1
|
Knopper RW, Skoven CS, Eskildsen SF, Østergaard L, Hansen B. The effects of locus coeruleus ablation on mouse brain volume and microstructure evaluated by high-field MRI. Front Cell Neurosci 2024; 18:1498133. [PMID: 39722677 PMCID: PMC11668759 DOI: 10.3389/fncel.2024.1498133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The locus coeruleus (LC) produces most of the brain's noradrenaline (NA). Among its many roles, NA is often said to be neuroprotective and important for brain upkeep. For this reason, loss of LC integrity is thought to impact brain volume and microstructure as well as plasticity broadly. LC dysfunction is also a suspected driver in the development of neurodegenerative diseases. Nevertheless, the impact of LC dysfunction on the gross structure and microstructure of normal brains is not well-studied. We employed high-field ex vivo magnetic resonance imaging (MRI) to investigate brain volumetrics and microstructure in control (CON) mice and mice with LC ablation (LCA) at two ages, representing the developing brain and the fully matured brain. These whole-brain methods are known to be capable of detecting subtle morphological changes and brain microstructural remodeling. We found mice behavior consistent with histologically confirmed LC ablation. However, MRI showed no difference between CON and LCA groups with regard to brain size, relative regional volumes, or regional microstructural indices. Our findings suggest that LC-NA is not needed for postnatal brain maturation and growth in mice. Nor is it required for maintenance in the normal adult mouse brain, as no atrophy or microstructural aberration is detected after weeks of LC dysfunction. This adds clarity to the often-encountered notion that LC-NA is important for brain "trophic support" as it shows that such effects are likely most relevant to mechanisms related to brain plasticity and neuroprotection in the (pre)diseased brain.
Collapse
Affiliation(s)
- Rasmus West Knopper
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Christian Stald Skoven
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon Fristed Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Yao M, Wei Z, Nielsen JS, Ouyang Y, Kakazu A, Wang H, Du L, Li R, Chu T, Scafidi S, Lu H, Aggarwal M, Duan W. Senolytic therapy preserves blood-brain barrier integrity and promotes microglia homeostasis in a tauopathy model. Neurobiol Dis 2024; 202:106711. [PMID: 39437971 PMCID: PMC11600427 DOI: 10.1016/j.nbd.2024.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
Cellular senescence, characterized by expressing the cell cycle inhibitory proteins, is evident in driving age-related diseases. Senescent cells play a crucial role in the initiation and progression of tau-mediated pathology, suggesting that targeting cell senescence offers a therapeutic potential for treating tauopathy associated diseases. This study focuses on identifying non-invasive biomarkers and validating their responses to a well-characterized senolytic therapy combining dasatinib and quercetin (D + Q), in a widely used tauopathy mouse model, PS19. We employed human-translatable MRI measures, including water extraction with phase-contrast arterial spin tagging (WEPCAST) MRI, T2 relaxation under spin tagging (TRUST), longitudinally assessed brain physiology and high-resolution structural MRI evaluated the brain regional volumes in PS19 mice. Our data reveal increased BBB permeability, decreased oxygen extraction fraction, and brain atrophy in 9-month-old PS19 mice compared to their littermate controls. (D + Q) treatment effectively preserves BBB integrity, rescues cerebral oxygen hypometabolism, attenuates brain atrophy, and alleviates tau hyperphosphorylation in PS19 mice. Mechanistically, D + Q treatment induces a shift of microglia from a disease-associated to a homeostatic state, reducing a senescence-like microglial phenotype marked by increased p16/Ink4a. D + Q-treated PS19 mice exhibit enhanced cue-associated cognitive performance in the tracing fear conditioning test compared to the vehicle-treated littermates, implying improved cognitive function by D + Q treatment. Our results pave the way for application of senolytic treatment as well as these noninvasive MRI biomarkers in clinical trials in tauopathy associated neurological disorders.
Collapse
Affiliation(s)
- Minmin Yao
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan Scharff Nielsen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuxiao Ouyang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Aaron Kakazu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Haitong Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Lida Du
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Ruoxuan Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA
| | - Tiffany Chu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manisha Aggarwal
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Kronman FN, Liwang JK, Betty R, Vanselow DJ, Wu YT, Tustison NJ, Bhandiwad A, Manjila SB, Minteer JA, Shin D, Lee CH, Patil R, Duda JT, Xue J, Lin Y, Cheng KC, Puelles L, Gee JC, Zhang J, Ng L, Kim Y. Developmental mouse brain common coordinate framework. Nat Commun 2024; 15:9072. [PMID: 39433760 PMCID: PMC11494176 DOI: 10.1038/s41467-024-53254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
3D brain atlases are key resources to understand the brain's spatial organization and promote interoperability across different studies. However, unlike the adult mouse brain, the lack of developing mouse brain 3D reference atlases hinders advancements in understanding brain development. Here, we present a 3D developmental common coordinate framework (DevCCF) spanning embryonic day (E)11.5, E13.5, E15.5, E18.5, and postnatal day (P)4, P14, and P56, featuring undistorted morphologically averaged atlas templates created from magnetic resonance imaging and co-registered high-resolution light sheet fluorescence microscopy templates. The DevCCF with 3D anatomical segmentations can be downloaded or explored via an interactive 3D web-visualizer. As a use case, we utilize the DevCCF to unveil GABAergic neuron emergence in embryonic brains. Moreover, we map the Allen CCFv3 and spatial transcriptome cell-type data to our stereotaxic P56 atlas. In summary, the DevCCF is an openly accessible resource for multi-study data integration to advance our understanding of brain development.
Collapse
Affiliation(s)
- Fae N Kronman
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Josephine K Liwang
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Rebecca Betty
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Daniel J Vanselow
- Department of Pathology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | | | - Steffy B Manjila
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Jennifer A Minteer
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Donghui Shin
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Choong Heon Lee
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Rohan Patil
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Jeffrey T Duda
- Department of Radiology, Penn Image Computing and Science Lab, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Xue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yingxi Lin
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Keith C Cheng
- Department of Pathology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Universidad de Murcia, and Murcia Arrixaca Institute for Biomedical Research (IMIB), Murcia, Spain
| | - James C Gee
- Department of Radiology, Penn Image Computing and Science Lab, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA.
| |
Collapse
|
4
|
Bradfield C, Voo L, Bhaduri A, Ramesh KT. Validation of a computational biomechanical mouse brain model for rotational head acceleration. Biomech Model Mechanobiol 2024; 23:1347-1367. [PMID: 38662175 DOI: 10.1007/s10237-024-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/17/2024] [Indexed: 04/26/2024]
Abstract
Recent mouse brain injury experiments examine diffuse axonal injury resulting from accelerative head rotations. Evaluating brain deformation during these events would provide valuable information on tissue level thresholds for brain injury, but there are many challenges to imaging the brain's mechanical response during dynamic loading events, such as a blunt head impact. To address this shortcoming, we present an experimentally validated computational biomechanics model of the mouse brain that predicts tissue deformation, given the motion of the mouse head during laboratory experiments. First, we developed a finite element model of the mouse brain that computes tissue strains, given the same head rotations as previously conducted in situ hemicephalic mouse brain experiments. Second, we calibrated the model using a single brain segment, and then validated the model based on the spatial and temporal strain responses of other regions. The result is a computational tool that will provide researchers with the ability to predict brain tissue strains that occur during mouse laboratory experiments, and to link the experiments to the resulting neuropathology, such as diffuse axonal injury.
Collapse
Affiliation(s)
- Connor Bradfield
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street.
| | - Liming Voo
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - Anindya Bhaduri
- Department of Civil Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - K T Ramesh
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| |
Collapse
|
5
|
Yao M, Wei Z, Nielsen JOS, Kakazu A, Ouyang Y, Li R, Chu T, Scafidi S, Lu H, Aggarwal M, Duan W. Senolytic therapy preserves blood-brain barrier integrity and promotes microglia homeostasis in a tauopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586662. [PMID: 38585805 PMCID: PMC10996647 DOI: 10.1101/2024.03.25.586662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cellular senescence, characterized by expressing the cell cycle inhibitory proteins, is evident in driving age-related diseases. Senescent cells play a crucial role in the initiation and progression of tau-mediated pathology, suggesting that targeting cell senescence offers a therapeutic potential for treating tauopathy associated diseases. This study focuses on identifying non-invasive biomarkers and validating their responses to a well-characterized senolytic therapy combining dasatinib and quercetin (D+Q), in a widely used tauopathy mouse model, PS19. We employed human-translatable MRI measures, including water extraction with phase-contrast arterial spin tagging (WEPCAST) MRI, T2 relaxation under spin tagging (TRUST), longitudinally assessed brain physiology and high-resolution structural MRI evaluated the brain regional volumes in PS19 mice. Our data reveal increased BBB permeability, decreased oxygen extraction fraction, and brain atrophy in 9-month-old PS19 mice compared to their littermate controls. (D+Q) treatment effectively preserves BBB integrity, rescues cerebral oxygen hypometabolism, attenuates brain atrophy, and alleviates tau hyperphosphorylation in PS19 mice. Mechanistically, D+Q treatment induces a shift of microglia from a disease-associated to a homeostatic state, reducing a senescence-like microglial phenotype marked by increased p16/INK4a. D+Q-treated PS19 mice exhibit enhanced cue-associated cognitive performance in the tracing fear conditioning test compared to the vehicle-treated littermates, implying improved cognitive function by D+Q treatment. Our results pave the way for application of senolytic treatment as well as these noninvasive MRI biomarkers in clinical trials in tauopathy associated neurological disorders.
Collapse
|
6
|
Joshi J, Yao M, Kakazu A, Ouyang Y, Duan W, Aggarwal M. Distinguishing microgliosis and tau deposition in the mouse brain using paramagnetic and diamagnetic susceptibility source separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.588962. [PMID: 38659855 PMCID: PMC11042227 DOI: 10.1101/2024.04.11.588962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Tauopathies, including Alzheimer's disease (AD), are neurodegenerative disorders characterized by hyperphosphorylated tau protein aggregates in the brain. In addition to protein aggregates, microglia-mediated inflammation and iron dyshomeostasis are other pathological features observed in AD and other tauopathies. It is known that these alterations at the subcellular level occur much before the onset of macroscopic tissue atrophy or cognitive deficits. The ability to detect these microstructural changes with MRI therefore has substantive importance for improved characterization of disease pathogenesis. In this study, we demonstrate that quantitative susceptibility mapping (QSM) with paramagnetic and diamagnetic susceptibility source separation has the potential to distinguish neuropathological alterations in a transgenic mouse model of tauopathy. 3D multi-echo gradient echo data were acquired from fixed brains of PS19 (Tau) transgenic mice and age-matched wild-type (WT) mice (n = 5 each) at 11.7 T. The multi-echo data were fit to a 3-pool complex signal model to derive maps of paramagnetic component susceptibility (PCS) and diamagnetic component susceptibility (DCS). Group-averaged signal fraction and composite susceptibility maps showed significant region-specific differences between the WT and Tau mouse brains. Significant bilateral increases in PCS and |DCS| were observed in specific hippocampal and cortical sub-regions of the Tau mice relative to WT controls. Comparison with immunohistological staining for microglia (Iba1) and phosphorylated-tau (AT8) further indicated that the PCS and DCS differences corresponded to regional microgliosis and tau deposition in the PS19 mouse brains, respectively. The results demonstrate that quantitative susceptibility source separation may provide sensitive imaging markers to detect distinct pathological alterations in tauopathies.
Collapse
Affiliation(s)
- Jayvik Joshi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Minmin Yao
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron Kakazu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuxiao Ouyang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Bradfield C, Voo L, Drewry D, Koliatsos V, Ramesh KT. Dynamic strain fields of the mouse brain during rotation. Biomech Model Mechanobiol 2024; 23:397-412. [PMID: 37891395 DOI: 10.1007/s10237-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Mouse models are used to better understand brain injury mechanisms in humans, yet there is a limited understanding of biomechanical relevance, beginning with how the murine brain deforms when the head undergoes rapid rotation from blunt impact. This problem makes it difficult to translate some aspects of diffuse axonal injury from mouse to human. To address this gap, we present the two-dimensional strain field of the mouse brain undergoing dynamic rotation in the sagittal plane. Using a high-speed camera with digital image correlation measurements of the exposed mid-sagittal brain surface, we found that pure rotations (no direct impact to the skull) of 100-200 rad/s are capable of producing complex strain fields that evolve over time with respect to rotational acceleration and deceleration. At the highest rotational velocity tested, the largest tensile strains (≥ 21% elongation) in selected regions of the mouse brain approach strain thresholds previously associated with axonal injury in prior work. These findings provide a benchmark to validate the mechanical response in biomechanical computational models predicting diffuse axonal injury, but much work remains in correlating tissue deformation patterns from computational models with underlying neuropathology.
Collapse
Affiliation(s)
- Connor Bradfield
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Liming Voo
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David Drewry
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA
| | - Vassilis Koliatsos
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - K T Ramesh
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Hopkins Extreme Materials Institute, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| |
Collapse
|
8
|
Didziokas M, Jones D, Alazmani A, Steacy M, Pauws E, Moazen M. Multiscale mechanical characterisation of the craniofacial system under external forces. Biomech Model Mechanobiol 2024; 23:675-685. [PMID: 38217747 PMCID: PMC10963580 DOI: 10.1007/s10237-023-01799-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/23/2023] [Indexed: 01/15/2024]
Abstract
Premature fusion of craniofacial joints, i.e. sutures, is a major clinical condition. This condition affects children and often requires numerous invasive surgeries to correct. Minimally invasive external loading of the skull has shown some success in achieving therapeutic effects in a mouse model of this condition, promising a new non-invasive treatment approach. However, our fundamental understanding of the level of deformation that such loading has induced across the sutures, leading to the effects observed is severely limited, yet crucial for its scalability. We carried out a series of multiscale characterisations of the loading effects on normal and craniosynostotic mice, in a series of in vivo and ex vivo studies. This involved developing a custom loading setup as well as software for its control and a novel in situ CT strain estimation approach following the principles of digital volume correlation. Our findings highlight that this treatment may disrupt bone formation across the sutures through plastic deformation of the treated suture. The level of permanent deformations observed across the coronal suture after loading corresponded well with the apparent strain that was estimated. This work provides invaluable insight into the level of mechanical forces that may prevent early fusion of cranial joints during the minimally invasive treatment cycle and will help the clinical translation of the treatment approach to humans.
Collapse
Affiliation(s)
- Marius Didziokas
- Department of Mechanical Engineering, University College London, London, UK.
| | - Dominic Jones
- School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Ali Alazmani
- School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Miranda Steacy
- Department of Mechanical Engineering, University College London, London, UK
| | - Erwin Pauws
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
9
|
Mansour H, Azrak R, Cook JJ, Hornburg KJ, Qi Y, Tian Y, Williams RW, Yeh FC, White LE, Johnson GA. An Open Resource: MR and light sheet microscopy stereotaxic atlas of the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587246. [PMID: 38586051 PMCID: PMC10996689 DOI: 10.1101/2024.03.28.587246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We have combined MR histology and light sheet microscopy (LSM) of five postmortem C57BL/6J mouse brains in a stereotaxic space based on micro-CT yielding a multimodal 3D atlas with the highest spatial and contrast resolution yet reported. Brains were imaged in situ with multi gradient echo (mGRE) and diffusion tensor imaging (DTI) at 15 μm resolution (∼ 2.4 million times that of clinical MRI). Scalar images derived from the average DTI and mGRE provide unprecedented contrast in 14 complementary 3D volumes, each highlighting distinct histologic features. The same tissues scanned with LSM and registered into the stereotaxic space provide 17 different molecular cell type stains. The common coordinate framework labels (CCFv3) complete the multimodal atlas. The atlas has been used to correct distortions in the Allen Brain Atlas and harmonize it with Franklin Paxinos. It provides a unique resource for stereotaxic labeling of mouse brain images from many sources.
Collapse
|
10
|
Ma X, Xing Y, Zhai R, Du Y, Yan H. Development and advancements in rodent MRI-based brain atlases. Heliyon 2024; 10:e27421. [PMID: 38510053 PMCID: PMC10950579 DOI: 10.1016/j.heliyon.2024.e27421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Rodents, particularly mice and rats, are extensively utilized in fundamental neuroscience research. Brain atlases have played a pivotal role in this field, evolving from traditional printed histology atlases to digital atlases incorporating diverse imaging datasets. Magnetic resonance imaging (MRI)-based brain atlases, also known as brain maps, have been employed in specific studies. However, the existence of numerous versions of MRI-based brain atlases has impeded their standardized application and widespread use, despite the consensus within the academic community regarding their significance in mice and rats. Furthermore, there is a dearth of comprehensive and systematic reviews on MRI-based brain atlases for rodents. This review aims to bridge this gap by providing a comprehensive overview of the advancements in MRI-based brain atlases for rodents, with a specific focus on mice and rats. It seeks to explore the advantages and disadvantages of histologically printed brain atlases in comparison to MRI brain atlases, delineate the standardized methods for creating MRI brain atlases, and summarize their primary applications in neuroscience research. Additionally, this review aims to assist researchers in selecting appropriate versions of MRI brain atlases for their studies or refining existing MRI brain atlas resources, thereby facilitating the development and widespread adoption of standardized MRI-based brain atlases in rodents.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yao Xing
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Renkuan Zhai
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Yingying Du
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Huanhuan Yan
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518048, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
11
|
Matukhno AE, Petrushan MV, Kiroy VN, Arsenyev FV, Lysenko LV. The method for assessment of local permutations in the glomerular patterns of the rat olfactory bulb by aligning interindividual odor maps. J Comput Neurosci 2023; 51:433-444. [PMID: 37624481 DOI: 10.1007/s10827-023-00858-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The comparison of odor functional maps in rodents demonstrates a high degree of inter-individual variability in glomerular activity patterns. There are substantial methodological difficulties in the interindividual assessment of local permutations in the glomerular patterns, since the position of anatomical extracranial landmarks, as well as the size, shape and angular orientation of olfactory bulbs can vary significantly. A new method for defining anatomical coordinates of active glomeruli in the rat olfactory bulb has been developed. The method compares the interindividual odor functional maps and calculates probabilistic maps of glomerular activity with adjustment. This adjustment involves rotation, scaling and shift of the functional map relative to its expected position in probabilistic map, computed according to the anatomical coordinates. The calculation of the probabilistic map of the odorant-specific response compensates for potential anatoamical errors due to individual variability in olfactory bulb dimensions and angular orientation. We show its efficiency on real data from a large animal sample recorded by two-photon calcium imaging in dorsal surface of the rat olfactory bulb. The proposed method with probabilistic map calculation enables the spatial consistency of the effects of individual odorants in different rats to be assessed and allow stereotypical positions of odor-specific clusters in the glomerular layer of the olfactory bulb to be identified.
Collapse
Affiliation(s)
- Aleksey E Matukhno
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | - Mikhail V Petrushan
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Valery N Kiroy
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | | | - Larisa V Lysenko
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
- Department of Physics, Southern Federal University, Rostov-on-Don, 344090, Russia
| |
Collapse
|
12
|
Arefin TM, Lee CH, Liang Z, Rallapalli H, Wadghiri YZ, Turnbull DH, Zhang J. Towards reliable reconstruction of the mouse brain corticothalamic connectivity using diffusion MRI. Neuroimage 2023; 273:120111. [PMID: 37060936 PMCID: PMC10149621 DOI: 10.1016/j.neuroimage.2023.120111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography has yielded intriguing insights into brain circuits and their relationship to behavior in response to gene mutations or neurological diseases across a number of species. Still, existing tractography approaches suffer from limited sensitivity and specificity, leading to uncertain interpretation of the reconstructed connections. Hence, in this study, we aimed to optimize the imaging and computational pipeline to achieve the best possible spatial overlaps between the tractography and tracer-based axonal projection maps within the mouse brain corticothalamic network. We developed a dMRI-based atlas of the mouse forebrain with structural labels imported from the Allen Mouse Brain Atlas (AMBA). Using the atlas and dMRI tractography, we first reconstructed detailed node-to-node mouse brain corticothalamic structural connectivity matrices using different imaging and tractography parameters. We then investigated the effects of each condition for accurate reconstruction of the corticothalamic projections by quantifying the similarities between the tractography and the tracer data from the Allen Mouse Brain Connectivity Atlas (AMBCA). Our results suggest that these parameters significantly affect tractography outcomes and our atlas can be used to investigate macroscopic structural connectivity in the mouse brain. Furthermore, tractography in mouse brain gray matter still face challenges and need improved imaging and tractography methods.
Collapse
Affiliation(s)
- Tanzil Mahmud Arefin
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States; Center for Neurotechnology in Mental Health Research, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Choong Heon Lee
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States
| | - Zifei Liang
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States
| | - Harikrishna Rallapalli
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States
| | - Youssef Z Wadghiri
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States
| | - Daniel H Turnbull
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States.
| |
Collapse
|
13
|
Perens J, Salinas CG, Roostalu U, Skytte JL, Gundlach C, Hecksher-Sørensen J, Dahl AB, Dyrby TB. Multimodal 3D Mouse Brain Atlas Framework with the Skull-Derived Coordinate System. Neuroinformatics 2023; 21:269-286. [PMID: 36809643 DOI: 10.1007/s12021-023-09623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Magnetic resonance imaging (MRI) and light-sheet fluorescence microscopy (LSFM) are technologies that enable non-disruptive 3-dimensional imaging of whole mouse brains. A combination of complementary information from both modalities is desirable for studying neuroscience in general, disease progression and drug efficacy. Although both technologies rely on atlas mapping for quantitative analyses, the translation of LSFM recorded data to MRI templates has been complicated by the morphological changes inflicted by tissue clearing and the enormous size of the raw data sets. Consequently, there is an unmet need for tools that will facilitate fast and accurate translation of LSFM recorded brains to in vivo, non-distorted templates. In this study, we have developed a bidirectional multimodal atlas framework that includes brain templates based on both imaging modalities, region delineations from the Allen's Common Coordinate Framework, and a skull-derived stereotaxic coordinate system. The framework also provides algorithms for bidirectional transformation of results obtained using either MR or LSFM (iDISCO cleared) mouse brain imaging while the coordinate system enables users to easily assign in vivo coordinates across the different brain templates.
Collapse
Affiliation(s)
- Johanna Perens
- Gubra ApS, Hørsholm, Denmark.,Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University Denmark, Kongens Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | | | | | | | - Carsten Gundlach
- Neutrons and X-rays for Materials Physics, Department of Physics, Technical University Denmark, Kongens Lyngby, Denmark
| | | | - Anders Bjorholm Dahl
- Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University Denmark, Kongens Lyngby, Denmark
| | - Tim B Dyrby
- Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University Denmark, Kongens Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
14
|
Allen K, Gonzalez-Olvera R, Kumar M, Feng T, Pieraut S, Hoy JL. A binocular perception deficit characterizes prey pursuit in developing mice. iScience 2022; 25:105368. [PMID: 36339264 PMCID: PMC9626674 DOI: 10.1016/j.isci.2022.105368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 10/12/2022] [Indexed: 02/02/2023] Open
Abstract
Integration of binocular information at the cellular level has long been studied in the mouse model to uncover the fundamental developmental mechanisms underlying mammalian vision. However, we lack an understanding of the corresponding ontogeny of visual behavior in mice that relies on binocular integration. To address this major outstanding question, we quantified the natural visually guided behavior of postnatal day 21 (P21) and adult mice using a live prey capture assay and a computerized-spontaneous perception of objects task (C-SPOT). We found a robust and specific binocular visual field processing deficit in P21 mice as compared to adults that corresponded to a selective increase in c-Fos expression in the anterior superior colliculus (SC) of the juveniles after C-SPOT. These data link a specific binocular perception deficit in developing mice to activity changes in the SC.
Collapse
Affiliation(s)
- Kelsey Allen
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | | | - Milen Kumar
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ting Feng
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Simon Pieraut
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jennifer L. Hoy
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
15
|
Bhargava A, Monteagudo B, Kushwaha P, Senarathna J, Ren Y, Riddle RC, Aggarwal M, Pathak AP. VascuViz: a multimodality and multiscale imaging and visualization pipeline for vascular systems biology. Nat Methods 2022; 19:242-254. [PMID: 35145319 PMCID: PMC8842955 DOI: 10.1038/s41592-021-01363-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Despite advances in imaging, image-based vascular systems biology has remained challenging because blood vessel data are often available only from a single modality or at a given spatial scale, and cross-modality data are difficult to integrate. Therefore, there is an exigent need for a multimodality pipeline that enables ex vivo vascular imaging with magnetic resonance imaging, computed tomography and optical microscopy of the same sample, while permitting imaging with complementary contrast mechanisms from the whole-organ to endothelial cell spatial scales. To achieve this, we developed 'VascuViz'-an easy-to-use method for simultaneous three-dimensional imaging and visualization of the vascular microenvironment using magnetic resonance imaging, computed tomography and optical microscopy in the same intact, unsectioned tissue. The VascuViz workflow permits multimodal imaging with a single labeling step using commercial reagents and is compatible with diverse tissue types and protocols. VascuViz's interdisciplinary utility in conjunction with new data visualization approaches opens up new vistas in image-based vascular systems biology.
Collapse
Affiliation(s)
- Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin Monteagudo
- Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Priyanka Kushwaha
- Departments of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yunke Ren
- Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan C Riddle
- Departments of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Electrical Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem Rev 2021; 122:209-268. [PMID: 34664951 DOI: 10.1021/acs.chemrev.1c00553] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yang Li
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixuan Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yanna Pan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mingxia Du
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siyu Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xue Qiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Jianfeng Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Xiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
17
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
18
|
Müller HP, Roselli F, Rasche V, Kassubek J. Diffusion Tensor Imaging-Based Studies at the Group-Level Applied to Animal Models of Neurodegenerative Diseases. Front Neurosci 2020; 14:734. [PMID: 32982659 PMCID: PMC7487414 DOI: 10.3389/fnins.2020.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The understanding of human and non-human microstructural brain alterations in the course of neurodegenerative diseases has substantially improved by the non-invasive magnetic resonance imaging (MRI) technique of diffusion tensor imaging (DTI). Animal models (including disease or knockout models) allow for a variety of experimental manipulations, which are not applicable to humans. Thus, the DTI approach provides a promising tool for cross-species cross-sectional and longitudinal investigations of the neurobiological targets and mechanisms of neurodegeneration. This overview with a systematic review focuses on the principles of DTI analysis as used in studies at the group level in living preclinical models of neurodegeneration. The translational aspect from in-vivo animal models toward (clinical) applications in humans is covered as well as the DTI-based research of the non-human brains' microstructure, the methodological aspects in data processing and analysis, and data interpretation at different abstraction levels. The aim of integrating DTI in multiparametric or multimodal imaging protocols will allow the interrogation of DTI data in terms of directional flow of information and may identify the microstructural underpinnings of neurodegeneration-related patterns.
Collapse
Affiliation(s)
| | - Francesco Roselli
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
19
|
Oishi K, Mori S, Troncoso JC, Lenz FA. Mapping tracts in the human subthalamic area by 11.7T ex vivo diffusion tensor imaging. Brain Struct Funct 2020; 225:1293-1312. [PMID: 32303844 PMCID: PMC7584118 DOI: 10.1007/s00429-020-02066-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The cortico-basal ganglia-thalamo-cortical feedback loops that consist of distinct white matter pathways are important for understanding in vivo imaging studies of functional and anatomical connectivity, and for localizing subthalamic white matter structures in surgical approaches for movement disorders, such as Parkinson's disease. Connectomic analysis in animals has identified fiber connections between the basal ganglia and thalamus, which pass through the fields of Forel, where other fiber pathways related to motor, sensory, and cognitive functions co-exist. We now report these pathways in the human brain on ex vivo mesoscopic (250 μm) diffusion tensor imaging and on tractography. The locations of the tracts were identified relative to the adjacent gray matter structures, such as the internal and external segments of the globus pallidus; the zona incerta; the subthalamic nucleus; the substantia nigra pars reticulata and compacta; and the thalamus. The connectome atlas of the human subthalamic region may serve as a resource for imaging studies and for neurosurgical planning.
Collapse
Affiliation(s)
- Kenichi Oishi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Ave., Baltimore, MD, 21205, USA.
| | - Susumu Mori
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Ave., Baltimore, MD, 21205, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick A Lenz
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Meyer 8181 Neurosurgery, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
20
|
Aggarwal M, Smith MD, Calabresi PA. Diffusion-time dependence of diffusional kurtosis in the mouse brain. Magn Reson Med 2020; 84:1564-1578. [PMID: 32022313 DOI: 10.1002/mrm.28189] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE To investigate diffusion-time dependency of diffusional kurtosis in the mouse brain using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences. METHODS 3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone-treated, and age-matched control mice with diffusion-time (tD ) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b-values up to 4000 s/mm2 . Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency-dependence of kurtosis with both diffusion-encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms. RESULTS Kurtosis and diffusivity maps exhibited significant region-specific changes with diffusion time/frequency across both gray and white matter areas. PGSE- and OGSE-based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency-dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone-treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed- and oscillating-gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non-zero permeability. CONCLUSION The results show significant time/frequency-dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter.
Collapse
Affiliation(s)
- Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew D Smith
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Müller HP, Brenner D, Roselli F, Wiesner D, Abaei A, Gorges M, Danzer KM, Ludolph AC, Tsao W, Wong PC, Rasche V, Weishaupt JH, Kassubek J. Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43 G298S ALS mouse model. Transl Neurodegener 2019; 8:27. [PMID: 31485326 PMCID: PMC6716821 DOI: 10.1186/s40035-019-0163-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background In vivo diffusion tensor imaging (DTI) of the mouse brain was used to identify TDP-43 associated alterations in a mouse model for amyotrophic lateral sclerosis (ALS). Methods Ten mice with TDP-43 G298S overexpression under control of the Thy1.2 promoter and 10 wild type (wt) underwent longitudinal DTI scans at 11.7 T, including one baseline and one follow-up scan with an interval of about 5 months. Whole brain-based spatial statistics (WBSS) of DTI-based parameter maps was used to identify longitudinal alterations of TDP-43 G298S mice compared to wt at the cohort level. Results were supplemented by tractwise fractional anisotropy statistics (TFAS) and histological evaluation of motor cortex for signs of neuronal loss. Results Alterations at the cohort level in TDP-43 G298S mice were observed cross-sectionally and longitudinally in motor areas M1/M2 and in transcallosal fibers but not in the corticospinal tract. Neuronal loss in layer V of motor cortex was detected in TDP-43 G298S at the later (but not at the earlier) timepoint compared to wt. Conclusion DTI mapping of TDP-43 G298S mice demonstrated progression in motor areas M1/M2. WBSS and TFAS are useful techniques to localize TDP-43 G298S associated alterations over time in this ALS mouse model, as a biological marker.
Collapse
Affiliation(s)
- Hans-Peter Müller
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - David Brenner
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Francesco Roselli
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany.,2German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Diana Wiesner
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Alireza Abaei
- 3Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Martin Gorges
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Karin M Danzer
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Albert C Ludolph
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - William Tsao
- 4Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Philip C Wong
- 4Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Volker Rasche
- 3Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jochen H Weishaupt
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Jan Kassubek
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| |
Collapse
|
22
|
Mrzílková J, Patzelt M, Gallina P, Wurst Z, Šeremeta M, Dudák J, Krejčí F, Žemlička J, Musil V, Karch J, Rosina J, Zach P. Imaging of Mouse Brain Fixated in Ethanol in Micro-CT. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2054262. [PMID: 31392208 PMCID: PMC6662504 DOI: 10.1155/2019/2054262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/07/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022]
Abstract
Micro-CT imaging is a well-established morphological method for the visualization of animal models. We used ethanol fixation of the mouse brains to perform high-resolution micro-CT scans showing in great details brain grey and white matters. It was possible to identify more than 50 neuroanatomical structures on the 5 selected coronal sections. Among white matter structures, we identified fornix, medial lemniscus, crossed tectospinal pathway, mammillothalamic tract, and the sensory root of the trigeminal ganglion. Among grey matter structures, we identified basal nuclei, habenular complex, thalamic nuclei, amygdala, subparts of hippocampal formation, superior colliculi, Edinger-Westphal nucleus, and others. We suggest that micro-CT of the mouse brain could be used for neurohistological lesions evaluation as an alternative to classical neurohistology because it does not destroy brain tissue.
Collapse
Affiliation(s)
- Jana Mrzílková
- Specialized Laboratory of Experimental Imaging Third Faculty of Medicine, Charles University, Institute of Experimental and Applied Physics and Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Matěj Patzelt
- Specialized Laboratory of Experimental Imaging Third Faculty of Medicine, Charles University, Institute of Experimental and Applied Physics and Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pasquale Gallina
- Department of Surgery and Translational Medicine, Neurosurgery Unit, Florence School of Neurosurgery, University of Florence, Florence, Italy
| | - Zdeněk Wurst
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Šeremeta
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Dudák
- Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - František Krejčí
- Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic
| | - Jan Žemlička
- Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic
| | - Vladimír Musil
- Specialized Laboratory of Experimental Imaging Third Faculty of Medicine, Charles University, Institute of Experimental and Applied Physics and Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Centre of Scientific Information, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Karch
- Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic
| | - Jozef Rosina
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
- Department of Medical Biophysics and Informatics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Zach
- Specialized Laboratory of Experimental Imaging Third Faculty of Medicine, Charles University, Institute of Experimental and Applied Physics and Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
23
|
Feo R, Giove F. Towards an efficient segmentation of small rodents brain: A short critical review. J Neurosci Methods 2019; 323:82-89. [DOI: 10.1016/j.jneumeth.2019.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/27/2023]
|
24
|
Marghoub A, Libby J, Babbs C, Ventikos Y, Fagan MJ, Moazen M. Characterizing and Modeling Bone Formation during Mouse Calvarial Development. PHYSICAL REVIEW LETTERS 2019; 122:048103. [PMID: 30768286 DOI: 10.1103/physrevlett.122.048103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/06/2018] [Indexed: 06/09/2023]
Abstract
The newborn mammalian cranial vault consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Early fusion of these sutures leads to a medical condition known as craniosynostosis. The mechanobiology of normal and craniosynostotic skull growth is not well understood. In a series of previous studies, we characterized and modeled radial expansion of normal and craniosynostotic (Crouzon) mice. Here, we describe a new modeling algorithm to simulate bone formation at the sutures in normal and craniosynostotic mice. Our results demonstrate that our modeling approach is capable of predicting the observed ex vivo pattern of bone formation at the sutures in the aforementioned mice. The same approach can be used to model different calvarial reconstruction in children with craniosynostosis to assist in the management of this complex condition.
Collapse
Affiliation(s)
- Arsalan Marghoub
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Joseph Libby
- Medical and Biological Engineering, School of Engineering and Computer Science, University of Hull, Hull, HU6 7RX, United Kingdom
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Michael J Fagan
- Medical and Biological Engineering, School of Engineering and Computer Science, University of Hull, Hull, HU6 7RX, United Kingdom
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
25
|
Estimation of microvascular capillary physical parameters using MRI assuming a pseudo liquid drop as model of fluid exchange on the cellular level. Rep Pract Oncol Radiother 2018; 24:3-11. [PMID: 30337842 DOI: 10.1016/j.rpor.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/30/2018] [Accepted: 09/06/2018] [Indexed: 11/20/2022] Open
Abstract
Aim One of the most important microvasculatures' geometrical variables is number of pores per capillary length that can be evaluated using MRI. The transportation of blood from inner to outer parts of the capillary is studied by the pores and the relationship among capillary wall thickness, size and the number of pores is examined. Background Characterization of capillary space may obtain much valuable information on the performance of tissues as well as the angiogenesis. Methods To estimate the number of pores, a new pseudo-liquid drop model along with appropriate quantitative physiological purposes has been investigated toward indicating a package of data on the capillary space. This model has utilized the MRI perfusion, diffusion and relaxivity parameters such as cerebral blood volume (CBV), apparent diffusion coefficient (ADC), ΔR 2 and Δ R 2 * values. To verify the model, a special protocol was designed and tested on various regions of eight male Wistar rats. Results The maximum number of pores per capillary length in the various conditions such as recovery, core, normal-recovery, and normal-core were found to be 183 ± 146, 176 ± 160, 275 ± 166, and 283 ± 143, respectively. This ratio in the normal regions was more than that of the damaged ones. The number of pores increased with increasing mean radius of the capillary and decreasing the thickness of the wall in the capillary space. Conclusion Determination of the number of capillary pore may most likely help to evaluate angiogenesis in the tissues and treatment planning of abnormal ones.
Collapse
Key Words
- 2DFT, two-dimensional Fourier transform
- ADC, apparent diffusion coefficient
- CBF, cerebral blood flow
- CBV, cerebral blood volume
- DWI, diffusion weighted imaging
- Diameter
- Diffusion MRI
- FLASH, fast low angle shot
- FOV, field of view
- MCA, middle cerebral artery
- MTT, mean transit time
- Microvasculature
- PWI, perfusion weighted imaging
- Pores
- Pseudo-liquid drop model
- RF, radio frequency
- ROI, region of interest
- TCL, total capillary length
- VSI, vessel size index
- Wistar rats
Collapse
|
26
|
Marghoub A, Libby J, Babbs C, Pauws E, Fagan MJ, Moazen M. Predicting calvarial growth in normal and craniosynostotic mice using a computational approach. J Anat 2018; 232:440-448. [PMID: 29243252 PMCID: PMC5807955 DOI: 10.1111/joa.12764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 11/26/2022] Open
Abstract
During postnatal calvarial growth the brain grows gradually and the overlying bones and sutures accommodate that growth until the later juvenile stages. The whole process is coordinated through a complex series of biological, chemical and perhaps mechanical signals between various elements of the craniofacial system. The aim of this study was to investigate to what extent a computational model can accurately predict the calvarial growth in wild-type (WT) and mutant type (MT) Fgfr2C342Y/+ mice displaying bicoronal suture fusion. A series of morphological studies were carried out to quantify the calvarial growth at P3, P10 and P20 in both mouse types. MicroCT images of a P3 specimen were used to develop a finite element model of skull growth to predict the calvarial shape of WT and MT mice at P10. Sensitivity tests were performed and the results compared with ex vivo P10 data. Although the models were sensitive to the choice of input parameters, they predicted the overall skull growth in the WT and MT mice. The models also captured the difference between the ex vivoWT and MT mice. This modelling approach has the potential to be translated to human skull growth and to enhance our understanding of the different reconstruction methods used to manage clinically the different forms of craniosynostosis, and in the long term possibly reduce the number of re-operations in children displaying this condition and thereby enhance their quality of life.
Collapse
Affiliation(s)
- Arsalan Marghoub
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| | - Joseph Libby
- Medical and Biological EngineeringSchool of Engineering and Computer ScienceUniversity of HullHullUK
| | - Christian Babbs
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Erwin Pauws
- Institute of Child HealthGreat Ormond StreetUniversity College LondonLondonUK
| | - Michael J. Fagan
- Medical and Biological EngineeringSchool of Engineering and Computer ScienceUniversity of HullHullUK
| | - Mehran Moazen
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
27
|
Hadjiabadi DH, Pung L, Zhang J, Ward BD, Lim WT, Kalavar M, Thakor NV, Biswal BB, Pathak AP. Brain tumors disrupt the resting-state connectome. NEUROIMAGE-CLINICAL 2018; 18:279-289. [PMID: 29876248 PMCID: PMC5987800 DOI: 10.1016/j.nicl.2018.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/15/2018] [Accepted: 01/20/2018] [Indexed: 01/18/2023]
Abstract
Brain tumor patients often experience functional deficits that extend beyond the tumor site. While resting-state functional MRI (rsfMRI) has been used to map such functional connectivity changes in brain tumor patients, the interplay between abnormal tumor vasculature and the rsfMRI signal is still not well understood. Therefore, there is an exigent need for new tools to elucidate how the blood‑oxygenation-level-dependent (BOLD) rsfMRI signal is modulated in brain cancer. In this initial study, we explore the utility of a preclinical model for quantifying brain tumor-induced changes on the rsfMRI signal and resting-state brain connectivity. We demonstrate that brain tumors induce brain-wide alterations of resting-state networks that extend to the contralateral hemisphere, accompanied by global attenuation of the rsfMRI signal. Preliminary histology suggests that some of these alterations in brain connectivity may be attributable to tumor-related remodeling of the neurovasculature. Moreover, this work recapitulates clinical rsfMRI findings from brain tumor patients in terms of the effects of tumor size on the neurovascular microenvironment. Collectively, these results lay the foundation of a preclinical platform for exploring the usefulness of rsfMRI as a potential new biomarker in patients with brain cancer.
Collapse
Affiliation(s)
- Darian H Hadjiabadi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Leland Pung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiangyang Zhang
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - B D Ward
- Department of Biophysics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Woo-Taek Lim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Meghana Kalavar
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, The New Jersey Institute of Technology, Newark NJ, USA
| | - Arvind P Pathak
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Resting-state functional MRI reveals altered brain connectivity and its correlation with motor dysfunction in a mouse model of Huntington's disease. Sci Rep 2017; 7:16742. [PMID: 29196686 PMCID: PMC5711837 DOI: 10.1038/s41598-017-17026-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/21/2017] [Indexed: 11/29/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder, and no cure is available currently. Treatment of HD is likely to be most beneficial in the early, possibly pre-manifestation stage. The challenge is to determine the best time for intervention and evaluate putative efficacy in the absence of clinical symptoms. Resting-state functional MRI may represent a promising tool to develop biomarker reflecting early neuronal dysfunction in HD brain, because it can examine multiple brain networks without confounding effects of cognitive ability, which makes the resting-state fMRI promising as a translational bridge between preclinical study in animal models and clinical findings in HD patients. In this study, we examined brain regional connectivity and its correlation to brain atrophy, as well as motor function in the 18-week-old N171-82Q HD mice. HD mice exhibited significantly altered functional connectivity in multiple networks. Particularly, the weaker intra-striatum connectivity was positively correlated with striatal atrophy, while striatum-retrosplenial cortex connectivity is negatively correlated with striatal atrophy. The resting-state brain regional connectivity had no significant correlation with motor deficits in HD mice. Our results suggest that altered brain connectivity detected by resting-state fMRI might serve as an early disease biomarker in HD.
Collapse
|
29
|
Gravett M, Cepek J, Fenster A. An ultra-high field strength MR image-guided robotic needle delivery system for in-bore small animal interventions. Med Phys 2017; 44:5544-5555. [PMID: 28849592 DOI: 10.1002/mp.12534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The purpose of this study was to develop and validate an image-guided robotic needle delivery system for accurate and repeatable needle targeting procedures in mouse brains inside the 12 cm inner diameter gradient coil insert of a 9.4 T MR scanner. Many preclinical research techniques require the use of accurate needle deliveries to soft tissues, including brain tissue. Soft tissues are optimally visualized in MR images, which offer high-soft tissue contrast, as well as a range of unique imaging techniques, including functional, spectroscopy and thermal imaging, however, there are currently no solutions for delivering needles to small animal brains inside the bore of an ultra-high field MR scanner. This paper describes the mechatronic design, evaluation of MR compatibility, registration technique, mechanical calibration, the quantitative validation of the in-bore image-guided needle targeting accuracy and repeatability, and demonstrated the system's ability to deliver needles in situ. METHODS Our six degree-of-freedom, MR compatible, mechatronic system was designed to fit inside the bore of a 9.4 T MR scanner and is actuated using a combination of piezoelectric and hydraulic mechanisms. The MR compatibility and targeting accuracy of the needle delivery system are evaluated to ensure that the system is precisely calibrated to perform the needle targeting procedures. A semi-automated image registration is performed to link the robot coordinates to the MR coordinate system. Soft tissue targets can be accurately localized in MR images, followed by automatic alignment of the needle trajectory to the target. Intra-procedure visualization of the needle target location and the needle were confirmed through MR images after needle insertion. RESULTS The effects of geometric distortions and signal noise were found to be below threshold that would have an impact on the accuracy of the system. The system was found to have negligible effect on the MR image signal noise and geometric distortion. The system was mechanically calibrated and the mean image-guided needle targeting and needle trajectory accuracies were quantified in an image-guided tissue mimicking phantom experiment to be 178 ± 54 μm and 0.27 ± 0.65°, respectively. CONCLUSIONS An MR image-guided system for in-bore needle deliveries to soft tissue targets in small animal models has been developed. The results of the needle targeting accuracy experiments in phantoms indicate that this system has the potential to deliver needles to the smallest soft tissue structures relevant in preclinical studies, at a wide variety of needle trajectories. Future work in the form of a fully-automated needle driver with precise depth control would benefit this system in terms of its applicability to a wider range of animal models and organ targets.
Collapse
Affiliation(s)
- Matthew Gravett
- Robarts Research Institute, London, ON, N6A 5B7, Canada.,Biomedical Engineering, Western University, London, ON, N6A 5B9, Canada
| | - Jeremy Cepek
- Robarts Research Institute, London, ON, N6A 5B7, Canada.,Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Aaron Fenster
- Robarts Research Institute, London, ON, N6A 5B7, Canada.,Biomedical Engineering, Western University, London, ON, N6A 5B9, Canada
| |
Collapse
|
30
|
Hutchinson EB, Schwerin SC, Radomski KL, Sadeghi N, Jenkins J, Komlosh ME, Irfanoglu MO, Juliano SL, Pierpaoli C. Population based MRI and DTI templates of the adult ferret brain and tools for voxelwise analysis. Neuroimage 2017; 152:575-589. [PMID: 28315740 PMCID: PMC6409125 DOI: 10.1016/j.neuroimage.2017.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 01/26/2023] Open
Abstract
Non-invasive imaging has the potential to play a crucial role in the characterization and translation of experimental animal models to investigate human brain development and disorders, especially when employed to study animal models that more accurately represent features of human neuroanatomy. The purpose of this study was to build and make available MRI and DTI templates and analysis tools for the ferret brain as the ferret is a well-suited species for pre-clinical MRI studies with folded cortical surface, relatively high white matter volume and body dimensions that allow imaging with pre-clinical MRI scanners. Four ferret brain templates were built in this study – in-vivo MRI and DTI and ex-vivo MRI and DTI – using brain images across many ferrets and region of interest (ROI) masks corresponding to established ferret neuroanatomy were generated by semi-automatic and manual segmentation. The templates and ROI masks were used to create a web-based ferret brain viewing software for browsing the MRI and DTI volumes with annotations based on the ROI masks. A second objective of this study was to provide a careful description of the imaging methods used for acquisition, processing, registration and template building and to demonstrate several voxelwise analysis methods including Jacobian analysis of morphometry differences between the female and male brain and bias-free identification of DTI abnormalities in an injured ferret brain. The templates, tools and methodological optimization presented in this study are intended to advance non-invasive imaging approaches for human-similar animal species that will enable the use of pre-clinical MRI studies for understanding and treating brain disorders.
Collapse
Affiliation(s)
- E B Hutchinson
- Section on Quantitative Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - S C Schwerin
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - K L Radomski
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - N Sadeghi
- Section on Quantitative Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - J Jenkins
- Section on Quantitative Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Dept. of Electrical Engineering and Computer Science, The Catholic University of America, Washington D.C., USA
| | - M E Komlosh
- Section on Quantitative Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - M O Irfanoglu
- Section on Quantitative Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - S L Juliano
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - C Pierpaoli
- Section on Quantitative Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Rangarajan JR, Vande Velde G, van Gent F, De Vloo P, Dresselaers T, Depypere M, van Kuyck K, Nuttin B, Himmelreich U, Maes F. Image-based in vivo assessment of targeting accuracy of stereotactic brain surgery in experimental rodent models. Sci Rep 2016; 6:38058. [PMID: 27901096 PMCID: PMC5128925 DOI: 10.1038/srep38058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/01/2016] [Indexed: 01/27/2023] Open
Abstract
Stereotactic neurosurgery is used in pre-clinical research of neurological and psychiatric disorders in experimental rat and mouse models to engraft a needle or electrode at a pre-defined location in the brain. However, inaccurate targeting may confound the results of such experiments. In contrast to the clinical practice, inaccurate targeting in rodents remains usually unnoticed until assessed by ex vivo end-point histology. We here propose a workflow for in vivo assessment of stereotactic targeting accuracy in small animal studies based on multi-modal post-operative imaging. The surgical trajectory in each individual animal is reconstructed in 3D from the physical implant imaged in post-operative CT and/or its trace as visible in post-operative MRI. By co-registering post-operative images of individual animals to a common stereotaxic template, targeting accuracy is quantified. Two commonly used neuromodulation regions were used as targets. Target localization errors showed not only variability, but also inaccuracy in targeting. Only about 30% of electrodes were within the subnucleus structure that was targeted and a-specific adverse effects were also noted. Shifting from invasive/subjective 2D histology towards objective in vivo 3D imaging-based assessment of targeting accuracy may benefit a more effective use of the experimental data by excluding off-target cases early in the study.
Collapse
Affiliation(s)
- Janaki Raman Rangarajan
- Department of Electrical Engineering (ESAT/PSI), KU Leuven & Medical Imaging Research Center, University Hospital Leuven, Leuven, Flanders, Belgium
- Molecular Small Animal Imaging Center (MoSAIC), Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
| | - Greetje Vande Velde
- Molecular Small Animal Imaging Center (MoSAIC), Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
- Biomedical MRI unit, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
| | - Friso van Gent
- Biomedical MRI unit, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
- Laboratory for Experimental Functional Neurosurgery, Department of Neurosciences, Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
| | - Philippe De Vloo
- Laboratory for Experimental Functional Neurosurgery, Department of Neurosciences, Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
| | - Tom Dresselaers
- Molecular Small Animal Imaging Center (MoSAIC), Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
- Biomedical MRI unit, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
| | - Maarten Depypere
- Department of Electrical Engineering (ESAT/PSI), KU Leuven & Medical Imaging Research Center, University Hospital Leuven, Leuven, Flanders, Belgium
| | - Kris van Kuyck
- Laboratory for Experimental Functional Neurosurgery, Department of Neurosciences, Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
| | - Bart Nuttin
- Laboratory for Experimental Functional Neurosurgery, Department of Neurosciences, Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
| | - Uwe Himmelreich
- Molecular Small Animal Imaging Center (MoSAIC), Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
- Biomedical MRI unit, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
| | - Frederik Maes
- Department of Electrical Engineering (ESAT/PSI), KU Leuven & Medical Imaging Research Center, University Hospital Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
32
|
Design and Verification of Novel Low-Cost MR-Guided Small-Animal Stereotactic System. J Med Biol Eng 2016. [DOI: 10.1007/s40846-016-0153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Pan L, Hu J, Peng C, Liu H, Zhang Z, Xie J, Qin J. Use of magnetic resonance imaging to assess ovarian maturation in live Rhinogobio ventralis (Sauvage & Dabry de Thiersant, 1874). Theriogenology 2016; 86:1969-74. [PMID: 27481814 DOI: 10.1016/j.theriogenology.2016.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 11/19/2022]
Abstract
The aim of this study is to evaluate the application of magnetic resonance imaging (MRI) to assess ovarian maturation in live female Rhinogobio ventralis (Sauvage & Dabry de Thiersant, 1874). The fish were randomly collected from the Jiangjin area of the Yangtze River between January and April 2014. Magnetic resonance imaging was performed using a 3.0 T clinical MRI scanner with a brain coil and two pulse sequences (IDEAL and 3D CUBE) were employed. Magnetic resonance and histologic images at different stages of ovarian maturation (I-IV) were acquired. An empirical equation (y = -0.1 + 1.56 × x) was derived by traditional method to describe the relationship between the gonadosomatic index (y) and the percentage volume of the ovary (x). A significant correlation (R(2) = 0.977, P < 0.01, N = 53) was found between measurements of the percentage volume of the ovary by MRI and traditional methods. The research findings suggested that MRI was a reliable, rapid, and noninvasive method to assess stages of ovarian maturity in female R. ventralis.
Collapse
Affiliation(s)
- Lei Pan
- Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan, People's Republic of China; Faculty of Resources and Environmental Science, Hubei University, Wuhan, People's Republic of China; Regional Development and Environmental Response, Key Laboratory of Hubei Province, Wuhan, People's Republic of China.
| | - Junwu Hu
- Department of Radiology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chengdong Peng
- Department of Radiology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huan Liu
- Department of Radiology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ziheng Zhang
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jianjun Xie
- Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jiali Qin
- Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
34
|
Semi-automated registration-based anatomical labelling, voxel based morphometry and cortical thickness mapping of the mouse brain. J Neurosci Methods 2016; 267:62-73. [PMID: 27079699 DOI: 10.1016/j.jneumeth.2016.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Morphoanatomical MRI methods have recently begun to be applied in the mouse. However, substantial differences in the anatomical organisation of human and rodent brain prevent a straightforward extension of clinical neuroimaging tools to mouse brain imaging. As a result, the vast majority of the published approaches rely on tailored routines that address single morphoanatomical readouts and typically lack a sufficiently-detailed description of the complex workflow required to process images and quantify structural alterations. NEW METHOD Here we provide a detailed description of semi-automated registration-based procedures for voxel based morphometry, cortical thickness estimation and automated anatomical labelling of the mouse brain. The approach relies on the sequential use of advanced image processing tools offered by ANTs, a flexible open source toolkit freely available to the scientific community. RESULTS To illustrate our procedures, we described their application to quantify morphological alterations in socially-impaired BTBR mice with respect to normosocial C57BL/6J controls, a comparison recently described by us and other research groups. We show that the approach can reliably detect both focal and large-scale grey matter alterations using complementary readouts. COMPARISON WITH EXISTING METHODS No detailed operational workflows for mouse imaging are available for direct comparison with our methods. However, empirical assessment of the mapped inter-strain differences is in good agreement with the findings of other groups using analogous approaches. CONCLUSION The detailed operational workflows described here are expected to help the implementation of rodent morphoanatomical methods by non-expert users, and ultimately promote the use of these tools across the preclinical neuroimaging community.
Collapse
|
35
|
Intracranial pressure changes during mouse development. J Biomech 2015; 49:123-126. [PMID: 26620442 DOI: 10.1016/j.jbiomech.2015.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/25/2022]
Abstract
During early stages of postnatal development, pressure from the growing brain as well as cerebrospinal fluid, i.e. intracranial pressure (ICP), load the calvarial bones. It is likely that such loading contributes to the peripheral bone formation at the sutural edges of calvarial bones, especially shortly after birth when the brain is growing rapidly. The aim of this study was to quantify ICP during mouse development. A custom pressure monitoring system was developed and calibrated. It was then used to measure ICP in a total of seventy three wild type mice at postnatal (P) day 3, 10, 20, 31 and 70. Retrospectively, the sample in each age group with the closest ICP to the average value was scanned using micro-computed tomography to estimate cranial growth. ICP increased from 1.33±0.87mmHg at P3 to 1.92±0.78mmHg at P10 and 3.60±1.08mmHg at P20. In older animals, ICP plateaued at about 4mmHg. There were statistically significant differences between the ICP at the P3 vs. P20, and P10 vs. P20. In the samples that were scanned, intracranial volume and skull length followed a similar pattern of increase up to P20 and then plateaued at older ages. These data are consistent with the possibility of ICP being a contributing factor to bone formation at the sutures during early stages of development. The data can be further used for development and validation of computational models of skull growth.
Collapse
|
36
|
A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast. PLoS One 2015; 10:e0142974. [PMID: 26571123 PMCID: PMC4646620 DOI: 10.1371/journal.pone.0142974] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/29/2015] [Indexed: 01/14/2023] Open
Abstract
High-resolution Magnetic Resonance Imaging (MRI) has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT), especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v) iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine.
Collapse
|
37
|
Sajja BR, Bade AN, Zhou B, Uberti MG, Gorantla S, Gendelman HE, Boska MD, Liu Y. Generation and Disease Model Relevance of a Manganese Enhanced Magnetic Resonance Imaging-Based NOD/scid-IL-2Rγc(null) Mouse Brain Atlas. J Neuroimmune Pharmacol 2015; 11:133-41. [PMID: 26556033 DOI: 10.1007/s11481-015-9635-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
Strain specific mouse brain magnetic resonance imaging (MRI) atlases provide coordinate space linked anatomical registration. This allows longitudinal quantitative analyses of neuroanatomical volumes and imaging metrics for assessing the role played by aging and disease to the central nervous system. As NOD/scid-IL-2Rγ(c)(null) (NSG) mice allow human cell transplantation to study human disease, these animals are used to assess brain morphology. Manganese enhanced MRI (MEMRI) improves contrasts amongst brain components and as such can greatly help identifying a broad number of structures on MRI. To this end, NSG adult mouse brains were imaged in vivo on a 7.0 Tesla MR scanner at an isotropic resolution of 100 μm. A population averaged brain of 19 mice was generated using an iterative alignment algorithm. MEMRI provided sufficient contrast permitting 41 brain structures to be manually labeled. Volumes of 7 humanized mice brain structures were measured by atlas-based segmentation and compared against non-humanized controls. The humanized NSG mice brain volumes were smaller than controls (p < 0.001). Many brain structures of humanized mice were significantly smaller than controls. We posit that the irradiation and cell grafting involved in the creation of humanized mice were responsible for the morphological differences. Six NSG mice without MnCl2 administration were scanned with high resolution T2-weighted MRI and segmented to test broad utility of the atlas.
Collapse
Affiliation(s)
- Balasrinivasa R Sajja
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Biyun Zhou
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA.,Anesthesiology, Tongji Medical College, Huanzhong University of Science and Technology, Wuhan, China
| | - Mariano G Uberti
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Michael D Boska
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
38
|
Counter SA, Damberg P, Aski SN, Nagy K, Berglin CE, Laurell G. Experimental Fusion of Contrast Enhanced High-Field Magnetic Resonance Imaging and High-Resolution Micro-Computed Tomography in Imaging the Mouse Inner Ear. Open Neuroimag J 2015; 9:7-12. [PMID: 26401173 PMCID: PMC4578136 DOI: 10.2174/1874440001509010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Objective: Imaging cochlear, vestibular, and 8th cranial nerve abnormalities remains a challenge. In this study, the membranous and osseous labyrinths of the wild type mouse inner ear were examined using volumetric data from ultra high-field magnetic resonance imaging (MRI) with gadolinium contrast at 9.4 Tesla and high-resolution micro-computed tomography (µCT) to visualize the scalae and vestibular apparatus, and to establish imaging protocols and parameters for comparative analysis of the normal and mutant mouse inner ear. Methods: For in vivo MRI acquisition, animals were placed in a Milleped coil situated in the isocenter of a horizontal 9.4 T Varian magnet. For µCT examination, cone beam scans were performed ex vivo following MRI using the µCT component of a nanoScan PET/CT in vivo scanner. Results: The fusion of Gd enhanced high field MRI and high-resolution µCT scans revealed the dynamic membranous labyrinth of the perilymphatic fluid filled scala tympani and scala vestibule of the cochlea, and semicircular canals of the vestibular apparatus, within the µCT visualized contours of the contiguous osseous labyrinth. The ex vivo µCT segmentation revealed the surface contours and structural morphology of each cochlea turn and the semicircular canals in 3 planes. Conclusions: The fusion of ultra high-field MRI and high-resolution µCT imaging techniques were complementary, and provided high-resolution dynamic and static visualization of the complex morphological features of the normal mouse inner ear structures, which may offer a valuable approach for the investigation of cochlear and vestibular abnormalities that are associated with birth defects related to genetic inner ear disorders in humans.
Collapse
Affiliation(s)
- S Allen Counter
- Neurology Department, Harvard University Biological Laboratories, Cambridge, MA 02138, USA
| | - Peter Damberg
- Karolinska Experimental Research Imaging Center, Karolinska Universitetssjukhuset Solna, Sweden
| | - Sahar Nikkhou Aski
- Karolinska Experimental Research Imaging Center, Karolinska Universitetssjukhuset Solna, Sweden
| | - Kálmán Nagy
- Karolinska Experimental Research Imaging Center, Karolinska Universitetssjukhuset Solna, Sweden
| | | | - Göran Laurell
- Department of Surgical Sciences Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Abstract
In order to understand the consequences of the mutation on behavioral and biological phenotypes relevant to autism, mutations in many of the risk genes for autism spectrum disorder have been experimentally generated in mice. Here, we summarize behavioral outcomes and neuroanatomical abnormalities, with a focus on high-resolution magnetic resonance imaging of postmortem mouse brains. Results are described from multiple mouse models of autism spectrum disorder and comorbid syndromes, including the 15q11-13, 16p11.2, 22q11.2, Cntnap2, Engrailed2, Fragile X, Integrinβ3, MET, Neurexin1a, Neuroligin3, Reelin, Rett, Shank3, Slc6a4, tuberous sclerosis, and Williams syndrome models, and inbred strains with strong autism-relevant behavioral phenotypes, including BTBR and BALB. Concomitant behavioral and neuroanatomical abnormalities can strengthen the interpretation of results from a mouse model, and may elevate the usefulness of the model system for therapeutic discovery.
Collapse
Affiliation(s)
- Jacob Ellegood
- />Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON M5T 3H7 Canada
| | - Jacqueline N. Crawley
- />MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, 4625 2nd Avenue, Sacramento, CA 95817 USA
| |
Collapse
|
40
|
Sombke A, Lipke E, Michalik P, Uhl G, Harzsch S. Potential and limitations of X-Ray micro-computed tomography in arthropod neuroanatomy: a methodological and comparative survey. J Comp Neurol 2015; 523:1281-95. [PMID: 25728683 PMCID: PMC4409823 DOI: 10.1002/cne.23741] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/02/2015] [Indexed: 01/15/2023]
Abstract
Classical histology or immunohistochemistry combined with fluorescence or confocal laser scanning microscopy are common techniques in arthropod neuroanatomy, and these methods often require time-consuming and difficult dissections and sample preparations. Moreover, these methods are prone to artifacts due to compression and distortion of tissues, which often result in information loss and especially affect the spatial relationships of the examined parts of the nervous system in their natural anatomical context. Noninvasive approaches such as X-ray micro-computed tomography (micro-CT) can overcome such limitations and have been shown to be a valuable tool for understanding and visualizing internal anatomy and structural complexity. Nevertheless, knowledge about the potential of this method for analyzing the anatomy and organization of nervous systems, especially of taxa with smaller body size (e.g., many arthropods), is limited. This study set out to analyze the brains of selected arthropods with micro-CT, and to compare these results with available histological and immunohistochemical data. Specifically, we explored the influence of different sample preparation procedures. Our study shows that micro-CT is highly suitable for analyzing arthropod neuroarchitecture in situ and allows specific neuropils to be distinguished within the brain to extract quantitative data such as neuropil volumes. Moreover, data acquisition is considerably faster compared with many classical histological techniques. Thus, we conclude that micro-CT is highly suitable for targeting neuroanatomy, as it reduces the risk of artifacts and is faster than classical techniques.
Collapse
Affiliation(s)
- Andy Sombke
- Zoological Institute and Museum, Ernst-Moritz-Arndt-University of Greifswald, 17487, Greifswald, Germany
| | | | | | | | | |
Collapse
|
41
|
Wegrzynowicz M, Bichell TJ, Soares BD, Loth MK, McGlothan JL, Alikhan FS, Hua K, Coughlin JM, Holt HK, Jetter CS, Mori S, Pomper MG, Osmand AP, Guilarte TR, Bowman AB. Novel BAC Mouse Model of Huntington's Disease with 225 CAG Repeats Exhibits an Early Widespread and Stable Degenerative Phenotype. J Huntingtons Dis 2015; 4:17-36. [PMID: 26333255 PMCID: PMC4657874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
BACKGROUND Unusually large CAG repeat expansions (>60) in exon one of Huntingtin (HTT) are invariably associated with a juvenile-onset form of Huntington's disease (HD), characterized by a more extensive and rapidly progressing neuropathology than the more prevalent adult-onset form. However, existing mouse models of HD that express the full-length Htt gene with CAG repeat lengths associated with juvenile HD (ranging between ~75 to ~150 repeats in published models) exhibit selective neurodegenerative phenotypes more consistent with adult-onset HD. Objective: To determine if a very large CAG repeat (>200) in full-length Htt elicits neurodegenerative phenotypes consistent with juvenile HD. METHODS Using a …bacterial artificial chromosome (BAC) system, we generated mice expressing full-length mouse Htt with ~225 CAG repeats under control of the mouse Htt promoter. Mice were characterized using behavioral, neuropathological, biochemical and brain imaging methods. RESULTS BAC-225Q mice exhibit phenotypes consistent with a subset of features seen in juvenile-onset HD: very early motor behavior abnormalities, reduced body weight, widespread and progressive increase in Htt aggregates, gliosis, and neurodegeneration. Early striatal pathology was observed, including reactive gliosis and loss of dopamine receptors, prior to detectable volume loss. HD-related blood markers of impaired energy metabolism and systemic inflammation were also increased. Aside from an age-dependent progression of diffuse nuclear aggregates at 6 months of age to abundant neuropil aggregates at 12 months of age, other pathological and motor phenotypes showed little to no progression. CONCLUSIONS The HD phenotypes present in animals 3 to 12 months of age make the BAC-225Q mice a unique and stable model of full-length mutant Htt associated phenotypes, including body weight loss, behavioral impairment and HD-like neurodegenerative phenotypes characteristic of juvenile-onset HD and/or late-stage adult-onset HD.
Collapse
Affiliation(s)
- Michal Wegrzynowicz
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt University Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Terry Jo Bichell
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt University Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Barbara D. Soares
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York City, New York 10031, United States
| | - Meredith K. Loth
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York City, New York 10031, United States
| | - Jennifer L. McGlothan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York City, New York 10031, United States
| | - Fatima S. Alikhan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York City, New York 10031, United States
| | - Kegang Hua
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Jennifer M. Coughlin
- Department of Psychiatry, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Hunter K. Holt
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Christopher S. Jetter
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Susumu Mori
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Martin G. Pomper
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Alexander P. Osmand
- Department of Psychiatry, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Tomás R. Guilarte
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York City, New York 10031, United States
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Aaron B. Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt University Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
42
|
Milde S, Adalbert R, Elaman MH, Coleman MP. Axonal transport declines with age in two distinct phases separated by a period of relative stability. Neurobiol Aging 2014; 36:971-81. [PMID: 25443288 PMCID: PMC4321880 DOI: 10.1016/j.neurobiolaging.2014.09.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 01/20/2023]
Abstract
Axonal transport is critical for supplying newly synthesized proteins, organelles, mRNAs, and other cargoes from neuronal cell bodies into axons. Its impairment in many neurodegenerative conditions appears likely to contribute to pathogenesis. Axonal transport also declines during normal aging, but little is known about the timing of these changes, or about the effect of aging on specific cargoes in individual axons. This is important for understanding mechanisms of age-related axon loss and age-related axonal disorders. Here we use fluorescence live imaging of peripheral nerve and central nervous system tissue explants to investigate vesicular and mitochondrial axonal transport. Interestingly, we identify 2 distinct periods of change, 1 period during young adulthood and the other in old age, separated by a relatively stable plateau during most of adult life. We also find that after tibial nerve regeneration, even in old animals, neurons are able to support higher transport rates of each cargo for a prolonged period. Thus, the age-related decline in axonal transport is not an inevitable consequence of either aging neurons or an aging systemic milieu.
Collapse
Affiliation(s)
- Stefan Milde
- Signalling ISP, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Robert Adalbert
- Signalling ISP, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - M Handan Elaman
- Signalling ISP, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Michael P Coleman
- Signalling ISP, The Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
43
|
Zaslavsky I, Baldock RA, Boline J. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases. Front Neuroinform 2014; 8:74. [PMID: 25309417 PMCID: PMC4162418 DOI: 10.3389/fninf.2014.00074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/08/2014] [Indexed: 11/21/2022] Open
Abstract
Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project.
Collapse
Affiliation(s)
- Ilya Zaslavsky
- San Diego Supercomputer Center, University of California San Diego La Jolla, CA, USA
| | - Richard A Baldock
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK
| | | |
Collapse
|
44
|
Papp EA, Leergaard TB, Calabrese E, Johnson GA, Bjaalie JG. Waxholm Space atlas of the Sprague Dawley rat brain. Neuroimage 2014; 97:374-86. [PMID: 24726336 PMCID: PMC4160085 DOI: 10.1016/j.neuroimage.2014.04.001] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 μm isotropic voxels for the MRI volume and 78 μm isotropic voxels for the DTI. Building on this template, we have delineated 76 major anatomical structures in the brain. Delineation criteria are provided for each structure. We have applied a spatial reference system based on internal brain landmarks according to the Waxholm Space standard, previously developed for the mouse brain, and furthermore connected this spatial reference system to the widely used stereotaxic coordinate system by identifying cranial sutures and related stereotaxic landmarks in the template using contrast given by the active staining technique applied to the tissue. With the release of the present atlasing template and anatomical delineations, we provide a new tool for spatial orientation analysis of neuroanatomical location, and planning and guidance of experimental procedures in the rat brain. The use of Waxholm Space and related infrastructures will connect the atlas to interoperable resources and services for multi-level data integration and analysis across reference spaces.
Collapse
Affiliation(s)
- Eszter A Papp
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Evan Calabrese
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
45
|
Aggarwal M, Gobius I, Richards LJ, Mori S. Diffusion MR Microscopy of Cortical Development in the Mouse Embryo. Cereb Cortex 2014; 25:1970-80. [PMID: 24518754 DOI: 10.1093/cercor/bhu006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cortical development in the mouse embryo involves complex changes in the microstructure of the telencephalic wall, which are challenging to examine using three-dimensional (3D) imaging techniques. In this study, high-resolution 3D diffusion magnetic resonance (dMR) microscopy of the embryonic mouse cortex is presented. Using diffusion-weighted gradient- and spin-echo based acquisition, dMR microimaging data were acquired from fixed mouse embryos at 7 developmental stages from embryonic day (E)12.5 to E18.5. The dMR imaging (dMRI) contrasts revealed microscopic structural detail in the mouse telencephalic wall, allowing delineation of transient zones in the developing cortex based on their unique diffusion signatures. With the high-resolution 3D data of the mouse embryo, we were able to visualize the complex microstructure of embryonic cerebral tissue and to resolve its regional and temporal evolution during cortical formation. Furthermore, averaged dMRI contrasts generated via deformable registration revealed distinct spatial and temporal gradients of anisotropy variation across the developing embryonic cortical plate and the ventricular zone. The findings of this study demonstrate the potential of 3D dMRI to resolve the complex microstructure of the embryonic mouse cortex, and will be important for investigations of corticogenesis and its disruption in embryonic mouse models.
Collapse
Affiliation(s)
- Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Linda J Richards
- Queensland Brain Institute School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Susumu Mori
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
46
|
Seki F, Hikishima K, Nambu S, Okanoya K, Okano HJ, Sasaki E, Miura K, Okano H. Multidimensional MRI-CT atlas of the naked mole-rat brain (Heterocephalus glaber). Front Neuroanat 2013; 7:45. [PMID: 24391551 PMCID: PMC3868886 DOI: 10.3389/fnana.2013.00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/27/2013] [Indexed: 11/13/2022] Open
Abstract
Naked mole-rats have a variety of distinctive features such as the organization of a hierarchical society (known as eusociality), extraordinary longevity, and cancer resistance; thus, it would be worthwhile investigating these animals in detail. One important task is the preparation of a brain atlas database that provide comprehensive information containing multidimensional data with various image contrasts, which can be achievable using a magnetic resonance imaging (MRI). Advanced MRI techniques such as diffusion tensor imaging (DTI), which generates high contrast images of fiber structures, can characterize unique morphological properties in addition to conventional MRI. To obtain high spatial resolution images, MR histology, DTI, and X-ray computed tomography were performed on the fixed adult brain. Skull and brain structures were segmented as well as reconstructed in stereotaxic coordinates. Data were also acquired for the neonatal brain to allow developmental changes to be observed. Moreover, in vivo imaging of naked mole-rats was established as an evaluation tool of live animals. The data obtained comprised three-dimensional (3D) images with high tissue contrast as well as stereotaxic coordinates. Developmental differences in the visual system were highlighted in particular by DTI. Although it was difficult to delineate optic nerves in the mature adult brain, parts of them could be distinguished in the immature neonatal brain. From observation of cortical thickness, possibility of high somatosensory system development replaced to the visual system was indicated. 3D visualization of brain structures in the atlas as well as the establishment of in vivo imaging would promote neuroimaging researches towards detection of novel characteristics of eusocial naked mole-rats.
Collapse
Affiliation(s)
- Fumiko Seki
- Department of Physiology, Keio University School of Medicine Tokyo, Japan ; Central Institute for Experimental Animals Kanagawa, Japan
| | - Keigo Hikishima
- Department of Physiology, Keio University School of Medicine Tokyo, Japan ; Central Institute for Experimental Animals Kanagawa, Japan
| | - Sanae Nambu
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute Saitama, Japan
| | - Kazuo Okanoya
- Japan Science and Technology Exploratory Research for Advanced Technology Okanoya Emotional Information Project Saitama, Japan ; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| | - Hirotaka J Okano
- Division of Regenerative Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Erika Sasaki
- Department of Physiology, Keio University School of Medicine Tokyo, Japan ; Central Institute for Experimental Animals Kanagawa, Japan
| | - Kyoko Miura
- Department of Physiology, Keio University School of Medicine Tokyo, Japan ; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Saitama, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine Tokyo, Japan ; Riken Keio University Joint Research Laboratory, RIKEN Brain Science Institute Saitama, Japan
| |
Collapse
|
47
|
Li X, Aggarwal M, Hsu J, Jiang H, Mori S. AtlasGuide: software for stereotaxic guidance using 3D CT/MRI hybrid atlases of developing mouse brains. J Neurosci Methods 2013; 220:75-84. [PMID: 23994359 PMCID: PMC3863333 DOI: 10.1016/j.jneumeth.2013.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Stereotaxic operations of the mouse brain are critically important for various types of neuroscience research studies, which include electrical recording of neural activities or site-targeted injection of stem cells, chemical tracers, and vectors, to name a few. To guide such operations, two-dimensional histology-based mouse brain atlases, such as the Paxinos and Franklin atlas, are widely used. Recently, computed tomography (CT) and magnetic resonance imaging (MRI) based hybrid three-dimensional (3D) atlases of developing mouse brains have been introduced. In this study, a new stereotaxic guidance software, called AtlasGuide, is introduced, which was developed to fully utilize the benefits of the 3D atlases for high-precision stereotaxic targeting. The AtlasGuide software provides functions to visualize oblique needle paths in 2D and 3D views, which allow investigators to simultaneously examine brain structures that could be damaged by the needle path and optimize the injection angles for high-precision trajectory selection through critical neural tissue. It allows reorientation and scaling of the atlases dynamically to match the orientation of the animal brain prepared for surgery, thereby eliminating the need to manually align the subject to the atlas, a procedure which is essential while using conventional 2D atlases. In addition, the software enables loading user-defined atlases when researchers need image-based guidance for different age groups, strains, or species. The software with integrated 3D stereotaxic mouse atlases is available for download at the http://lbam.med.jhmi.edu website.
Collapse
Affiliation(s)
- Xin Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Johnny Hsu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hangyi Jiang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susumu Mori
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Rumple A, McMurray M, Johns J, Lauder J, Makam P, Radcliffe M, Oguz I. 3-dimensional diffusion tensor imaging (DTI) atlas of the rat brain. PLoS One 2013; 8:e67334. [PMID: 23861758 PMCID: PMC3702494 DOI: 10.1371/journal.pone.0067334] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/16/2013] [Indexed: 12/02/2022] Open
Abstract
Anatomical atlases play an important role in the analysis of neuroimaging data in rodent neuroimaging studies. Having a high resolution, detailed atlas not only can expand understanding of rodent brain anatomy, but also enables automatic segmentation of new images, thus greatly increasing the efficiency of future analysis when applied to new data. These atlases can be used to analyze new scans of individual cases using a variety of automated segmentation methods. This project seeks to develop a set of detailed 3D anatomical atlases of the brain at postnatal day 5 (P5), 14 (P14), and adults (P72) in Sprague-Dawley rats. Our methods consisted of first creating a template image based on fixed scans of control rats, then manually segmenting various individual brain regions on the template. Using itk-SNAP software, subcortical and cortical regions, including both white matter and gray matter structures, were manually segmented in the axial, sagittal, and coronal planes. The P5, P14, and P72 atlases had 39, 45, and 29 regions segmented, respectively. These atlases have been made available to the broader research community.
Collapse
|
49
|
Jinka TR, Duffy LK. Ethical considerations in hibernation research. Lab Anim (NY) 2013; 42:248-52. [PMID: 23783315 PMCID: PMC5148123 DOI: 10.1038/laban.253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/16/2013] [Indexed: 01/21/2023]
Abstract
Ethical research practices are a key component of scientific integrity and of public support for research. Hibernation research presents specific ethical issues in regard to animal welfare. In this article, the authors apply the '3Rs' principles of humane experimental technique (replacement, reduction and refinement) to hibernation research. They provide recommendations for hibernation researchers and suggest future directions for addressing issues specific to hibernation research. They discuss the use of appropriate behavioral and physiological monitoring procedures, the development of species-specific brain atlases for placement of brain probes, the provision of environmental enrichment and the management of studies involving pharmacological induction of torpor. Addressing these issues in hibernation research will lead to improvements in research outcomes and in welfare of hibernating species.
Collapse
Affiliation(s)
- Tulasi R Jinka
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | | |
Collapse
|
50
|
In vivo high-resolution diffusion tensor imaging of the mouse brain. Neuroimage 2013; 83:18-26. [PMID: 23769916 DOI: 10.1016/j.neuroimage.2013.06.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/21/2023] Open
Abstract
Diffusion tensor imaging (DTI) of the laboratory mouse brain provides important macroscopic information for anatomical characterization of mouse models in basic research. Currently, in vivo DTI of the mouse brain is often limited by the available resolution. In this study, we demonstrate in vivo high-resolution DTI of the mouse brain using a cryogenic probe and a modified diffusion-weighted gradient and spin echo (GRASE) imaging sequence at 11.7 T. Three-dimensional (3D) DTI of the entire mouse brain at 0.125 mm isotropic resolution could be obtained in approximately 2 h. The high spatial resolution, which was previously only available with ex vivo imaging, enabled non-invasive examination of small structures in the adult and neonatal mouse brains. Based on data acquired from eight adult mice, a group-averaged DTI atlas of the in vivo adult mouse brain with 60 structure segmentations was developed. Comparisons between in vivo and ex vivo mouse brain DTI data showed significant differences in brain morphology and tissue contrasts, which indicate the importance of the in vivo DTI-based mouse brain atlas.
Collapse
|