1
|
Contreras E, Bhoi JD, Sonoda T, Birnbaumer L, Schmidt TM. Melanopsin activates divergent phototransduction pathways in intrinsically photosensitive retinal ganglion cell subtypes. eLife 2023; 12:e80749. [PMID: 37937828 PMCID: PMC10712949 DOI: 10.7554/elife.80749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
Melanopsin signaling within intrinsically photosensitive retinal ganglion cell (ipRGC) subtypes impacts a broad range of behaviors from circadian photoentrainment to conscious visual perception. Yet, how melanopsin phototransduction within M1-M6 ipRGC subtypes impacts cellular signaling to drive diverse behaviors is still largely unresolved. The identity of the phototransduction channels in each subtype is key to understanding this central question but has remained controversial. In this study, we resolve two opposing models of M4 phototransduction, demonstrating that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dispensable for this process and providing support for a pathway involving melanopsin-dependent potassium channel closure and canonical transient receptor potential (TRPC) channel opening. Surprisingly, we find that HCN channels are likewise dispensable for M2 phototransduction, contradicting the current model. We instead show that M2 phototransduction requires TRPC channels in conjunction with T-type voltage-gated calcium channels, identifying a novel melanopsin phototransduction target. Collectively, this work resolves key discrepancies in our understanding of ipRGC phototransduction pathways in multiple subtypes and adds to mounting evidence that ipRGC subtypes employ diverse phototransduction cascades to fine-tune cellular responses for downstream behaviors.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdisciplinary Biological Sciences Program, Northwestern UniversityEvanstonUnited States
| | - Jacob D Bhoi
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdepartmental Neuroscience Program, Northwestern UniversityChicagoUnited States
| | - Takuma Sonoda
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdepartmental Neuroscience Program, Northwestern UniversityChicagoUnited States
| | - Lutz Birnbaumer
- Laboratory of Signal Transduction, National Institute of Environmental Health SciencesDurhamUnited States
- Institute of Biomedical Research (BIOMED), Catholic University of ArgentinaBuenos AiresArgentina
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Department of Ophthalmology, Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
2
|
Yin N, Wang HN, Ding WW, Zhou H, Li SY, Miao Y, Li F, Lei B, Wang Z. Dopamine receptor-mediated roles on retinal ganglion cell hyperexcitability and injury in experimental glaucoma. Cell Signal 2023:110781. [PMID: 37354963 DOI: 10.1016/j.cellsig.2023.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Extraordinary excitability (hyperexcitability) is closely related to retinal ganglion cell (RGC) injury in glaucoma. Dopamine (DA) and its receptors are involved in modulating RGC excitability. We investigated how DA system affects RGC injury in chronic ocular hypertension (COH) experimental glaucoma model. Western blotting and immunohistochemistry results revealed that expression of DA D2-like receptor (D2R) in RGCs was increased in COH retinas. Patch-clamp recordings showed that outward K+ currents were downregulated, while Na+ currents and NaV1.6 expression were upregulated in RGCs of COH retinas, which could be reversed by intravitreal pre-injection of the D2R antagonist sulpiride, but not by the D1-like receptor (D1R) antagonist SCH23390. However, pre-injection of the D1R agonist SKF81297 could partially reverse the increased expression of NaV1.6 proteins. Consistently, the numbers of evoked action potentials induced by current injections were increased in RGCs of COH retinas, indicating that RGCs may be in a condition of hyperexcitability. The increased frequency of evoked action potentials could be partially block by pre-injection of sulpiride, SKF81297 or DA, respectively. Furthermore, the increased number of TUNEL-positive RGCs in COH retinas could be partially reduced by intravitreal pre-injection of sulpiride, but not by pre-injection of SCH23390. Moreover, pre-injection of SKF81297 or DA could reduce the number of TUNEL-positive RGCs in COH retinas. All these results indicate that in COH retina, activation of D2R enhances RGC hyperexcitability and injury, while activation of D1R results in the opposite effects. Selective inhibition of D2R or activation of D1R may be an effective strategy for treatment of glaucoma.
Collapse
Affiliation(s)
- Ning Yin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wen-Wen Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Han Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shu-Ying Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bo Lei
- Institutes of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Zhang T, Ruan HZ, Wang YC, Shao YQ, Zhou W, Weng SJ, Zhong YM. Signaling Mechanism for Modulation by GLP-1 and Exendin-4 of GABA Receptors on Rat Retinal Ganglion Cells. Neurosci Bull 2022; 38:622-636. [PMID: 35278196 PMCID: PMC9206055 DOI: 10.1007/s12264-022-00826-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is expressed in retinal neurons, but its role in the retina is largely unknown. Here, we demonstrated that GLP-1 or the GLP-1 receptor (GLP-1R; a G protein-coupled receptor) agonist exendin-4 suppressed γ-aminobutyric acid receptor (GABAR)-mediated currents through GLP-1Rs in isolated rat retinal ganglion cells (GCs). Pre-incubation with the stimulatory G protein (Gs) inhibitor NF 449 abolished the exendin-4 effect. The exendin-4-induced suppression was mimicked by perfusion with 8-Br-cAMP (a cAMP analog), but was eliminated by the protein kinase A (PKA) inhibitor Rp-cAMP/KT-5720. The exendin-4 effect was accompanied by an increase in [Ca2+]i of GCs through the IP3-sensitive pathway and was blocked in Ca2+-free solution. Furthermore, when the activity of calmodulin (CaM) and CaM-dependent protein kinase II (CaMKII) was inhibited, the exendin-4 effect was eliminated. Consistent with this, exendin-4 suppressed GABAR-mediated light-evoked inhibitory postsynaptic currents in GCs in rat retinal slices. These results suggest that exendin-4-induced suppression may be mediated by a distinct Gs/cAMP-PKA/IP3/Ca2+/CaM/CaMKII signaling pathway, following the activation of GLP-1Rs.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Hang-Ze Ruan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yong-Chen Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yu-Qi Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wei Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Flood MD, Eggers ED. Dopamine D1 and D4 receptors contribute to light adaptation in ON-sustained retinal ganglion cells. J Neurophysiol 2021; 126:2039-2052. [PMID: 34817291 PMCID: PMC8715048 DOI: 10.1152/jn.00218.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023] Open
Abstract
The adaptation of ganglion cells to increasing light levels is a crucial property of the retina. The retina must respond to light intensities that vary by 10-12 orders of magnitude, but the dynamic range of ganglion cell responses covers only ∼3 orders of magnitude. Dopamine is a crucial neuromodulator for light adaptation and activates receptors in the D1 and D2 families. Dopamine type D1 receptors (D1Rs) are expressed on horizontal cells and some bipolar, amacrine, and ganglion cells. In the D2 family, D2Rs are expressed on dopaminergic amacrine cells and D4Rs are primarily expressed on photoreceptors. However, the roles of activating these receptors to modulate the synaptic properties of the inputs to ganglion cells are not yet clear. Here, we used single-cell retinal patch-clamp recordings from the mouse retina to determine how activating D1Rs and D4Rs changed the light-evoked and spontaneous excitatory inputs to ON-sustained (ON-s) ganglion cells. We found that both D1R and D4R activation decrease the light-evoked excitatory inputs to ON-s ganglion cells, but that only the sum of the peak response decrease due to activating the two receptors was similar to the effect of light adaptation to a rod-saturating background. The largest effects on spontaneous excitatory activity of both D1R and D4R agonists was on the frequency of events, suggesting that both D1Rs and D4Rs are acting upstream of the ganglion cells.NEW & NOTEWORTHY Dopamine by bright light conditions allows retinal neurons to reduce sensitivity to adapt to bright light conditions. It is not clear how and why dopamine receptors modulate retinal ganglion cell signaling. We found that both D1 and D4 dopamine receptors in photoreceptors and inner retinal neurons contribute significantly to the reduction in sensitivity of ganglion cells with light adaptation. However, light adaptation also requires dopamine-independent mechanisms that could reflect inherent sensitivity changes in photoreceptors.
Collapse
Affiliation(s)
- Michael D Flood
- Department of Physiology, University of Arizona, Tucson, Arizona
- Department Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, Arizona
- Department Biomedical Engineering, University of Arizona, Tucson, Arizona
| |
Collapse
|
5
|
Combe CL, Gasparini S. I h from synapses to networks: HCN channel functions and modulation in neurons. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:119-132. [PMID: 34181891 DOI: 10.1016/j.pbiomolbio.2021.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide gated (HCN) channels and the current they carry, Ih, are widely and diversely distributed in the central nervous system (CNS). The distribution of the four subunits of HCN channels is variable within the CNS, within brain regions, and often within subcellular compartments. The precise function of Ih can depend heavily on what other channels are co-expressed. In this review, we give an overview of HCN channel structure, distribution, and modulation by cyclic adenosine monophosphate (cAMP). We then discuss HCN channel and Ih functions, where we have parsed the roles into two main effects: a steady effect on maintaining the resting membrane potential at relatively depolarized values, and slow channel dynamics. Within this framework, we discuss Ih involvement in resonance, synaptic integration, transmitter release, plasticity, and point out a special case, where the effects of Ih on the membrane potential and its slow channel dynamics have dual roles in thalamic neurons.
Collapse
Affiliation(s)
- Crescent L Combe
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Sonia Gasparini
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
6
|
Orexin-A differentially modulates inhibitory and excitatory synaptic transmission in rat inner retina. Neuropharmacology 2021; 187:108492. [PMID: 33582153 DOI: 10.1016/j.neuropharm.2021.108492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022]
Abstract
In this work, modulation by orexin-A of the release of glutamate and GABA from bipolar and amacrine cells respectively was studied by examining the effects of the neuropeptide on miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) of rat retinal ganglion cells (GCs). Using RNAscope in situ hybridization in combination with immunohistochemistry, we showed positive signals for orexin receptor-1 (OX1R) mRNA in the bipolar cell terminals and those for orexin receptor-2 (OX2R) mRNA in the amacrine cell terminals. With whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that application of orexin-A reduced the interevent interval of mEPSCs of GCs through OX1R. However, it increased the interevent interval of mIPSCs, mediated by GABAA receptors, through OX2R. Furthermore, orexin-A-induced reduction of mEPSC interevent interval was abolished by the application of PI-PLC inhibitors or PKC inhibitors. In contrast, orexin-A-induced increase of GABAergic mIPSC interevent interval was mimicked by 8-Br-cAMP or an adenylyl cyclase activator, but was eliminated by PKA antagonists. Finally, application of nimodipine, an L-type Ca2+ channel blocker, increased both mEPSC and mIPSC interevent interval, and co-application of orexin-A no longer changed the mEPSCs and mIPSCs. We conclude that orexin-A increases presynaptic glutamate release onto GCs by activating L-type Ca2+ channels in bipolar cells, a process that is mediated by an OX1R/PI-PLC/PKC signaling pathway. However, orexin-A decreases presynaptic GABA release onto GCs by inhibiting L-type Ca2+ channels in amacrine cells, a process that is mediated by an OX2R/cAMP-PKA signaling pathway.
Collapse
|
7
|
Flood MD, Wellington AJ, Cruz LA, Eggers ED. Early diabetes impairs ON sustained ganglion cell light responses and adaptation without cell death or dopamine insensitivity. Exp Eye Res 2020; 200:108223. [PMID: 32910942 DOI: 10.1016/j.exer.2020.108223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Retinal signaling under dark-adapted conditions is perturbed during early diabetes. Additionally, dopamine, the main neuromodulator of retinal light adaptation, is diminished in diabetic retinas. However, it is not known if this dopamine deficiency changes how the retina responds to increased light or dopamine. Here we determine whether light adaptation is impaired in the diabetic retina, and investigate potential mechanism(s) of impairment. Diabetes was induced in C57BL/6J male mice via 3 intraperitoneal injections of streptozotocin (75 mg/kg) and confirmed by blood glucose levels more than 200 mg/dL. After 6 weeks, whole-cell recordings of light-evoked and spontaneous inhibitory postsynaptic currents (IPSCs) or excitatory postsynaptic currents (EPSCs) were made from rod bipolar cells and ON sustained ganglion cells, respectively. Light responses were recorded before and after D1 receptor (D1R) activation (SKF-38393, 20 μM) or light adaptation (background of 950 photons·μm-2 ·s-1). Retinal whole mounts were stained for either tyrosine hydroxylase and activated caspase-3 or GAD65/67, GlyT1 and RBPMS and imaged. D1R activation and light adaptation both decreased inhibition, but the disinhibition was not different between control and diabetic rod bipolar cells. However, diabetic ganglion cell light-evoked EPSCs were increased in the dark and showed reduced light adaptation. No differences were found in light adaptation of spontaneous EPSC parameters, suggesting upstream changes. No changes in cell density were found for dopaminergic, glycinergic or GABAergic amacrine cells, or ganglion cells. Thus, in early diabetes, ON sustained ganglion cells receive excessive excitation under dark- and light-adapted conditions. Our results show that this is not attributable to loss in number or dopamine sensitivity of inhibitory amacrine cells or loss of dopaminergic amacrine cells.
Collapse
Affiliation(s)
- Michael D Flood
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| | - Andrea J Wellington
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| | - Luis A Cruz
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| | - Erika D Eggers
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
8
|
Korshunov KS, Blakemore LJ, Trombley PQ. Illuminating and Sniffing Out the Neuromodulatory Roles of Dopamine in the Retina and Olfactory Bulb. Front Cell Neurosci 2020; 14:275. [PMID: 33110404 PMCID: PMC7488387 DOI: 10.3389/fncel.2020.00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023] Open
Abstract
In the central nervous system, dopamine is well-known as the neuromodulator that is involved with regulating reward, addiction, motivation, and fine motor control. Yet, decades of findings are revealing another crucial function of dopamine: modulating sensory systems. Dopamine is endogenous to subsets of neurons in the retina and olfactory bulb (OB), where it sharpens sensory processing of visual and olfactory information. For example, dopamine modulation allows the neural circuity in the retina to transition from processing dim light to daylight and the neural circuity in the OB to regulate odor discrimination and detection. Dopamine accomplishes these tasks through numerous, complex mechanisms in both neural structures. In this review, we provide an overview of the established and emerging research on these mechanisms and describe similarities and differences in dopamine expression and modulation of synaptic transmission in the retinas and OBs of various vertebrate organisms. This includes discussion of dopamine neurons’ morphologies, potential identities, and biophysical properties along with their contributions to circadian rhythms and stimulus-driven synthesis, activation, and release of dopamine. As dysregulation of some of these mechanisms may occur in patients with Parkinson’s disease, these symptoms are also discussed. The exploration and comparison of these two separate dopamine populations shows just how remarkably similar the retina and OB are, even though they are functionally distinct. It also shows that the modulatory properties of dopamine neurons are just as important to vision and olfaction as they are to motor coordination and neuropsychiatric/neurodegenerative conditions, thus, we hope this review encourages further research to elucidate these mechanisms.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Laura J Blakemore
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
9
|
Popova E, Kupenova P. Effects of HCN channel blockade on the intensity-response function of electroretinographic ON and OFF responses in dark adapted frogs. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Yin N, Yang YL, Cheng S, Wang HN, Hu X, Miao Y, Li F, Wang Z. Dopamine D2 Receptor-Mediated Modulation of Rat Retinal Ganglion Cell Excitability. Neurosci Bull 2019; 36:230-242. [PMID: 31606861 DOI: 10.1007/s12264-019-00431-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/09/2019] [Indexed: 12/19/2022] Open
Abstract
Ganglion cells (RGCs) are the sole output neurons of the retinal circuity. Here, we investigated whether and how dopamine D2 receptors modulate the excitability of dissociated rat RGCs. Application of the selective D2 receptor agonist quinpirole inhibited outward K+ currents, which were mainly mediated by glybenclamide- and 4-aminopyridine-sensitive channels, but not the tetraethylammonium-sensitive channel. In addition, quinpirole selectively enhanced Nav1.6 voltage-gated Na+ currents. The intracellular cAMP/protein kinase A, Ca2+/calmodulin-dependent protein kinase II, and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathways were responsible for the effects of quinpirole on K+ and Na+ currents, while phospholipase C/protein kinase C signaling was not involved. Under current-clamp conditions, the number of action potentials evoked by positive current injection was increased by quinpirole. Our results suggest that D2 receptor activation increases RGC excitability by suppressing outward K+ currents and enhancing Nav1.6 currents, which may affect retinal visual information processing.
Collapse
Affiliation(s)
- Ning Yin
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu-Long Yang
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong-Ning Wang
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Hu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fang Li
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
12
|
Roy S, Field GD. Dopaminergic modulation of retinal processing from starlight to sunlight. J Pharmacol Sci 2019; 140:86-93. [PMID: 31109761 DOI: 10.1016/j.jphs.2019.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Neuromodulators such as dopamine, enable context-dependent plasticity of neural circuit function throughout the central nervous system. For example, in the retina, dopamine tunes visual processing for daylight and nightlight conditions. Specifically, high levels of dopamine release in the retina tune vision for daylight (photopic) conditions, while low levels tune it for nightlight (scotopic) conditions. This review covers the cellular and circuit-level mechanisms within the retina that are altered by dopamine. These mechanisms include changes in gap junction coupling and ionic conductances, both of which are altered by the activation of diverse types of dopamine receptors across diverse types of retinal neurons. We contextualize the modulatory actions of dopamine in terms of alterations and optimizations to visual processing under photopic and scotopic conditions, with particular attention to how they differentially impact distinct cell types. Finally, we discuss how transgenic mice and disease models have shaped our understanding of dopaminergic signaling and its role in visual processing. Cumulatively, this review illustrates some of the diverse and potent mechanisms through which neuromodulation can shape brain function.
Collapse
Affiliation(s)
- Suva Roy
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Jiang Z, Yue WWS, Chen L, Sheng Y, Yau KW. Cyclic-Nucleotide- and HCN-Channel-Mediated Phototransduction in Intrinsically Photosensitive Retinal Ganglion Cells. Cell 2018; 175:652-664.e12. [PMID: 30270038 PMCID: PMC6203304 DOI: 10.1016/j.cell.2018.08.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/19/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
Non-image-forming vision in mammals is mediated primarily by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, by far the best-studied subtype, melanopsin activates PLCβ4 (phospholipase C-β4) to open TRPC6,7 channels, mechanistically similar to phototransduction in fly rhabdomeric (microvillous) photoreceptors. We report here that, surprisingly, mouse M4-ipRGCs rely on a different and hitherto undescribed melanopsin-driven, ciliary phototransduction mechanism involving cyclic nucleotide as the second messenger and HCN channels rather than CNG channels as the ion channel for phototransduction. Even more surprisingly, within an individual mouse M2-ipRGC, this HCN-channel-dependent, ciliary phototransduction pathway operates in parallel with the TRPC6,7-dependent rhabdomeric pathway. These findings reveal a complex heterogeneity in phototransduction among ipRGCs and, more importantly, break a general dogma about segregation of the two phototransduction motifs, likely with strong evolutionary implications.
Collapse
Affiliation(s)
- Zheng Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Wendy W S Yue
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lujing Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neuroscience Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yanghui Sheng
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neuroscience Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Cui P, Li XY, Zhao Y, Li Q, Gao F, Li LZ, Yin N, Sun XH, Wang Z. Activation of dopamine D1 receptors enhances the temporal summation and excitability of rat retinal ganglion cells. Neuroscience 2017; 355:71-83. [DOI: 10.1016/j.neuroscience.2017.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/24/2017] [Accepted: 04/30/2017] [Indexed: 01/11/2023]
|
15
|
Activation of the sigma receptor 1 modulates AMPA receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells. Neuroscience 2016; 332:53-60. [PMID: 27373906 DOI: 10.1016/j.neuroscience.2016.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022]
Abstract
Sigma receptor (σR), a unique receptor family, is classified into three subtypes: σR1, σR2 and σR3. It was previously shown that σR1 activation induced by 1μM SKF10047 (SKF) suppressed N-methyl-d-aspartate (NMDA) receptor-mediated responses of rat retinal ganglion cells (GCs) and the suppression was mediated by a distinct Ca(2+)-dependent phospholipase C (PLC)-protein kinase C (PKC) pathway. In the present work, using whole-cell patch-clamp techniques in rat retinal slice preparations, we further demonstrate that SKF of higher dosage (50μM) significantly suppressed AMPA receptor (AMPAR)-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) of retinal ON-type GCs (ON GCs), and the effect was reversed by the σR1 antagonist BD1047, suggesting the involvement of σR1. The SKF (50μM) effect was unlikely due to a change in glutamate release from bipolar cells, as suggested by the unaltered paired-pulse ratio (PPR) of AMPAR-mediated EPSCs of ON GCs. SKF (50μM) did not change L-EPSCs of ON GCs when the G protein inhibitor GDP-β-S or the protein kinase G (PKG) inhibitor KT5823 was intracellularly infused. Calcium imaging further revealed that SKF (50μM) did not change intracellular calcium concentration in GCs and persisted to suppress L-EPSCs when intracellular calcium was chelated by BAPTA. The SKF (50μM) effect was intact when protein kinase A (PKA) and phosphatidylinostiol (PI)-PLC signaling pathways were both blocked. We conclude that the SKF (50μM) effect is Ca(2+)-independent, PKG-dependent, but not involving PKA, PI-PLC pathways.
Collapse
|
16
|
Zhang PP, Zhang G, Zhou W, Weng SJ, Yang XL, Zhong YM. Signaling mechanism for modulation by ATP of glycine receptors on rat retinal ganglion cells. Sci Rep 2016; 6:28938. [PMID: 27357477 PMCID: PMC4928062 DOI: 10.1038/srep28938] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022] Open
Abstract
ATP modulates voltage- and ligand-gated channels in the CNS via the activation of ionotropic P2X and metabotropic P2Y receptors. While P2Y receptors are expressed in retinal neurons, the function of these receptors in the retina is largely unknown. Using whole-cell patch-clamp techniques in rat retinal slice preparations, we demonstrated that ATP suppressed glycine receptor-mediated currents of OFF type ganglion cells (OFF-GCs) dose-dependently, and the effect was in part mediated by P2Y1 and P2Y11, but not by P2X. The ATP effect was abolished by intracellular dialysis of a Gq/11 protein inhibitor and phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor, but not phosphatidylcholine (PC)-PLC inhibitor. The ATP effect was accompanied by an increase in [Ca(2+)]i through the IP3-sensitive pathway and was blocked by intracellular Ca(2+)-free solution. Furthermore, the ATP effect was eliminated in the presence of PKC inhibitors. Neither PKA nor PKG system was involved. These results suggest that the ATP-induced suppression may be mediated by a distinct Gq/11/PI-PLC/IP3/Ca(2+)/PKC signaling pathway, following the activation of P2Y1,11 and other P2Y subtypes. Consistently, ATP suppressed glycine receptor-mediated light-evoked inhibitory postsynaptic currents of OFF-GCs. These results suggest that ATP may modify the ON-to-OFF crossover inhibition, thus changing action potential patterns of OFF-GCs.
Collapse
Affiliation(s)
- Ping-Ping Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Gong Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Wei Zhou
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Shi-Jun Weng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiong-Li Yang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yong-Mei Zhong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
17
|
Li Q, Cui P, Miao Y, Gao F, Li XY, Qian WJ, Jiang SX, Wu N, Sun XH, Wang Z. Activation of group I metabotropic glutamate receptors regulates the excitability of rat retinal ganglion cells by suppressing Kir and I h. Brain Struct Funct 2016; 222:813-830. [PMID: 27306787 DOI: 10.1007/s00429-016-1248-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/05/2016] [Indexed: 10/21/2022]
Abstract
Group I metabotropic glutamate receptor (mGluR I) activation exerts a slow postsynaptic excitatory effect in the CNS. Here, the issues of whether and how this receptor is involved in regulating retinal ganglion cell (RGC) excitability were investigated in retinal slices using patch-clamp techniques. Under physiological conditions, RGCs displayed spontaneous firing. Extracellular application of LY367385 (10 µM)/MPEP (10 µM), selective mGluR1 and mGluR5 antagonists, respectively, significantly reduced the firing frequency, suggesting that glutamate endogenously released from bipolar cells constantly modulates RGC firing. DHPG (10 µM), an mGluR I agonist, significantly increased the firing and caused depolarization of the cells, which were reversed by LY367385, but not by MPEP, suggesting the involvement of the mGluR1 subtype. Intracellular Ca2+-dependent PI-PLC/PKC and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways mediated the DHPG-induced effects. In the presence of cocktail synaptic blockers (CNQX, D-AP5, bicuculline, and strychnine), which terminated the spontaneous firing in both ON and OFF RGCs, DHPG still induced depolarization and triggered the cells to fire. The DHPG-induced depolarization could not be blocked by TTX. In contrast, Ba2+, an inwardly rectifying potassium channel (Kir) blocker, and Cs+ and ZD7288, hyperpolarization-activated cation channel (I h) blockers, mimicked the effect of DHPG. Furthermore, in the presence of Ba2+/ZD7288, DHPG did not show further effects. Moreover, Kir and I h currents could be recorded in RGCs, and extracellular application of DHPG indeed suppressed these currents. Our results suggest that activation of mGluR I regulates the excitability of rat RGCs by inhibiting Kir and I h.
Collapse
Affiliation(s)
- Qian Li
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peng Cui
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feng Gao
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Yan Li
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Jing Qian
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shu-Xia Jiang
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Na Wu
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China. .,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Zhongfeng Wang
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China. .,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,Institute of Neurobiology, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Yang C, Yan Z, Zhao B, Wang J, Gao G, Zhu J, Wang W. D2 dopamine receptors modulate neuronal resonance in subthalamic nucleus and cortical high-voltage spindles through HCN channels. Neuropharmacology 2016; 105:258-269. [DOI: 10.1016/j.neuropharm.2016.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/30/2015] [Accepted: 01/20/2016] [Indexed: 01/17/2023]
|
19
|
Parallel Inhibition of Dopamine Amacrine Cells and Intrinsically Photosensitive Retinal Ganglion Cells in a Non-Image-Forming Visual Circuit of the Mouse Retina. J Neurosci 2016; 35:15955-70. [PMID: 26631476 DOI: 10.1523/jneurosci.3382-15.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An inner retinal microcircuit composed of dopamine (DA)-containing amacrine cells and melanopsin-containing, intrinsically photosensitive retinal ganglion cells (M1 ipRGCs) process information about the duration and intensity of light exposures, mediating light adaptation, circadian entrainment, pupillary reflexes, and other aspects of non-image-forming vision. The neural interaction is reciprocal: M1 ipRGCs excite DA amacrine cells, and these, in turn, feed inhibition back onto M1 ipRGCs. We found that the neuropeptide somatostatin [somatotropin release inhibiting factor (SRIF)] also inhibits the intrinsic light response of M1 ipRGCs and postulated that, to tune the bidirectional interaction of M1 ipRGCs and DA amacrine cells, SRIF amacrine cells would provide inhibitory modulation to both cell types. SRIF amacrine cells, DA amacrine cells, and M1 ipRGCs form numerous contacts. DA amacrine cells and M1 ipRGCs express the SRIF receptor subtypes sst(2A) and sst4 respectively. SRIF modulation of the microcircuit was investigated with targeted patch-clamp recordings of DA amacrine cells in TH-RFP mice and M1 ipRGCs in OPN4-EGFP mice. SRIF increases K(+) currents, decreases Ca(2+) currents, and inhibits spike activity in both cell types, actions reproduced by the selective sst(2A) agonist L-054,264 (N-[(1R)-2-[[[(1S*,3R*)-3-(aminomethyl)cyclohexyl]methyl]amino]-1-(1H-indol-3-ylmethyl)-2-oxoethyl]spiro[1H-indene-1,4'-piperidine]-1'-carboxamide) in DA amacrine cells and the selective sst4 agonist L-803,087 (N(2)-[4-(5,7-difluoro-2-phenyl-1H-indol-3-yl)-1-oxobutyl]-L-arginine methyl ester trifluoroacetate) in M1 ipRGCs. These parallel actions of SRIF may serve to counteract the disinhibition of M1 ipRGCs caused by SRIF inhibition of DA amacrine cells. This allows the actions of SRIF on DA amacrine cells to proceed with adjusting retinal DA levels without destabilizing light responses by M1 ipRGCs, which project to non-image-forming targets in the brain.
Collapse
|
20
|
Li Q, Wu N, Cui P, Gao F, Qian WJ, Miao Y, Sun XH, Wang Z. Suppression of outward K(+) currents by activating dopamine D1 receptors in rat retinal ganglion cells through PKA and CaMKII signaling pathways. Brain Res 2016; 1635:95-104. [PMID: 26826585 DOI: 10.1016/j.brainres.2016.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/17/2016] [Accepted: 01/21/2016] [Indexed: 01/11/2023]
Abstract
Dopamine plays an important role in regulating neuronal functions in the central nervous system by activating the specific G-protein coupled receptors. Both D1 and D2 dopamine receptors are extensively distributed in the retinal neurons. In the present study, we investigated the effects of D1 receptor signaling on outward K(+) currents in acutely isolated rat retinal ganglion cells (RGCs) by patch-clamp techniques. Extracellular application of SKF81297 (10 μM), a specific D1 receptor agonist, significantly and reversibly suppressed outward K(+) currents of the cells, which was reversed by SCH23390 (10 μM), a selective D1 receptor antagonist. We further showed that SKF81297 mainly suppressed the glybenclamide (Gb)- and 4-aminopyridine (4-AP)-sensitive K(+) current components, but did not show effect on the tetraethylammonium (TEA)-sensitive one. Both protein kinase A (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways were likely involved in the SKF81297-induced suppression of the K(+) currents since either Rp-cAMP (10 μM), a cAMP/PKA signaling inhibitor, or KN-93 (10 μM), a specific CaMKII inhibitor, eliminated the SKF81297 effect. In contrast, neither protein kinase C (PKC) nor mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway seemed likely to be involved because both the PKC inhibitor bisindolylmaleimide IV (Bis IV) (10 μM) and the MAPK/ERK1/2 inhibitor U0126 (10 μM) did not block the SKF81297-induced suppression of the K(+) currents. These results suggest that activation of D1 receptors suppresses the Gb- and 4-AP-sensitive K(+) current components in rat RGCs through the intracellular PKA and CaMKII signaling pathways, thus modulating the RGC excitability.
Collapse
Affiliation(s)
- Qian Li
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Na Wu
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Peng Cui
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Feng Gao
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Wen-Jing Qian
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Yanying Miao
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Xing-Huai Sun
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhongfeng Wang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
21
|
Liu F, Weng SJ, Yang XL, Zhong YM. Orexin-A potentiates L-type calcium/barium currents in rat retinal ganglion cells. Neuroscience 2015; 305:225-37. [PMID: 26259903 DOI: 10.1016/j.neuroscience.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 01/07/2023]
Abstract
Two neuropeptides, orexin-A and orexin-B (also called hypocretin-1 and -2), have been implicated in sleep/wake regulation, feeding behaviors via the activation of two subtypes of G-protein-coupled receptors: orexin 1 and orexin 2 receptors (OX1R and OX2R). While the expression of orexins and orexin receptors is immunohistochemically revealed in retinal neurons, the function of these peptides in the retina is largely unknown. Using whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that orexin-A increased L-type-like barium currents (IBa,L) in ganglion cells (GCs), and the effect was blocked by the selective OX1R antagonist SB334867, but not by the OX2R antagonist TCS OX2 29. The orexin-A effect was abolished by intracellular dialysis of GDP-β-S/GPAnt-2A, a Gq protein inhibitor, suggesting the mediation of Gq. Additionally, during internal dialysis of the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor U73122, orexin-A did not change the IBa,L of GCs, whereas the orexin-A effect persisted in the presence of the phosphatidylcholine (PC)-PLC inhibitor D609. The orexin-A-induced potentiation was not seen with internal infusion of Ca(2+)-free solution or when inositol 1,4,5-trisphosphate (IP3)-sensitive Ca(2+) release from intracellular stores was blocked by heparin/xestospongins-C. Moreover, the orexin-A effect was mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, but was eliminated when PKC was inhibited by bisindolylmaleimide IV (Bis-IV)/Gö6976. Neither adenosine 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) nor guanosine 3',5'-cyclic monophosphate (cGMP)-protein kinase G (PKG) signaling pathway was likely involved, as orexin-A persisted to potentiate the IBa,L of GCs no matter these two pathways were activated or inhibited. These results suggest that, by activating OX1R, orexin-A potentiates the IBa,L of rat GCs through a distinct Gq/PI-PLC/IP3/Ca(2+)/PKC signaling pathway.
Collapse
Affiliation(s)
- F Liu
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - S-J Weng
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - X-L Yang
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Y-M Zhong
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
22
|
Zheng C, Deng QQ, Liu LL, Wang MY, Zhang G, Sheng WL, Weng SJ, Yang XL, Zhong YM. Orexin-A differentially modulates AMPA-preferring responses of ganglion cells and amacrine cells in rat retina. Neuropharmacology 2015; 93:80-93. [PMID: 25656479 DOI: 10.1016/j.neuropharm.2015.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 01/18/2023]
Abstract
By activating their receptors (OX1R and OX2R) orexin-A/B regulate wake/sleeping states, feeding behaviors, but the function of these peptides in the retina remains unknown. Using patch-clamp recordings and calcium imaging in rat isolated retinal cells, we demonstrated that orexin-A suppressed α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)-preferring receptor-mediated currents (AMPA-preferring currents) in ganglion cells (GCs) through OX1R, but potentiated those in amacrine cells (ACs) through OX2R. Consistently, in rat retinal slices orexin-A suppressed light-evoked AMPA-preferring receptor-mediated excitatory postsynaptic currents in GCs, but potentiated those in ACs. Intracellular dialysis of GDP-β-S or preincubation with the Gi/o inhibitor pertussis toxin (PTX) abolished both the effects. Either cAMP/the protein kinase A (PKA) inhibitor Rp-cAMP or cGMP/the PKG blocker KT5823 failed to alter the orexin-A effects. Whilst both of them involved activation of protein kinase C (PKC), the effects on GCs and ACs were respectively eliminated by the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor and phosphatidylcholine (PC)-PLC inhibitor. Moreover, in GCs orexin-A increased [Ca(2+)]i and the orexin-A effect was blocked by intracellular Ca(2+)-free solution and by inositol 1,4,5-trisphosphate (IP3) receptor antagonists. In contrast, orexin-A did not change [Ca(2+)]i in ACs and the orexin-A effect remained in intracellular or extracellular Ca(2+)-free solution. We conclude that a distinct Gi/o/PI-PLC/IP3/Ca(2+)-dependent PKC signaling pathway, following the activation of OX1R, is likely responsible for the orexin-A effect on GCs, whereas a Gi/o/PC-PLC/Ca(2+)-independent PKC signaling pathway, following the activation of OX2R, mediates the orexin-A effect on ACs. These two actions of orexin-A, while working in concert, provide a characteristic way for modulating information processing in the inner retina.
Collapse
Affiliation(s)
- Chao Zheng
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China; Cell Electrophysiology Laboratory, Wannan Medical College, 22 West Wenchang Road, Wuhu, Anhui 241002, China
| | - Qin-Qin Deng
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Lei-Lei Liu
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Meng-Ya Wang
- Cell Electrophysiology Laboratory, Wannan Medical College, 22 West Wenchang Road, Wuhu, Anhui 241002, China
| | - Gong Zhang
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Wen-Long Sheng
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Shi-Jun Weng
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiong-Li Yang
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| | - Yong-Mei Zhong
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
23
|
Sodhi P, Hartwick ATE. Adenosine modulates light responses of rat retinal ganglion cell photoreceptors througha cAMP-mediated pathway. J Physiol 2014; 592:4201-20. [PMID: 25038240 DOI: 10.1113/jphysiol.2014.276220] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adenosine is an established neuromodulator in the mammalian retina, with A1 adenosine receptors being especially prevalent in the innermost ganglion cell layer. Activation of A1 receptors causes inhibition of adenylate cyclase, decreases in intracellular cyclic AMP (cAMP) levels and inhibition of protein kinase A (PKA). In this work, our aim was to characterize the effects of adenosine on the light responses of intrinsically photosensitive retinal ganglion cells (ipRGCs) and to determine whether these photoreceptors are subject to neuromodulation through intracellular cAMP-related signalling pathways. Using multielectrode array recordings from postnatal and adult rat retinas, we demonstrated that adenosine significantly shortened the duration of ipRGC photoresponses and reduced the number of light-evoked spikes fired by these neurons. The effects were A1 adenosine receptor-mediated, and the expression of this receptor on melanopsin-containing ipRGCs was confirmed by calcium imaging experiments on isolated cells in purified cultures. While inhibition of the cAMP/PKA pathway by adenosine shortened ipRGC light responses, stimulation of this pathway with compounds such as forskolin had the opposite effect and lengthened the duration of ipRGC spiking. Our findings reveal that the modification of ipRGC photoresponses through a cAMP/PKA pathway is a general feature of rat ganglion cell photoreceptors, and this pathway can be inhibited through activation of A1 receptors by adenosine. As adenosine levels in the retina rise at night, adenosinergic modulation of ipRGCs may serve as an internal regulatory mechanism to limit transmission of nocturnal photic signals by ipRGCs to the brain. Targeting retinal A1 adenosine receptors for ipRGC inhibition represents a potential therapeutic target for sleep disorders and migraine-associated photophobia.
Collapse
Affiliation(s)
- Puneet Sodhi
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
| | | |
Collapse
|
24
|
Ramirez JM, Doi A, Garcia AJ, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2013; 2:2683-731. [PMID: 23720262 DOI: 10.1002/cphy.c110033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of "inspiring behaviors" such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general.
Collapse
Affiliation(s)
- J M Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institut, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Maturana MI, Kameneva T, Burkitt AN, Meffin H, Grayden DB. The effect of morphology upon electrophysiological responses of retinal ganglion cells: simulation results. J Comput Neurosci 2013; 36:157-75. [PMID: 23835760 PMCID: PMC3950609 DOI: 10.1007/s10827-013-0463-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 04/15/2013] [Accepted: 05/14/2013] [Indexed: 11/30/2022]
Abstract
Retinal ganglion cells (RGCs) display differences in their morphology and intrinsic electrophysiology. The goal of this study is to characterize the ionic currents that explain the behavior of ON and OFF RGCs and to explore if all morphological types of RGCs exhibit the phenomena described in electrophysiological data. We extend our previous single compartment cell models of ON and OFF RGCs to more biophysically realistic multicompartment cell models and investigate the effect of cell morphology on intrinsic electrophysiological properties. The membrane dynamics are described using the Hodgkin - Huxley type formalism. A subset of published patch-clamp data from isolated intact mouse retina is used to constrain the model and another subset is used to validate the model. Two hundred morphologically distinct ON and OFF RGCs are simulated with various densities of ionic currents in different morphological neuron compartments. Our model predicts that the differences between ON and OFF cells are explained by the presence of the low voltage activated calcium current in OFF cells and absence of such in ON cells. Our study shows through simulation that particular morphological types of RGCs are capable of exhibiting the full range of phenomena described in recent experiments. Comparisons of outputs from different cells indicate that the RGC morphologies that best describe recent experimental results are ones that have a larger ratio of soma to total surface area.
Collapse
Affiliation(s)
- Matias I Maturana
- Centre for Neural Engineering, University of Melbourne, 203 Bouverie St, Carlton, Vic, 3053, Australia
| | | | | | | | | |
Collapse
|
26
|
Ogata G, Stradleigh TW, Partida GJ, Ishida AT. Dopamine and full-field illumination activate D1 and D2-D5-type receptors in adult rat retinal ganglion cells. J Comp Neurol 2013; 520:4032-49. [PMID: 22678972 DOI: 10.1002/cne.23159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dopamine can regulate signal generation and transmission by activating multiple receptors and signaling cascades, especially in striatum, hippocampus, and cerebral cortex. Dopamine modulates an even larger variety of cellular properties in retina, yet has been reported to do so by only D1 receptor-driven cyclic adenosine monophosphate (cAMP) increases or D2 receptor-driven cAMP decreases. Here, we test the possibility that dopamine operates differently on retinal ganglion cells, because the ganglion cell layer binds D1 and D2 receptor ligands, and displays changes in signaling components other than cAMP under illumination that should release dopamine. In adult rat retinal ganglion cells, based on patch-clamp recordings, Ca(2+) imaging, and immunohistochemistry, we find that 1) spike firing is inhibited by dopamine and SKF 83959 (an agonist that does not activate homomeric D1 receptors or alter cAMP levels in other systems); 2) D1 and D2 receptor antagonists (SCH 23390, eticlopride, raclopride) counteract these effects; 3) these antagonists also block light-induced rises in cAMP, light-induced activation of Ca(2+) /calmodulin-dependent protein kinase II, and dopamine-induced Ca(2+) influx; and 4) the Ca(2+) rise is markedly reduced by removing extracellular Ca(2+) and by an IP3 receptor antagonist (2-APB). These results provide the first evidence that dopamine activates a receptor in adult mammalian retinal neurons that is distinct from classical D1 and D2 receptors, and that dopamine can activate mechanisms in addition to cAMP and cAMP-dependent protein kinase to modulate retinal ganglion cell excitability.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
27
|
Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells. J Neurosci 2013; 33:2916-26. [PMID: 23407950 DOI: 10.1523/jneurosci.3607-12.2013] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Evidence for coexpression of two or more classic neurotransmitters in neurons has increased, but less is known about cotransmission. Ventral tegmental area (VTA) neurons corelease dopamine (DA), the excitatory transmitter glutamate, and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and coexpress markers for DA and GABA. Using an optogenetic approach, we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABA(A) receptor-mediated monosynaptic inhibitory response, followed by DA-D(1)-like receptor-mediated excitatory response in ETCs. The GABA(A) receptor-mediated hyperpolarization activates I(h) current in ETCs; synaptically released DA increases I(h), which enhances postinhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by I(h) to generate an inhibition-to-excitation "switch" in ETCs. Consistent with the established role of I(h) in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA cotransmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array.
Collapse
|
28
|
Huang H, Wang Z, Weng SJ, Sun XH, Yang XL. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res 2013; 32:64-87. [PMID: 22986412 DOI: 10.1016/j.preteyeres.2012.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Hai Huang
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
29
|
Yang J, Pahng J, Wang GY. Dopamine modulates the off pathway in light-adapted mouse retina. J Neurosci Res 2012; 91:138-50. [PMID: 23023788 DOI: 10.1002/jnr.23137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/24/2012] [Accepted: 08/02/2012] [Indexed: 11/10/2022]
Abstract
DL-2-Amino-4-phosphonobutyric acid (APB) is often used as a tool to block On pathways in studies of interactions between On and Off pathways in retinas. APB is an agonist of mGluR6 receptors and hyperpolarizes the On cone bipolar cells and rod bipolar cells. How APB affects Off responses of retinal ganglion cells (RGCs) in mouse retinas under dark and light adaptation is not clear. The light-evoked excitatory postsynaptic currents (light-evoked EPSCs) from Off and On-Off RGCs cells were recorded using whole-cell patch-clamp recording to assess how APB affects Off responses (light-evoked Off EPSCs) of RGCs in dark- and light-adapted mouse retinas. We found that APB differentially affected Off responses of RGCs in dark- and light-adapted mouse retinas. Under dark adaptation, while the APB-sensitive Off responses were blocked, APB increased the remaining Off responses (mainly from the secondary rod Off pathways) via removal of inhibition from On pathways to Off pathways. Under light adaptation, APB decreased Off responses. Glycinergic and GABAergic antagonists did not prevent the APB-induced reduction of Off responses of RGCs; however, a dopaminergic type 1 receptor (D(1)) blocker (SCH 23390) and a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker (ZD 7288) prevented the APB-induced reduction of Off responses of RGCs under light adaptation. The results indicated afunctional circuit: On cone bipolar cells to Off cone bipolar cells via D(1) receptors and HCN channels.
Collapse
Affiliation(s)
- Jinnan Yang
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
30
|
Sharopov S, Moser J, Chen R, Kolbaev SN, Bernedo VE, Werhahn KJ, Luhmann HJ, Kilb W. Dopaminergic modulation of low-Mg2+-induced epileptiform activity in the intact hippocampus of the newborn mouse in vitro. J Neurosci Res 2012; 90:2020-33. [DOI: 10.1002/jnr.23084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 11/12/2022]
|
31
|
Van Hook MJ, Wong KY, Berson DM. Dopaminergic modulation of ganglion-cell photoreceptors in rat. Eur J Neurosci 2012; 35:507-18. [PMID: 22304466 DOI: 10.1111/j.1460-9568.2011.07975.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel class of photoreceptors, the intrinsically photosensitive retinal ganglion cells (ipRGCs), express the photopigment melanopsin and drive non-image-forming responses to light such as circadian photoentrainment, the pupillary light reflex and suppression of nocturnal melatonin production in the pineal. Because dendrites from one subclass of these cells - the M1-type ipRGCs - make presumptive synaptic contacts at sites of dopamine release from dopaminergic amacrine cells, they are prime targets for modulation by dopamine, a neuromodulator implicated in retinal circadian rhythms and light adaptation. In patch-clamp recordings from ipRGCs in intact rat retinas, dopamine attenuated the melanopsin-based photocurrent. We confirmed that this was the result of direct action on ipRGCs by replicating the effect in dissociated ipRGCs that were isolated from influences of other retinal neurons. In these recordings, the D1-family dopamine receptor agonist SKF38393 attenuated the photocurrent, caused a modest depolarization, and reduced the input resistance of ipRGCs. The D2-family agonist quinpirole had no effect on the photocurrent. Single-cell reverse-transcriptase polymerase chain reaction revealed that the majority of ipRGCs tested expressed drd1a, the gene coding for the D1a dopamine receptor. This finding was supported by immunohistochemical localization of D1a receptor protein in melanopsin-expressing ganglion cells. Finally, the adenylate cyclase activator forskolin, applied in combination with the phosphodiesterase inhibitor IBMX (isobutylmethylxanthine), mimicked the effects of SKF38393 on the ipRGC photocurrent, membrane potential and input resistance, consistent with a D1-receptor signaling pathway. These data suggest that dopamine, acting via D1-family receptors, alters the responses of ipRGCs and thus of non-image-forming vision.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Department of Neuroscience, Brown University, Box G-LN, Providence, RI, USA
| | | | | |
Collapse
|
32
|
Stradleigh TW, Ogata G, Partida GJ, Oi H, Greenberg KP, Krempely KS, Ishida AT. Colocalization of hyperpolarization-activated, cyclic nucleotide-gated channel subunits in rat retinal ganglion cells. J Comp Neurol 2011; 519:2546-73. [PMID: 21456027 PMCID: PMC3287082 DOI: 10.1002/cne.22638] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current-passing pore of mammalian hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels is formed by subunit isoforms denoted HCN1-4. In various brain areas, antibodies directed against multiple isoforms bind to single neurons, and the current (I(h)) passed during hyperpolarizations differs from that of heterologously expressed homomeric channels. By contrast, retinal rod, cone, and bipolar cells appear to use homomeric HCN channels. Here, we assess the generality of this pattern by examining HCN1 and HCN4 immunoreactivity in rat retinal ganglion cells, measuring I(h) in dissociated cells, and testing whether HCN1 and HCN4 proteins coimmunoprecipitate. Nearly half of the ganglion cells in whole-mounted retinae bound antibodies against both isoforms. Consistent with colocalization and physical association, 8-bromo-cAMP shifted the voltage sensitivity of I(h) less than that of HCN4 channels and more than that of HCN1 channels, and HCN1 coimmunoprecipitated with HCN4 from membrane fraction proteins. Finally, the immunopositive somata ranged in diameter from the smallest to the largest in rat retina, the dendrites of immunopositive cells arborized at various levels of the inner plexiform layer and over fields of different diameters, and I(h) activated with similar kinetics and proportions of fast and slow components in small, medium, and large somata. These results show that different HCN subunits colocalize in single retinal ganglion cells, identify a subunit that can reconcile native I(h) properties with the previously reported presence of HCN4 in these cells, and indicate that I(h) is biophysically similar in morphologically diverse retinal ganglion cells and differs from I(h) in rods, cones, and bipolar cells.
Collapse
Affiliation(s)
- Tyler W Stradleigh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhang XJ, Liu LL, Wu Y, Jiang SX, Zhong YM, Yang XL. σ receptor 1 is preferentially involved in modulation of N-methyl-D-aspartate receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells. Neurosignals 2011; 19:110-116. [PMID: 21555866 DOI: 10.1159/000326784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/25/2011] [Indexed: 01/05/2025] Open
Abstract
Using patch-clamp whole-cell recording, we investigated how activation of the sigma receptor 1 (σR1) modulates light-evoked excitatory postsynaptic currents (eEPSCs) of ganglion cells (GCs) in rat retinal slice preparations. Bath application of the σR1 agonist SKF10047 (SKF) suppressed N-methyl-D-aspartate (NMDA) receptor-mediated eEPSCs at different holding potentials in ON, OFF and ON-OFF GCs, and the effects were blocked when the preparations were pre-incubated with the σR1 antagonist BD1047. In contrast, SKF had no effects on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated eEPSCs of these GCs. Furthermore, application of SKF did not affect AMPA receptor-mediated miniature EPSCs of GCs, suggesting that activation of σR1 did not change the release of glutamate from bipolar cells. These results suggest that σR1 may be involved in the regulation of output signaling of GCs by preferentially modulating NMDA receptor-mediated eEPSCs of these retinal neurons.
Collapse
Affiliation(s)
- Xin-Jun Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
34
|
Zhang XJ, Liu LL, Jiang SX, Zhong YM, Yang XL. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells. Neuroscience 2011; 177:12-22. [PMID: 21211548 DOI: 10.1016/j.neuroscience.2010.12.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/28/2010] [Accepted: 12/29/2010] [Indexed: 12/30/2022]
Abstract
The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions.
Collapse
Affiliation(s)
- X-J Zhang
- Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | | | | | | | | |
Collapse
|
35
|
Hyperpolarization-activated current (I(h)) in ganglion-cell photoreceptors. PLoS One 2010; 5:e15344. [PMID: 21187958 PMCID: PMC3004865 DOI: 10.1371/journal.pone.0015344] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/10/2010] [Indexed: 12/31/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and serve as the primary retinal drivers of non-image-forming visual functions such as circadian photoentrainment, the pupillary light reflex, and suppression of melatonin production in the pineal. Past electrophysiological studies of these cells have focused on their intrinsic photosensitivity and synaptic inputs. Much less is known about their voltage-gated channels and how these might shape their output to non-image-forming visual centers. Here, we show that rat ipRGCs retrolabeled from the suprachiasmatic nucleus (SCN) express a hyperpolarization-activated inwardly-rectifying current (Ih). This current is blocked by the known Ih blockers ZD7288 and extracellular cesium. As in other systems, including other retinal ganglion cells, Ih in ipRGCs is characterized by slow kinetics and a slightly greater permeability for K+ than for Na+. Unlike in other systems, however, Ih in ipRGCs apparently does not actively contribute to resting membrane potential. We also explore non-specific effects of the common Ih blocker ZD7288 on rebound depolarization and evoked spiking and discuss possible functional roles of Ih in non-image-forming vision. This study is the first to characterize Ih in a well-defined population of retinal ganglion cells, namely SCN-projecting ipRGCs.
Collapse
|
36
|
Giesbrecht CJ, Mackay JP, Silveira HB, Urban JH, Colmers WF. Countervailing modulation of Ih by neuropeptide Y and corticotrophin-releasing factor in basolateral amygdala as a possible mechanism for their effects on stress-related behaviors. J Neurosci 2010; 30:16970-82. [PMID: 21159967 PMCID: PMC3432911 DOI: 10.1523/jneurosci.2306-10.2010] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 10/12/2010] [Accepted: 10/15/2010] [Indexed: 01/18/2023] Open
Abstract
Stress and anxiety-related behaviors controlled by the basolateral amygdala (BLA) are regulated in vivo by neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF): NPY produces anxiolytic effects, whereas CRF produces anxiogenic effects. These opposing actions are likely mediated via regulation of excitatory output from the BLA to afferent targets. In these studies, we examined mechanisms underlying the effects of NPY and CRF in the BLA using whole-cell patch-clamp electrophysiology in rat brain slices. NPY, even with tetrodotoxin present, caused a dose-dependent membrane hyperpolarization in BLA pyramidal neurons. The hyperpolarization resulted in the inhibition of pyramidal cells, despite arising from a reduction in a voltage-dependent membrane conductance. The Y(1) receptor agonist, F(7)P(34) NPY, produced a similar membrane hyperpolarization, whereas the Y(1) antagonist, BIBO3304 [(R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N(2)-(diphenylacetyl)-argininamide trifluoroacetate], blocked the effect of NPY. The NPY-inhibited current was identified as I(h), which is active at and hyperpolarized to rest. Responses to NPY were occluded by either Cs(+) or ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride), but unaffected by the G(IRK)-preferring blockers Ba(2+) and SCH23390 [(R)-(+)-7-chloro-8-hydroxy-3-methyl-l-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride]. Application of CRF, with or without TTX present, depolarized NPY-sensitive BLA pyramidal neurons, resulting from an increase in I(h). Electrophysiological and immunocytochemical data were consistent with a major role for the HCN1 subunit. Our results indicate that NPY, via Y(1) receptors, directly inhibits BLA pyramidal neurons by suppressing a postsynaptic I(h), whereas CRF enhances resting I(h), causing an increased excitability of BLA pyramidal neurons. The opposing actions of these two peptides on the excitability of BLA output cells are consistent with the observed behavioral actions of NPY and CRF in the BLA.
Collapse
Affiliation(s)
- Chantelle J. Giesbrecht
- Department of Pharmacology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - James P. Mackay
- Department of Pharmacology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Heika B. Silveira
- Department of Pharmacology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Janice H. Urban
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - William F. Colmers
- Department of Pharmacology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| |
Collapse
|
37
|
Abstract
We studied the axons of the pyloric dilator neurons in the stomatogastric nervous system of the lobster. The several-centimeters-long portions of these axons in the motor nerves depolarize in response to low concentrations of dopamine (DA) and exhibit peripheral spike initiation in the absence of centrally generated activity. This effect is inhibited by blockers of hyperpolarization-activated inward current (I(h)). We show here that peripheral spike initiation was also elicited by D(1)-type receptor agonists and drugs that increase cAMP. This suggests that DA acts via a D(1)-type receptor mechanism to modulate hyperpolarization-activated cyclic nucleotide-gated channels. We used two-electrode voltage clamp of the axon to directly study the effect of DA on I(h). Surprisingly, DA decreased the maximal conductance. However, because of a shift of the activation curve to more depolarized potentials, and a change in the slope, conductance was increased at biologically relevant membrane potentials. These changes were solely caused by modulation of I(h), as DA had no discernible effect when I(h) was blocked. In addition, they were not induced by repeated activation and could be mimicked by application of drugs that increase cAMP concentration. DA modulation of I(h) persisted in the presence of a protein kinase A inhibitor and is therefore potentially mediated by a phosphorylation-independent direct effect of cAMP on the ion channel. A computer model of the axon showed that the changes in maximal conductance and voltage dependence were not qualitatively affected by space-clamp problems.
Collapse
|
38
|
Hayashida Y, Rodríguez CV, Ogata G, Partida GJ, Oi H, Stradleigh TW, Lee SC, Colado AF, Ishida AT. Inhibition of adult rat retinal ganglion cells by D1-type dopamine receptor activation. J Neurosci 2009; 29:15001-16. [PMID: 19940196 PMCID: PMC3236800 DOI: 10.1523/jneurosci.3827-09.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/01/2009] [Accepted: 10/22/2009] [Indexed: 11/21/2022] Open
Abstract
The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D(1a) receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D(1)-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D(1)-type receptors, SCH-23390 [R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine] reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking I(h). Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na(+) current (I(Na)) amplitude, and tetrodotoxin, at doses that reduced I(Na) as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D(1)-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the presynaptic and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing.
Collapse
Affiliation(s)
- Yuki Hayashida
- Departments of Neurobiology, Physiology, and Behavior, and
| | | | - Genki Ogata
- Departments of Neurobiology, Physiology, and Behavior, and
| | | | - Hanako Oi
- Departments of Neurobiology, Physiology, and Behavior, and
| | | | - Sherwin C. Lee
- Departments of Neurobiology, Physiology, and Behavior, and
| | | | - Andrew T. Ishida
- Departments of Neurobiology, Physiology, and Behavior, and
- Ophthalmology and Vision Science, University of California, Davis, Davis, California 95616
| |
Collapse
|