradiol reaches breeding-like levels. This selectivity has been hypothesized to be mediated by release of monoaminergic neuromodulators in the auditory pathway. We previously showed that in oestrogen-primed female white-throated sparrows, exposure to male song induced dopamine and serotonin release in auditory regions. In order to mediate hormone-dependent selectivity, this release must be (1) selective for song and (2) modulated by endocrine state. Therefore, in the current study we addressed both questions by conducting playbacks of song or a control sound to females in a breeding-like or non-breeding endocrine state. We then used high performance liquid chromatography to measure turnover of dopamine, norepinephrine, and serotonin in the auditory midbrain and forebrain. We found that sound-induced turnover of dopamine and serotonin did in fact depend on endocrine state; hearing sound increased turnover in the auditory forebrain only in the birds in a breeding-like endocrine state. Contrary to our expectations, these increases occurred in response to either song or artificial tones; in other words, they were not selective for song. The selectivity of sound-induced monoamine release was thus strikingly different from that of immediate early gene responses described in previous studies. We did, however, find that constitutive monoamine release was altered by endocrine state; whether the birds heard sound or not, turnover of serotonin in the auditory forebrain was higher in a breeding-like state than in a non-breeding endocrine state. Our results suggest that dopaminergic and serotonergic responses to song and other sounds, as well as serotonergic tone in auditory areas, could be seasonally modulated. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Susan M. Lyons
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | - Keith W. Sockman
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
18
|
Tomaszycki ML, Atchley D. Pairing Increases Activation of V1aR, but not OTR, in Auditory Regions of Zebra Finches: The Importance of Signal Modality in Nonapeptide-Social Behavior Relationships. Integr Comp Biol 2018; 57:878-890. [PMID: 28992311 DOI: 10.1093/icb/icx043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social relationships are complex, involving the production and comprehension of signals, individual recognition, and close coordination of behavior between two or more individuals. The nonapeptides oxytocin and vasopressin are widely believed to regulate social relationships. These findings come largely from prairie voles, in which nonapeptide receptors in olfactory neural circuits drive pair bonding. This research is assumed to apply to all species. Previous reviews have offered two competing hypotheses. The work of Sarah Newman has implicated a common neural network across species, the Social Behavior Network. In contrast, others have suggested that there are signal modality-specific networks that regulate social behavior. Our research focuses on evaluating these two competing hypotheses in the zebra finch, a species that relies heavily on vocal/auditory signals for communication, specifically the neural circuits underlying singing in males and song perception in females. We have demonstrated that the quality of vocal interactions is highly important for the formation of long-term monogamous bonds in zebra finches. Qualitative evidence at first suggests that nonapeptide receptor distributions are very different between monogamous rodents (olfactory species) and monogamous birds (vocal/auditory species). However, we have demonstrated that social bonding behaviors are not only correlated with activation of nonapeptide receptors in vocal and auditory circuits, but also involve regions of the common Social Behavior Network. Here, we show increased Vasopressin 1a receptor, but not oxytocin receptor, activation in two auditory regions following formation of a pair bond. To our knowledge, this is the first study to suggest a role of nonapeptides in the auditory circuit in pair bonding. Thus, we highlight converging mechanisms of social relationships and also point to the importance of studying multiple species to understand mechanisms of behavior.
Collapse
Affiliation(s)
- Michelle L Tomaszycki
- Department of Psychology, Program in Neuroscience, Lafayette College, Easton, PA 18042, USA
| | - Derek Atchley
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
19
|
Forlano PM, Licorish RR, Ghahramani ZN, Timothy M, Ferrari M, Palmer WC, Sisneros JA. Attention and Motivated Response to Simulated Male Advertisement Call Activates Forebrain Dopaminergic and Social Decision-Making Network Nuclei in Female Midshipman Fish. Integr Comp Biol 2018; 57:820-834. [PMID: 28992072 DOI: 10.1093/icb/icx053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Little is known regarding the coordination of audition with decision-making and subsequent motor responses that initiate social behavior including mate localization during courtship. Using the midshipman fish model, we tested the hypothesis that the time spent by females attending and responding to the advertisement call is correlated with the activation of a specific subset of catecholaminergic (CA) and social decision-making network (SDM) nuclei underlying auditory- driven sexual motivation. In addition, we quantified the relationship of neural activation between CA and SDM nuclei in all responders with the goal of providing a map of functional connectivity of the circuitry underlying a motivated state responsive to acoustic cues during mate localization. In order to make a baseline qualitative comparison of this functional brain map to unmotivated females, we made a similar correlative comparison of brain activation in females who were unresponsive to the advertisement call playback. Our results support an important role for dopaminergic neurons in the periventricular posterior tuberculum and ventral thalamus, putative A11 and A13 tetrapod homologues, respectively, as well as the posterior parvocellular preoptic area and dorsomedial telencephalon, (laterobasal amygdala homologue) in auditory attention and appetitive sexual behavior in fishes. These findings may also offer insights into the function of these highly conserved nuclei in the context of auditory-driven reproductive social behavior across vertebrates.
Collapse
Affiliation(s)
- Paul M Forlano
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA.,Biology Subprogram in Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY, USA
| | - Roshney R Licorish
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Zachary N Ghahramani
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA
| | - Miky Timothy
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | | | - William C Palmer
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, USA.,Virginia Bloedel Hearing Research Center, Seattle, WA, USA
| |
Collapse
|
20
|
Petersen CL, Hurley LM. Putting it in Context: Linking Auditory Processing with Social Behavior Circuits in the Vertebrate Brain. Integr Comp Biol 2018; 57:865-877. [PMID: 28985384 DOI: 10.1093/icb/icx055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Context is critical to the adaptive value of communication. Sensory systems such as the auditory system represent an important juncture at which information on physiological state or social valence can be added to communicative information. However, the neural pathways that convey context to the auditory system are not well understood. The serotonergic system offers an excellent model to address these types of questions. Serotonin fluctuates in the mouse inferior colliculus (IC), an auditory midbrain region important for species-specific vocalizations, during specific social and non-social contexts. Furthermore, serotonin is an indicator of the valence of event-based changes within individual social interactions. We propose a model in which the brain's social behavior network serves as an afferent effector of the serotonergic dorsal raphe nucleus in order to gate contextual release of serotonin in the IC. Specifically, discrete vasopressinergic nuclei within the hypothalamus and extended amygdala that project to the dorsal raphe are functionally engaged during contexts in which serotonin fluctuates in the IC. Since serotonin strongly influences the responses of IC neurons to social vocalizations, this pathway could serve as a feedback loop whereby integrative social centers modulate their own sources of input. The end result of this feedback would be to produce a process that is geared, from sensory input to motor output, toward responding appropriately to a dynamic external world.
Collapse
Affiliation(s)
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, 47405 IN, USA
| |
Collapse
|
21
|
Dai JB, Chen Y, Sakata JT. EGR-1 Expression in Catecholamine-synthesizing Neurons Reflects Auditory Learning and Correlates with Responses in Auditory Processing Areas. Neuroscience 2018; 379:415-427. [DOI: 10.1016/j.neuroscience.2018.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023]
|
22
|
Van Ruijssevelt L, Chen Y, von Eugen K, Hamaide J, De Groof G, Verhoye M, Güntürkün O, Woolley SC, Van der Linden A. fMRI Reveals a Novel Region for Evaluating Acoustic Information for Mate Choice in a Female Songbird. Curr Biol 2018; 28:711-721.e6. [PMID: 29478859 DOI: 10.1016/j.cub.2018.01.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/05/2017] [Accepted: 01/17/2018] [Indexed: 01/02/2023]
Abstract
Selection of sexual partners is among the most critical decisions that individuals make and is therefore strongly shaped by evolution. In social species, where communication signals can convey substantial information about the identity, state, or quality of the signaler, accurate interpretation of communication signals for mate choice is crucial. Despite the importance of social information processing, to date, relatively little is known about the neurobiological mechanisms that contribute to sexual decision making and preferences. In this study, we used a combination of whole-brain functional magnetic resonance imaging (fMRI), immediate early gene expression, and behavior tests to identify the circuits that are important for the perception and evaluation of courtship songs in a female songbird, the zebra finch (Taeniopygia guttata). Female zebra finches are sensitive to subtle differences in male song performance and strongly prefer the longer, faster, and more stereotyped courtship songs to non-courtship renditions. Using BOLD fMRI and EGR1 expression assays, we uncovered a novel region involved in auditory perceptual decision making located in a sensory integrative region of the avian central nidopallium outside the traditionally studied auditory forebrain pathways. Changes in activity in this region in response to acoustically similar but categorically divergent stimuli showed stronger parallels to behavioral responses than an auditory sensory region. These data highlight a potential role for the caudocentral nidopallium (NCC) as a novel node in the avian circuitry underlying the evaluation of acoustic signals and their use in mate choice.
Collapse
Affiliation(s)
- Lisbeth Van Ruijssevelt
- Bio-Imaging lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Yining Chen
- Department of Biology, McGill University, Montreal QC H3A 1B1, Canada
| | - Kaya von Eugen
- AE Biopsychologie, Fakultät für Psychologie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Julie Hamaide
- Bio-Imaging lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Geert De Groof
- Bio-Imaging lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Marleen Verhoye
- Bio-Imaging lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Onur Güntürkün
- AE Biopsychologie, Fakultät für Psychologie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Sarah C Woolley
- Department of Biology, McGill University, Montreal QC H3A 1B1, Canada.
| | - Annemie Van der Linden
- Bio-Imaging lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium.
| |
Collapse
|
23
|
Chen Y, Clark O, Woolley SC. Courtship song preferences in female zebra finches are shaped by developmental auditory experience. Proc Biol Sci 2018; 284:rspb.2017.0054. [PMID: 28539523 DOI: 10.1098/rspb.2017.0054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023] Open
Abstract
The performance of courtship signals provides information about the behavioural state and quality of the signaller, and females can use such information for social decision-making (e.g. mate choice). However, relatively little is known about the degree to which the perception of and preference for differences in motor performance are shaped by developmental experiences. Furthermore, the neural substrates that development could act upon to influence the processing of performance features remains largely unknown. In songbirds, females use song to identify males and select mates. Moreover, female songbirds are often sensitive to variation in male song performance. Consequently, we investigated how developmental exposure to adult male song affected behavioural and neural responses to song in a small, gregarious songbird, the zebra finch. Zebra finch males modulate their song performance when courting females, and previous work has shown that females prefer the high-performance, female-directed courtship song. However, unlike females allowed to hear and interact with an adult male during development, females reared without developmental song exposure did not demonstrate behavioural preferences for high-performance courtship songs. Additionally, auditory responses to courtship and non-courtship song were altered in adult females raised without developmental song exposure. These data highlight the critical role of developmental auditory experience in shaping the perception and processing of song performance.
Collapse
Affiliation(s)
- Yining Chen
- Integrated program in Neuroscience, Montreal, Quebec, Canada
| | - Oliver Clark
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Sarah C Woolley
- Integrated program in Neuroscience, Montreal, Quebec, Canada .,Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Field KE, Maruska KP. Context-dependent chemosensory signaling, aggression and neural activation patterns in gravid female African cichlid fish. ACTA ACUST UNITED AC 2017; 220:4689-4702. [PMID: 29074701 DOI: 10.1242/jeb.164574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/23/2017] [Indexed: 01/19/2023]
Abstract
Social animals must constantly assess their environment to make appropriate behavioral decisions. The use of various sensory modalities is imperative in this process and it is hypothesized that the highly conserved brain nuclei comprising the social decision-making network (SDMN) integrates social information with an animal's internal state to elicit behavioral responses. Here, we used the highly social African cichlid fish, Astatotilapia burtoni, to investigate whether reproductively receptive (gravid) females show contextual chemosensory signaling, social behaviors and neural activation patterns within the SDMN. We exposed gravid females to different social contexts: (1) dominant male (inter-sexual reproductive); (2) mouth brooding (non-receptive) female; (3) gravid female (intra-sexual aggressive); (4) juvenile fish (low social salience); and (5) empty compartment (control). By injecting females with a blue dye to visualize urine pulses, we found that gravid females show context-dependent urination, exhibiting higher urination rates in the presence of dominant males (reproductive context) and mouth brooding females (aggressive contexts). Further, gravid females show contextual aggression with increased aggressive displays toward mouth brooding females compared with other gravid females. Using in situ hybridization to quantify cells expressing the immediate early gene cfos as a measure of neural activation, we also show that certain regions of the SDMN in gravid females are differentially activated after exposure to high compared with low social salience contexts. Coupled with previous reports, these results demonstrate true chemosensory communication in both sexes of a single fish species, as well as reveal the neural substrates mediating intra- and inter-sexual social behaviors in females.
Collapse
Affiliation(s)
- Karen E Field
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
25
|
Lorenzi E, Mayer U, Rosa-Salva O, Vallortigara G. Dynamic features of animate motion activate septal and preoptic areas in visually naïve chicks ( Gallus gallus ). Neuroscience 2017; 354:54-68. [DOI: 10.1016/j.neuroscience.2017.04.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/25/2017] [Accepted: 04/17/2017] [Indexed: 02/03/2023]
|
26
|
Weitekamp CA, Nguyen J, Hofmann HA. Social context affects behavior, preoptic area gene expression, and response to
D2
receptor manipulation during territorial defense in a cichlid fish. GENES BRAIN AND BEHAVIOR 2017; 16:601-611. [DOI: 10.1111/gbb.12389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 11/27/2022]
Affiliation(s)
- C. A. Weitekamp
- Department of Integrative Biology University of Texas at Austin Austin TX USA
| | - J. Nguyen
- Department of Integrative Biology University of Texas at Austin Austin TX USA
| | - H. A. Hofmann
- Department of Integrative Biology University of Texas at Austin Austin TX USA
- Institute for Cell and Molecular Biology University of Texas at Austin Austin TX USA
- Institute for Neuroscience University of Texas at Austin Austin TX USA
| |
Collapse
|
27
|
Rendon NM, Amez AC, Proffitt MR, Bauserman ER, Demas GE. Aggressive behaviours track transitions in seasonal phenotypes of female Siberian hamsters. Funct Ecol 2017; 31:1071-1081. [PMID: 28757672 PMCID: PMC5526640 DOI: 10.1111/1365-2435.12816] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Seasonally breeding animals exhibit profound physiological and behavioural responses to changes in ambient day length (photoperiod), including changes in reproductive function and territorial aggression.Species where aggression persists when gonads are regressed and circulating levels of gonadal hormones are low, such as Siberian hamsters (Phodopus sungorus) and song sparrows (Melospiza melodia), challenge the well-established framework that gonadal hormones are important mediators of aggression.A solution to this apparent paradox is that a season-specific increase in sensitivity to hormones in brain areas associated with aggression offsets low levels of gonadal hormones during periods of reproductive quiescence.To test this hypothesis, we manipulated photoperiod to induce natural fluctuations in seasonal phenotype across multiple stages of the annual reproductive cycle in female Siberian hamsters that display increased aggression during short-day reproductive quiescence, suggesting that behaviour persists independent of gonadal steroids.Females were housed in long "summer" days or short "winter" days for 10, 24 or 30 weeks to capture gonadal regression, transition back to a reproductively functional state and full gonadal recrudescence, respectively.Long-day animals maintained reproductive functionality and displayed low aggression across all time points. By week 10, short-day reproductively responsive females underwent gonadal regression and displayed increased aggression; non-responsive animals showed no such changes. At week 24, animals were in a transitional period and displayed an intermediate phenotype with respect to reproduction and aggression. By week 30, short-day females were fully recrudesced and returned to long-day-like levels of aggression.Consistent with our hypothesis, gonadally regressed females displayed decreases in 17β-oestradiol (oestradiol) levels, but site-specific increases in the abundance of brain oestrogen receptor-alpha (ERα) in regions associated with aggression, but not reproduction. Increased site-specific ERα may function as a compensatory mechanism to allow increased responsiveness to oestradiol in regulating aggression in lieu of high circulating concentrations of hormones.Collectively, these results broaden our understanding of how breeding phenology maps onto social behaviour and the mechanisms that have evolved to coordinate behaviours that occur in non-breeding contexts.
Collapse
Affiliation(s)
- Nikki M Rendon
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Andrea C Amez
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Melissa R Proffitt
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Elizabeth R Bauserman
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
28
|
Mayer U, Rosa-Salva O, Morbioli F, Vallortigara G. The motion of a living conspecific activates septal and preoptic areas in naive domestic chicks (Gallus gallus). Eur J Neurosci 2017; 45:423-432. [DOI: 10.1111/ejn.13484] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| | - Francesca Morbioli
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| |
Collapse
|
29
|
Toccalino DC, Sun H, Sakata JT. Social Memory Formation Rapidly and Differentially Affects the Motivation and Performance of Vocal Communication Signals in the Bengalese Finch (Lonchura striata var. domestica). Front Behav Neurosci 2016; 10:113. [PMID: 27378868 PMCID: PMC4906024 DOI: 10.3389/fnbeh.2016.00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/24/2016] [Indexed: 01/24/2023] Open
Abstract
Cognitive processes like the formation of social memories can shape the nature of social interactions between conspecifics. Male songbirds use vocal signals during courtship interactions with females, but the degree to which social memory and familiarity influences the likelihood and structure of male courtship song remains largely unknown. Using a habituation-dishabituation paradigm, we found that a single, brief (<30 s) exposure to a female led to the formation of a short-term memory for that female: adult male Bengalese finches were significantly less likely to produce courtship song to an individual female when re-exposed to her 5 min later (i.e., habituation). Familiarity also rapidly decreased the duration of courtship songs but did not affect other measures of song performance (e.g., song tempo and the stereotypy of syllable structure and sequencing). Consistent with a contribution of social memory to the decrease in courtship song with repeated exposures to the same female, the likelihood that male Bengalese finches produced courtship song increased when they were exposed to a different female (i.e., dishabituation). Three consecutive exposures to individual females also led to the formation of a longer-term memory that persisted over days. Specifically, when courtship song production was assessed 2 days after initial exposures to females, males produced fewer and shorter courtship songs to familiar females than to unfamiliar females. Measures of song performance, however, were not different between courtship songs produced to familiar and unfamiliar females. The formation of a longer-term memory for individual females seemed to require at least three exposures because males did not differentially produce courtship song to unfamiliar females and females that they had been exposed to only once or twice. Taken together, these data indicate that brief exposures to individual females led to the rapid formation and persistence of social memories and support the existence of distinct mechanisms underlying the motivation to produce and the performance of courtship song.
Collapse
Affiliation(s)
| | - Herie Sun
- Department of Biology, McGill University Montreal, QC, Canada
| | - Jon T Sakata
- Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada; Department of Biology, McGill UniversityMontreal, QC, Canada; Center for Research in Behavioral NeurobiologyMontreal, QC, Canada
| |
Collapse
|
30
|
Gutierrez-Ibanez C, Iwaniuk AN, Jensen M, Graham DJ, Pogány Á, Mongomery BC, Stafford JL, Luksch H, Wylie DR. Immunohistochemical localization of cocaine- and amphetamine-regulated transcript peptide (CARTp) in the brain of the pigeon (Columba livia) and zebra finch (Taeniopygia guttata). J Comp Neurol 2016; 524:3747-3773. [DOI: 10.1002/cne.24028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/12/2022]
Affiliation(s)
| | - Andrew N. Iwaniuk
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience; University of Lethbridge; Lethbridge AB T1K 3M4 Canada
| | - Megan Jensen
- Neurosciences and Mental Health Institute; University of Alberta; Edmonton AB T6G 2E9 Canada
| | - David J. Graham
- Neurosciences and Mental Health Institute; University of Alberta; Edmonton AB T6G 2E9 Canada
| | - Ákos Pogány
- Department of Ethology; Eötvös Loránd University; H-1117 Budapest Hungary
| | - Benjamin C. Mongomery
- Department of Biological Sciences; University of Alberta; Edmonton AB T6G 2E9 Canada
| | - James L. Stafford
- Department of Biological Sciences; University of Alberta; Edmonton AB T6G 2E9 Canada
| | - Harald Luksch
- Department of Zoology; Technical University of Munich; 85354 Freising-Weihenstephan Germany
| | - Douglas R. Wylie
- Neurosciences and Mental Health Institute; University of Alberta; Edmonton AB T6G 2E9 Canada
| |
Collapse
|
31
|
Singh O, Kumar S, Singh U, Kumar V, Lechan RM, Singru PS. Cocaine- and amphetamine-regulated transcript peptide (CART) in the brain of zebra finch,Taeniopygia guttata: Organization, interaction with neuropeptide Y, and response to changes in energy status. J Comp Neurol 2016; 524:3014-41. [DOI: 10.1002/cne.24004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Santosh Kumar
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Uday Singh
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Vinod Kumar
- DST-IRHPA Centre for Excellence in Biological Rhythms Research and Indo-US Centre for Biological Timing, Department of Zoology; University of Delhi; Delhi India
| | - Ronald M. Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute; Tufts Medical Center; Boston Massachusetts USA
- Department of Neuroscience; Tufts University School of Medicine; Boston Massachusetts USA
| | - Praful S. Singru
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| |
Collapse
|
32
|
Keesom SM, Hurley LM. Socially induced serotonergic fluctuations in the male auditory midbrain correlate with female behavior during courtship. J Neurophysiol 2016; 115:1786-96. [PMID: 26792882 PMCID: PMC4869479 DOI: 10.1152/jn.00742.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/16/2016] [Indexed: 11/22/2022] Open
Abstract
Cues from social partners trigger the activation of socially responsive neuromodulatory systems, priming brain regions including sensory systems to process these cues appropriately. The fidelity with which neuromodulators reflect the qualities of ongoing social interactions in sensory regions is unclear. We addressed this issue by using voltammetry to monitor serotonergic fluctuations in an auditory midbrain nucleus, the inferior colliculus (IC), of male mice (Mus musculus) paired with females, and by concurrently measuring behaviors of both social partners. Serotonergic activity strongly increased in male mice as they courted females, relative to serotonergic activity in the same males during trials with no social partners. Across individual males, average changes in serotonergic activity were negatively correlated with behaviors exhibited by female partners, including broadband squeaks, which relate to rejection of males. In contrast, serotonergic activity did not correlate with male behaviors, including ultrasonic vocalizations. These findings suggest that during courtship, the level of serotonergic activity in the IC of males reflects the valence of the social interaction from the perspective of the male (i.e., whether the female rejects the male or not). As a result, our findings are consistent with the hypothesis that neuromodulatory effects on neural responses in the IC may reflect the reception, rather than the production, of vocal signals.
Collapse
Affiliation(s)
- Sarah M Keesom
- Department of Biology, Indiana University, Bloomington, Indiana; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana; and
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana; and Program in Neuroscience, Indiana University, Bloomington, Indiana
| |
Collapse
|
33
|
Schubloom HE, Woolley SC. Variation in social relationships relates to song preferences and EGR1 expression in a female songbird. Dev Neurobiol 2016; 76:1029-40. [PMID: 26713856 DOI: 10.1002/dneu.22373] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/15/2015] [Accepted: 12/25/2015] [Indexed: 11/09/2022]
Abstract
Social experiences can profoundly shape social behavior and the underlying neural circuits. Across species, the formation of enduring social relationships is associated with both neural and behavioral changes. However, it remains unclear how longer-term relationships between individuals influence brain and behavior. Here, we investigated how variation in social relationships relates to variation in female preferences for and neural responses to song in a pair-bonding songbird. We assessed variation in the interactions between individuals in male-female zebra finch pairs and found that female preferences for their mate's song were correlated with the degree of affiliation and amount of socially modulated singing, but not with the frequency of aggressive interactions. Moreover, variation in measures of pair quality and preference correlated with variation in the song-induced expression of EGR1, an immediate early gene related to neural activity and plasticity, in brain regions important for auditory processing and social behavior. For example, females with weaker preferences for their mate's song had greater EGR1 expression in the nucleus Taeniae, the avian homologue of the mammalian medial amygdala, in response to playback of their mate's courtship song. Our data indicate that the quality of social interactions within pairs relates to variation in song preferences and neural responses to ethologically relevant stimuli and lend insight into neural circuits sensitive to social information. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1029-1040, 2016.
Collapse
Affiliation(s)
- Hannah E Schubloom
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Sarah C Woolley
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Elie JE, Soula HA, Trouvé C, Mathevon N, Vignal C. Housing conditions and sacrifice protocol affect neural activity and vocal behavior in a songbird species, the zebra finch (Taeniopygia guttata). C R Biol 2015; 338:825-37. [PMID: 26599152 DOI: 10.1016/j.crvi.2015.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 01/13/2023]
Abstract
Individual cages represent a widely used housing condition in laboratories. This isolation represents an impoverished physical and social environment in gregarious animals. It prevents animals from socializing, even when auditory and visual contact is maintained. Zebra finches are colonial songbirds that are widely used as laboratory animals for the study of vocal communication from brain to behavior. In this study, we investigated the effect of single housing on the vocal behavior and the brain activity of male zebra finches (Taeniopygia guttata): male birds housed in individual cages were compared to freely interacting male birds housed as a social group in a communal cage. We focused on the activity of septo-hypothalamic regions of the "social behavior network" (SBN), a set of limbic regions involved in several social behaviors in vertebrates. The activity of four structures of the SBN (BSTm, medial bed nucleus of the stria terminalis; POM, medial preoptic area; lateral septum; ventromedial hypothalamus) and one associated region (paraventricular nucleus of the hypothalamus) was assessed using immunoreactive nuclei density of the immediate early gene Zenk (egr-1). We further assessed the identity of active cell populations by labeling vasotocin (VT). Brain activity was related to behavioral activities of birds like physical and vocal interactions. We showed that individual housing modifies vocal exchanges between birds compared to communal housing. This is of particular importance in the zebra finch, a model species for the study of vocal communication. In addition, a protocol that daily removes one or two birds from the group affects differently male zebra finches depending of their housing conditions: while communally-housed males changed their vocal output, brains of individually housed males show increased Zenk labeling in non-VT cells of the BSTm and enhanced correlation of Zenk-revealed activity between the studied structures. These results show that housing conditions must gain some attention in behavioral neuroscience protocols.
Collapse
Affiliation(s)
- Julie Estelle Elie
- Université de Lyon/Saint-Étienne, Équipe de Neuro-Éthologie Sensorielle, ENES/Neuro-PSI, CNRS UMR 9197, 23, rue Michelon, 42023 Saint-Étienne, France.
| | - Hédi Antoine Soula
- Université de Lyon, INSERM U1060, INSA de Lyon, bâtiment Louis-Pasteur, 20, avenue Albert-Einstein, 69621 Villeurbanne cedex, France; INRIA EPI BEAGLE, bâtiment CEI-1, 66, boulevard Niels-Bohr, CS 52132, 69603 Villeurbanne, France
| | - Colette Trouvé
- CNRS, Centre d'études biologiques de Chizé, UMR 7372, 79360 Villiers-en-Bois, France
| | - Nicolas Mathevon
- Université de Lyon/Saint-Étienne, Équipe de Neuro-Éthologie Sensorielle, ENES/Neuro-PSI, CNRS UMR 9197, 23, rue Michelon, 42023 Saint-Étienne, France
| | - Clémentine Vignal
- Université de Lyon/Saint-Étienne, Équipe de Neuro-Éthologie Sensorielle, ENES/Neuro-PSI, CNRS UMR 9197, 23, rue Michelon, 42023 Saint-Étienne, France
| |
Collapse
|
35
|
Matheson LE, Sakata JT. Catecholaminergic contributions to vocal communication signals. Eur J Neurosci 2015; 41:1180-94. [DOI: 10.1111/ejn.12885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Laura E. Matheson
- Department of Biology; McGill University; Montreal QC H3A 1B1 Canada
| | - Jon T. Sakata
- Department of Biology; McGill University; Montreal QC H3A 1B1 Canada
| |
Collapse
|
36
|
Chokchaloemwong D, Rozenboim I, El Halawani ME, Chaiseha Y. Dopamine and prolactin involvement in the maternal care of chicks in the native Thai hen (Gallus domesticus). Gen Comp Endocrinol 2015; 212:131-44. [PMID: 24746677 DOI: 10.1016/j.ygcen.2014.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/13/2014] [Accepted: 03/26/2014] [Indexed: 11/28/2022]
Abstract
The dopaminergic (DAergic) system plays a pivotal role in incubation behavior via the regulation of prolactin (PRL) secretion in birds, however the role of the DA/PRL system in rearing behavior is poorly understood. The objective of this study was to investigate the relationship between the DA/PRL system and rearing behavior in a gallinaceous bird, the native Thai chicken. Incubating native Thai hens were divided into two groups. In the first group, hens were allowed to care for their chicks (rearing hens; R). In the second group, hens were deprived of their chicks immediately after hatching (non-rearing hens; NR). In both groups, blood samples and brain sections were collected at different time points after the chicks hatched (days 4, 7, 10, 14, 17, 21, 24, and 28; 6 hens/time point/group). In this study, tyrosine hydroxylase (TH) was used as a marker for DAergic neurons. The numbers of TH-immunoreactive (-ir) neurons in the nucleus intramedialis (nI) and in the nucleus mamillaris lateralis (ML), which regulate the vasoactive intestinal peptide (VIP)/PRL system, were determined in R and NR hens utilizing immunohistochemical techniques. Plasma PRL levels were determined by enzyme-linked immunosorbent assays. The results revealed that both the number of TH-ir neurons in the nI and the plasma PRL levels were significantly higher in the R hens compared with the NR hens during the first 14 days of chick rearing (P<0.05). However, there was no significant change in the DAergic activity in the ML in either the R or NR groups throughout the 28-day rearing periods. These results suggest that the DA/PRL system is involved in early rearing behavior. The additional decline in DAergic activity and plasma PRL levels during the disruption of rearing behavior further supports their involvement in rearing behavior in this equatorial precocial species.
Collapse
Affiliation(s)
- Duangsuda Chokchaloemwong
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Israel Rozenboim
- Department of Animal Science, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Yupaporn Chaiseha
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
37
|
Merullo DP, Cordes MA, Stevenson SA, Riters LV. Neurotensin immunolabeling relates to sexually-motivated song and other social behaviors in male European starlings (Sturnus vulgaris). Behav Brain Res 2015; 282:133-43. [PMID: 25595421 DOI: 10.1016/j.bbr.2015.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/16/2014] [Accepted: 01/06/2015] [Indexed: 01/20/2023]
Abstract
The brain regions involved in vocal communication are well described for some species, including songbirds, but less is known about the neural mechanisms underlying motivational aspects of communication. Mesolimbic dopaminergic projections from the ventral tegmental area (VTA) are central to mediating motivated behaviors. In songbirds, VTA provides dopaminergic innervation to brain regions associated with motivation and social behavior that are also involved in sexually-motivated song production. Neurotensin (NT) is a neuropeptide that strongly modulates dopamine activity, co-localizes with dopamine in VTA, and is found in regions where dopaminergic cells project from VTA. Yet, little is known about how NT contributes to vocal communication or other motivated behaviors. We examined the relationships between sexually-motivated song produced by male European starlings (Sturnus vulgaris) and NT immunolabeling in brain regions involved in social behavior and motivation. Additionally, we observed relationships between NT labeling, non-vocal courtship behaviors (another measure of sexual motivation), and agonistic behavior to begin to understand NT's role in socially-motivated behaviors. NT labeling in VTA, lateral septum, and bed nucleus of the stria terminalis correlated with sexually-motivated singing and non-vocal courtship behaviors. NT labeling in VTA, lateral septum, medial preoptic nucleus, and periaqueductal gray was associated with agonistic behavior. This study is the first to suggest NT's involvement in song, and one of the few to implicate NT in social behaviors more generally. Additionally, our results are consistent with the idea that distinct patterns of neuropeptide activity in brain areas involved in social behavior and motivation underlie differentially motivated behaviors.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| | - Melissa A Cordes
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Sharon A Stevenson
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Lauren V Riters
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
38
|
Kelly AM, Goodson JL. Functional interactions of dopamine cell groups reflect personality, sex, and social context in highly social finches. Behav Brain Res 2014; 280:101-12. [PMID: 25496780 DOI: 10.1016/j.bbr.2014.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/29/2014] [Accepted: 12/01/2014] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) is well known for its involvement in novelty-seeking, learning, and goal-oriented behaviors such as social behavior. However, little is known about how DA modulates social processes differentially in relation to sex and behavioral phenotype (e.g., personality). Importantly, the major DA cell groups (A8-A15) are conserved across all amniote vertebrates, and thus broadly relevant insights may be obtained through investigations of avian species such as zebra finches (Taeniopygia guttata), which express a human-like social organization based on biparental nuclear families that are embedded within larger social groups. We here build upon a previous study that quantified multidimensional personality structures in male and female zebra finches using principal components analysis (PCA) of extensive behavioral measures in social and nonsocial contexts. These complex dimensions of behavioral phenotype can be characterized as Social competence/dominance, Gregariousness, and Anxiety. Here we analyze Fos protein expression in DA neuronal populations in response to social novelty and demonstrate that the Fos content of multiple dopamine cell groups is significantly predicted by sex, personality, social context, and their interactions. In order to further investigate coordinated neuromodulation of behavior across multiple DA cell groups, we also conducted a PCA of neural variables (DA cell numbers and their phasic Fos responses) and show that behavioral PCs are associated with unique suites of neural PCs. These findings demonstrate that personality and sex are reflected in DA neuron activity and coordinated patterns of neuromodulation arising from multiple DA cell groups.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
39
|
Iyilikci O, Baxter S, Balthazart J, Ball GF. Fos expression in monoaminergic cell groups in response to sociosexual interactions in male and female Japanese quail. Behav Neurosci 2014; 128:48-60. [PMID: 24512065 DOI: 10.1037/a0035427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Monoaminergic neurotransmitters regulate different components of sexual behaviors, but how the different monoaminergic cell groups selectively regulate these behaviors is not well understood. We examined the potential contribution of these different cell groups in the control of different aspects of sexual behaviors in male and female quail. We used double-label immunohistochemistry, labeling the protein product of the immediate early gene, Fos, along with tyrosine hydroxylase (TH) or tryptophan hydroxylase (TPH), markers for catecholaminergic or indolaminergic cells, respectively. Rhythmic Cloacal Sphincter Movements (RCSM) were recorded as a measure of male appetitive sexual behavior. Consummatory sexual behaviors were evaluated based on the species-typical copulation sequence. Enhanced Fos expression in the medial preoptic nucleus and bed nucleus of the stria terminalis was observed in association with both physical and visual contact to the opposite sex for males, but not for females. Fos induction associated with physical contact was observed in the ventral tegmental area and anterior periaqueductal gray in both sexes. In males only, the number of Fos-immunoreactive (ir) cells increased in the visual contact condition in these 2 dopaminergic cell groups, however no significant effect was observed for double-labeled TH-Fos-ir cells. In addition, consummatory but not appetitive sexual behavior increased Fos expression in TPH-ir cells in the raphe pallidus of males. This increase following physical but not visual contact agrees with the notion that activation of the serotoninergic system is implicated in the development of sexual satiation but not activated by simply viewing a female, in contrast to the dopaminergic system.
Collapse
|
40
|
Forlano PM, Kim SD, Krzyminska ZM, Sisneros JA. Catecholaminergic connectivity to the inner ear, central auditory, and vocal motor circuitry in the plainfin midshipman fish porichthys notatus. J Comp Neurol 2014; 522:2887-927. [PMID: 24715479 PMCID: PMC4107124 DOI: 10.1002/cne.23596] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/25/2023]
Abstract
Although the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory end organ, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH-ir) revealed a strong CA innervation of both the peripheral and central auditory system. Diencephalic TH-ir neurons in the periventricular posterior tuberculum, known to be dopaminergic, send ascending projections to the ventral telencephalon and prominent descending projections to vocal-acoustic integration sites, notably the hindbrain octavolateralis efferent nucleus, as well as onto the base of hair cells in the saccule via nerve VIII. Neurobiotin backfills of the vocal nerve in combination with TH-ir revealed CA terminals on all components of the vocal pattern generator, which appears to largely originate from local TH-ir neurons but may include input from diencephalic projections as well. This study provides strong neuroanatomical evidence that catecholamines are important modulators of both auditory and vocal circuitry and acoustic-driven social behavior in midshipman fish. This demonstration of TH-ir terminals in the main end organ of hearing in a nonmammalian vertebrate suggests a conserved and important anatomical and functional role for dopamine in normal audition.
Collapse
Affiliation(s)
- Paul M. Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
- Programs in Neuroscience, Ecology, Evolutionary Biology and Behavior, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, Brooklyn, NY 11210
- Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - Spencer D. Kim
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Zuzanna M. Krzyminska
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Joseph A. Sisneros
- Departments of Psychology and Biology, University of Washington, Seattle, WA, 98195
- Virginia Merrill Bloedel Hearing Research Center, Seattle
- Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
41
|
Iwasaki M, Poulsen TM, Oka K, Hessler NA. Sexually dimorphic activation of dopaminergic areas depends on affiliation during courtship and pair formation. Front Behav Neurosci 2014; 8:210. [PMID: 24966819 PMCID: PMC4052804 DOI: 10.3389/fnbeh.2014.00210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/25/2014] [Indexed: 12/21/2022] Open
Abstract
For many species, dyadic interaction during courtship and pair bonding engage intense emotional states that control approach or avoidance behavior. Previous studies have shown that one component of a common social brain network (SBN), dopaminergic areas, are highly engaged during male songbird courtship of females. We tested whether the level of activity in dopaminergic systems of both females and males during courtship is related to their level of affiliation. In order to objectively quantify affiliative behaviors, we developed a system for tracking the position of both birds during free interaction sessions. During a third successive daily interaction session, there was a range of levels of affiliation among bird pairs, as quantified by several position and movement parameters. Because both positive and negative social interactions were present, we chose to characterize affiliation strength by pair valence. As a potential neural system involved in regulating pair valence, the level of activity of the dopaminergic group A11 (within the central gray) was selectively reduced in females of positive valence pairs. Further, activation of non-dopaminergic neurons in VTA was negatively related to valence, with this relationship strongest in ventral VTA of females. Together, these results suggest that inhibition of fear or avoidance networks may be associated with development of close affiliation, and highlight the importance of negative as well as positive emotional states in the process of courtship, and in development of long-lasting social bonds.
Collapse
Affiliation(s)
- Mai Iwasaki
- RIKEN Brain Science Institute Wako-shi, Japan ; Department of Biology, Keio University Yokohama, Japan
| | | | - Kotaro Oka
- Department of Biology, Keio University Yokohama, Japan
| | | |
Collapse
|
42
|
Buntin JD, Buntin L. Increased STAT5 signaling in the ring dove brain in response to prolactin administration and spontaneous elevations in prolactin during the breeding cycle. Gen Comp Endocrinol 2014; 200:1-9. [PMID: 24530808 PMCID: PMC3995851 DOI: 10.1016/j.ygcen.2014.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 01/15/2023]
Abstract
Prolactin acts on target cells in the central nervous system (CNS) to stimulate behavioral changes associated with parental care in birds, but the signaling mechanisms that mediate these actions have not been characterized. In mammals, the Janus Kinase 2-Signal Transducer and Activator of Transcription 5 (JAK2-STAT5) signaling pathway mediates many of the actions of prolactin. To assess the importance of this pathway in prolactin-sensitive target cells in the avian brain, we measured changes in activated (phosphorylated) STAT5 (pSTAT5) in the forebrain of female ring doves sampled as plasma prolactin levels change during the breeding cycle and in prolactin-treated, non-breeding females. The anatomical distribution of cells exhibiting pSTAT5 immunoreactivity in dove brain closely paralleled the distribution of prolactin receptors in this species. The density of pSTAT5 immunoreactive (pSTAT5-ir) cells was highest in the preoptic area, the suprachiasmatic, paraventricular, and ventromedial hypothalamic nuclei, the lateral and tuberal hypothalamic regions, the lateral bed nucleus of the stria terminalis, and the lateral septum. Mean pSTAT5-ir cell densities in these eight brain areas were several fold higher in breeding females during late incubation/early post-hatching when plasma prolactin levels have been observed to peak than in non-breeding females or breeding females sampled at earlier stages when prolactin titers have been reported to be lower. Similar differences were observed between prolactin-treated and vehicle-treated females in all three of the forebrain regions that were compared. We conclude that JAK2-STAT5 signaling is strongly activated in response to prolactin stimulation in the ring dove brain and could potentially mediate some of the centrally-mediated behavioral effects of this hormone.
Collapse
Affiliation(s)
- John D Buntin
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53217, United States.
| | - Linda Buntin
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53217, United States
| |
Collapse
|
43
|
Kabelik D, Alix VC, Singh LJ, Johnson AL, Choudhury SC, Elbaum CC, Scott MR. Neural activity in catecholaminergic populations following sexual and aggressive interactions in the brown anole, Anolis sagrei. Brain Res 2014; 1553:41-58. [PMID: 24472578 DOI: 10.1016/j.brainres.2014.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/16/2014] [Indexed: 01/01/2023]
Abstract
Social behaviors in vertebrates are modulated by catecholamine (CA; dopamine, norepinephrine, epinephrine) release within the social behavior neural network. Few studies have examined activity across CA populations in relation to social behaviors. The involvement of CAs in social behavior regulation is especially underexplored in reptiles, relative to other amniotes. In this study, we mapped CA populations throughout the brain (excluding retina and olfactory bulb) of the male brown anole lizard, Anolis sagrei, via immunofluorescent visualization of the rate-limiting enzyme for CA synthesis, tyrosine hydroxylase (TH). Colocalization of TH with the immediate early gene product Fos, an indirect marker of neural activity, also enabled us to relate activity in TH-immunoreactive (TH-ir) neurons to appetitive and consummatory sexual and aggressive behaviors. We detected most major TH-ir cell populations that are present in other amniotes (within the hypothalamus, midbrain, and hindbrain), although the A15 population was entirely absent. We also detected a few novel or rare cell clusters within the amygdala, medial septum, and inferior raphe. Many CA populations, especially dopaminergic groups, showed increased TH-Fos colocalization in association with appetitive and consummatory sexual behavior expression, while a small number of regions showed increased colocalization in relation to solely consummatory aggression (biting of an opponent). In conclusion, we here map CA populations throughout the brown anole brain and demonstrate evidence for catecholaminergic involvement in appetitive and consummatory sexual behaviors and consummatory aggressive behaviors in this species.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA.
| | - Veronica C Alix
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Leah J Singh
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Alyssa L Johnson
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Shelley C Choudhury
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Caroline C Elbaum
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Madeline R Scott
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| |
Collapse
|
44
|
Banerjee SB, Dias BG, Crews D, Adkins-Regan E. Newly paired zebra finches have higher dopamine levels and immediate early gene Fos expression in dopaminergic neurons. Eur J Neurosci 2013; 38:3731-9. [DOI: 10.1111/ejn.12378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022]
Affiliation(s)
| | - Brian G. Dias
- Section of Integrative Biology; University of Texas at Austin; Austin TX USA
| | - David Crews
- Section of Integrative Biology; University of Texas at Austin; Austin TX USA
| | - Elizabeth Adkins-Regan
- Department of Psychology; Cornell University; Ithaca NY USA
- Department of Neurobiology and Behavior; Cornell University; Ithaca NY USA
| |
Collapse
|
45
|
Petersen CL, Timothy M, Kim DS, Bhandiwad AA, Mohr RA, Sisneros JA, Forlano PM. Exposure to advertisement calls of reproductive competitors activates vocal-acoustic and catecholaminergic neurons in the plainfin midshipman fish, Porichthys notatus. PLoS One 2013; 8:e70474. [PMID: 23936438 PMCID: PMC3735598 DOI: 10.1371/journal.pone.0070474] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022] Open
Abstract
While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in their mate’s nest. As multiple courting males establish nests in close proximity to one another, the perception of another male’s call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation. Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally, these results implicate a role for specific catecholaminergic neuronal groups in auditory-driven social behavior in fishes, consistent with a conserved function in social acoustic behavior across vertebrates.
Collapse
Affiliation(s)
- Christopher L. Petersen
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - Miky Timothy
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - D. Spencer Kim
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - Ashwin A. Bhandiwad
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| | - Robert A. Mohr
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| | - Joseph A. Sisneros
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
- Virginia Bloedel Hearing Research Center, Seattle, Washington, United States of America
| | - Paul M. Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
- Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, New York, United States of America
- Programs in Neuroscience, and Ecology, Evolution, and Behavior, The Graduate Center, City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
O'Connell LA, Rigney MM, Dykstra DW, Hofmann HA. Neuroendocrine mechanisms underlying sensory integration of social signals. J Neuroendocrinol 2013; 25:644-54. [PMID: 23631684 DOI: 10.1111/jne.12045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/21/2013] [Accepted: 04/26/2013] [Indexed: 11/29/2022]
Abstract
Individuals integrate information about their environment into adaptive behavioural responses, yet how different sensory modalities contribute to these decisions and where in the brain this integration occurs is not well understood. We presented male cichlid fish (Astatotilapia burtoni) with sensory information in three social contexts: intruder challenge, reproductive opportunity and a socially neutral situation. We then measured behavioural and hormonal responses along with induction of the immediate early gene c-Fos in candidate forebrain regions. In the intruder challenge context, males were exposed to either a visual stimulus of a dominant male, the putative male pheromone androstenedione, or both. We found that, compared to the neutral context, a visual stimulus was necessary and sufficient for an aggressive response, whereas both chemical and visual stimuli were needed for an androgen response. In the reproductive opportunity context, males were exposed to either a visual stimulus of a receptive female, a progesterone metabolite (female pheromone) only, or both. We further found that the visual stimulus is necessary and sufficient for an androgen response in the reproductive opportunity context. In the brain, we observed c-Fos induction in response to a visual challenge stimulus specifically in dopaminergic neurones of area Vc (the central region of the ventral telencephalon), a putative striatal homologue, whereas presentation of a chemical stimulus did not induce c-Fos induction in the intruder challenge context. Our results suggest that different sensory cues are processed in a social context-specific manner as part of adaptive decision-making processes.
Collapse
Affiliation(s)
- L A O'Connell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
47
|
Goodson JL, Kingsbury MA. What's in a name? Considerations of homologies and nomenclature for vertebrate social behavior networks. Horm Behav 2013; 64:103-12. [PMID: 23722238 PMCID: PMC4038951 DOI: 10.1016/j.yhbeh.2013.05.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/15/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
Abstract
Behavioral neuroendocrinology is an integrative discipline that spans a wide range of taxa and neural systems, and thus the appropriate designation of homology (sameness) across taxa is critical for clear communication and extrapolation of findings from one taxon to another. In the present review we address issues of homology that relate to neural circuits of social behavior and associated systems that mediate reward and aversion. We first address a variety of issues related to the so-called "social behavior network" (SBN), including homologies that are only partial (e.g., whereas the preoptic area of fish and amphibians contains the major vasopressin-oxytocin cell groups, these populations lie in the hypothalamus of other vertebrates). We also discuss recent evidence that clarifies anterior hypothalamus and periaqueductal gray homologies in birds. Finally, we discuss an expanded network model, the "social decision-making network" (SDM) which includes the mesolimbic dopamine system and other structures that provide an interface between the mesolimbic system and the SBN. This expanded model is strongly supported in mammals, based on a wide variety of evidence. However, it is not yet clear how readily the SDM can be applied as a pan-vertebrate model, given insufficient data on numerous proposed homologies and a lack of social behavior data for SDM components (beyond the SBN nodes) for amphibians, reptiles or fish. Functions of SDM components are also poorly known for birds. Nonetheless, we contend that the SDM model provides a very sound and important framework for the testing of many hypotheses in nonmammalian vertebrates.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
48
|
Social signals increase monoamine levels in the tegmentum of juvenile Mexican spadefoot toads (Spea multiplicata). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:681-91. [PMID: 23681220 DOI: 10.1007/s00359-013-0826-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
Monoamines are important neuromodulators that respond to social cues and that can, in turn, modify social responses. Yet we know very little about the ontogeny of monoaminergic systems and whether they contribute to the development of social behavior. Anurans are an excellent model for studying the development of social behavior because one of its primary components, phonotaxis, is expressed early in life. To examine the effect of social signals on monoamines early in ontogeny, we presented juvenile Mexican spadefoot toads (Spea multiplicata) with a male mating call or no sound and measured norepinephrine, epinephrine, dopamine, serotonin, and a serotonin metabolite, across the brain using high-pressure liquid chromatography. Our results demonstrate that adult-like monoaminergic systems are in place shortly after metamorphosis. Perhaps more interestingly, we found that mating calls increased the level of monoamines in the juvenile tegmentum, a midbrain region involved in sensory-motor integration and that contributes to brain arousal and attention. We saw no such increase in the auditory midbrain or in forebrain regions. We suggest that changes in monoamine levels in the juvenile tegmentum may reflect the effects of social signals on arousal state and could contribute to context-dependent modulation of social behavior.
Collapse
|
49
|
Maney DL. The incentive salience of courtship vocalizations: hormone-mediated 'wanting' in the auditory system. Hear Res 2013; 305:19-30. [PMID: 23665125 DOI: 10.1016/j.heares.2013.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 04/12/2013] [Accepted: 04/19/2013] [Indexed: 12/27/2022]
Abstract
Conspecific vocalizations differ from many other sounds in that they have natural incentive salience. Our thinking about auditory responses to vocalizations may therefore benefit from models originally developed to understand reward. According to those models, the brain attributes incentive salience to rewarding stimuli via the activity of monoaminergic neuromodulators. These neuromodulators, in turn, mediate the effects of experience and internal state. Songbirds lend themselves well to this discussion because the natural incentive salience of song is clearly modulated by both factors. Their auditory responses have been well-studied, particularly the song-induced expression of plasticity-associated genes such as ZENK. Here I review evidence that ZENK responses to song are regulated by monoamine neuromodulators, and I interpret this evidence in the context of incentive salience. First, hearing conspecific song engages monoaminergic activity in the auditory system and elsewhere. Second, in females this activity may be regulated by the same hormones that regulate behavioral preferences for song. Finally, much of the evidence thought to implicate neuromodulators in song discrimination and memory suggests that they may affect incentive salience. Expanding the study of incentive salience beyond the mesolimbic reward system may reveal some new ways of thinking about its underlying neural basis. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
50
|
Creighton A, Satterfield D, Chu J. Effects of dopamine agonists on calling behavior in the green tree frog, Hyla cinerea. Physiol Behav 2013; 116-117:54-9. [DOI: 10.1016/j.physbeh.2013.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/17/2013] [Accepted: 03/14/2013] [Indexed: 12/25/2022]
|