1
|
Janeckova L, Knotek T, Kriska J, Hermanova Z, Kirdajova D, Kubovciak J, Berkova L, Tureckova J, Camacho Garcia S, Galuskova K, Kolar M, Anderova M, Korinek V. Astrocyte-like subpopulation of NG2 glia in the adult mouse cortex exhibits characteristics of neural progenitor cells. Glia 2024; 72:245-273. [PMID: 37772368 DOI: 10.1002/glia.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.
Collapse
Affiliation(s)
- Lucie Janeckova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Knotek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Berkova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Galuskova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Herrmann JR, Kochanek PM, Vagni VA, Janesko-Feldman K, Stezoski J, Gorse K, Jackson TC. FGF21 modulates hippocampal cold-shock proteins and CA2-subregion proteins in neonatal mice with hypoxia-ischemia. Pediatr Res 2023; 94:1355-1364. [PMID: 37193753 PMCID: PMC10690493 DOI: 10.1038/s41390-023-02652-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is a neuroprotectant with cognitive enhancing effects but with poorly characterized mechanism(s) of action, particularly in females. Prior studies suggest that FGF21 may regulate cold-shock proteins (CSPs) and CA2-marker proteins in the hippocampus but empirical evidence is lacking. METHODS We assessed in normothermic postnatal day (PND) 10 female mice, if hypoxic-ischemic (HI) brain injury (25 min 8% O2/92% N2) altered endogenous levels of FGF21 in serum or in the hippocampus, or its receptor β-klotho. We also tested if systemic administration of FGF21 (1.5 mg/kg) modulated hippocampal CSPs or CA2 proteins. Finally, we measured if FGF21 therapy altered markers of acute hippocampal injury. RESULTS HI increased endogenous serum FGF21 (24 h), hippocampal tissue FGF21 (4d), and decreased hippocampal β-klotho levels (4d). Exogenous FGF21 therapy modulated hippocampal CSP levels, and dynamically altered hippocampal CA2 marker expression (24 h and 4d). Finally, FGF21 ameliorated neuronal damage markers at 24 h but did not affect GFAP (astrogliosis) or Iba1 (microgliosis) levels at 4d. CONCLUSIONS FGF21 therapy modulates CSP and CA2 protein levels in the injured hippocampus. These proteins serve different biological functions, but our findings suggest that FGF21 administration modulates them in a homeostatic manner after HI. IMPACT Hypoxic-ischemic (HI) injury in female post-natal day (PND) 10 mice decreases hippocampal RNA binding motif 3 (RBM3) levels in the normothermic newborn brain. HI injury in normothermic newborn female mice alters serum and hippocampal fibroblast growth factor 21 (FGF21) levels 24 h post-injury. HI injury in normothermic newborn female mice alters hippocampal levels of N-terminal EF-hand calcium binding protein 2 (NECAB2) in a time-dependent manner. Exogenous FGF21 therapy ameliorates the HI-mediated loss of hippocampal cold-induced RNA-binding protein (CIRBP). Exogenous FGF21 therapy modulates hippocampal levels of CA2-marker proteins after HI.
Collapse
Affiliation(s)
- Jeremy R Herrmann
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6th floor, Pittsburgh, PA, 15224, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6th floor, Pittsburgh, PA, 15224, USA
| | - Vincent A Vagni
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6th floor, Pittsburgh, PA, 15224, USA
| | - Keri Janesko-Feldman
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6th floor, Pittsburgh, PA, 15224, USA
| | - Jason Stezoski
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6th floor, Pittsburgh, PA, 15224, USA
| | - Kiersten Gorse
- USF Health Heart Institute, University of South Florida Morsani College of Medicine, MDD 0630, 560 Channelside Drive, Tampa, FL, 33602, USA
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL, 33612-4799, USA
| | - Travis C Jackson
- USF Health Heart Institute, University of South Florida Morsani College of Medicine, MDD 0630, 560 Channelside Drive, Tampa, FL, 33602, USA.
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL, 33612-4799, USA.
| |
Collapse
|
3
|
Sparatore B, Pedrazzi M, Garuti A, Franchi A, Averna M, Ballestrero A, De Tullio R. A new human calpastatin skipped of the inhibitory region protects calpain-1 from inactivation and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1260-1271. [DOI: 10.1016/j.bbamcr.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/17/2022]
|
4
|
He L, Lee GT, Zhou H, Buhimschi IA, Buhimschi CS, Weiner CP, Mason CW. Expression, Regulation, and Function of the Calmodulin Accessory Protein PCP4/PEP-19 in Myometrium. Reprod Sci 2019; 26:1650-1660. [PMID: 30744532 DOI: 10.1177/1933719119828072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Calmodulin (CaM) plays a key role in the orchestration of Ca2+ signaling events, and its regulation is considered an important component of cellular homeostasis. The control of uterine smooth muscle function is largely dependent on the regulation of Ca2+ and CaM signaling. The objective of this study was to investigate the expression, function, and regulation of CaM regulatory proteins in myometrium during pregnancy. STUDY DESIGN Myometrium was obtained from nonpregnant women and 4 groups of pregnant women at the time their primary cesarean delivery: (i) preterm not in labor, (ii) preterm in labor with clinical and/or histological diagnosis of chorioamnionitis, (3) term not in labor; and (4) term in labor. The effect of perinatal inflammation on pcp4/pep-19 expression was evaluated in a mouse model of Ureaplasma parvum-induced chorioamnionitis. Human myometrial cells stably expressing wild-type and mutant forms of PCP4/PEP-19 were used in the evaluation of agonist-induced intracellular Ca2+ mobilization. RESULTS Compared to other CaM regulatory proteins, PCP4/PEP-19 transcripts were more abundant in human myometrium. The expression of PCP4/PEP-19 was lowest in myometrium of women with preterm pregnancy and chorioamnionitis. In the mouse uterus, pcp4/pep-19 expression was lower in late compared to mid-gestation and decreased in mice injected intra-amniotic with Ureaplasma parvum. In myometrial smooth muscle cells, tumor necrosis factor alpha and progesterone decreased and PCP4/PEP-19 promoter activity increased. Finally, the overexpression of PCP4/PEP-19 reduced agonist-induced intracellular Ca2+ levels in myometrial cells. CONCLUSION The decreased expression of PCP4/PEP-19 in myometrium contributes to a loss of quiescence in response to infection-induced inflammation at preterm pregnancy.
Collapse
Affiliation(s)
- Lily He
- Department of Obstetrics and Gynecology, Division of Research, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Gene T Lee
- Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, USA.,The Center for Perinatal Research, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Helen Zhou
- Department of Obstetrics and Gynecology, Division of Research, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Irina A Buhimschi
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA.,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Catalin S Buhimschi
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA.,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Carl P Weiner
- Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Clifford W Mason
- Department of Obstetrics and Gynecology, Division of Research, University of Kansas School of Medicine, Kansas City, KS, USA.,The Center for Perinatal Research, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
5
|
Unexpected role of the L-domain of calpastatin during the autoproteolytic activation of human erythrocyte calpain. Biosci Rep 2018; 38:BSR20180147. [PMID: 29572388 PMCID: PMC5968184 DOI: 10.1042/bsr20180147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022] Open
Abstract
Autoproteolysis of human erythrocyte calpain-1 proceeds in vitro at high [Ca2+], through the conversion of the 80-kDa catalytic subunit into a 75-kDa activated enzyme that requires lower [Ca2+] for catalysis. Importantly, here we detect a similar 75 kDa calpain-1 form also in vivo, in human meningiomas. Although calpastatin is so far considered the specific inhibitor of calpains, we have previously identified in rat brain a calpastatin transcript truncated at the end of the L-domain (cast110, L-DOM), coding for a protein lacking the inhibitory units. Aim of the present study was to characterize the possible biochemical role of the L-DOM during calpain-1 autoproteolysis in vitro, at high (100 µM) and low (5 µM) [Ca2+]. Here we demonstrate that the L-DOM binds the 80 kDa proenzyme in the absence of Ca2+. Consequently, we have explored the ability of the 75 kDa activated protease to catalyze at 5 µM Ca2+ the intermolecular activation of native calpain-1 associated with the L-DOM. Notably, this [Ca2+] is too low to promote the autoproteolytic activation of calpain-1 but enough to support the catalysis of the 75 kDa calpain. We show for the first time that the L-DOM preserves native calpain-1 from the degradation mediated by the 75 kDa form. Taken together, our data suggest that the free L-domain of calpastatin is a novel member of the calpain/calpastatin system endowed with a function alternative to calpain inhibition. For this reason, it will be crucial to define the intracellular relevance of the L-domain in controlling calpain activation/activity in physiopathological conditions having altered Ca2+ homeostasis.
Collapse
|
6
|
PCP4/PEP19 promotes migration, invasion and adhesion in human breast cancer MCF-7 and T47D cells. Oncotarget 2018; 7:49065-49074. [PMID: 27384474 PMCID: PMC5226490 DOI: 10.18632/oncotarget.7529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022] Open
Abstract
Purkinje cell protein (PCP) 4/peptide (PEP) 19 is expressed in Purkinje cells where it has a calmodulin-binding, anti-apoptotic function. We recently demonstrated that PCP4/PEP19 is expressed and inhibit apoptosis in human breast cancer cell lines. In the present study we investigated the role of PCP4/PEP19 in cell morphology, adhesion, migration, and invasion in MCF-7 and T47D human breast cancer cell lines. Knockdown of PCP4/PEP19 reduced the formation of filopodia-like cytoplasmic structures and vinculin expression, and enhanced E-cadherin expression. Activities of migration, invasion, and cell adhesion were also decreased after the knockdown of PCP4/PEP19 in MCF-7 and T47D cells. These results suggested that PCP4/PEP19 promotes cancer cell adhesion, migration, and invasion and that PCP4/PEP19 may be a potential target for therapeutic agents in breast cancer treatment which act by inhibiting epithelial-mesenchymal transition and enhancing apoptotic cell death.
Collapse
|
7
|
Recabarren-Leiva D, Alarcón M. New insights into the gene expression associated to amyotrophic lateral sclerosis. Life Sci 2018; 193:110-123. [DOI: 10.1016/j.lfs.2017.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
8
|
Stancill JS, Cartailler JP, Clayton HW, O'Connor JT, Dickerson MT, Dadi PK, Osipovich AB, Jacobson DA, Magnuson MA. Chronic β-Cell Depolarization Impairs β-Cell Identity by Disrupting a Network of Ca 2+-Regulated Genes. Diabetes 2017; 66:2175-2187. [PMID: 28550109 PMCID: PMC5521870 DOI: 10.2337/db16-1355] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/17/2017] [Indexed: 12/18/2022]
Abstract
We used mice lacking Abcc8, a key component of the β-cell KATP-channel, to analyze the effects of a sustained elevation in the intracellular Ca2+ concentration ([Ca2+]i) on β-cell identity and gene expression. Lineage tracing analysis revealed the conversion of β-cells lacking Abcc8 into pancreatic polypeptide cells but not to α- or δ-cells. RNA-sequencing analysis of FACS-purified Abcc8-/- β-cells confirmed an increase in Ppy gene expression and revealed altered expression of more than 4,200 genes, many of which are involved in Ca2+ signaling, the maintenance of β-cell identity, and cell adhesion. The expression of S100a6 and S100a4, two highly upregulated genes, is closely correlated with membrane depolarization, suggesting their use as markers for an increase in [Ca2+]i Moreover, a bioinformatics analysis predicts that many of the dysregulated genes are regulated by common transcription factors, one of which, Ascl1, was confirmed to be directly controlled by Ca2+ influx in β-cells. Interestingly, among the upregulated genes is Aldh1a3, a putative marker of β-cell dedifferentiation, and other genes associated with β-cell failure. Taken together, our results suggest that chronically elevated β-cell [Ca2+]i in Abcc8-/- islets contributes to the alteration of β-cell identity, islet cell numbers and morphology, and gene expression by disrupting a network of Ca2+-regulated genes.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | | | - Hannah W Clayton
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - James T O'Connor
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
9
|
Abstract
Three neurodegenerative diseases [Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD)] have many characteristics like pathological mechanisms and genes. In this sense some researchers postulate that these diseases share the same alterations and that one alteration in a specific protein triggers one of these diseases. Analyses of gene expression may shed more light on how to discover pathways, pathologic mechanisms associated with the disease, biomarkers and potential therapeutic targets. In this review, we analyze four microarrays related to three neurodegenerative diseases. We will systematically examine seven genes (CHN1, MDH1, PCP4, RTN1, SLC14A1, SNAP25 and VSNL1) that are altered in the three neurodegenerative diseases. A network was built and used to identify pathways, miRNA and drugs associated with ALS, AD and PD using Cytoscape software an interaction network based on the protein interactions of these genes. The most important affected pathway is PI3K-Akt signalling. Thirteen microRNAs (miRNA-19B1, miRNA-107, miRNA-124-1, miRNA-124-2, miRNA-9-2, miRNA-29A, miRNA-9-3, miRNA-328, miRNA-19B2, miRNA-29B2, miRNA-124-3, miRNA-15A and miRNA-9-1) and four drugs (Estradiol, Acetaminophen, Resveratrol and Progesterone) for new possible treatments were identified.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
10
|
PEP-19 modulates calcium binding to calmodulin by electrostatic steering. Nat Commun 2016; 7:13583. [PMID: 27876793 PMCID: PMC5122967 DOI: 10.1038/ncomms13583] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
PEP-19 is a small protein that increases the rates of Ca2+ binding to the C-domain of calmodulin (CaM) by an unknown mechanism. Although an IQ motif promotes binding to CaM, an acidic sequence in PEP-19 is required to modulate Ca2+ binding and to sensitize HeLa cells to ATP-induced Ca2+ release. Here, we report the NMR solution structure of a complex between PEP-19 and the C-domain of apo CaM. The acidic sequence of PEP-19 associates between helices E and F of CaM via hydrophobic interactions. This allows the acidic side chains in PEP-19 to extend toward the solvent and form a negatively charged surface that resembles a catcher's mitt near Ca2+ binding loop III of CaM. The topology and gradients of negative electrostatic surface potential support a mechanism by which PEP-19 increases the rate of Ca2+ binding to the C-domain of CaM by ‘catching' and electrostatically steering Ca2+ to site III. The protein PEP-19 increases the rates of calcium binding to calmodulin. Here, the authors report the structure of PEP-19 bound to the C-terminal domain of calmodulin, and are able to propose a mechanism for the observed increased calcium association rate.
Collapse
|
11
|
Aerts J, Laeremans A, Minerva L, Boonen K, Harshavardhan B, D'hooge R, Valkenborg D, Baggerman G, Arckens L. MS imaging and mass spectrometric synaptosome profiling identify PEP-19/pcp4 as a synaptic molecule involved in spatial learning in mice. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:936-945. [PMID: 27760390 DOI: 10.1016/j.bbapap.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
The Morris water maze (MWM) spatial learning task has been demonstrated to involve a cognitive switch of action control to serve the transition from an early towards a late learning phase. However, the molecular mechanisms governing this switch are largely unknown. We employed MALDI MS imaging (MSI) to screen for changes in expression of small proteins in brain structures implicated in the different learning phases. We compared mice trained for 3days and 30days in the MWM, reflecting an early and a late learning phase in relation to the acquisition of a spatial learning task. An ion with m/z of 6724, identified as PEP-19/pcp4 by top-down tandem MS, was detected at higher intensity in the dorsal striatum of the late learning phase group compared with the early learning phase group. In addition, mass spectrometric analysis of synaptosomes confirmed the presence of PEP-19/pcp4 at the synapse. PEP-19/pcp4 has previously been identified as a critical determinant of synaptic plasticity in locomotor learning. Our findings extend PEP-19/pcp4 function to spatial learning in the forebrain and put MSI forward as a valid and unbiased research strategy for the discovery and identification of the molecular machinery involved in learning, memory and synaptic plasticity. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Jeroen Aerts
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | - Annelies Laeremans
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | - Laurens Minerva
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | - Kurt Boonen
- KU Leuven, Department of Biology, Laboratory of Functional Genomics and Proteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | | | - Rudi D'hooge
- KU Leuven, Laboratory of Biological Psychology, Tiensestraat 102, 3000 Leuven, Belgium
| | - Dirk Valkenborg
- Center for Proteomics, UAntwerp, Antwerp, Belgium; Unit Environmental Risk & Health, VITO, Mol, Belgium
| | - Geert Baggerman
- Center for Proteomics, UAntwerp, Antwerp, Belgium; Unit Environmental Risk & Health, VITO, Mol, Belgium
| | - Lutgarde Arckens
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
Hamada T, Souda M, Yoshimura T, Sasaguri S, Hatanaka K, Tasaki T, Yoshioka T, Ohi Y, Yamada S, Tsutsui M, Umekita Y, Tanimoto A. Anti-apoptotic effects of PCP4/PEP19 in human breast cancer cell lines: a novel oncotarget. Oncotarget 2015; 5:6076-86. [PMID: 25153723 PMCID: PMC4171614 DOI: 10.18632/oncotarget.2161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The PCP4/PEP19 is a calmodulin-binding anti-apoptotic peptide in neural cells but its potential role in human cancer has largely been unknown. We investigated the expression of PCP4/PEP19 in human breast cancer cell lines MCF-7, SK-BR-3, and MDA-MB-231 cells, and found that estrogen receptor (ER)-positive MCF-7 and ER-negative SK-BR-3 cells expressed PCP4/PEP19. In the MCF-7 cells, cell proliferation was estrogen-dependent, and PCP4/PEP19 expression was induced by estrogen. In both cell lines, PCP4/PEP19 knockdown induced apoptosis and slightly decreased Akt phosphorylation. Knockdown of calcium/calmodulin-dependent protein kinase kinase 1 (CaMKK1), resulting in decreased phospho-AktThr308, enhanced apoptosis in SK-BR-3 but not in MCF-7 cells. CaMKK2 knockdown moderately decreased phospho-AktThr308 and increased apoptosis in MCF-7 cells but not in SK-BR-3 cells. These data indicated that PCP4/PEP19 regulates apoptosis but exact mechanism is still unknown. PCP4/PEP19 can therefore potentially serve as independent oncotarget for therapy of PCP4/PEP19-positive breast cancers irrespective of ER expression.
Collapse
Affiliation(s)
- Taiji Hamada
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masakazu Souda
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takuya Yoshimura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shoko Sasaguri
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuhito Hatanaka
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takashi Tasaki
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takako Yoshioka
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasuyo Ohi
- Department of Pathology, Sagara Hospital, Social Medical Corporation Hakuaikai, Kagoshima, Japan
| | - Sohsuke Yamada
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masato Tsutsui
- Department of Pharmacology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshihisa Umekita
- Division of Organ Pathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akihide Tanimoto
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
13
|
Li R, Wang Y, Yang Z, He Y, Zhao T, Fan M, Wang X, Zhu L, Wang X. Hypoxia-inducible factor-1α regulates the expression of L-type voltage-dependent Ca(2+) channels in PC12 cells under hypoxia. Cell Stress Chaperones 2015; 20:507-16. [PMID: 25648081 PMCID: PMC4406929 DOI: 10.1007/s12192-015-0575-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022] Open
Abstract
Hypoxia is an important factor in regulation of cell behavior both under physiological and pathological conditions. The mechanisms of hypoxia-induced cell death have not been completely elucidated yet. It is well known that Ca(2+) is critically related to cell survival. Hypoxia-inducible factor-1α (HIF-1α) is a core regulatory factor during hypoxia, and L-type voltage-dependent Ca(2+) channels (L-VDCCs) have been reported to play a critical role in cell survival. This study was conducted to explore the relationship between L-VDCC expression and HIF-1α regulation in PC12 cells under hypoxia. PC12 cells were treated at 20 or 3 % O2 to observe its proliferation and the intracellular calcium concentration. Then, we detected the protein expression of HIF-1α and L-VDCCs subtypes, Cav1.2 and Cav1.3. At last, to verify the relationship between HIF-1α and Cav1.2 and Cav1.3, we got the expression of Cav1.2 and Cav1.3 with Western blot and luciferase report gene assays after PC12 cells were treated by echinomycin, which is an HIF-1α inhibitor. Compared with 20 % O2 (normoxia), 3 % O2 (hypoxia) inhibited cell proliferation, increased the intracellular calcium concentration, and induced protein expression of HIF-1α. The protein expression of two L-VDCCs subtypes expressed in the nervous system, Cav1.2 and Cav1.3, was upregulated by hypoxia and reduced dose dependently by treatment with echinomycin, a HIF-1α inhibitor. Luciferase report gene assays showed that the expression of Cav1.2 and Cav1.3 genes was augmented under 3 % O2. However, echinomycin only slightly and dose dependently decreased expression of the Cav1.2 gene, but not that of the Cav1.3 gene. These data indicated that Cav1.2 might be regulated by HIF-1α as one of its downstream target genes and involved in regulation of PC12 cells death under hypoxia.
Collapse
Affiliation(s)
- Ran Li
- />Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, 10# You An Men, Beijing, 100069 People’s Republic of China
- />Department of Rehabilitation Medicine, Xuan Xu Hospital, Capital Medical University, 45# Changchun Street, Beijing, 100053 People’s Republic of China
| | - Yong Wang
- />Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, 10# You An Men, Beijing, 100069 People’s Republic of China
| | - Zhaofei Yang
- />Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, 10# You An Men, Beijing, 100069 People’s Republic of China
| | - Yunling He
- />Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, 27# Taiping Road, Beijing, 100850 People’s Republic of China
| | - Tong Zhao
- />Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, 27# Taiping Road, Beijing, 100850 People’s Republic of China
| | - Ming Fan
- />Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, 27# Taiping Road, Beijing, 100850 People’s Republic of China
| | - Xuan Wang
- />Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, 10# You An Men, Beijing, 100069 People’s Republic of China
| | - Lingling Zhu
- />Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, 27# Taiping Road, Beijing, 100850 People’s Republic of China
| | - Xiaomin Wang
- />Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, 10# You An Men, Beijing, 100069 People’s Republic of China
- />Beijing Institute for Brain Disorder, 10# You An Men, Beijing, 100069 People’s Republic of China
| |
Collapse
|
14
|
Bökenkamp R, van Brempt R, van Munsteren JC, van den Wijngaert I, de Hoogt R, Finos L, Goeman J, Groot ACGD, Poelmann RE, Blom NA, DeRuiter MC. Dlx1 and Rgs5 in the ductus arteriosus: vessel-specific genes identified by transcriptional profiling of laser-capture microdissected endothelial and smooth muscle cells. PLoS One 2014; 9:e86892. [PMID: 24489801 PMCID: PMC3904938 DOI: 10.1371/journal.pone.0086892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022] Open
Abstract
Closure of the ductus arteriosus (DA) is a crucial step in the transition from fetal to postnatal life. Patent DA is one of the most common cardiovascular anomalies in children with significant clinical consequences especially in premature infants. We aimed to identify genes that specify the DA in the fetus and differentiate it from the aorta. Comparative microarray analysis of laser-captured microdissected endothelial (ECs) and vascular smooth muscle cells (SMCs) from the DA and aorta of fetal rats (embryonic day 18 and 21) identified vessel-specific transcriptional profiles. We found a strong age-dependency of gene expression. Among the genes that were upregulated in the DA the regulator of the G-protein coupled receptor 5 (Rgs5) and the transcription factor distal-less homeobox 1 (Dlx1) exhibited the highest and most significant level of differential expression. The aorta showed a significant preferential expression of the Purkinje cell protein 4 (Pcp4) gene. The results of the microarray analysis were validated by real-time quantitative PCR and immunohistochemistry. Our study confirms vessel-specific transcriptional profiles in ECs and SMCs of rat DA and aorta. Rgs5 and Dlx1 represent novel molecular targets for the regulation of DA maturation and closure.
Collapse
Affiliation(s)
- Regina Bökenkamp
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Ronald van Brempt
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands
- Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | | | | | - Ronald de Hoogt
- Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - Livio Finos
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jelle Goeman
- Biostatistics, Department for Health Evidence, Radboud University Medical Center, Nimegen, The Netherlands
| | - Adriana Cornelia Gittenberger-de Groot
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Eugen Poelmann
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicolaas Andreas Blom
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
15
|
Xie YY, Sun MM, Lou XF, Zhang C, Han F, Zhang BY, Wang P, Lu YM. Overexpression of PEP-19 Suppresses Angiotensin II–Induced Cardiomyocyte Hypertrophy. J Pharmacol Sci 2014; 125:274-82. [PMID: 25048017 DOI: 10.1254/jphs.13208fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
16
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
17
|
Tao RR, Huang JY, Shao XJ, Ye WF, Tian Y, Liao MH, Fukunaga K, Lou YJ, Han F, Lu YM. Ischemic injury promotes Keap1 nitration and disturbance of antioxidative responses in endothelial cells: a potential vasoprotective effect of melatonin. J Pineal Res 2013; 54:271-81. [PMID: 22946793 DOI: 10.1111/jpi.12009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/10/2012] [Indexed: 12/22/2022]
Abstract
Clinical epidemiology has indicated that the endothelial injury is a potential contributor to the pathogenesis of ischemic neurovascular damage. In this report, we assessed S-nitrosylation and nitration of Keap1 to identify downstream nitric oxide redox signaling targets into endothelial cells during ischemia. Here, oxygen-glucose deprivation (OGD) exposure initiates the nuclear import of Keap1 in endothelial cells, which interacted with nuclear-localized Nrf2, as demonstrated through co-immunoprecipitation and immunocytochemical assay. Paralleling the ischemia-induced nuclear import of Keap1, increased nitrotyrosine immunoreactivity in endothelial cells was also observed. Consistently, the addition of peroxynitrite provoked nuclear import of Keap1 and a concomitant Nrf2 nuclear import in the endothelial cells. Importantly, pharmacological inhibition of nitrosative stress by melatonin partially inhibited the OGD-induced constitutive nuclear import of Keap1 and subsequently disturbance of Nrf2/Keap1 signaling. Moreover, the effect of melatonin on nitration and S-nitrosylation of keap1 was examined in endothelial cells with 6 hr OGD exposure. Here, we demonstrated that OGD induced tyrosine nitration of Keap1, which was blocked by melatonin treatment, while there were no significant changes in S-nitrosylation of Keap1. The specific amino acid residues of Keap1 involved in tyrosine nitration were identified as Y473 by mass spectrometry. Moreover, the protective role of melatonin against damage to endothelial tight junction integrity was addressed by ZO-1 expression, paralleled with the restored heme oxygenase-1 levels during OGD. Together, our results emphasize that upon nitrosative stress, the protective effect of melatonin on endothelial cells is likely mediated at least in part by inhibition of ischemia-evoked protein nitration of Keap1, hence contributing to relieve the disturbance of Nrf2/Keap1 antioxidative signaling.
Collapse
Affiliation(s)
- Rong-rong Tao
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang X, Xiong LW, El Ayadi A, Boehning D, Putkey JA. The calmodulin regulator protein, PEP-19, sensitizes ATP-induced Ca2+ release. J Biol Chem 2012. [PMID: 23204517 DOI: 10.1074/jbc.m112.411314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PEP-19 is a small, intrinsically disordered protein that binds to the C-domain of calmodulin (CaM) via an IQ motif and tunes its Ca(2+) binding properties via an acidic sequence. We show here that the acidic sequence of PEP-19 has intrinsic Ca(2+) binding activity, which may modulate Ca(2+) binding to CaM by stabilizing an initial Ca(2+)-CaM complex or by electrostatically steering Ca(2+) to and from CaM. Because PEP-19 is expressed in cells that exhibit highly active Ca(2+) dynamics, we tested the hypothesis that it influences ligand-dependent Ca(2+) release. We show that PEP-19 increases the sensitivity of HeLa cells to ATP-induced Ca(2+) release to greatly increase the percentage of cells responding to sub-saturating doses of ATP and increases the frequency of Ca(2+) oscillations. Mutations in the acidic sequence of PEP-19 that inhibit or prevent it from modulating Ca(2+) binding to CaM greatly inhibit its effect on ATP-induced Ca(2+) release. Thus, this cellular effect of PEP-19 does not depend simply on binding to CaM via the IQ motif but requires its acidic metal binding domain. Tuning the activities of Ca(2+) mobilization pathways places PEP-19 at the top of CaM signaling cascades, with great potential to exert broad effects on downstream CaM targets, thus expanding the biological significance of this small regulator of CaM signaling.
Collapse
Affiliation(s)
- Xu Wang
- Department of Biochemistry and Molecular Biology and Structural Biology Imaging Center, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
19
|
Han F, Chen YX, Lu YM, Huang JY, Zhang GS, Tao RR, Ji YL, Liao MH, Fukunaga K, Qin ZH. Regulation of the ischemia-induced autophagy-lysosome processes by nitrosative stress in endothelial cells. J Pineal Res 2011; 51:124-35. [PMID: 21392095 DOI: 10.1111/j.1600-079x.2011.00869.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cellular mechanisms that underlie the diverse nitrosative stress-mediated cellular events associated with ischemic complications in endothelial cells are not yet clear. To characterize whether autophagic elements are associated with the nitrosative stress that causes endothelial damage after ischemia injury, an in vitro sustained oxygen-glucose deprivation (OGD) and an in vivo microsphere embolism model were used in the present study. Consistent with OGD-induced peroxynitrite formation, a rapid induction of microtubule-associated protein 1 light chain 3 (LC3)-I/II conversion and green fluorescent protein-LC3 puncta accumulation were observed in endothelial cells. The Western blot analyses indicated that OGD induced elevations in lysosome-associated membrane protein 2 and cathepsin B protein levels. Similar results were observed in the microvessel insult model, following occlusion of the microvessels using microsphere injections in rats. Furthermore, cultured endothelial cells treated with peroxynitrite (1-50 μm) exhibited a concentration-dependent change in the pattern of autophagy-lysosome signaling. Intriguingly, OGD-induced autophagy-lysosome processes were attenuated by PEP-19 overexpression and by a small-interfering RNA (siRNA)-mediated knockdown of eNOS. The importance of nitrosative stress in ischemia-induced autophagy-lysosome cascades is further supported by our finding that pharmacological inhibition of nitrosative stress by melatonin partially inhibits the ischemia-induced autophagy-lysosome cascade and the degradation of the tight junction proteins. Taken together, the present results demonstrate that peroxynitrite-mediated nitrosative stress at least partially potentiates autophagy-lysosome signaling during sustained ischemic insult-induced endothelial cell damage.
Collapse
Affiliation(s)
- Feng Han
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wei P, Blundon JA, Rong Y, Zakharenko SS, Morgan JI. Impaired locomotor learning and altered cerebellar synaptic plasticity in pep-19/PCP4-null mice. Mol Cell Biol 2011; 31:2838-44. [PMID: 21576365 PMCID: PMC3133400 DOI: 10.1128/mcb.05208-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/18/2011] [Accepted: 05/02/2011] [Indexed: 12/31/2022] Open
Abstract
PEP-19/PCP4 maps within the Down syndrome critical region and encodes a small, predominantly neuronal, IQ motif protein. Pep-19 binds calmodulin and inhibits calmodulin-dependent signaling, which is critical for synaptic function, and therefore alterations in Pep-19 levels may affect synaptic plasticity and behavior. To investigate its possible role, we generated and characterized pep-19/pcp4-null mice. Synaptic plasticity at excitatory synapses of cerebellar Purkinje cells, which express the highest levels of Pep-19, was dramatically altered in pep-19/pcp4-null mice. Instead of long-term depression, pep-19/pcp4-null mice exhibited long-term potentiation at parallel fiber-Purkinje cell synapses. The mutant mice have a marked deficit in their ability to learn a locomotor task, as measured by improved performance upon repeated testing on an accelerating rotarod. Thus, our data indicate that pep-19/pcp4 is a critical determinant of synaptic plasticity in cerebellum and locomotor learning.
Collapse
Affiliation(s)
- Peng Wei
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678
| | - Jay A. Blundon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678
| | - Yongqi Rong
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678
| | - James I. Morgan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678
| |
Collapse
|
21
|
Graham SJL, Dziadek MA, Johnstone LS. A cytosolic STIM2 preprotein created by signal peptide inefficiency activates ORAI1 in a store-independent manner. J Biol Chem 2011; 286:16174-85. [PMID: 21383014 DOI: 10.1074/jbc.m110.206946] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Calcium (Ca(2+)) influx through the plasma membrane store-operated Ca(2+) channel ORAI1 is controlled by Ca(2+) sensors of the stromal interaction molecule (STIM) family. STIM1 responds to endoplasmic reticulum (ER) Ca(2+) store depletion by redistributing and activating ORAI1 from regions of the ER juxtaposed to the plasma membrane. Unlike STIM1, STIM2 can regulate ORAI1 in a store-dependent and store-independent manner, but the mechanism by which this is achieved is unknown. Here we find that STIM2 is translated from a highly conserved methionine residue and is directed to the ER by an incredibly long 101-amino acid signal peptide. We find that although the majority of the total STIM2 population resides on the ER membrane, a second population escapes ER targeting to accumulate as a full-length preprotein in the cytosol, signal peptide intact. Unlike STIM2, preSTIM2 localizes to the inner leaflet of the plasma membrane where it interacts with ORAI1 to regulate basal Ca(2+) concentration and Ca(2+)-dependent gene transcription in a store-independent manner. Furthermore, a third protein comprising a fragment of the STIM2 signal peptide is released from the ER membrane into the cytosol where it regulates gene transcription in a Ca(2+)-independent manner. This study establishes a new model for STIM2-mediated regulation of ORAI1 in which two distinct proteins, STIM2 and preSTIM2, control store-dependent and store-independent modes of ORAI1 activation.
Collapse
Affiliation(s)
- Sarah J L Graham
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
22
|
Wang X, Kleerekoper QK, Xiong LW, Putkey JA. Intrinsically disordered PEP-19 confers unique dynamic properties to apo and calcium calmodulin. Biochemistry 2010; 49:10287-97. [PMID: 20973509 DOI: 10.1021/bi100500m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PEP-19 (Purkinje cell protein 4) is an intrinsically disordered protein with an IQ calmodulin (CaM) binding motif. Expression of PEP-19 was recently shown to protect cells from apoptosis and cell death due to Ca(2+) overload. Our initial studies showed that PEP-19 causes novel and dramatic increases in the rates of association of Ca(2+) with and dissociation of Ca(2+) from the C-domain of CaM. The goal of this work was to study interactions between the C-domain of CaM (C-CaM) and PEP-19 by solution nuclear magnetic resonance (NMR) to identify mechanisms by which PEP-19 regulates binding of Ca(2+) to CaM. Our results show that PEP-19 causes a greater structural change in apo C-CaM than in Ca(2+)-C-CaM, and that the first Ca(2+) binds preferentially to site IV in the presence of PEP-19 with exchange characteristics that are consistent with a decrease in Ca(2+) binding cooperativity. Relatively weak binding of PEP-19 has distinct effects on chemical and conformational exchange on the microsecond to millisecond time scale. In apo C-CaM, PEP-19 binding causes a redistribution of residues that experience conformational exchange, leading to an increase in the number of residues around Ca(2+) binding site IV that undergo conformational exchange on the microsecond to millisecond time scale. This appears to be caused by an allosteric effect because these residues are not localized to the PEP-19 binding site. In contrast, PEP-19 increases the number of residues that exhibit conformational exchange in Ca(2+)-C-CaM. These residues are primarily localized to the PEP-19 binding site but also include Asp93 in site III. These results provide working models for the role of protein dynamics in the regulation of binding of Ca(2+) to CaM by PEP-19.
Collapse
Affiliation(s)
- Xu Wang
- Department of Biochemistry and Molecular Biology and Structural Biology Center, University of Texas-Houston Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
23
|
Laurén HB, Lopez-Picon FR, Brandt AM, Rios-Rojas CJ, Holopainen IE. Transcriptome analysis of the hippocampal CA1 pyramidal cell region after kainic acid-induced status epilepticus in juvenile rats. PLoS One 2010; 5:e10733. [PMID: 20505763 PMCID: PMC2873964 DOI: 10.1371/journal.pone.0010733] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/28/2010] [Indexed: 11/19/2022] Open
Abstract
Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected hippocampal CA1 subregion one week after kainic acid (KA)-induced status epilepticus (SE) in 21-day-old rats, which are developmentally roughly comparable to juvenile children. The gene expression analysis with the Chipster software generated a total of 1592 differently expressed genes in the CA1 subregion of KA-treated rats compared to control rats. The KEGG database revealed that the identified genes were involved in pathways such as oxidative phosporylation (26 genes changed), and long-term potentiation (LTP; 18 genes changed). Also genes involved in Ca2+ homeostasis, gliosis, inflammation, and GABAergic transmission were altered. To validate the microarray results we further examined the protein expression for a subset of selected genes, glial fibrillary protein (GFAP), apolipoprotein E (apo E), cannabinoid type 1 receptor (CB1), Purkinje cell protein 4 (PEP-19), and interleukin 8 receptor (CXCR1), with immunohistochemistry, which confirmed the transcriptome results. Our results showed that SE resulted in no obvious CA1 neuronal loss, and alterations in the expression pattern of several genes during the early epileptogenic phase were comparable to previous gene expression studies of the adult hippocampus of both experimental epileptic animals and patients with temporal lobe epilepsy (TLE). However, some changes seem to occur after SE specifically in the juvenile rat hippocampus. Insight of the SE-induced alterations in gene expression and their related pathways could give us hints for the development of new target-specific antiepileptic drugs that interfere with the progression of the disease in the juvenile age group.
Collapse
Affiliation(s)
- Hanna B. Laurén
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, Turku, Finland
| | - Francisco R. Lopez-Picon
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Annika M. Brandt
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Clarissa J. Rios-Rojas
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Irma E. Holopainen
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, Turku, Finland
- * E-mail:
| |
Collapse
|
24
|
|
25
|
Xiong LW, Kleerekoper QK, Wang X, Putkey JA. Intra- and interdomain effects due to mutation of calcium-binding sites in calmodulin. J Biol Chem 2010; 285:8094-103. [PMID: 20048169 DOI: 10.1074/jbc.m109.065243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IQ-motif protein PEP-19, binds to the C-domain of calmodulin (CaM) with significantly different k(on) and k(off) rates in the presence and absence of Ca(2+), which could play a role in defining the levels of free CaM during Ca(2+) transients. The initial goal of the current study was to determine whether Ca(2+) binding to sites III or IV in the C-domain of CaM was responsible for affecting the kinetics of binding PEP-19. EF-hand Ca(2+)-binding sites were selectively inactivated by the common strategy of changing Asp to Ala at the X-coordination position. Although Ca(2+) binding to both sites III and IV appeared necessary for native-like interactions with PEP-19, the data also indicated that the mutations caused undesirable structural alterations as evidenced by significant changes in amide chemical shifts for apoCaM. Mutations in the C-domain also affected chemical shifts in the unmodified N-domain, and altered the Ca(2+) binding properties of the N-domain. Conversion of Asp(93) to Ala caused the greatest structural perturbations, possibly due to the loss of stabilizing hydrogen bonds between the side chain of Asp(93) and backbone amides in apo loop III. Thus, although these mutations inhibit binding of Ca(2+), the mutated CaM may not be able to support potentially important native-like activity of the apoprotein. This should be taken into account when designing CaM mutants for expression in cell culture.
Collapse
Affiliation(s)
- Liang-Wen Xiong
- Department of Biochemistry and Molecular Biology and the Structural Biology Center, University of Texas, Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
26
|
Kleerekoper QK, Putkey JA. PEP-19, an intrinsically disordered regulator of calmodulin signaling. J Biol Chem 2009; 284:7455-64. [PMID: 19106096 PMCID: PMC2658041 DOI: 10.1074/jbc.m808067200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/18/2008] [Indexed: 11/06/2022] Open
Abstract
PEP-19 is a small calmodulin (CaM)-binding protein that greatly increases the rates of association and dissociation of Ca(2+) from the C-domain of CaM, an effect that is mediated by an acidic/IQ sequence in PEP-19. We show here using NMR that PEP-19 is an intrinsically disordered protein, but with residual structure localized to its acidic/IQ motif. We also show that the k(on) and k(off) rates for binding PEP-19 to apo-CaM are at least 50-fold slower than for binding to Ca(2+)-CaM. These data indicate that intrinsic disorder confers plasticity that allows PEP-19 to bind to either apo- or Ca(2+)-CaM via different structural modes, and that complex formation may be facilitated by conformational selection of residual structure in the acidic/IQ sequence.
Collapse
Affiliation(s)
- Quinn K Kleerekoper
- Department of Biochemistry and Molecular Biology and the Structural Biology Center, University of Texas, Houston Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|