1
|
Navarro VI, Arnal A, Peru E, Balivada S, Toccoli AR, Sotelo D, Fuentes O, Khan AM. Chemoarchitectural studies of the rat hypothalamus and zona incerta. Chemopleth 1.0 - A downloadable interactive Brain Maps spatial database of five co-visualizable neurochemical systems, with novel feature- and grid-based mapping tools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.02.616213. [PMID: 40093046 PMCID: PMC11908149 DOI: 10.1101/2024.10.02.616213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The hypothalamus and zona incerta of the brown rat (Rattus norvegicus), a model organism important for translational neuroscience research, contain diverse neuronal populations essential for survival, but how these populations are structurally organized as systems remains elusive. With the advent of novel gene-editing technologies, there has been a growing need for high-spatial-resolution maps of rat hypothalamic neurochemical cell types to aid in their functional interrogation by virus-directed cell type-specific gene manipulation or to validate their expression in transgenic lines. Here, we present a draft report describing Chemopleth 1.0, a chemoarchitecture database for the rat hypothalamus (HY) and zona incerta (ZI), which will eventually feature downloadable interactive maps featuring the census distributions of five immunoreactive neurochemical systems: (1) vasopressin (as detected using its gene co-product, copeptin); (2) neuronal nitric oxide synthase (EC 1.14.13.39); (3) hypocretin 1/orexin A; (4) melanin-concentrating hormone; and (5) alpha-melanocyte-stimulating hormone. These maps are formatted for the widely used Brain Maps 4.0 (BM4.0) open-access rat brain atlas. Importantly, this dataset retains atlas stereotaxic coordinates that facilitate the precise targeting of the cell bodies and/or axonal fibers of these neurochemical systems, thereby potentially serving to streamline delivery of viral vectors for gene-directed manipulations. The maps will be presented together with novel open-access tools to visualize the data, including a new Python programming language-based workflow to quantify cell positions and fiber densities for BM4.0. The workflow produces "heat maps" of neurochemical distributions from multiple subjects: 1) isopleth maps that represent consensus distributions independent of underlying atlas boundary conditions, and 2) choropleth maps that provide distribution differences based on cytoarchitectonic boundaries. These multi-subject cartographic representations are produced in Python from exported atlas maps first generated in the Adobe® Illustrator® vector graphics environment, which are then reimported and placed directly into the Brain Maps atlas. The soon-to-be-released files can also be opened using the free vector graphics editor, Inkscape. We also introduce a refined grid-based coordinate system for this dataset, register it with previously published spatial data for the HY and ZI, and introduce FMRS (Frequencies Mapped with Reference to Stereotaxy), as a new adaptation of long-used ephemeris systems for grid-based annotation of experimental observations. This database, which includes all data described in greater detail in Navarro (2020) and Peru (2020), provides critical spatial targeting information for these neurochemical systems unavailable from mRNA-based maps and allows readers to place their own datasets in register with them. It also provides a space for the continued buildout of a community-driven atlas-based spatial model of rat hypothalamic chemoarchitecture, allowing experimental observations from multiple laboratories to be registered to a common spatial framework.
Collapse
Affiliation(s)
- Vanessa I. Navarro
- UTEP Systems Neuroscience Laboratory
- Department of Biological Sciences
- Border Biomedical Research Center
- PhD Program in Bioscience
- RISE Program
- HHMI PERSIST Brain Mapping & Connectomics Undergraduate Teaching Laboratory
- Interdisciplinary Group for Neuroscience Instruction, Training, and Education (IGNITE)
| | - Alexandro Arnal
- UTEP Systems Neuroscience Laboratory
- Vision and Learning Lab
- PhD Program in Computational Science
| | - Eduardo Peru
- UTEP Systems Neuroscience Laboratory
- Department of Biological Sciences
- Border Biomedical Research Center
- PhD Program in Bioscience
- HHMI PERSIST Brain Mapping & Connectomics Undergraduate Teaching Laboratory
| | - Sivasai Balivada
- UTEP Systems Neuroscience Laboratory
- Department of Biological Sciences
- Border Biomedical Research Center
- Interdisciplinary Group for Neuroscience Instruction, Training, and Education (IGNITE)
- Lower Brainstem Group, The University of Texas at El Paso, El Paso, TX 79968
| | - Alejandro R. Toccoli
- UTEP Systems Neuroscience Laboratory
- Department of Biological Sciences
- RISE Program
- HHMI PERSIST Brain Mapping & Connectomics Undergraduate Teaching Laboratory
| | - Diana Sotelo
- UTEP Systems Neuroscience Laboratory
- Department of Biological Sciences
- RISE Program
- HHMI PERSIST Brain Mapping & Connectomics Undergraduate Teaching Laboratory
| | - Olac Fuentes
- Vision and Learning Lab
- Department of Computer Science
| | - Arshad M. Khan
- UTEP Systems Neuroscience Laboratory
- Department of Biological Sciences
- Border Biomedical Research Center
- RISE Program
- HHMI PERSIST Brain Mapping & Connectomics Undergraduate Teaching Laboratory
- Interdisciplinary Group for Neuroscience Instruction, Training, and Education (IGNITE)
| |
Collapse
|
2
|
Shimizu M, Yoshimura M, Baba K, Ikeda N, Nonaka Y, Maruyama T, Onaka T, Ueta Y. Deschloroclozapine exhibits an exquisite agonistic effect at lower concentration compared to clozapine-N-oxide in hM3Dq expressing chemogenetically modified rats. Front Neurosci 2023; 17:1301515. [PMID: 38099201 PMCID: PMC10720889 DOI: 10.3389/fnins.2023.1301515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Within the realm of chemogenetics, a particular form of agonists targeting designer receptors exclusively activated by designer drugs (DREADDs) has emerged. Deschloroclozapine (DCZ), a recently introduced DREADDs agonist, demonstrates remarkable potency in activating targeted neurons at a lower dosage compared to clozapine-N-oxide (CNO). Methods We conducted a comparative analysis of the effects of subcutaneously administered CNO (1 mg/kg) and DCZ (0.1 mg/kg) in our transgenic rats expressing hM3Dq and mCherry exclusively in oxytocin (OXT) neurons. Results and Discussion Notably, DCZ exhibited a swift and robust elevation of serum OXT, surpassing the effects of CNO, with a significant increase in the area under the curve (AUC) up to 3 hours post-administration. Comprehensive assessment of brain neuronal activity, using Fos as an indicator, revealed comparable effects between CNO and DCZ. Additionally, in a neuropathic pain model, both CNO and DCZ increased the mechanical nociceptive and thermal thresholds; however, the DCZ-treated group exhibited a significantly accelerated onset of the effects, aligning harmoniously with the observed alterations in serum OXT concentration following DCZ administration. These findings emphasize the remarkable efficacy of DCZ in rats, suggesting its equivalent or potentially superior performance to CNO at considerably lower dosages, thus positioning it as a promising contender among DREADDs agonists.
Collapse
Affiliation(s)
- Makiko Shimizu
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naofumi Ikeda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuki Nonaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
3
|
Oishi Y, Saito YC, Sakurai T. GABAergic modulation of sleep-wake states. Pharmacol Ther 2023; 249:108505. [PMID: 37541595 DOI: 10.1016/j.pharmthera.2023.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Benzodiazepine, a classical medication utilized in the treatment of insomnia, operates by augmenting the activity of the GABAA receptor. This underscores the significance of GABAergic neurotransmission in both the initiation and maintenance of sleep. Nevertheless, an increasing body of evidence substantiates the notion that GABA-mediated neurotransmission also assumes a vital role in promoting wakefulness in specific neuronal circuits. Despite the longstanding belief in the pivotal function of GABA in regulating the sleep-wake cycle, there exists a dearth of comprehensive documentation regarding the specific regions within the central nervous system where GABAergic neurons are crucial for these functions. In this review, we delve into the involvement of GABAergic neurons in the regulation of sleep-wake cycles, with particular focus on those located in the preoptic area (POA) and ventral tegmental area (VTA). Recent research, including our own, has further underscored the importance of GABAergic neurotransmission in these areas for the regulation of sleep-wake cycles.
Collapse
Affiliation(s)
- Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki C Saito
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
4
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
5
|
Tapia GP, Agostinelli LJ, Chenausky SD, Padilla JVS, Navarro VI, Alagh A, Si G, Thompson RH, Balivada S, Khan AM. Glycemic Challenge Is Associated with the Rapid Cellular Activation of the Locus Ceruleus and Nucleus of Solitary Tract: Circumscribed Spatial Analysis of Phosphorylated MAP Kinase Immunoreactivity. J Clin Med 2023; 12:2483. [PMID: 37048567 PMCID: PMC10095283 DOI: 10.3390/jcm12072483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/31/2023] Open
Abstract
Rodent studies indicate that impaired glucose utilization or hypoglycemia is associated with the cellular activation of neurons in the medulla (Winslow, 1733) (MY), believed to control feeding behavior and glucose counterregulation. However, such activation has been tracked primarily within hours of the challenge, rather than sooner, and has been poorly mapped within standardized brain atlases. Here, we report that, within 15 min of receiving 2-deoxy-d-glucose (2-DG; 250 mg/kg, i.v.), which can trigger glucoprivic feeding behavior, marked elevations were observed in the numbers of rhombic brain (His, 1893) (RB) neuronal cell profiles immunoreactive for the cellular activation marker(s), phosphorylated p44/42 MAP kinases (phospho-ERK1/2), and that some of these profiles were also catecholaminergic. We mapped their distributions within an open-access rat brain atlas and found that 2-DG-treated rats (compared to their saline-treated controls) displayed greater numbers of phospho-ERK1/2+ neurons in the locus ceruleus (Wenzel and Wenzel, 1812) (LC) and the nucleus of solitary tract (>1840) (NTS). Thus, the 2-DG-activation of certain RB neurons is more rapid than perhaps previously realized, engaging neurons that serve multiple functional systems and which are of varying cellular phenotypes. Mapping these populations within standardized brain atlas maps streamlines their targeting and/or comparable mapping in preclinical rodent models of disease.
Collapse
Affiliation(s)
- Geronimo P. Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Ph.D. Program in Bioscience, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Lindsay J. Agostinelli
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah D. Chenausky
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- M.S. Program in Biology, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jessica V. Salcido Padilla
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- M.S. Program in Biology, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Vanessa I. Navarro
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Ph.D. Program in Bioscience, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Amy Alagh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Gabriel Si
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Richard H. Thompson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- School of Information, The University of Texas at Austin, Austin, TX 78701, USA
| | - Sivasai Balivada
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Arshad M. Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
6
|
Mijnster T, Boersma GJ, Meijer E, Lancel M. Effectivity of (Personalized) Cognitive Behavioral Therapy for Insomnia in Mental Health Populations and the Elderly: An Overview. J Pers Med 2022; 12:1070. [PMID: 35887566 PMCID: PMC9319701 DOI: 10.3390/jpm12071070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Insomnia is very prevalent in psychiatry and is considered a transdiagnostic symptom of mental disorders. Yet, it is not only a consequence of a mental condition but may also exert detrimental effects on psychiatric symptom severity and therapeutic response; thus, adequate insomnia treatment is particularly important in psychiatric populations. The first choice of intervention is cognitive behavioral therapy for insomnia (CBT-I) as it is rather effective, also in the long run without side effects. It is offered in various forms, ranging from in-person therapy to internet-delivered applications. CBT-I protocols are typically developed for individuals with insomnia disorder without co-occurring conditions. For an optimal therapeutic outcome of CBT-I in individuals with comorbid mental disorders, adaptations of the protocol to tailor the treatment might be beneficial. Based on a literature search using major search engines (Embase; Medline; APA Psych Info; and Cochrane Reviews), this paper provides an overview of the effectiveness of the different CBT-I applications in individuals with diverse comorbid mental conditions and older adults and describes the functionality of CBT-I protocols that have been personalized to specific psychiatric populations, such as depression, substance abuse, and schizophrenia spectrum disorder. Finally, we discuss urgent needs for insomnia therapy targeted to improve both sleep and psychopathologies.
Collapse
Affiliation(s)
- Teus Mijnster
- Centre of Expertise on Sleep and Psychiatry, GGZ Drenthe, Mental Health Institute, 9404 LA Assen, The Netherlands; (T.M.); (G.J.B.); (E.M.)
| | - Gretha J. Boersma
- Centre of Expertise on Sleep and Psychiatry, GGZ Drenthe, Mental Health Institute, 9404 LA Assen, The Netherlands; (T.M.); (G.J.B.); (E.M.)
- Forensic Psychiatric Hospital, GGZ Drenthe, Mental Health Institute, 9404 LA Assen, The Netherlands
| | - Esther Meijer
- Centre of Expertise on Sleep and Psychiatry, GGZ Drenthe, Mental Health Institute, 9404 LA Assen, The Netherlands; (T.M.); (G.J.B.); (E.M.)
| | - Marike Lancel
- Centre of Expertise on Sleep and Psychiatry, GGZ Drenthe, Mental Health Institute, 9404 LA Assen, The Netherlands; (T.M.); (G.J.B.); (E.M.)
- Forensic Psychiatric Hospital, GGZ Drenthe, Mental Health Institute, 9404 LA Assen, The Netherlands
- Department of Clinical Psychology and Experimental Psychopathology, University of Groningen, 9712 TS Groningen, The Netherlands
| |
Collapse
|
7
|
Zhang K, Pan J, Yu Y. Regulation of Neural Circuitry under General Anesthesia: New Methods and Findings. Biomolecules 2022; 12:biom12070898. [PMID: 35883456 PMCID: PMC9312763 DOI: 10.3390/biom12070898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
General anesthesia has been widely utilized since the 1840s, but its underlying neural circuits remain to be completely understood. Since both general anesthesia and sleep are reversible losses of consciousness, studies on the neural-circuit mechanisms affected by general anesthesia have mainly focused on the neural nuclei or the pathways known to regulate sleep. Three advanced technologies commonly used in neuroscience, in vivo calcium imaging, chemogenetics, and optogenetics, are used to record and modulate the activity of specific neurons or neural circuits in the brain areas of interest. Recently, they have successfully been used to study the neural nuclei and pathways of general anesthesia. This article reviews these three techniques and their applications in the brain nuclei or pathways affected by general anesthesia, to serve as a reference for further and more accurate exploration of other neural circuits under general anesthesia and to contribute to other research fields in the future.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; (K.Z.); (J.P.)
- Tianjin Institute of Anesthesiology, Tianjin 300052, China
| | - Jiacheng Pan
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; (K.Z.); (J.P.)
- Tianjin Institute of Anesthesiology, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; (K.Z.); (J.P.)
- Tianjin Institute of Anesthesiology, Tianjin 300052, China
- Correspondence:
| |
Collapse
|
8
|
Murillo-Rodríguez E, Coronado-Álvarez A, López-Muciño LA, Pastrana-Trejo JC, Viana-Torre G, Barberena JJ, Soriano-Nava DM, García-García F. Neurobiology of dream activity and effects of stimulants on dreams. Curr Top Med Chem 2022; 22:1280-1295. [PMID: 35761491 DOI: 10.2174/1568026622666220627162032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
The sleep-wake cycle is the result of the activity of a multiple neurobiological network interaction. Dreaming feature is one interesting sleep phenomena that represents sensorial components, mostly visual perceptions, accompanied with intense emotions. Further complexity has been added to the topic of the neurobiological mechanism of dreams generation by the current data that suggests the influence of drugs on dream generation. Here, we discuss the review on some of the neurobiological mechanism of the regulation of dream activity, with special emphasis on the effects of stimulants on dreaming.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Astrid Coronado-Álvarez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Luis Angel López-Muciño
- Health Sciences Program. Health Sciences Institute. Veracruzana University. Xalapa. Veracruz. Mexico
| | - José Carlos Pastrana-Trejo
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Gerardo Viana-Torre
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Juan José Barberena
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group.,Escuela de Psicología, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México
| | - Daniela Marcia Soriano-Nava
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Fabio García-García
- Intercontinental Neuroscience Research Group.,Health Sciences Program. Health Sciences Institute. Veracruzana University. Xalapa. Veracruz. Mexico
| |
Collapse
|
9
|
Hahn JD, Gao L, Boesen T, Gou L, Hintiryan H, Dong HW. Macroscale connections of the mouse lateral preoptic area and anterior lateral hypothalamic area. J Comp Neurol 2022; 530:2254-2285. [PMID: 35579973 PMCID: PMC9283274 DOI: 10.1002/cne.25331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
The macroscale neuronal connections of the lateral preoptic area (LPO) and the caudally adjacent lateral hypothalamic area anterior region (LHAa) were investigated in mice by anterograde and retrograde axonal tracing. Both hypothalamic regions are highly and diversely connected, with connections to >200 gray matter regions spanning the forebrain, midbrain, and rhombicbrain. Intrahypothalamic connections predominate, followed by connections with the cerebral cortex and cerebral nuclei. A similar overall pattern of LPO and LHAa connections contrasts with substantial differences between their input and output connections. Strongest connections include outputs to the lateral habenula, medial septal and diagonal band nuclei, and inputs from rostral and caudal lateral septal nuclei; however, numerous additional robust connections were also observed. The results are discussed in relation to a current model for the mammalian forebrain network that associates LPO and LHAa with a range of functional roles, including reward prediction, innate survival behaviors (including integrated somatomotor and physiological control), and affect. The present data suggest a broad and intricate role for LPO and LHAa in behavioral control, similar in that regard to previously investigated LHA regions, contributing to the finely tuned sensory‐motor integration that is necessary for behavioral guidance supporting survival and reproduction.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Lei Gao
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Tyler Boesen
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Lin Gou
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Houri Hintiryan
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Hong-Wei Dong
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Singh K, García-Gomar MG, Cauzzo S, Staab JP, Indovina I, Bianciardi M. Structural connectivity of autonomic, pain, limbic, and sensory brainstem nuclei in living humans based on 7 Tesla and 3 Tesla MRI. Hum Brain Mapp 2022; 43:3086-3112. [PMID: 35305272 PMCID: PMC9188976 DOI: 10.1002/hbm.25836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/09/2022] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Autonomic, pain, limbic, and sensory processes are mainly governed by the central nervous system, with brainstem nuclei as relay centers for these crucial functions. Yet, the structural connectivity of brainstem nuclei in living humans remains understudied. These tiny structures are difficult to locate using conventional in vivo MRI, and ex vivo brainstem nuclei atlases lack precise and automatic transformability to in vivo images. To fill this gap, we mapped our recently developed probabilistic brainstem nuclei atlas developed in living humans to high‐spatial resolution (1.7 mm isotropic) and diffusion weighted imaging (DWI) at 7 Tesla in 20 healthy participants. To demonstrate clinical translatability, we also acquired 3 Tesla DWI with conventional resolution (2.5 mm isotropic) in the same participants. Results showed the structural connectome of 15 autonomic, pain, limbic, and sensory (including vestibular) brainstem nuclei/nuclei complex (superior/inferior colliculi, ventral tegmental area‐parabrachial pigmented, microcellular tegmental–parabigeminal, lateral/medial parabrachial, vestibular, superior olivary, superior/inferior medullary reticular formation, viscerosensory motor, raphe magnus/pallidus/obscurus, parvicellular reticular nucleus‐alpha part), derived from probabilistic tractography computation. Through graph measure analysis, we identified network hubs and demonstrated high intercommunity communication in these nuclei. We found good (r = .5) translational capability of the 7 Tesla connectome to clinical (i.e., 3 Tesla) datasets. Furthermore, we validated the structural connectome by building diagrams of autonomic/pain/limbic connectivity, vestibular connectivity, and their interactions, and by inspecting the presence of specific links based on human and animal literature. These findings offer a baseline for studies of these brainstem nuclei and their functions in health and disease, including autonomic dysfunction, chronic pain, psychiatric, and vestibular disorders.
Collapse
Affiliation(s)
- Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Escuela Nacional de Estudios Superiores, Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Research Center E. Piaggio, University of Pisa, Pisa, Italy
| | - Jeffrey P Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Otorhinolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer's disease. Sleep Med Rev 2021; 60:101541. [PMID: 34500400 DOI: 10.1016/j.smrv.2021.101541] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
Disturbances of the sleep/wake cycle in Alzheimer's disease (AD) are common, frequently precede cognitive decline, and tend to worsen with disease progression. Sleep is critical to the maintenance of homeostatic and circadian function, and chronic sleep disturbances have significant cognitive and physical health consequences that likely exacerbate disease severity. Sleep-wake cycles are regulated by neuromodulatory centers located in the brainstem, the hypothalamus, and the basal forebrain, many of which are vulnerable to the accumulation of abnormal protein deposits associated with neurodegenerative conditions. In AD, while sleep disturbances are commonly attributed to the accumulation of amyloid beta, patients often first experience sleep issues prior to the appearance of amyloid beta plaques, on a timeline that more closely corresponds to the first appearance of abnormal tau neurofibrillary tangles in sleep/wake regulating areas of the brainstem. Sleep disturbances also occur in pure tauopathies, providing further support that tau is a major contributor. Here, we provide an overview of the neuroanatomy of sleep/wake centers discovered in animal models, and review the evidence that tau-driven neuropathology is a primary driver of sleep disturbance in AD.
Collapse
|
12
|
Mietlicki-Baase EG, Santollo J, Daniels D. Fluid intake, what's dopamine got to do with it? Physiol Behav 2021; 236:113418. [PMID: 33838203 DOI: 10.1016/j.physbeh.2021.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Maintaining fluid balance is critical for life. The central components that control fluid intake are only partly understood. This contribution to the collection of papers highlighting work by members of the Society for the Study of Ingestive Behavior focuses on the role that dopamine has on fluid intake and describes the roles that various bioregulators can have on thirst and sodium appetite by influencing dopamine systems in the brain. The goal of the review is to highlight areas in need of more research and to propose a framework to guide that research. We hope that this framework will inspire researchers in the field to investigate these interesting questions in order to form a more complete understanding of how fluid intake is controlled.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, United States; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| | - Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Derek Daniels
- Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States; Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| |
Collapse
|
13
|
Waliszewska-Prosół M, Nowakowska-Kotas M, Chojdak-Łukasiewicz J, Budrewicz S. Migraine and Sleep-An Unexplained Association? Int J Mol Sci 2021; 22:ijms22115539. [PMID: 34073933 PMCID: PMC8197397 DOI: 10.3390/ijms22115539] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 01/14/2023] Open
Abstract
Migraine and sleep disorders are common chronic diseases in the general population, with significant negative social and economic impacts. The association between both of these phenomena has been observed by clinicians for years and is confirmed by many epidemiological studies. Despite this, the nature of this relationship is still not fully understood. In recent years, there has been rapid progress in understanding the common anatomical structures of and pathogenetic mechanism between sleep and migraine. Based on a literature review, the authors present the current view on this topic as well as ongoing research in this field, with reference to the key points of the biochemical and neurophysiological processes responsible for both these disorders. In the future, a better understanding of these mechanisms will significantly expand the range of treatment options.
Collapse
|
14
|
Giorgi FS, Galgani A, Puglisi-Allegra S, Busceti CL, Fornai F. The connections of Locus Coeruleus with hypothalamus: potential involvement in Alzheimer's disease. J Neural Transm (Vienna) 2021; 128:589-613. [PMID: 33942174 PMCID: PMC8105225 DOI: 10.1007/s00702-021-02338-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
The hypothalamus and Locus Coeruleus (LC) share a variety of functions, as both of them take part in the regulation of the sleep/wake cycle and in the modulation of autonomic and homeostatic activities. Such a functional interplay takes place due to the dense and complex anatomical connections linking the two brain structures. In Alzheimer's disease (AD), the occurrence of endocrine, autonomic and sleep disturbances have been associated with the disruption of the hypothalamic network; at the same time, in this disease, the occurrence of LC degeneration is receiving growing attention for the potential roles it may have both from a pathophysiological and pathogenetic point of view. In this review, we summarize the current knowledge on the anatomical and functional connections between the LC and hypothalamus, to better understand whether the impairment of the former may be responsible for the pathological involvement of the latter, and whether the disruption of their interplay may concur to the pathophysiology of AD. Although only a few papers specifically explored this topic, intriguingly, some pre-clinical and post-mortem human studies showed that aberrant protein spreading and neuroinflammation may cause hypothalamus degeneration and that these pathological features may be linked to LC impairment. Moreover, experimental studies in rodents showed that LC plays a relevant role in modulating the hypothalamic sleep/wake cycle regulation or neuroendocrine and systemic hormones; in line with this, the degeneration of LC itself may partly explain the occurrence of hypothalamic-related symptoms in AD.
Collapse
Affiliation(s)
- Filippo Sean Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | | | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy.
| |
Collapse
|
15
|
Tsuneoka Y, Funato H. Cellular Composition of the Preoptic Area Regulating Sleep, Parental, and Sexual Behavior. Front Neurosci 2021; 15:649159. [PMID: 33867927 PMCID: PMC8044373 DOI: 10.3389/fnins.2021.649159] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
The preoptic area (POA) has long been recognized as a sleep center, first proposed by von Economo. The POA, especially the medial POA (MPOA), is also involved in the regulation of various innate functions such as sexual and parental behaviors. Consistent with its many roles, the MPOA is composed of subregions that are identified by different gene and protein expressions. This review addresses the current understanding of the molecular and cellular architecture of POA neurons in relation to sleep and reproductive behavior. Optogenetic and pharmacogenetic studies have revealed a diverse group of neurons within the POA that exhibit different neural activity patterns depending on vigilance states and whose activity can enhance or suppress wake, non-rapid eye movement (NREM) sleep, or rapid eye movement (REM) sleep. These sleep-regulating neurons are not restricted to the ventrolateral POA (VLPO) region but are widespread in the lateral MPOA and LPOA as well. Neurons expressing galanin also express gonadal steroid receptors and regulate motivational aspects of reproductive behaviors. Moxd1, a novel marker of sexually dimorphic nuclei (SDN), visualizes the SDN of the POA (SDN-POA). The role of the POA in sleep and other innate behaviors has been addressed separately; more integrated observation will be necessary to obtain physiologically relevant insight that penetrates the different dimensions of animal behavior.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Caba M, Lehman MN, Caba-Flores MD. Food Entrainment, Arousal, and Motivation in the Neonatal Rabbit Pup. Front Neurosci 2021; 15:636764. [PMID: 33815041 PMCID: PMC8010146 DOI: 10.3389/fnins.2021.636764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 01/20/2023] Open
Abstract
In the newborn rabbit, the light entrainable circadian system is immature and once a day nursing provides the primary timing cue for entrainment. In advance of the mother's arrival, pups display food anticipatory activity (FAA), and metabolic and physiological parameters are synchronized to this daily event. Central structures in the brain are also entrained as indicated by expression of Fos and Per1 proteins, GFAP, a glial marker, and cytochrome oxidase activity. Under fasting conditions, several of these rhythmic parameters persist in the periphery and brain, including rhythms in the olfactory bulb (OB). Here we provide an overview of these physiological and neurobiological changes and focus on three issues, just beginning to be examined in the rabbit. First, we review evidence supporting roles for the organum vasculosum of lamina terminalis (OVLT) and median preoptic nucleus (MnPO) in homeostasis of fluid ingestion and the neural basis of arousal, the latter which also includes the role of the orexigenic system. Second, since FAA in association with the daily visit of the mother is an example of conditioned learning, we review evidence for changes in the corticolimbic system and identified nuclei in the amygdala and extended amygdala as part of the neural substrate responsible for FAA. Third, we review recent evidence supporting the role of oxytocinergic cells of the paraventricular hypothalamic nucleus (PVN) as a link to the autonomic system that underlies physiological events, which occur in preparation for the upcoming next daily meal. We conclude that the rabbit model has contributed to an overall understanding of food entrainment.
Collapse
Affiliation(s)
- Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| | | |
Collapse
|
17
|
Reitz SL, Kelz MB. Preoptic Area Modulation of Arousal in Natural and Drug Induced Unconscious States. Front Neurosci 2021; 15:644330. [PMID: 33642991 PMCID: PMC7907457 DOI: 10.3389/fnins.2021.644330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
The role of the hypothalamic preoptic area (POA) in arousal state regulation has been studied since Constantin von Economo first recognized its importance in the early twentieth century. Over the intervening decades, the POA has been shown to modulate arousal in both natural (sleep and wake) as well as drug-induced (anesthetic-induced unconsciousness) states. While the POA is well known for its role in sleep promotion, populations of wake-promoting neurons within the region have also been identified. However, the complexity and molecular heterogeneity of the POA has made distinguishing these two populations difficult. Though multiple lines of evidence demonstrate that general anesthetics modulate the activity of the POA, the region's heterogeneity has also made it challenging to determine whether the same neurons involved in sleep/wake regulation also modulate arousal in response to general anesthetics. While a number of studies show that sleep-promoting POA neurons are activated by various anesthetics, recent work suggests this is not universal to all arousal-regulating POA neurons. Technical innovations are making it increasingly possible to classify and distinguish the molecular identities of neurons involved in sleep/wake regulation as well as anesthetic-induced unconsciousness. Here, we review the current understanding of the POA's role in arousal state regulation of both natural and drug-induced forms of unconsciousness, including its molecular organization and connectivity to other known sleep and wake promoting regions. Further insights into the molecular identities and connectivity of arousal-regulating POA neurons will be critical in fully understanding how this complex region regulates arousal states.
Collapse
Affiliation(s)
- Sarah L. Reitz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
- Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
- Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
McKinley MJ, Pennington GL, Ryan PJ. The median preoptic nucleus: A major regulator of fluid, temperature, sleep, and cardiovascular homeostasis. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:435-454. [PMID: 34225980 DOI: 10.1016/b978-0-12-819975-6.00028-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Located in the midline lamina terminalis of the anterior wall of the third ventricle, the median preoptic nucleus is a thin elongated nucleus stretching around the rostral border of the anterior commissure. Its neuronal elements, composed of various types of excitatory glutamatergic and inhibitory GABAergic neurons, receive afferent neural signals from (1) neighboring subfornical organ and organum vasculosum of the lamina terminalis related to plasma osmolality and hormone concentrations, e.g., angiotensin II; (2) from peripheral sensors such as arterial baroreceptors and cutaneous thermosensors. Different sets of these MnPO glutamatergic and GABAergic neurons relay output signals to hypothalamic, midbrain, and medullary regions that drive homeostatic effector responses. Included in the effector responses are (1) thirst, antidiuretic hormone secretion and renal sodium excretion that subserve osmoregulation and body fluid homeostasis; (2) vasoconstriction or dilatation of skin blood vessels, and shivering and brown adipose tissue thermogenesis for core temperature homeostasis; (3) inhibition of hypothalamic and midbrain nuclei that stimulate wakefulness and arousal, thereby promoting both REM and non-REM sleep; and (4) activation of sympathetic pathways that drive vasoconstriction and heart rate to maintain arterial pressure and the perfusion of vital organs. The small size of MnPO belies its massive homeostatic significance.
Collapse
Affiliation(s)
- Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| | - Glenn L Pennington
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Philip J Ryan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Sleep Deprivation and Neurological Disorders. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5764017. [PMID: 33381558 PMCID: PMC7755475 DOI: 10.1155/2020/5764017] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Sleep plays an important role in maintaining neuronal circuitry, signalling and helps maintain overall health and wellbeing. Sleep deprivation (SD) disturbs the circadian physiology and exerts a negative impact on brain and behavioural functions. SD impairs the cellular clearance of misfolded neurotoxin proteins like α-synuclein, amyloid-β, and tau which are involved in major neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. In addition, SD is also shown to affect the glymphatic system, a glial-dependent metabolic waste clearance pathway, causing accumulation of misfolded faulty proteins in synaptic compartments resulting in cognitive decline. Also, SD affects the immunological and redox system resulting in neuroinflammation and oxidative stress. Hence, it is important to understand the molecular and biochemical alterations that are the causative factors leading to these pathophysiological effects on the neuronal system. This review is an attempt in this direction. It provides up-to-date information on the alterations in the key processes, pathways, and proteins that are negatively affected by SD and become reasons for neurological disorders over a prolonged period of time, if left unattended.
Collapse
|
20
|
GABAB receptor-mediated tonic inhibition of locus coeruleus neurons plays a role in deep anesthesia induced by isoflurane. Neuroreport 2020; 31:557-564. [PMID: 32282581 DOI: 10.1097/wnr.0000000000001450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Noradrenergic neurons in the locus coeruleus referred to as locus coeruleus neurons, provide the major supply of norepinephrine to the forebrain and play important roles in behavior through regulation of wakefulness and arousal. In a previous study using brain slice preparations, we reported that locus coeruleus neurons are subject to tonic inhibition mediated by γ-aminobutyric acid B receptors (GABABRs) and that the extent of tonic inhibition varies with ambient GABA levels. Since ambient GABA in the locus coeruleus was reported to fluctuate during the sleep-wakefulness cycle, here we tested whether GABABR-mediated tonic inhibition of locus coeruleus neurons could be a mechanism underlying changes in brain arousal. We first demonstrated that GABABR-mediated tonic inhibition of locus coeruleus neurons also exists in vivo by showing that local infusion of CGP35348, a GABABR antagonist, into the locus coeruleus increased the firing rate of locus coeruleus neurons in anesthetized rats. We then showed that this manipulation accelerated the behavioral emergence of rats from deep anesthesia induced by isoflurane. Together, these observations show that GABABR-mediated tonic inhibition of locus coeruleus neurons occurs in vivo and support the idea that this effect may be important in regulating the functional state of the brain.
Collapse
|
21
|
Frare C, Jenkins ME, McClure KM, Drew KL. Seasonal decrease in thermogenesis and increase in vasoconstriction explain seasonal response to N 6 -cyclohexyladenosine-induced hibernation in the Arctic ground squirrel (Urocitellus parryii). J Neurochem 2019; 151:316-335. [PMID: 31273780 PMCID: PMC6819227 DOI: 10.1111/jnc.14814] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023]
Abstract
Hibernation is a seasonal phenomenon characterized by a drop in metabolic rate and body temperature. Adenosine A1 receptor agonists promote hibernation in different mammalian species, and the understanding of the mechanism inducing hibernation will inform clinical strategies to manipulate metabolic demand that are fundamental to conditions such as obesity, metabolic syndrome, and therapeutic hypothermia. Adenosine A1 receptor agonist-induced hibernation in Arctic ground squirrels is regulated by an endogenous circannual (seasonal) rhythm. This study aims to identify the neuronal mechanism underlying the seasonal difference in response to the adenosine A1 receptor agonist. Arctic ground squirrels were implanted with body temperature transmitters and housed at constant ambient temperature (2°C) and light cycle (4L:20D). We administered CHA (N6 -cyclohexyladenosine), an adenosine A1 receptor agonist in euthermic-summer phenotype and euthermic-winter phenotype and used cFos and phenotypic immunoreactivity to identify cell groups affected by season and treatment. We observed lower core and subcutaneous temperature in winter animals and CHA produced a hibernation-like response in winter, but not in summer. cFos-ir was greater in the median preoptic nucleus and the raphe pallidus in summer after CHA. CHA administration also resulted in enhanced cFos-ir in the nucleus tractus solitarius and decreased cFos-ir in the tuberomammillary nucleus in both seasons. In winter, cFos-ir was greater in the supraoptic nucleus and lower in the raphe pallidus than in summer. The seasonal decrease in the thermogenic response to CHA and the seasonal increase in vasoconstriction, assessed by subcutaneous temperature, reflect the endogenous seasonal modulation of the thermoregulatory systems necessary for CHA-induced hibernation. Cover Image for this issue: doi: 10.1111/jnc.14528.
Collapse
Affiliation(s)
- Carla Frare
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Mackenzie E Jenkins
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Kelsey M McClure
- Department of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
22
|
Structural and functional connections between the median and the ventrolateral preoptic nucleus. Brain Struct Funct 2019; 224:3045-3057. [DOI: 10.1007/s00429-019-01935-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
|
23
|
Harding EC, Franks NP, Wisden W. The Temperature Dependence of Sleep. Front Neurosci 2019; 13:336. [PMID: 31105512 PMCID: PMC6491889 DOI: 10.3389/fnins.2019.00336] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
Mammals have evolved a range of behavioural and neurological mechanisms that coordinate cycles of thermoregulation and sleep. Whether diurnal or nocturnal, sleep onset and a reduction in core temperature occur together. Non-rapid eye movement (NREM) sleep episodes are also accompanied by core and brain cooling. Thermoregulatory behaviours, like nest building and curling up, accompany this circadian temperature decline in preparation for sleeping. This could be a matter of simply comfort as animals seek warmth to compensate for lower temperatures. However, in both humans and other mammals, direct skin warming can shorten sleep-latency and promote NREM sleep. We discuss the evidence that body cooling and sleep are more fundamentally connected and that thermoregulatory behaviours, prior to sleep, form warm microclimates that accelerate NREM directly through neuronal circuits. Paradoxically, this warmth might also induce vasodilation and body cooling. In this way, warmth seeking and nesting behaviour might enhance the circadian cycle by activating specific circuits that link NREM initiation to body cooling. We suggest that these circuits explain why NREM onset is most likely when core temperature is at its steepest rate of decline and why transitions to NREM are accompanied by a decrease in brain temperature. This connection may have implications for energy homeostasis and the function of sleep.
Collapse
Affiliation(s)
- Edward C Harding
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Conceição EPS, Madden CJ, Morrison SF. Neurons in the rat ventral lateral preoptic area are essential for the warm-evoked inhibition of brown adipose tissue and shivering thermogenesis. Acta Physiol (Oxf) 2019; 225:e13213. [PMID: 30365209 PMCID: PMC6686665 DOI: 10.1111/apha.13213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/25/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
AIM To determine the role of neurons in the ventral part of the lateral preoptic area (vLPO) in CNS thermoregulation. METHODS In vivo electrophysiological and neuropharmacological were used to evaluate the contribution of neurons in the vLPO to the regulation of brown adipose tissue (BAT) thermogenesis and muscle shivering in urethane/chloralose-anaesthetized rats. RESULTS Nanoinjections of NMDA targeting the medial preoptic area (MPA) and the vLPO suppressed the cold-evoked BAT sympathetic activity (SNA), reduced the BAT temperature (TBAT ), expired CO2 , mean arterial pressure (MAP), and heart rate. Inhibition of vLPO neurons with muscimol or AP5/CNQX elicited increases in BAT SNA, TBAT , tachycardia, and small elevations in MAP. The BAT thermogenesis evoked by AP5/CNQX in vLPO was inhibited by the activation of MPA neurons. The inhibition of BAT SNA by vLPO neurons does not require a GABAergic input to dorsomedial hypothalamus (DMH), but MPA provides a GABAergic input to DMH. The activation of vLPO neurons inhibits the BAT thermogenesis evoked by NMDA in the rostral raphe pallidus (rRPa), but not that after bicuculline in rRPa. The BAT thermogenesis elicited by vLPO inhibition is dependent on glutamatergic inputs to DMH and rRPa, but these excitatory inputs do not arise from MnPO neurons. The activation of neurons in the vLPO also inhibits cold- and prostaglandin-evoked muscle shivering, and vLPO inhibition is sufficient to evoke shivering. CONCLUSION The vLPO contains neurons that are required for the warm ambient-evoked inhibition of muscle shivering and of BAT thermogenesis, mediated through a direct or indirect GABAergic input to rRPa from vLPO.
Collapse
Affiliation(s)
- Ellen P S Conceição
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
25
|
Abstract
Narcolepsy is the most common neurological cause of chronic sleepiness. The discovery about 20 years ago that narcolepsy is caused by selective loss of the neurons producing orexins (also known as hypocretins) sparked great advances in the field. Here, we review the current understanding of how orexin neurons regulate sleep-wake behaviour and the consequences of the loss of orexin neurons. We also summarize the developing evidence that narcolepsy is an autoimmune disorder that may be caused by a T cell-mediated attack on the orexin neurons and explain how these new perspectives can inform better therapeutic approaches.
Collapse
Affiliation(s)
- Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Andrew Cogswell
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Igor J Koralnik
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Hypocretin and the Regulation of Sleep-Wake Transitions. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-12-813743-7.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Briggs C, Bowes SC, Semba K, Hirasawa M. Sleep deprivation-induced pre- and postsynaptic modulation of orexin neurons. Neuropharmacology 2018; 154:50-60. [PMID: 30586566 DOI: 10.1016/j.neuropharm.2018.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Sleep/wake states are controlled by sleep- and wake-promoting systems, and transitions between states are thought to be regulated by their reciprocal inhibition and homeostatic sleep need. Orexin neurons are known to promote wake maintenance and stabilize the sleep/wake switch. Thus, we asked whether orexin neurons are modulated by homeostatic sleep need. Rats were sleep deprived or left undisturbed to rest for 6 h, then acute brain slices were generated for patch clamp recordings. We found that sleep deprivation increased firing and reduced spike frequency adaptation in response to excitatory drive in orexin neurons. These changes were specific to D-type orexin neurons which, unlike H-type orexin neurons, lack A-type current. In D-type orexin neurons, sleep deprivation decreased afterhyperpolarizing potential, which was associated with increased gain, measured as the slope of the input-output relationship. These effects were mimicked by inhibition of SK channels. Furthermore, sleep deprivation resulted in presynaptic inhibition of excitatory inputs to both D-type and H-type orexin neurons, which preferentially affected sparse synaptic inputs while sparing high frequency synaptic activities. Taken together, our results indicate that sleep deprivation modulates the gain control and synaptic gating in orexin neurons. These pre-and postsynaptic changes would tune orexin neurons to strong wake-promoting excitatory signals, while dampening weak synaptic inputs to allow transition to sleep in the absence of such strong signals. These mechanisms are consistent with a role of orexin neurons not only as a key state stabilizer, but also as a homeostatic wake integrator in the sleep/wake switch. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Chantalle Briggs
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada
| | - Sherri C Bowes
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada; Department of Psychiatry, Faculty of Medicine, Dalhousie University, 5909 Veterans' Memorial Lane, Halifax, NS, B3H 2E2, Canada; Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
28
|
Feng ZX, Dong H, Qu WM, Zhang W. Oral Delivered Dexmedetomidine Promotes and Consolidates Non-rapid Eye Movement Sleep via Sleep-Wake Regulation Systems in Mice. Front Pharmacol 2018; 9:1196. [PMID: 30568589 PMCID: PMC6290063 DOI: 10.3389/fphar.2018.01196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/28/2018] [Indexed: 01/11/2023] Open
Abstract
Dexmedetomidine, a highly selective α2-adrenergic agonist, is widely used in clinical anesthesia and ICU sedation. Recent studies have found that dexmedetomidine-induced sedation resembles the recovery sleep that follows sleep deprivation, but whether orally delivered dexmedetomidine can be a candidate for the treatment of insomnia remains unclear. In this study, we estimated the sedative effects of orally delivered dexmedetomidine by spontaneous locomotor activity (LMA), and then evaluated the hypnotic effects of dexmedetomidine on sleep–wake profiles during the dark and light phase using electroencephalography/electromyogram (EEG/EMG), respectively. Using c-Fos staining, we explored the effects of dexmedetomidine on the cerebral cortex and the sub-cortical sleep–wake regulation systems. The results showed that orally delivered dexmedetomidine at 2 h into the dark cycle reduced LMA and wakefulness in a dose-dependent manner, which was consistent with the increase in non-rapid eye movement sleep (NREM sleep). However, dexmedetomidine also induced a rebound in LMA, wake and rapid eye movement sleep (REM sleep) in the later stage. In addition, orally delivered dexmedetomidine 100 μg/kg at 2 h into the light cycle shortened the latency to NREM sleep and increased the duration of NREM sleep for 6 h, while decreased REM sleep for 6 h. Sleep architecture analysis showed that dexmedetomidine stabilized the sleep structure during the light phase by decreasing sleep–wake transition and increasing long-term NREM sleep (durations of 1024–2024 s and >2024 s) while reducing short-term wakefulness (duration of 4–16 s). Unlike the classic hypnotic diazepam, dexmedetomidine also increased the delta power in the EEG spectra of NREM sleep, especially at the frequency of 1.75–3.25 Hz, while ranges of 0.5–1.0 Hz were decreased. Immunohistochemical analysis showed that orally delivered dexmedetomidine 100 μg/kg at 2 h into the dark cycle decreased c-Fos expression in the cerebral cortex and sub-cortical arousal systems, while it increased c-Fos expression in the neurons of the ventrolateral preoptic nucleus. These results indicate that orally delivered dexmedetomidine can induce sedative and hypnotic effects by exciting the sleep-promoting nucleus and inhibiting the wake-promoting areas.
Collapse
Affiliation(s)
- Zhen-Xin Feng
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Dong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Autonomic regulation during sleep and wakefulness: a review with implications for defining the pathophysiology of neurological disorders. Clin Auton Res 2018; 28:509-518. [PMID: 30155794 DOI: 10.1007/s10286-018-0560-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023]
Abstract
Cardiovascular and respiratory parameters change during sleep and wakefulness. This observation underscores an important, albeit incompletely understood, role for the central nervous system in the differential regulation of autonomic functions. Understanding sleep/wake-dependent sympathetic modulations provides insights into diseases involving autonomic dysfunction. The purpose of this review was to define the central nervous system nuclei regulating sleep and cardiovascular function and to identify reciprocal networks that may underlie autonomic symptoms of disorders such as insomnia, sleep apnea, restless leg syndrome, rapid eye movement sleep behavior disorder, and narcolepsy/cataplexy. In this review, we examine the functional and anatomical significance of hypothalamic, pontine, and medullary networks on sleep, cardiovascular function, and breathing.
Collapse
|
30
|
Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2018; 140:77-92. [PMID: 30118737 PMCID: PMC6403104 DOI: 10.1016/j.neures.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 01/31/2023]
Abstract
REM sleep was discovered in the 1950s. Many hypothalamic and brainstem areas have been found to contribute to REM sleep. An up-to-date picture of REM-sleep-regulating circuits is reviewed. A brief overview of computational models for REM sleep regulation is provided. Outstanding issues for future studies are discussed.
Rapid eye movement (REM) sleep or paradoxical sleep is an elusive behavioral state. Since its discovery in the 1950s, our knowledge of the neuroanatomy, neurotransmitters and neuropeptides underlying REM sleep regulation has continually evolved in parallel with the development of novel technologies. Although the pons was initially discovered to be responsible for REM sleep, it has since been revealed that many components in the hypothalamus, midbrain, pons, and medulla also contribute to REM sleep. In this review, we first provide an up-to-date overview of REM sleep-regulating circuits in the brainstem and hypothalamus by summarizing experimental evidence from neuroanatomical, neurophysiological and gain- and loss-of-function studies. Second, because quantitative approaches are essential for understanding the complexity of REM sleep-regulating circuits and because mathematical models have provided valuable insights into the dynamics underlying REM sleep genesis and maintenance, we summarize computational studies of the sleep-wake cycle, with an emphasis on REM sleep regulation. Finally, we discuss outstanding issues for future studies.
Collapse
Affiliation(s)
- Charlotte Héricé
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Amisha A Patel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
31
|
Tesoriero C, Del Gallo F, Bentivoglio M. Sleep and brain infections. Brain Res Bull 2018; 145:59-74. [PMID: 30016726 DOI: 10.1016/j.brainresbull.2018.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
Sleep is frequently altered in systemic infections as a component of sickness behavior in response to inflammation. Sleepiness in sickness behavior has been extensively investigated. Much less attention has instead been devoted to sleep and wake alterations in brain infections. Most of these, as other neuroinfections, are prevalent in sub-Saharan Africa. The present overview highlights the importance of this topic from both the clinical and pathogenetic points of view. Vigilance states and their regulation are first summarized, emphasizing that key nodes in this distributed brain system can be targeted by neuroinflammatory signaling. Sleep-wake changes in the parasitic disease human African trypanosomiasis (HAT) and its animal models are then reviewed and discussed. Experimental data have revealed that the suprachiasmatic nucleus, the master circadian pacemaker, and peptidergic cell populations of the lateral hypothalamus (the wake-promoting orexin neurons and the sleep-promoting melanin-concentrating hormone neurons) are targeted by African trypanosome infection. It is then discussed how prominent and disturbing are sleep changes in HIV/AIDS, also when the infection is cured with antiretroviral therapy. This recalls attention on the bidirectional interactions between sleep and immune system, including the specialized brain immune response of which microglial cells are protagonists. Sleep changes in an ancient viral disease, rabies, and in the emerging infection due to Zika virus which causes a congenital syndrome, are also dealt with. Altogether the findings indicate that sleep-wake regulation is targeted by brain infections caused by different pathogens and, although the relevant pathogenetic mechanisms largely remain to be clarified, these alterations differ from hypersomnia occurring in sickness behavior. Thus, brain infections point to the vulnerability of the neural network of sleep-wake regulation as a highly relevant clinical and basic science challenge.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Federico Del Gallo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Marina Bentivoglio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.
| |
Collapse
|
32
|
Hambrecht-Wiedbusch VS, Gabel M, Liu LJ, Imperial JP, Colmenero AV, Vanini G. Preemptive Caffeine Administration Blocks the Increase in Postoperative Pain Caused by Previous Sleep Loss in the Rat: A Potential Role for Preoptic Adenosine A2A Receptors in Sleep-Pain Interactions. Sleep 2018; 40:4037126. [PMID: 28934532 DOI: 10.1093/sleep/zsx116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sleep and pain are reciprocally related, but the precise mechanisms underlying this relationship are poorly understood. This study used a rat model of surgical pain to examine the effect of previous sleep loss on postoperative pain and tested the hypothesis that preoptic adenosinergic mechanisms regulate sleep-pain interactions. Relative to ad libitum sleep, 6 hours of total sleep deprivation prior to a surgical incision significantly enhanced postoperative mechanical hypersensitivity in the affected paw and prolonged the time to recovery from surgery. There were no sex-specific differences in these measures. There were also no changes in adrenocorticotropic hormone and corticosterone levels after sleep deprivation, suggesting that this effect was not mediated by the stress associated with the sleep perturbation. Systemic administration of the nonselective adenosine receptor antagonist caffeine at the onset of sleep deprivation prevented the sleep deprivation-induced increase in postoperative hypersensitivity. Microinjection of the adenosine A2A receptor antagonist ZM 241385 into the median preoptic nucleus (MnPO) blocked the increase in surgical pain levels and duration caused by prior sleep deprivation and eliminated the thermal hyperalgesia induced by sleep deprivation in a group of nonoperated (i.e., without surgical incision) rats. These data show that even a brief sleep disturbance prior to surgery worsens postoperative pain and are consistent with our hypothesis that adenosine A2A receptors in the MnPO contribute to regulate these sleep-pain interactions.
Collapse
Affiliation(s)
| | - Maya Gabel
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Linda J Liu
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - John P Imperial
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | | | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
33
|
Hashimoto M, Yamanaka A, Kato S, Tanifuji M, Kobayashi K, Yaginuma H. Anatomical Evidence for a Direct Projection from Purkinje Cells in the Mouse Cerebellar Vermis to Medial Parabrachial Nucleus. Front Neural Circuits 2018; 12:6. [PMID: 29467628 PMCID: PMC5808303 DOI: 10.3389/fncir.2018.00006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 01/12/2018] [Indexed: 11/28/2022] Open
Abstract
Cerebellar malformations cause changes to the sleep-wake cycle, resulting in sleep disturbance. However, it is unclear how the cerebellum contributes to the sleep-wake cycle. To examine the neural connections between the cerebellum and the nuclei involved in the sleep-wake cycle, we investigated the axonal projections of Purkinje cells in the mouse posterior vermis by using an adeno-associated virus (AAV) vector (serotype rh10) as an anterograde tracer. When an AAV vector expressing humanized renilla green fluorescent protein was injected into the cerebellar lobule IX, hrGFP and synaptophysin double-positive axonal terminals were observed in the region of medial parabrachial nucleus (MPB). The MPB is involved in the phase transition from rapid eye movement (REM) sleep to Non-REM sleep and vice versa, and the cardiovascular and respiratory responses. The hrGFP-positive axons from lobule IX went through the ventral spinocerebellar tract and finally reached the MPB. By contrast, when the AAV vector was injected into cerebellar lobule VI, no hrGFP-positive axons were observed in the MPB. To examine neurons projecting to the MPB, we unilaterally injected Fast Blue and AAV vector (retrograde serotype, rAAV2-retro) as retrograde tracers into the MPB. The cerebellar Purkinje cells in lobules VIII–X on the ipsilateral side of the Fast Blue-injected MPB were retrogradely labeled by Fast Blue and AAV vector (retrograde serotype), but no retrograde-labeled Purkinje cells were observed in lobules VI–VII and the cerebellar hemispheres. These results indicated that Purkinje cells in lobules VIII–X directly project their axons to the ipsilateral MPB but not lobules VI–VII. The direct connection between lobules VIII–X and the MPB suggests that the cerebellum participates in the neural network controlling the sleep-wake cycle, and cardiovascular and respiratory responses, by modulating the physiological function of the MPB.
Collapse
Affiliation(s)
- Mitsuhiro Hashimoto
- Department of Neuroanatomy and Embryology, Fukushima Medical University Graduate School of Medicine, Fukushima, Japan.,Brain Interdisciplinary Research Division, Research Institute for Science and Technology, Tokyo University of Science, Noda-shi, Japan.,Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya-shi, Japan.,Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, Saitama, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya-shi, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University Graduate School of Medicine, Fukushima, Japan
| | - Manabu Tanifuji
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, Saitama, Japan.,Department of Life Science and Medical Bio-Science, Faculty of Science and Engineering, Waseda University, Tokyo, Japan.,Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University Graduate School of Medicine, Fukushima, Japan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and Embryology, Fukushima Medical University Graduate School of Medicine, Fukushima, Japan
| |
Collapse
|
34
|
Abstract
Sleep in mammals is accompanied by a decrease in core body temperature (CBT). The circadian clock in the hypothalamic suprachiasmatic nucleus regulates daily rhythms in both CBT and arousal states, and these rhythms are normally coupled. Reductions in metabolic heat production resulting from behavioral quiescence and reduced muscle tone along with changes in autonomic nervous system activity and thermoeffector activity contribute to the sleep-related fall in CBT. Reductions in sympathetic tone to the peripheral vasculature resulting in heat loss through the skin are reflected in a sleep-related increase in distal skin temperature that is a prominent feature of sleep onset in humans. Within a sleep episode, patterns of autonomic nervous system and thermoeffector activity and the ability to defend against heat and cold exposure differ during nonrapid eye movement (NREM) and rapid eye movement sleep. Anatomic and functional integration of the control of arousal states and thermoregulation occur in the preoptic/anterior hypothalamus. Subsets or warm-sensing neurons in the preoptic/anterior hypothalamus implicated in CBT regulation are spontaneously activated during sleep onset and NREM sleep compared to waking and may underlie sleep-related changes in autonomic nervous system and thermoeffector activity.
Collapse
Affiliation(s)
- Ronald Szymusiak
- Research Service, VA Greater Los Angeles Healthcare System and Department of Medicine and Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
35
|
Abstract
Body core temperature of mammals is regulated by the central nervous system, in which the preoptic area (POA) of the hypothalamus plays a pivotal role. The POA receives peripheral and central thermosensory neural information and provides command signals to effector organs to elicit involuntary thermoregulatory responses, including shivering thermogenesis, nonshivering brown adipose tissue thermogenesis, and cutaneous vasoconstriction. Cool-sensory and warm-sensory signals from cutaneous thermoreceptors, monitoring environmental temperature, are separately transmitted through the spinal-parabrachial-POA neural pathways, distinct from the spinothalamocortical pathway for perception of skin temperature. These cutaneous thermosensory inputs to the POA likely impinge on warm-sensitive POA neurons, which monitor body core (brain) temperature, to alter thermoregulatory command outflows from the POA. The cutaneous thermosensory afferents elicit rapid thermoregulatory responses to environmental thermal challenges before they impact body core temperature. Peripheral humoral signals also act on neurons in the POA to transmit afferent information of systemic infection and energy storage to induce fever and to regulate energy balance, respectively. This chapter describes the thermoregulatory afferent mechanisms that convey cutaneous thermosensory signals to the POA and that integrate the neural and humoral afferent inputs to the POA to provide descending command signals to thermoregulatory effectors.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
36
|
Sociability trait and regional cerebral oxidative metabolism in rats: Predominantly nonlinear relations. Behav Brain Res 2018; 337:186-192. [DOI: 10.1016/j.bbr.2017.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022]
|
37
|
Abbott SBG, Saper CB. Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice. J Physiol 2017; 595:6569-6583. [PMID: 28786483 PMCID: PMC5638873 DOI: 10.1113/jp274667] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/28/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Glutamatergic neurons in the median preoptic area were stimulated using genetically targeted Channelrhodopsin 2 in transgenic mice. Stimulation of glutamatergic median preoptic area neurons produced a profound hypothermia due to cutaneous vasodilatation. Stimulation also produced drinking behaviour that was inhibited as water was ingested, suggesting pre-systemic feedback gating of drinking. Anatomical mapping of the stimulation sites showed that sites associated with hypothermia were more anteroventral than those associated with drinking, although there was substantial overlap. ABSTRACT The median preoptic nucleus (MnPO) serves an important role in the integration of water/electrolyte homeostasis and thermoregulation, but we have a limited understanding these functions at a cellular level. Using Cre-Lox genetic targeting of Channelrhodospin 2 in VGluT2 transgenic mice, we examined the effect of glutamatergic MnPO neuron stimulation in freely behaving mice while monitoring drinking behaviour and core temperature. Stimulation produced a strong hypothermic response in 62% (13/21) of mice (core temperature: -4.6 ± 0.5°C, P = 0.001 vs. controls) caused by cutaneous vasodilatation. Stimulating glutamatergic MnPO neurons also produced robust drinking behaviour in 82% (18/22) of mice. Mice that drank during stimulation consumed 912 ± 163 μl (n = 8) during a 20 min trial in the dark phase, but markedly less during the light phase (421 ± 83 μl, P = 0.0025). Also, drinking during stimulation was inhibited as water was ingested, suggesting pre-systemic feedback gating of drinking. Both hypothermia and drinking during stimulation occurred in 50% of mice tested. Anatomical mapping of the stimulation sites showed that sites associated with hypothermia were more anteroventral than those associated with drinking, although there was substantial overlap. Thus, activation of separate but overlapping populations of glutamatergic MnPO neurons produces effects on drinking and autonomic thermoregulatory mechanisms, providing a structural basis for their frequently being coordinated (e.g. during hyperthermia).
Collapse
Affiliation(s)
- Stephen B. G. Abbott
- Department of NeurologyBeth Israel‐Deaconess Medical Center ‐ Harvard Medical SchoolBostonMAUSA
- The Heart Research InstituteSydneyAustralia
| | - Clifford B. Saper
- Department of NeurologyBeth Israel‐Deaconess Medical Center ‐ Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
38
|
Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017; 93:747-765. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Citation(s) in RCA: 575] [Impact Index Per Article: 71.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/29/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Sleep remains one of the most mysterious yet ubiquitous animal behaviors. We review current perspectives on the neural systems that regulate sleep/wake states in mammals and the circadian mechanisms that control their timing. We also outline key models for the regulation of rapid eye movement (REM) sleep and non-REM sleep, how mutual inhibition between specific pathways gives rise to these distinct states, and how dysfunction in these circuits can give rise to sleep disorders.
Collapse
Affiliation(s)
- Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02215, USA.
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jonathan O Lipton
- Department of Neurology, Boston Children's Hospital, Boston, MA 02215, USA; F.M. Kirby Neurobiology Center, Boston, MA 02215, USA
| |
Collapse
|
39
|
Abbott SBG, Machado NLS, Geerling JC, Saper CB. Reciprocal Control of Drinking Behavior by Median Preoptic Neurons in Mice. J Neurosci 2016; 36:8228-37. [PMID: 27488641 PMCID: PMC4971367 DOI: 10.1523/jneurosci.1244-16.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Stimulation of glutamatergic neurons in the subfornical organ drives drinking behavior, but the brain targets that mediate this response are not known. The densest target of subfornical axons is the anterior tip of the third ventricle, containing the median preoptic nucleus (MnPO) and organum vasculosum of the lamina terminalis (OVLT), a region that has also been implicated in fluid and electrolyte management. The neurochemical composition of this region is complex, containing both GABAergic and glutamatergic neurons, but the possible roles of these neurons in drinking responses have not been addressed. In mice, we show that optogenetic stimulation of glutamatergic neurons in MnPO/OVLT drives voracious water consumption, and that optogenetic stimulation of GABAergic neurons in the same region selectively reduces water consumption. Both populations of neurons have extensive projections to overlapping regions of the thalamus, hypothalamus, and hindbrain that are much more extensive than those from the subfornical organ, suggesting that the MnPO/OVLT serves as a key link in regulating drinking responses. SIGNIFICANCE STATEMENT Neurons in the median preoptic nucleus (MnPO) and organum vasculosum of the lamina terminalis (OVLT) are known to regulate fluid/electrolyte homeostasis, but few studies have examined this issue with an appreciation for the neurochemical heterogeneity of these nuclei. Using Cre-Lox genetic targeting of Channelrhodospin-2 in transgenic mice, we demonstrate that glutamate and GABA neurons in the MnPO/OVLT reciprocally regulate water consumption. Stimulating glutamatergic MnPO/OVLT neurons induced water consumption, whereas stimulating GABAergic MnPO neurons caused a sustained and specific reduction in water consumption in dehydrated mice, the latter highlighting a heretofore unappreciated role of GABAergic MnPO neurons in thirst regulation. These observations represent an important advance in our understanding of the neural circuits involved in the regulation of fluid/electrolyte homeostasis.
Collapse
Affiliation(s)
- Stephen B G Abbott
- Department of Neurology, Beth Israel-Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215, Heart Research Institute, Sydney, Australia, and
| | - Natalia L S Machado
- Department of Neurology, Beth Israel-Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte-MG 31270-901, Brazil
| | - Joel C Geerling
- Department of Neurology, Beth Israel-Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215
| | - Clifford B Saper
- Department of Neurology, Beth Israel-Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215,
| |
Collapse
|
40
|
Abstract
Cortical electroencephalographic activity arises from corticothalamocortical interactions, modulated by wake-promoting monoaminergic and cholinergic input. These wake-promoting systems are regulated by hypothalamic hypocretin/orexins, while GABAergic sleep-promoting nuclei are found in the preoptic area, brainstem and lateral hypothalamus. Although pontine acetylcholine is critical for REM sleep, hypothalamic melanin-concentrating hormone/GABAergic cells may "gate" REM sleep. Daily sleep-wake rhythms arise from interactions between a hypothalamic circadian pacemaker and a sleep homeostat whose anatomical locus has yet to be conclusively defined. Control of sleep and wakefulness involves multiple systems, each of which presents vulnerability to sleep/wake dysfunction that may predispose to physical and/or neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael D Schwartz
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Thomas S Kilduff
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| |
Collapse
|
41
|
Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015; 9:111. [PMID: 26300745 PMCID: PMC4523943 DOI: 10.3389/fnsys.2015.00111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt) neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP) can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT) can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools has greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.
Collapse
Affiliation(s)
- Allison K Graebner
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Manasi Iyer
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Matthew E Carter
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| |
Collapse
|
42
|
Abstract
Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short- and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | |
Collapse
|
43
|
Feleder C, Sertac Yilmaz M, Peng J, Göktalay G, Millington WR. The OVLT initiates the fall in arterial pressure evoked by high dose lipopolysaccharide: evidence that dichotomous, dose-related mechanisms mediate endotoxic hypotension. J Neuroimmunol 2015. [PMID: 26198924 DOI: 10.1016/j.jneuroim.2015.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study tested the hypothesis that lipopolysaccharide (LPS) lowers arterial pressure through two different mechanisms depending on the dose. Previously, we found that a low hypotensive dose of LPS (1mg/kg) lowers arterial pressure by activating vagus nerve afferents. Here we report that hypotension evoked by high dose LPS (15mg/kg) can be prevented by injecting lidocaine into the OVLT but not by vagotomy or inactivation of the NTS. The hypotension produced by both LPS doses was correlated with elevated extracellular norepinephrine concentrations in the POA and prevented by blocking alpha-adrenergic receptors. Thus, initiation of endotoxic hypotension is dose-related, mechanistically.
Collapse
Affiliation(s)
- Carlos Feleder
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States
| | - M Sertac Yilmaz
- Department of Medical Pharmacology, Uludag University, Faculty of Medicine, Bursa 16059, Turkey
| | - Jianya Peng
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States
| | - Gökhan Göktalay
- Department of Medical Pharmacology, Uludag University, Faculty of Medicine, Bursa 16059, Turkey
| | - William R Millington
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States.
| |
Collapse
|
44
|
McKinley MJ, Yao ST, Uschakov A, McAllen RM, Rundgren M, Martelli D. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol (Oxf) 2015; 214:8-32. [PMID: 25753944 DOI: 10.1111/apha.12487] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022]
Abstract
Located in the midline anterior wall of the third cerebral ventricle (i.e. the lamina terminalis), the median preoptic nucleus (MnPO) receives a unique set of afferent neural inputs from fore-, mid- and hindbrain. These afferent connections enable it to receive neural signals related to several important aspects of homeostasis. Included in these afferent projections are (i) neural inputs from two adjacent circumventricular organs, the subfornical organ and organum vasculosum laminae terminalis, that respond to hypertonicity, circulating angiotensin II or other humoural factors, (ii) signals from cutaneous warm and cold receptors that are relayed to MnPO, respectively, via different subnuclei in the lateral parabrachial nucleus and (iii) input from the medulla associated with baroreceptor and vagal afferents. These afferent signals reach appropriate neurones within the MnPO that enable relevant neural outputs, both excitatory and inhibitory, to be activated or inhibited. The efferent neural pathways that proceed from the MnPO terminate on (i) neuroendocrine cells in the hypothalamic supraoptic and paraventricular nuclei to regulate vasopressin release, while polysynaptic pathways from MnPO to cortical sites may drive thirst and water intake, (ii) thermoregulatory pathways to the dorsomedial hypothalamic nucleus and medullary raphé to regulate shivering, brown adipose tissue and skin vasoconstriction, (iii) parvocellular neurones in the hypothalamic paraventricular nucleus that drive autonomic pathways influencing cardiovascular function. As well, (iv) other efferent pathways from the MnPO to sites in the ventrolateral pre-optic nucleus, perifornical region of the lateral hypothalamic area and midbrain influence sleep mechanisms.
Collapse
Affiliation(s)
- M. J. McKinley
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
| | - S. T. Yao
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
| | - A. Uschakov
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
| | - R. M. McAllen
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
- Department of Anatomy and Neuroscience; University of Melbourne; Melbourne Vic. Australia
| | - M. Rundgren
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - D. Martelli
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
- Department of Biomedical and Neuromotor Science; University of Bologna; Bologna Italy
| |
Collapse
|
45
|
Role of cardiorespiratory synchronization and sleep physiology: effects on membrane potential in the restorative functions of sleep. Sleep Med 2014; 15:279-88. [DOI: 10.1016/j.sleep.2013.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 01/26/2023]
|
46
|
Moreno ML, Meza E, Ortega A, Caba M. The median preoptic nucleus exhibits circadian regulation and is involved in food anticipatory activity in rabbit pups. Chronobiol Int 2014; 31:515-22. [PMID: 24417519 DOI: 10.3109/07420528.2013.874354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rabbit pups are a natural model to study food anticipatory activity (FAA). Recently, we reported that three areas in the forebrain - the organum vasculosum of lamina terminalis, median preoptic nucleus (MnPO) and medial preoptic area - exhibit activation during FAA. Here, we examined the PER1 protein profile of these three forebrain regions in both nursed and fasted subjects. We found robust PER1 oscillations in the MnPO in nursed subjects, with high PER1 levels during FAA that persisted in fasted subjects. In conclusion, our data indicate that periodic nursing is a strong signal for PER1 oscillations in MnPO and future experiments are warranted to explore the specific role of this area in FAA.
Collapse
Affiliation(s)
- María Luisa Moreno
- Centro de Investigaciones Biomédicas, Universidad Veracruzana , Xalapa, Veracruz , Mexico
| | | | | | | |
Collapse
|
47
|
Alam MA, Kumar S, McGinty D, Alam MN, Szymusiak R. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J Neurophysiol 2014; 111:287-99. [PMID: 24174649 PMCID: PMC3921380 DOI: 10.1152/jn.00504.2013] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/24/2013] [Indexed: 11/22/2022] Open
Abstract
The preoptic hypothalamus is implicated in sleep regulation. Neurons in the median preoptic nucleus (MnPO) and the ventrolateral preoptic area (VLPO) have been identified as potential sleep regulatory elements. However, the extent to which MnPO and VLPO neurons are activated in response to changing homeostatic sleep regulatory demands is unresolved. To address this question, we continuously recorded the extracellular activity of neurons in the rat MnPO, VLPO and dorsal lateral preoptic area (LPO) during baseline sleep and waking, during 2 h of sleep deprivation (SD) and during 2 h of recovery sleep (RS). Sleep-active neurons in the MnPO (n = 11) and VLPO (n = 13) were activated in response to SD, such that waking discharge rates increased by 95.8 ± 29.5% and 59.4 ± 17.3%, respectively, above waking baseline values. During RS, non-rapid eye movement (REM) sleep discharge rates of MnPO neurons initially increased to 65.6 ± 15.2% above baseline values, then declined to baseline levels in association with decreases in EEG delta power. Increase in non-REM sleep discharge rates in VLPO neurons during RS averaged 40.5 ± 7.6% above baseline. REM-active neurons (n = 16) in the LPO also exhibited increased waking discharge during SD and an increase in non-REM discharge during RS. Infusion of A2A adenosine receptor antagonist into the VLPO attenuated SD-induced increases in neuronal discharge. Populations of LPO wake/REM-active and state-indifferent neurons and dorsal LPO sleep-active neurons were unresponsive to SD. These findings support the hypothesis that sleep-active neurons in the MnPO and VLPO, and REM-active neurons in the LPO, are components of neuronal circuits that mediate homeostatic responses to sustained wakefulness.
Collapse
Affiliation(s)
- Md Aftab Alam
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California
| | | | | | | | | |
Collapse
|
48
|
Dual orexin receptor antagonists - promising agents in the treatment of sleep disorders. Int J Neuropsychopharmacol 2014; 17:157-68. [PMID: 23702225 DOI: 10.1017/s1461145713000552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Insomnia is a serious medical and social problem, its prevalence in the general population ranges from 9 to 35% depending on the country and assessment method. Often, patients are subject to inappropriate and therefore dangerous pharmacotherapies that include prolonged administration of hypnotic drugs, benzodiazepines and other GABAA receptor modulators. This usually does not lead to a satisfactory improvement in patients' clinical states and may cause lifelong drug dependence. Brain state transitions require the coordinated activity of numerous neuronal pathways and brain structures. It is thought that orexin-expressing neurons play a crucial role in this process. Due to their interaction with the sleep-wake-regulating neuronal population, they can activate vigilance-promoting regions and prevent unwanted sleep intrusions. Understanding the multiple orexin modulatory effects is crucial in the context of pathogenesis of insomnia and should lead to the development of novel treatments. An important step in this process was the synthesis of dual antagonists of orexin receptors. Crucially, these drugs, as opposed to benzodiazepines, do not change the sleep architecture and have limited side-effects. This new pharmacological approach might be the most appropriate to treat insomnia.
Collapse
|
49
|
Saito YC, Tsujino N, Hasegawa E, Akashi K, Abe M, Mieda M, Sakimura K, Sakurai T. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front Neural Circuits 2013; 7:192. [PMID: 24348342 PMCID: PMC3844858 DOI: 10.3389/fncir.2013.00192] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/13/2013] [Indexed: 11/13/2022] Open
Abstract
Populations of neurons in the hypothalamic preoptic area (POA) fire rapidly during sleep, exhibiting sleep/waking state-dependent firing patterns that are the reciprocal of those observed in the arousal system. The majority of these preoptic "sleep-active" neurons contain the inhibitory neurotransmitter GABA. On the other hand, a population of neurons in the lateral hypothalamic area (LHA) contains orexins, which play an important role in the maintenance of wakefulness, and exhibit an excitatory influence on arousal-related neurons. It is important to know the anatomical and functional interactions between the POA sleep-active neurons and orexin neurons, both of which play important, but opposite roles in regulation of sleep/wakefulness states. In this study, we confirmed that specific pharmacogenetic stimulation of GABAergic neurons in the POA leads to an increase in the amount of non-rapid eye movement (NREM) sleep. We next examined direct connectivity between POA GABAergic neurons and orexin neurons using channelrhodopsin 2 (ChR2) as an anterograde tracer as well as an optogenetic tool. We expressed ChR2-eYFP selectively in GABAergic neurons in the POA by AAV-mediated gene transfer, and examined the projection sites of ChR2-eYFP-expressing axons, and the effect of optogenetic stimulation of ChR2-eYFP on the activity of orexin neurons. We found that these neurons send widespread projections to wakefulness-related areas in the hypothalamus and brain stem, including the LHA where these fibers make close appositions to orexin neurons. Optogenetic stimulation of these fibers resulted in rapid inhibition of orexin neurons. These observations suggest direct connectivity between POA GABAergic neurons and orexin neurons.
Collapse
Affiliation(s)
- Yuki C Saito
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan
| | - Natsuko Tsujino
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan
| | - Emi Hasegawa
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan
| | - Kaori Akashi
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Michihiro Mieda
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan
| |
Collapse
|
50
|
Moreno ML, Meza E, Morgado E, Juárez C, Ramos-Ligonio A, Ortega A, Caba M. Activation of organum vasculosum of lamina terminalis, median preoptic nucleus, and medial preoptic area in anticipation of nursing in rabbit pups. Chronobiol Int 2013; 30:1272-82. [PMID: 24112031 DOI: 10.3109/07420528.2013.823980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rhythmic feeding in rabbit pups is a natural model to study food entrainment because, similar to rodents under a schedule of food restriction, these animals show food-anticipatory activity (FAA) prior to daily nursing. In rodents, several brain systems, including the orexinergic system, shift their activity to the restricted feeding schedule, and remain active when subjects are hungry. As the lamina terminalis and regions of the preoptic area participate in the control of behavioral arousal, it was hypothesized that these brain regions are also activated during FAA. Thus, the effects of daily milk ingestion on FOS protein expression in the organum vasculosum of lamina terminalis (OVLT), median preoptic nucleus (MnPO), and medial preoptic area (MPOA) were examined using immunohistochemistry before and after scheduled time of nursing in nursed and fasted subjects. Additionally, FOS expression was explored in orexin (ORX) cells in the lateral hypothalamic area and in the supraoptic nucleus (SON) because of their involvement in arousal and fluid ingestion, respectively. Pups were entrained by daily nursing, as indicated by a significant increase in locomotor behavior before scheduled time of nursing in both nursed and fasted subjects. FOS was significantly higher in the OVLT, MnPO, and MPOA at the time of nursing, and decreased 8 h later in nursed pups. In fasted subjects, this effect persisted in the OVLT, whereas in the MnPO and MPOA, values did not drop at 8 h later, but remained at the same level or higher than those at the time of scheduled nursing. In addition, FOS was significantly higher in ORX cells during FAA in nursed pups in comparison with 8 h later, but in fasted subjects it remained high during most fasting time points. Additionally, OVLT, SON, and ORX cells were activated 1.5 h after nursing. We conclude that the OVLT, MnPO, and MPOA, but not SON, may participate in FAA, as they show activation before suckling of periodic milk ingestion, and that sustained activation of the OVLT, MnPO, and MPOA by fasting may contribute to the high arousal state associated with food deprivation. In agreement with this, ORX cells also remain active after expected nursing, which is consistent with reports in other species.
Collapse
Affiliation(s)
- María Luisa Moreno
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa , Veracruz , México
| | | | | | | | | | | | | |
Collapse
|