1
|
Rumbus Z, Fekete K, Kelava L, Gardos B, Klonfar K, Keringer P, Pinter E, Pakai E, Garami A. Ammonium chloride-induced hypothermia is attenuated by transient receptor potential channel vanilloid-1, but augmented by ankyrin-1 in rodents. Life Sci 2024; 346:122633. [PMID: 38615746 DOI: 10.1016/j.lfs.2024.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
AIMS Systemic administration of ammonium chloride (NH4Cl), an acidifying agent used in human patients and experimental conditions, causes hypothermia in mice, however, the mechanisms of the thermoregulatory response to NH4Cl and whether it develops in other species remained unknown. MAIN METHODS We studied body temperature (Tb) changes in rats and mice induced by intraperitoneal administration of NH4Cl after blockade of transient receptor potential vanilloid-1 (TRPV1) or ankyrin-1 (TRPA1) channels. KEY FINDINGS In rats, NH4Cl decreased Tb by 0.4-0.8°C (p < 0.05). The NH4Cl-induced hypothermia also developed in Trpv1 knockout (Trpv1-/-) and wild-type (Trpv1+/+) mice, however, the Tb drop was exaggerated in Trpv1-/- mice compared to Trpv1+/+ controls with maximal decreases of 4.0 vs. 2.1°C, respectively (p < 0.05). Pharmacological blockade of TRPV1 channels with AMG 517 augmented the hypothermic response to NH4Cl in genetically unmodified mice and rats (p < 0.05 for both). In contrast, when NH4Cl was infused to mice genetically lacking the TRPA1 channel, the hypothermic response was significantly attenuated compared to wild-type controls with maximal mean Tb difference of 1.0°C between the genotypes (p = 0.008). Pretreatment of rats with a TRPA1 antagonist (A967079) also attenuated the NH4Cl-induced Tb drop with a maximal difference of 0.7°C between the pretreatment groups (p = 0.003). SIGNIFICANCE TRPV1 channels limit, whereas TRPA1 channels exaggerate the development of NH4Cl-induced hypothermia in rats and mice, but other mechanisms are also involved. Our results warrant for regular Tb control and careful consideration of NH4Cl treatment in patients with TRPA1 and TRPV1 channel dysfunctions.
Collapse
Affiliation(s)
- Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Bibor Gardos
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Krisztian Klonfar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary.
| |
Collapse
|
2
|
Szabó K, Makkai G, Konkoly J, Kormos V, Gaszner B, Berki T, Pintér E. TRPA1 Covalent Ligand JT010 Modifies T Lymphocyte Activation. Biomolecules 2024; 14:632. [PMID: 38927036 PMCID: PMC11202300 DOI: 10.3390/biom14060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in sensitivity to a plethora of irritating agents and endogenous mediators of oxidative stress. TRPA1 influences neuroinflammation and macrophage and lymphocyte functions, but its role is controversial in immune cells. We reported earlier a detectable, but orders-of-magnitude-lower level of Trpa1 mRNA in monocytes and lymphocytes than in sensory neurons by qRT-PCR analyses of cells from lymphoid organs of mice. Our present goals were to (a) further elucidate the expression of Trpa1 mRNA in immune cells by RNAscope in situ hybridization (ISH) and (b) test the role of TRPA1 in lymphocyte activation. RNAscope ISH confirmed that Trpa1 transcripts were detectable in CD14+ and CD4+ cells from the peritoneal cavity of mice. A selective TRPA1 agonist JT010 elevated Ca2+ levels in these cells only at high concentrations. However, a concentration-dependent inhibitory effect of JT010 was observed on T-cell receptor (TcR)-induced Ca2+ signals in CD4+ T lymphocytes, while JT010 neither modified B cell activation nor ionomycin-stimulated Ca2+ level. Based on our present and past findings, TRPA1 activation negatively modulates T lymphocyte activation, but it does not appear to be a key regulator of TcR-stimulated calcium signaling.
Collapse
Affiliation(s)
- Katalin Szabó
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| | - Géza Makkai
- Nano-Bio-Imaging Core Facility, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - János Konkoly
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| | - Viktória Kormos
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| | - Balázs Gaszner
- Research Group for Mood Disorders, Department of Anatomy, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, University of Pécs Clinical Center, H-7624 Pécs, Hungary
| | - Erika Pintér
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| |
Collapse
|
3
|
Wang C, Jin X, Zhang Q, Wang H, Ji H, Zhou Y, Zhu C, Yang Y, Yu G, Tang Z. TRPV1 and TRPA1 channels interact to mediate cold hyperalgesia in mice. Br J Anaesth 2023; 131:e167-e170. [PMID: 37690945 DOI: 10.1016/j.bja.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Changming Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Xiang Jin
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qing Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hanwen Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haiwang Ji
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuan Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chan Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guang Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Zongxiang Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Romeo I, Brizzi A, Pessina F, Ambrosio FA, Aiello F, Belardo C, Carullo G, Costa G, De Petrocellis L, Frosini M, Luongo L, Maramai S, Paolino M, Moriello AS, Mugnaini C, Scorzelli F, Maione S, Corelli F, Di Marzo V, Alcaro S, Artese A. In Silico-Guided Rational Drug Design and Synthesis of Novel 4-(Thiophen-2-yl)butanamides as Potent and Selective TRPV1 Agonists. J Med Chem 2023; 66:6994-7015. [PMID: 37192374 DOI: 10.1021/acs.jmedchem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We describe an in silico-guided rational drug design and the synthesis of the suggested ligands, aimed at improving the TRPV1-ligand binding properties and the potency of N-(4-hydroxy-3-methoxybenzyl)-4-(thiophen-2-yl) butanamide I, a previously identified TRPV1 agonist. The docking experiments followed by molecular dynamics simulations and thermodynamic analysis led the drug design toward both the introduction of a lipophilic iodine and a flat pyridine/benzene at position 5 of the thiophene nucleus. Most of the synthesized compounds showed high TRPV1 efficacy and potency as well as selectivity. The molecular modeling analysis highlighted crucial hydrophobic interactions between Leu547 and the iodo-thiophene nucleus, as in amide 2a, or between Phe543 and the pyridinyl moiety, as in 3a. In the biological evaluation, both compounds showed protective properties against oxidative stress-induced ROS formation in human keratinocytes. Additionally, while 2a showed neuroprotective effects in both neurons and rat brain slices, 3a exhibited potent antinociceptive effect in vivo..
Collapse
Affiliation(s)
- Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Antonella Brizzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Federica Pessina
- Dipartimento di Medicina Molecolare e dello Sviluppo, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Aiello
- Dipartimento di Farmacia e Scienza della Salute e della Nutrizione, Università della Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Carmela Belardo
- Dipartimento di Medicina Sperimentale, Divisione di Farmacologia, Università degli Studi della Campania "L. Vanvitelli", |Via Costantinopoli 16, 80138 Napoli, Italy
| | - Gabriele Carullo
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Napoli, Italy
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Livio Luongo
- Dipartimento di Medicina Sperimentale, Divisione di Farmacologia, Università degli Studi della Campania "L. Vanvitelli", |Via Costantinopoli 16, 80138 Napoli, Italy
| | - Samuele Maramai
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Napoli, Italy
- Epitech Group SpA, Via L. Einaudi 13, 35030 Saccolongo, Padova, Italy
| | - Claudia Mugnaini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Francesco Scorzelli
- Recipharm (Edmond Pharma), Strada Statale dei Giovi 131, 20037 Paderno Dugnano, Milano, Italy
| | - Sabatino Maione
- Dipartimento di Medicina Sperimentale, Divisione di Farmacologia, Università degli Studi della Campania "L. Vanvitelli", |Via Costantinopoli 16, 80138 Napoli, Italy
| | - Federico Corelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Napoli, Italy
- Heart and Lung Research Institute, Department of Medicine, Faculty of Medicine, and Institute of Nutrition and Functional Foods, NUTRISS Center, School of Nutrition, Faculty of Agriculture and Food Science, Université Laval, 2325 Rue de l'Université, Québec, Canada
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Shang L, Zhao S, Shi H, Xing X, Zhang J, He Y. Nerve growth factor mediates activation of transient receptor potential vanilloid 1 in neurogenic pruritus of psoriasis. Int Immunopharmacol 2023; 118:110063. [PMID: 37004343 DOI: 10.1016/j.intimp.2023.110063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/04/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Pruritus is a common and painful symptom in psoriasis with profoundly negative impacts on quality of life. The underlying mechanisms of pruritus are complex and multifactorial, and accumulating evidence suggests that pruritus induced by neurogenic inflammation predominates in psoriasis. Nerve growth factor (NGF) -mediated transient receptor potential vanilloid receptor 1(TRPV1) pathway has emerged as a crucial node in the regulation of neurogenic pruritus. TRPV1 appears coupled to most pruritus-specific molecules via the neuro-immune axis. While the modes of regulation differ for each axis, TRPV1 is involved in substantial biochemical crosstalk-causing feedback loops with significant effects on neurogenic pruritus. Therefore, TRPV1 has emerged as a target molecular in drug development for pruritus in psoriasis. However, no significant clinical progress occurred in the development of systemic TRPV1 antagonists due to elevated core temperature. Thus, topical application of TRPV1 antagonists and interference with mediators linked to the TRPV1 activation pathway may be promising therapeutic options to ameliorate pruritus. This Review focuses on recent advances in complicated regulation of NGF-mediated TRPV1 pathway in psoriatic neurogenic pruritus, as well as the therapeutic options that arise from the dissection of the pathway.
Collapse
|
6
|
Wichaidit A, Patinotham N, Nukaeow K, Kaewpitak A. Upregulation of transient receptor potential ankyrin 1 (TRPA1) but not transient receptor potential vanilloid 1 (TRPV1) during primary tooth carious progression. J Oral Biosci 2023; 65:24-30. [PMID: 36587734 DOI: 10.1016/j.job.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To quantify the changes in Transient Receptor Potential Ankyrin 1 (TRPA1) and Transient Receptor Potential Vanilloid 1 (TRPV1) expression throughout the process of inflammation induced by caries. METHODS Forty primary teeth were obtained from children requiring dental extractions under local or general anesthesia. The teeth were grouped according to three stages reflecting the progression of dental caries: nine with intact dentin, 15 with exposed dentin (but not to the extent of the pulp), and 16 with exposed pulp. Immunofluorescence was used to validate the presence of dental pulp inflammation by demonstrating a decrease in NF-κB nuclear translocation. The expression levels of TRPA1 and TRPV1 were quantified in the pulp horn and the subodontoblastic and midcoronal regions of the pulp. RESULTS The percentage of cells with NF-κB nuclear translocation was highest for teeth with intact dentin and decreased progressively during the progression of caries. TRPA1 expression was lowest in intact teeth and gradually increased as caries advanced. TRPV1 expression was similar in teeth with intact dentin, exposed dentin, and exposed pulp. CONCLUSION The differences in TRPA1 and TRPV1 expression in response to caries suggest that these receptors play unique roles in the immune response during the progression of caries and that the pathophysiology of inflammation in the dental pulp varies between the early and late stages of caries.
Collapse
Affiliation(s)
- Alisa Wichaidit
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, HatYai, Songkhla, Thailand
| | - Namthip Patinotham
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, HatYai, Songkhla, Thailand
| | - Kullanun Nukaeow
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, HatYai, Songkhla, Thailand
| | - Aunwaya Kaewpitak
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, HatYai, Songkhla, Thailand.
| |
Collapse
|
7
|
Kazandzhieva K, Mammadova-Bach E, Dietrich A, Gudermann T, Braun A. TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. Pharmacol Ther 2022; 237:108164. [PMID: 35247518 DOI: 10.1016/j.pharmthera.2022.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) proteins form a superfamily of cation channels that are expressed in a wide range of tissues and cell types. During the last years, great progress has been made in understanding the molecular complexity and the functions of TRP channels in diverse cellular processes, including cell proliferation, migration, adhesion and activation. The diversity of functions depends on multiple regulatory mechanisms by which TRP channels regulate Ca2+ entry mechanisms and intracellular Ca2+ dynamics, either through membrane depolarization involving cation influx or store- and receptor-operated mechanisms. Abnormal function or expression of TRP channels results in vascular pathologies, including hypertension, ischemic stroke and inflammatory disorders through effects on vascular cells, including the components of blood vessels and platelets. Moreover, some TRP family members also regulate megakaryopoiesis and platelet production, indicating a complex role of TRP channels in pathophysiological conditions. In this review, we describe potential roles of TRP channels in megakaryocytes and platelets, as well as their contribution to diseases such as thrombocytopenia, thrombosis and stroke. We also critically discuss the potential of TRP channels as possible targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Kalina Kazandzhieva
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
8
|
Moutafidi A, Gatzounis G, Zolota V, Assimakopoulou M. Heat shock factor 1 in brain tumors: a link with transient receptor potential channels TRPV1 and TRPA1. J Mol Histol 2021; 52:1233-1244. [PMID: 34591198 DOI: 10.1007/s10735-021-10025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022]
Abstract
Novel data report a "cross-talk" between Heat-Shock Factor 1 (HSF1) and the transient receptor potential vanilloid 1 cation channel (TRPV1) located in the cell membrane, introducing these channels as possible drug targets for the regulation of HSF1 activation. This study aims to investigate the co-expression of TRPV1 and HSF1 in human brain tumors. Additionally, the expression of the transient receptor potential ankyrin 1 channel (TRPA1), which is co-operated with TRPV1 in a plethora of cells, was studied. Immunohistochemical staining for HSF1, TRPV1 and TRPA1 expression was quantitatively analyzed in paraffin-embedded semi-serial tissue sections from 74 gliomas and 71 meningiomas. mRNA levels of HSF1, TRPV1 and TRPA1 were evaluated using real-time PCR. Although HSF1 was significantly increased compared with TRPV1/TRPA1 (p ≤ 0.001) in both gliomas and meningiomas, high co-expression levels for HSF1, TRPV1 and TRPA1 were found in 62.50% of diffuse fibrillary astrocytomas (WHO, grade II), 37.50% of anaplastic astrocytomas (WHO, grade III), 16.32% of glioblastomas multiforme (WHO, grade IV), and 42.25% of meningiomas (WHO, grade I and II). Correlation analysis revealed a relationship of HSF1 with TRPV1/TRPA1 in diffuse fibrillary astrocytomas (WHO, grade II) and benign meningiomas (WHO, grade I) contrary to glioblastomas multiforme (WHO, grade IV) and high grade meningiomas (WHO, grade II). Importantly, TRPA1 and TRPV1 expression levels were significantly increased in meningiomas compared with astrocytic tumors (p < 0.05). In conclusion, HSF1 and TRPV1/TRPA1 co-expression may be implicated in the pathogenesis of human brain tumors and should be considered for the therapeutic approaches for these tumors.
Collapse
Affiliation(s)
- Athanasia Moutafidi
- Department of Anatomy, Histology and Embryology, School of Medicine, Biomedical Sciences Research Building, University of Patras, 1 Asklipiou, 26504, Rion Patras, Greece
| | - George Gatzounis
- Department of Neurosurgery, University Hospital of Patras, 26504, Rion Patras, Greece
| | - Vassiliki Zolota
- Department of Pathology, University Hospital of Patras, 26504, Rion Patras, Greece
| | - Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, Biomedical Sciences Research Building, University of Patras, 1 Asklipiou, 26504, Rion Patras, Greece.
| |
Collapse
|
9
|
Oehler B, Kloka J, Mohammadi M, Ben-Kraiem A, Rittner HL. D-4F, an ApoA-I mimetic peptide ameliorating TRPA1-mediated nocifensive behaviour in a model of neurogenic inflammation. Mol Pain 2020; 16:1744806920903848. [PMID: 31996074 PMCID: PMC6993174 DOI: 10.1177/1744806920903848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background High doses of capsaicin are recommended for the treatment of neuropathic pain. However, low doses evoke mechanical hypersensitivity. Activation of the capsaicin chemosensor transient receptor potential vanilloid 1 (TRPV1) induces neurogenic inflammation. In addition to the release of pro-inflammatory mediators, reactive oxygen species are produced. These highly reactive molecules generate oxidised phospholipids and 4-hydroxynonenal (4-HNE) which then directly activate TRP ankyrin 1 (TRPA1). The apolipoprotein A-I mimetic peptide D-4F neutralises oxidised phospholipids. Here, we asked whether D-4F ameliorates neurogenic hypersensitivity in rodents by targeting reactive oxygen species and 4-HNE in the capsaicin-evoked pain model. Results Co-application of D-4F ameliorated capsaicin-induced mechanical hypersensitivity and allodynia as well as persistent heat hypersensitivity measured by Randell–Selitto, von Frey and Hargreaves test, respectively. In addition, mechanical hypersensitivity was blocked after co-injection of D-4F with the reactive oxygen species analogue H2O2 or 4-HNE. In vitro studies on dorsal root ganglion neurons and stably transfected cell lines revealed a TRPA1-dependent inhibition of the calcium influx when agonists were pre-incubated with D-4F. The capsaicin-induced calcium influx in TRPV1-expressing cell lines and dorsal root ganglion neurons sustained in the presence of D-4F. Conclusions D-4F is a promising compound to ameliorate TRPA1-dependent hypersensitivity during neurogenic inflammation.
Collapse
Affiliation(s)
- Beatrice Oehler
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jan Kloka
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Department of Anaesthesiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Milad Mohammadi
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Department of Anaesthesiology, University Hospital of Cologne, Cologne, Germany
| | - Adel Ben-Kraiem
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Kozyreva TV, Khramova GM. Effects of activation of skin ion channels TRPM8, TRPV1, and TRPA1 on the immune response. Comparison with effects of cold and heat exposure. J Therm Biol 2020; 93:102729. [PMID: 33077140 DOI: 10.1016/j.jtherbio.2020.102729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
The effects of pharmacological stimulation of skin ion channels TRPA1, TRPM8, TRPV1 on the immune response are presented. These effects are compared with the effects of different types of temperature exposures - skin cooling, deep cooling, and deep heating. This analysis allows us to clear the differences in the influence on the immune response of thermosensitive ion channels localized in the skin; (2) whether the changes in the immune response under temperature exposures are due to these thermosensitive ion channels. Experiments were performed on Wistar rats. For stimulation of TRPM8 ion channel, an application to the skin of 1% menthol was used, for TRPA1 - 0.04% allylisotiocianate, and for TRPV1 - capsaicin in a concentration of 0.001.The antigen binding in the spleen was two-times stimulated by activation of the cold-sensitive ion channel TRPM8 and much weaker by activation of warm-sensitive TRPV1 (by 15%), and another cold-sensitive ion channel TRPA1 (by 40%). Only the stimulation of TRPA1 significantly (by 140%) increased antibody formation in the spleen, while TRPM8 had practically no effect on this process, and activation of TRPV1 significantly (by 60%) inhibited antibody formation. Stimulation of the TRPM8 ion channel significantly (by 60%) reduced the level of IgG in the blood, which is believed to control of infectious diseases.The obtained results show that pharmacological activation of the skin TRPA1, TRPM8, TRPV1 ion channels can differently affect the immune system. At the epicenter of changes there were the antigen binding and antibody formation in the spleen, as well as the level of IgG in the blood. Exactly stimulation of the TRPM8 ion channel determines the changes in the immune response when only the skin is cooling, while at deep body heating, the changes in the immune response are mostly determined by the activation of the skin TRPV1 ion channel.
Collapse
Affiliation(s)
- T V Kozyreva
- Institute of Physiology and Basic Medicine, Timakov str. 4, Novosibirsk, 630117, Russia; Novosibirsk State University, Novosibirsk, Pirogov str. 2, Novosibirsk, 630090, Russia.
| | - G M Khramova
- Institute of Physiology and Basic Medicine, Timakov str. 4, Novosibirsk, 630117, Russia
| |
Collapse
|
11
|
Patil MJ, Salas M, Bialuhin S, Boyd JT, Jeske NA, Akopian AN. Sensitization of small-diameter sensory neurons is controlled by TRPV1 and TRPA1 association. FASEB J 2020; 34:287-302. [PMID: 31914619 PMCID: PMC7539696 DOI: 10.1096/fj.201902026r] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Unique features of sensory neuron subtypes are manifest by their distinct physiological and pathophysiological functions. Using patch-clamp electrophysiology, Ca2+ imaging, calcitonin gene-related peptide release assay from tissues, protein biochemistry approaches, and behavioral physiology on pain models, this study demonstrates the diversity of sensory neuron pathophysiology is due in part to subtype-dependent sensitization of TRPV1 and TRPA1. Differential sensitization is influenced by distinct expression of inflammatory mediators, such as prostaglandin E2 (PGE2), bradykinin (BK), and nerve growth factor (NGF) as well as multiple kinases, including protein kinase A (PKA) and C (PKC). However, the co-expression and interaction of TRPA1 with TRPV1 proved to be the most critical for differential sensitization of sensory neurons. We identified N- and C-terminal domains on TRPV1 responsible for TRPA1-TRPV1 (A1-V1) complex formation. Ablation of A1-V1 complex with dominant-negative peptides against these domains substantially reduced the sensitization of TRPA1, as well as BK- and CFA-induced hypersensitivity. These data indicate that often occurring TRP channel complexes regulate diversity in neuronal sensitization and may provide a therapeutic target for many neuroinflammatory pain conditions.
Collapse
Affiliation(s)
- Mayur J. Patil
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- The Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224
| | - Margaux Salas
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- United States Army Institute of Surgical Research, Air Force- 59th Medical Wing, San Antonio, TX 78234
| | - Siarhei Bialuhin
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jacob T. Boyd
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
12
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
13
|
Sulak MA, Ghosh M, Sinharoy P, Andrei SR, Damron DS. Modulation of TRPA1 channel activity by Cdk5 in sensory neurons. Channels (Austin) 2019; 12:65-75. [PMID: 29308980 PMCID: PMC5972803 DOI: 10.1080/19336950.2018.1424282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential cation channel, subfamily A, member 1 (TRPA1), is activated by a broad range of noxious stimuli. Cdk5, a member of the Cdk family, has recently been identified as a modulator of pain signaling pathways. In the current study, we investigated the extent to which Cdk5 modulates TRPA1 activity. Cdk5 inhibition was found to attenuate TRPA1 response to agonist in mouse DRG sensory neurons. Additionally, the presence of active Cdk5 was associated with increased TRPA1 phosphorylation in transfected HEK293 cells that was roscovitine-sensitive and absent in the mouse mutant S449A full-length channel. Immunopurified Cdk5 was observed to phosphorylate human TRPA1 peptide substrate at S448A in vitro. Our results point to a role for Cdk5 in modulating TRPA1 activity.
Collapse
Affiliation(s)
- Michael A Sulak
- a Department of Human Genetics , University of Chicago , Chicago , IL , USA
| | - Monica Ghosh
- b Department of Biological Sciences , Kent State University , Kent , OH , USA
| | - Pritam Sinharoy
- c Department of Anesthesia , Perioperative and Pain Medicine, Stanford School of Medicine , Stanford , CA , USA
| | - Spencer R Andrei
- d Department of Medicine , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Derek S Damron
- b Department of Biological Sciences , Kent State University , Kent , OH , USA
| |
Collapse
|
14
|
Startek JB, Boonen B, López-Requena A, Talavera A, Alpizar YA, Ghosh D, Van Ranst N, Nilius B, Voets T, Talavera K. Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. eLife 2019; 8:e46084. [PMID: 31184584 PMCID: PMC6590989 DOI: 10.7554/elife.46084] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
The cation channel TRPA1 transduces a myriad of noxious chemical stimuli into nociceptor electrical excitation and neuropeptide release, leading to pain and neurogenic inflammation. Despite emergent evidence that TRPA1 is regulated by the membrane environment, it remains unknown whether this channel localizes in membrane microdomains or whether it interacts with cholesterol. Using total internal reflection fluorescence microscopy and density gradient centrifugation we found that mouse TRPA1 localizes preferably into cholesterol-rich domains and functional experiments revealed that cholesterol depletion decreases channel sensitivity to chemical agonists. Moreover, we identified two structural motifs in transmembrane segments 2 and 4 involved in mTRPA1-cholesterol interactions that are necessary for normal agonist sensitivity and plasma membrane localization. We discuss the impact of such interactions on TRPA1 gating mechanisms, regulation by the lipid environment, and role of this channel in sensory membrane microdomains, all of which helps to understand the puzzling pharmacology and pathophysiology of this channel.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Brett Boonen
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Alejandro López-Requena
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Ariel Talavera
- Center for Microscopy and Molecular Imaging (CMMI), Laboratory of MicroscopyUniversité Libre de BruxellesGosseliesBelgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Debapriya Ghosh
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Nele Van Ranst
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
15
|
Abstract
Background: Migraine therapy with sumatriptan may cause adverse side effects like pain at the injection site, muscle pain, and transient aggravation of headaches. In animal experiments, sumatriptan excited or sensitized slowly conducting meningeal afferents. We hypothesized that sumatriptan may activate transduction channels of the “irritant receptor,” the transient receptor potential ankyrin type (TRPA1) expressed in nociceptive neurons. Methods: Calcium microfluorometry was performed in HEK293t cells transfected with human TRPA1 (hTRPA1) or a mutated channel (TRPA1-3C) and in dissociated trigeminal ganglion neurons. Membrane currents were recorded in the whole-cell patch clamp configuration. Results: Sumatriptan (10 and 400 µM) evoked calcium transients in hTRPA1-expressing HEK293t cells also activated by the TRPA1 agonist carvacrol (100 µM). In TRPA1-3C-expressing HEK293t cells, sumatriptan had hardly any effect. In rat trigeminal ganglion neurons, sumatriptan, carvacrol, and the transient receptor potential vanillod type 1 agonist capsaicin (1 µM) generated robust calcium signals. All sumatriptan-sensitive neurons (8% of the sample) were also activated by carvacrol (14%) and capsaicin (48%). In HEK293-hTRPA1 cells, sumatriptan (100 µM) evoked outwardly rectifying currents, which were almost completely inhibited by the TRPA1 antagonist HC-030031 (10 µM). Conclusion: Sumatriptan activates TRPA1 channels inducing calcium inflow and membrane currents. TRPA1-dependent activation of primary afferents may explain the painful side effects of sumatriptan.
Collapse
Affiliation(s)
- Alexandru Babes
- Department of Anatomy, Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Cristian Neacsu
- Department of Anatomy, Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Michael JM Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed in pain-sensing neurons and other tissues and has become a major target in the development of novel pharmaceuticals. A remarkable feature of the channel is its long list of activators, many of which we are exposed to in daily life. Many of these agonists induce pain and inflammation, making TRPA1 a major target for anti-inflammatory and analgesic therapies. Studies in human patients and in experimental animals have confirmed an important role for TRPA1 in a number of pain conditions. Over the recent years, much progress has been made in elucidating the molecular structure of TRPA1 and in discovering binding sites and modulatory sites of the channel. Because the list of published mutations and important molecular sites is steadily growing and because it has become difficult to see the forest for the trees, this review aims at summarizing the current knowledge about TRPA1, with a special focus on the molecular structure and the known binding or gating sites of the channel.
Collapse
Affiliation(s)
- Jannis E Meents
- Institute of Physiology, University Hospital RWTH Aachen , Aachen , Germany
| | - Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
17
|
Steinritz D, Stenger B, Dietrich A, Gudermann T, Popp T. TRPs in Tox: Involvement of Transient Receptor Potential-Channels in Chemical-Induced Organ Toxicity-A Structured Review. Cells 2018; 7:cells7080098. [PMID: 30087301 PMCID: PMC6115949 DOI: 10.3390/cells7080098] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
Chemicals can exhibit significant toxic properties. While for most compounds, unspecific cell damaging processes are assumed, a plethora of chemicals exhibit characteristic odors, suggesting a more specific interaction with the human body. During the last few years, G-protein-coupled receptors and especially chemosensory ion channels of the transient receptor potential family (TRP channels) were identified as defined targets for several chemicals. In some cases, TRP channels were suggested as being causal for toxicity. Therefore, these channels have moved into the spotlight of toxicological research. In this review, we screened available literature in PubMed that deals with the role of chemical-sensing TRP channels in specific organ systems. TRPA1, TRPM and TRPV channels were identified as essential chemosensors in the nervous system, the upper and lower airways, colon, pancreas, bladder, skin, the cardiovascular system, and the eyes. Regarding TRP channel subtypes, A1, M8, and V1 were found most frequently associated with toxicity. They are followed by V4, while other TRP channels (C1, C4, M5) are only less abundantly expressed in this context. Moreover, TRPA1, M8, V1 are co-expressed in most organs. This review summarizes organ-specific toxicological roles of TRP channels.
Collapse
Affiliation(s)
- Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Bernhard Stenger
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
| | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| |
Collapse
|
18
|
Selective killing of proinflammatory synovial fibroblasts via activation of transient receptor potential ankyrin (TRPA1). Biochem Pharmacol 2018; 154:293-302. [PMID: 29803505 DOI: 10.1016/j.bcp.2018.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies in rheumatoid arthritis synovial fibroblasts (RASF) demonstrated the expression of several transient receptor potential channels (TRP) such as TRPV1, TRPV2, TRPV4, TRPA1 and TRPM8. Upon ligation, these receptors increase intracellular calcium but they have also been linked to modulation of inflammation in several cell types. TNF was shown to increase the expression of TRPA1, the receptor for mustard oil and environmental poisons in SF, but the functional consequences have not been investigated yet. METHODS TRPA1 was detected by immunocytochemistry, western blot and cell-based ELISA. Calcium measurements were conducted in a multimode reader. Cell viability was assessed by quantification of lactate dehydrogenase (LDH) in culture supernatants and "RealTime-Glo" luminescent assays. IL-6 and IL-8 production by SF was quantified by ELISA. Proliferation was determined by cell titer blue incorporation. RESULTS After 72 h, mimicking proinflammatory conditions by the innate cytokine TNF up-regulated TRPA1 protein levels in RASF which was accompanied by increased sensitivity to TRPA1 agonists AITC and polygodial. Under unstimulated conditions, polygodial elicited calcium flux only in the highest concentrations used (50 µM and 25 µM). TNF preincubation substantially lowered the activation threshold for polygodial (from 25 µM to 1 µM). In the absence of TNF pre-stimulation, only polygodial in high concentrations was able to reduce viability of synovial fibroblasts as determined by a real-time viability assay. However, following TNF preincubation, stimulation of TRPA1 led to a fast (<30 min) viability loss by necrosis of synovial fibroblasts. TRPA1 activation was also associated with decreased proliferation of RASFs, an effect that was also substantially enhanced by TNF preincubation. On the functional level, IL-6 and IL-8 production was attenuated by the TRPA1 antagonist A967079 but also polygodial, although the latter mediated this effect by reducing cell viability. CONCLUSION Simulating inflamed conditions by preincubation of synovial fibroblasts with TNF up-regulates and sensitizes TRPA1. Subsequent activation of TRPA1 increases calcium flux and substantially reduces cell viability by inducing necrosis. Since TRPA1 agonists in the lower concentration range only show effects in TNF-stimulated RASF, this cation channel might be an attractive therapeutic target in chronic inflammation to selectively reduce the activity of proinflammatory SF in the joint.
Collapse
|
19
|
Nishizawa Y, Takahashi K, Oguma N, Tominaga M, Ohta T. Possible involvement of transient receptor potential ankyrin 1 in Ca2+
signaling via T-type Ca2+
channel in mouse sensory neurons. J Neurosci Res 2017; 96:901-910. [DOI: 10.1002/jnr.24208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Yuki Nishizawa
- Department of Veterinary Pharmacology, Faculty of Agriculture; Tottori University; Tottori Japan
| | - Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture; Tottori University; Tottori Japan
| | - Naoko Oguma
- Department of Veterinary Pharmacology, Faculty of Agriculture; Tottori University; Tottori Japan
| | - Makoto Tominaga
- Division of Cell Signaling; Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences; Okazaki Japan
| | - Toshio Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture; Tottori University; Tottori Japan
| |
Collapse
|
20
|
Sinharoy P, Bratz IN, Sinha S, Showalter LE, Andrei SR, Damron DS. TRPA1 and TRPV1 contribute to propofol-mediated antagonism of U46619-induced constriction in murine coronary arteries. PLoS One 2017; 12:e0180106. [PMID: 28644897 PMCID: PMC5482493 DOI: 10.1371/journal.pone.0180106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/09/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transient receptor potential (TRP) ion channels have emerged as key components contributing to vasoreactivity. Propofol, an anesthetic is associated with adverse side effects including hypotension and acute pain upon infusion. Our objective was to determine the extent to which TRPA1 and/or TRPV1 ion channels are involved in mediating propofol-induced vasorelaxation of mouse coronary arterioles in vitro and elucidate the potential cellular signal transduction pathway by which this occurs. METHODS Hearts were excised from anesthetized mice and coronary arterioles were dissected from control C57Bl/6J, TRPA1-/-, TRPV1-/- and double-knockout mice (TRPAV-/-). Isolated microvessels were cannulated and secured in a temperature-controlled chamber and allowed to equilibrate for 1 hr. Vasoreactivity studies were performed in microvessels pre-constricted with U46619 to assess the dose-dependent relaxation effects of propofol on coronary microvascular tone. RESULTS Propofol-induced relaxation was unaffected in vessels obtained from TRPV1-/- mice, markedly attenuated in pre-constricted vessels obtained from TRPA1-/- mice and abolished in vessels obtained from TRPAV-/- mice. Furthermore, NOS inhibition with L-NAME or endothelium denuding abolished the proporfol-induced depressor response in pre-constricted vessels obtained from all mice. In the absence of L-NAME, BKCa inhibition with penitrem A markedly attenuated propofol-mediated relaxation in vessels obtained from wild-type mice and to a lesser extent in vessels obtained from TRPV1-/-, mice with no effect in vessels obtained from TRPA1-/- or TRPAV-/- mice. CONCLUSIONS TRPA1 and TRPV1 appear to contribute to the propofol-mediated antagonism of U46619-induced constriction in murine coronary microvessels that involves activation of NOS and BKCa.
Collapse
Affiliation(s)
- Pritam Sinharoy
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - Ian N. Bratz
- Department of Integrative Medical Sciences, Northeast Ohio Medical College, Rootstown, Ohio, United States of America
| | - Sayantani Sinha
- Department of Surgery, Division of Orthopedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Loral E. Showalter
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Spencer R. Andrei
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Derek S. Damron
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
21
|
TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell 2017; 8:644-661. [PMID: 28364279 PMCID: PMC5563280 DOI: 10.1007/s13238-017-0395-5] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/28/2017] [Indexed: 12/19/2022] Open
Abstract
Cutaneous neurogenic inflammation (CNI) is inflammation that is induced (or enhanced) in the skin by the release of neuropeptides from sensory nerve endings. Clinical manifestations are mainly sensory and vascular disorders such as pruritus and erythema. Transient receptor potential vanilloid 1 and ankyrin 1 (TRPV1 and TRPA1, respectively) are non-selective cation channels known to specifically participate in pain and CNI. Both TRPV1 and TRPA1 are co-expressed in a large subset of sensory nerves, where they integrate numerous noxious stimuli. It is now clear that the expression of both channels also extends far beyond the sensory nerves in the skin, occuring also in keratinocytes, mast cells, dendritic cells, and endothelial cells. In these non-neuronal cells, TRPV1 and TRPA1 also act as nociceptive sensors and potentiate the inflammatory process. This review discusses the role of TRPV1 and TRPA1 in the modulation of inflammatory genes that leads to or maintains CNI in sensory neurons and non-neuronal skin cells. In addition, this review provides a summary of current research on the intracellular sensitization pathways of both TRP channels by other endogenous inflammatory mediators that promote the self-maintenance of CNI.
Collapse
|
22
|
Andrei SR, Sinharoy P, Bratz IN, Damron DS. TRPA1 is functionally co-expressed with TRPV1 in cardiac muscle: Co-localization at z-discs, costameres and intercalated discs. Channels (Austin) 2016; 10:395-409. [PMID: 27144598 PMCID: PMC4988441 DOI: 10.1080/19336950.2016.1185579] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) and vanilloid subtype-1 (TRPV1) are structurally related, non-selective cation channels that show a high permeability to calcium. Previous studies indicate that TRP channels play a prominent role in the regulation of cardiovascular dynamics and homeostasis, but also contribute to the pathophysiology of many diseases and disorders within the cardiovascular system. However, no studies to date have identified the functional expression and/or intracellular localization of TRPA1 in primary adult mouse ventricular cardiomyocytes (CMs). Although TRPV1 has been implicated in the regulation of cardiac function, there is a paucity of information regarding functional expression and localization of TRPV1 in adult CMs. Our current studies demonstrate that TRPA1 and TRPV1 ion channels are co-expressed at the protein level in CMs and both channels are expressed throughout the endocardium, myocardium and epicardium. Moreover, immunocytochemical localization demonstrates that both channels predominantly colocalize at the Z-discs, costameres and intercalated discs. Furthermore, specific TRPA1 and TRPV1 agonists elicit dose-dependent, transient rises in intracellular free calcium concentration ([Ca2+]i) that are abolished in CMs obtained from TRPA1−/− and TRPV1−/− mice. Similarly, we observed a dose-dependent attenuation of the TRPA1 and TRPV1 agonist-induced increase in [Ca2+]i when WT CMs were pretreated with increasing concentrations of selective TRPA1 or TRPV1 channel antagonists. In summary, these findings demonstrate functional expression and the precise ultrastructural localization of TRPA1 and TRPV1 ion channels in freshly isolated mouse CMs. Crosstalk between TRPA1 and TRPV1 may be important in mediating cellular signaling events in cardiac muscle.
Collapse
Affiliation(s)
- Spencer R Andrei
- a Department of Biological Sciences , Kent State University , Kent , OH , USA
| | - Pritam Sinharoy
- a Department of Biological Sciences , Kent State University , Kent , OH , USA
| | - Ian N Bratz
- b Department of Integrated Medical Sciences , Northeast Ohio Medical University , Rootstown , OH , USA
| | - Derek S Damron
- a Department of Biological Sciences , Kent State University , Kent , OH , USA
| |
Collapse
|
23
|
Payrits M, Sághy É, Mátyus P, Czompa A, Ludmerczki R, Deme R, Sándor Z, Helyes Z, Szőke É. A novel 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime compound is a potent Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1 and V1) receptor antagonist. Neuroscience 2016; 324:151-62. [PMID: 26930003 DOI: 10.1016/j.neuroscience.2016.02.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1, TRPV1) ion channels expressed on nociceptive primary sensory neurons are important regulators of pain and inflammation. TRPA1 is activated by several inflammatory mediators including formaldehyde and methylglyoxal that are products of the semicarbazide-sensitive amine-oxidase enzyme (SSAO). SZV-1287 is a new 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime SSAO inhibitor, its chemical structure is similar to other oxime derivatives described as TRPA1 antagonists. Therefore, we investigated its effects on TRPA1 and TRPV1 receptor activation on the cell bodies and peripheral terminals of primary sensory neurons and TRPA1 or TRPV1 receptor-expressing cell lines. Calcium influx in response to the TRPA1 agonist allyl-isothiocyanate (AITC) (200 μM) and the TRPV1 stimulator capsaicin (330 nM) in rat trigeminal neurons or TRPA1 and TRPV1 receptor-expressing cell lines was measured by microfluorimetry or radioactive (45)Ca(2+) uptake experiments. Calcitonin gene-related peptide (CGRP) release as the indicator of 100 μM AITC - or 100 nM capsaicin-induced peripheral sensory nerve terminal activation was measured by radioimmunoassay. SZV-1287 (100, 500 and 1000 nM) exerted a concentration-dependent significant inhibition on both AITC- and capsaicin-evoked calcium influx in trigeminal neurons and TRPA1 or TRPV1 receptor-expressing cell lines. It also significantly inhibited the TRPA1, but not the TRPV1 activation-induced CGRP release from the peripheral sensory nerve endings in a concentration-dependent manner. In contrast, the reference SSAO inhibitor LJP 1207 with a different structure had no effect on TRPA1 or TRPV1 activation in either model system. This is the first evidence that our novel oxime compound SZV-1287 originally developed as a SSAO inhibitor has a potent dual antagonistic action on TRPA1 and TRPV1 ion channels on primary sensory neurons.
Collapse
Affiliation(s)
- M Payrits
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary.
| | - É Sághy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary.
| | - P Mátyus
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - A Czompa
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - R Ludmerczki
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - R Deme
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - Z Sándor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary.
| | - Zs Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary; MTA-PTE Chronic Pain Research Group, Pécs-7624, Szigeti str. 12., Hungary.
| | - É Szőke
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary; MTA-PTE Chronic Pain Research Group, Pécs-7624, Szigeti str. 12., Hungary.
| |
Collapse
|
24
|
Lowin T, Apitz M, Anders S, Straub RH. Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner. Arthritis Res Ther 2015; 17:321. [PMID: 26567045 PMCID: PMC4644337 DOI: 10.1186/s13075-015-0845-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/29/2015] [Indexed: 12/29/2022] Open
Abstract
Introduction The endocannabinoid system modulates function of immune cells and mesenchymal cells such as fibroblasts, which contribute to cartilage destruction in rheumatoid arthritis (RA). The aim of the study was to determine the influence of N-acylethanolamines anandamide (AEA), palmitoylethanolamine (PEA) and oleylethanolamine (OEA) on several features of arthritic inflammation in vitro (human material) and in vivo (a mouse model). Methods Immunofluorescence and western blotting were used to detect cannabinoid receptors and related enzymes. Cytokines and MMP-3 were measured by ELISA. Intracellular signaling proteins were detected by proteome profiling. Proliferation was quantified by CTB reagent. Adhesion was assessed by the xCELLigence system. After onset of collagen type II arthritis, mice were treated daily with the FAAH inhibitor JNJ1661010 (20 mg/kg) or vehicle. Results IL-6, IL-8 and MMP-3 (determined only in synovial fibroblasts (SFs)) were downregulated in primary synoviocytes and SFs of RA and OA after AEA, PEA and OEA treatment. In SFs, this was due to activation of TRPV1 and TRPA1 in a COX-2-dependent fashion. FAAH inhibition increased the efficacy of AEA in primary synoviocytes but not in SFs. The effects of OEA and PEA on SFs were diminished by FAAH inhibition. Adhesion to fibronectin was increased in a CB1-dependent manner by AEA in OASFs. Furthermore, elevation of endocannabinoids ameliorated collagen-induced arthritis in mice. Conclusions N-acylethanolamines exert anti-inflammatory effects in SFs. A dual FAAH/COX-2 inhibitor, increasing N-acylethanolamine levels with concomitant TRP channel desensitization, might be a good candidate to inhibit the production of proinflammatory mediators of synovial cells and to reduce erosions. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0845-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| | - Martin Apitz
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| | - Sven Anders
- Department of Orthopaedic Surgery, University Hospital Regensburg, Asklepios Clinic Bad Abbach, Kaiser Karl V Allee 3, 93077, Bad Abbach, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| |
Collapse
|
25
|
Differential methylation of the TRPA1 promoter in pain sensitivity. Nat Commun 2015; 5:2978. [PMID: 24496475 PMCID: PMC3926001 DOI: 10.1038/ncomms3978] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 11/21/2013] [Indexed: 01/19/2023] Open
Abstract
Chronic pain is a global public health problem, but the underlying molecular mechanisms are not fully understood. Here we examine genome-wide DNA methylation, first in 50 identical twins discordant for heat pain sensitivity and then in 50 further unrelated individuals. Whole-blood DNA methylation was characterized at 5.2 million loci by MeDIP sequencing and assessed longitudinally to identify differentially methylated regions associated with high or low pain sensitivity (pain DMRs). Nine meta-analysis pain DMRs show robust evidence for association (false discovery rate 5%) with the strongest signal in the pain gene TRPA1 (P=1.2 × 10−13). Several pain DMRs show longitudinal stability consistent with susceptibility effects, have similar methylation levels in the brain and altered expression in the skin. Our approach identifies epigenetic changes in both novel and established candidate genes that provide molecular insights into pain and may generalize to other complex traits. Genetically identical twins provide a valuable resource to identify epigenetic factors associated with complex traits. Here the authors adopt this approach and find that differential methylation of the pain gene TRPA1 is associated with pain sensitivity in humans.
Collapse
|
26
|
Lowin T, Straub RH. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis. Arthritis Res Ther 2015; 17:226. [PMID: 26343051 PMCID: PMC4561168 DOI: 10.1186/s13075-015-0743-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.
Collapse
Affiliation(s)
- Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, University Hospital of Regensburg, D-93053, Regensburg, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, University Hospital of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
27
|
Lee LY, Hsu CC, Lin YJ, Lin RL, Khosravi M. Interaction between TRPA1 and TRPV1: Synergy on pulmonary sensory nerves. Pulm Pharmacol Ther 2015; 35:87-93. [PMID: 26283426 DOI: 10.1016/j.pupt.2015.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022]
Abstract
Transient receptor potential ankyrin type 1 (TRPA1) and vanilloid type 1 (TRPV1) receptors are co-expressed in vagal pulmonary C-fiber sensory nerves. Because both these ligand-gated non-selective cation channels are sensitive to a number of endogenous inflammatory mediators, it is highly probable that they can be activated simultaneously during airway inflammation. Studies were carried out to investigate whether there is an interaction between these two polymodal transducers upon simultaneous activation, and how it modulates the activity of vagal pulmonary C-fiber sensory nerves. Our studies showed a distinct potentiating effect induced abruptly by simultaneous activations of TRPA1 and TRPV1 by their respective selective agonists, allyl isothiocyanate (AITC) and capsaicin (Cap), at near-threshold concentrations. This synergistic effect was demonstrated in the studies of single-unit recording of vagal bronchopulmonary C-fiber afferents and the reflex responses elicited by activation of these afferents in intact animals, as well as in the isolated nodose and jugular bronchopulmonary sensory neurons. This potentiating effect was absent when either AITC or Cap was replaced by non-TRPA1 and non-TRPV1 chemical activators of these neurons, demonstrating the selectivity of the interaction between these two TRP channels. Furthermore, the synergism was dependent upon the extracellular Ca(2+), and the rapid onset of the action further suggests that the interaction probably occurred locally at the sites of these channels. These findings suggest that the TRPA1-TRPV1 interaction may play an important role in regulating the function and excitability of pulmonary sensory neurons during airway inflammation, but the mechanism underlying this positive interaction is not yet fully understood.
Collapse
Affiliation(s)
- Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA.
| | - Chun-Chun Hsu
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA
| | - Yu-Jung Lin
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA
| | - Ruei-Lung Lin
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA
| | - Mehdi Khosravi
- Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA
| |
Collapse
|
28
|
Hsu CC, Lee LY. Role of calcium ions in the positive interaction between TRPA1 and TRPV1 channels in bronchopulmonary sensory neurons. J Appl Physiol (1985) 2015; 118:1533-43. [PMID: 25858491 DOI: 10.1152/japplphysiol.00043.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/05/2015] [Indexed: 12/17/2022] Open
Abstract
Both transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are abundantly expressed in bronchopulmonary C-fiber sensory nerves and can be activated by a number of endogenous inflammatory mediators. A recent study has reported a synergistic effect of simultaneous TRPA1 and TRPV1 activations in vagal pulmonary C-fiber afferents in anesthetized rats, but its underlying mechanism was not known. This study aimed to characterize a possible interaction between these two TRP channels and to investigate the potential role of Ca(2+) as a mediator of this interaction in isolated rat vagal pulmonary sensory neurons. Using the perforated patch-clamp recording technique, our study demonstrated a distinct positive interaction occurring abruptly between TRPA1 and TRPV1 when they were activated simultaneously by their respective agonists, capsaicin (Cap) and allyl isothiocyanate (AITC), at near-threshold concentrations in these neurons. AITC at this low concentration evoked only minimal or undetectable responses, but it markedly amplified the Cap-evoked current in the same neurons. This potentiating effect was eliminated when either AITC or Cap was replaced by non-TRPA1 and non-TRPV1 chemical activators of these neurons, demonstrating the selectivity of the interaction between these two TRP channels. Furthermore, when Ca(2+) was removed from the extracellular solution, the synergistic effect of Cap and AITC on pulmonary sensory neurons was completely abrogated, clearly indicating a critical role of Ca(2+) in mediating the action. These results suggest that this TRPA1-TRPV1 interaction may play a part in regulating the sensitivity of pulmonary sensory neurons during airway inflammatory reaction.
Collapse
Affiliation(s)
- Chun-Chun Hsu
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky
| |
Collapse
|
29
|
Su KH, Lin SJ, Wei J, Lee KI, Zhao JF, Shyue SK, Lee TS. The essential role of transient receptor potential vanilloid 1 in simvastatin-induced activation of endothelial nitric oxide synthase and angiogenesis. Acta Physiol (Oxf) 2014; 212:191-204. [PMID: 25183024 DOI: 10.1111/apha.12378] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/26/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
AIMS We investigated the role of transient receptor potential vanilloid receptor type 1 (TRPV1) in simvastatin-mediated activation of endothelial nitric oxide synthase (eNOS) and angiogenesis. METHODS Fluo-8 NW assay was for Ca(2+) detection; Griess's assay was for NO bioavailability; Western blotting and immunoprecipitation were for protein phosphorylation and interaction; tube formation and Matrigel plug assay were for angiogenesis. RESULTS In endothelial cells (ECs), treatment with simvastatin time-dependently increased intracellular level of Ca(2+). Pharmacological inhibition or genetic disruption of TRPV1 abrogated simvastatin-mediated elevation of intracellular Ca(2+) in ECs or TRPV1-transfected HEK293 cells. Loss of TRPV1 function abolished simvastatin-induced NO production and phosphorylation of eNOS and calmodulin protein kinase II (CaMKII) in ECs and in aortas of mice. Inhibition of TRPV1 activation prevented the simvastatin-elicited increase in the formation of TRPV1-Akt-CaMKII-AMPK-eNOS complex. In mice, Matrigel plug assay showed that simvastatin-evoked angiogenesis was abolished by TRPV1 antagonist and genetic ablation of TRPV1. Additionally, our results demonstrated that TRP ankyrin 1 (TRPA1) is the downstream effector in the simvastatin-activated TRPV1-Ca(2+) signalling and in the consequent NO production and angiogenesis as evidence by that re-expression of TRPA1 further augmented simvastatin-elicited Ca(2+) influx in TRPV1-expressed HEK293 cells and ablation of TRPA1 function profoundly inhibited the simvastatin-induced increase in the phosphorylation of eNOS and CaMKII, formation of TRPV1-Akt-CaMKII-AMPK-eNOS complex, NO bioavailability, tube formation and angiogenesis in ECs or mice. CONCLUSION Simvastatin-induced Ca(2+) influx may through the activation of TRPV1-TRPA1 signalling, which leads to phosphorylation of CaMKII, increases in the formation of TRPV1-CaMKII-AMPK-eNOS complex, eNOS activation, NO production and, ultimately, angiogenesis in ECs.
Collapse
Affiliation(s)
- K.-H. Su
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - S.-J. Lin
- Department of Internal Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - J. Wei
- Heart Center; Cheng-Hsin General Hospital; Taipei Taiwan
| | - K.-I. Lee
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - J.-F. Zhao
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - S.-K. Shyue
- Cardiovascular Division; Institute of Biomedical Sciences; Academia Sinica; Taipei Taiwan
| | - T.-S. Lee
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
30
|
Boukalova S, Touska F, Marsakova L, Hynkova A, Sura L, Chvojka S, Dittert I, Vlachova V. Gain-of-function mutations in the transient receptor potential channels TRPV1 and TRPA1: how painful? Physiol Res 2014; 63:S205-13. [PMID: 24564660 DOI: 10.33549/physiolres.932658] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gain-of-function (GOF) mutations in ion channels are rare events, which lead to increased agonist sensitivity or altered gating properties, and may render the channel constitutively active. Uncovering and following characterization of such mutants contribute substantially to the understanding of the molecular basis of ion channel functioning. Here we give an overview of some GOF mutants in polymodal ion channels specifically involved in transduction of painful stimuli--TRPV1 and TRPA1, which are scrutinized by scientists due to their important role in development of some pathological pain states. Remarkably, a substitution of single amino acid in the S4-S5 region of TRPA1 (N855S) has been recently associated with familial episodic pain syndrome. This mutation increases chemical sensitivity of TRPA1, but leaves the voltage sensitivity unchanged. On the other hand, mutations in the analogous region of TRPV1 (R557K and G563S) severely affect all aspects of channel activation and lead to spontaneous activity. Comparison of the effects induced by mutations in homologous positions in different TRP receptors (or more generally in other distantly related ion channels) may elucidate the gating mechanisms conserved during evolution.
Collapse
Affiliation(s)
- S Boukalova
- Department of Cellular Neurophysiology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Unique Responses are Observed in Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1 and TRPV1) Co-Expressing Cells. Cells 2014; 3:616-26. [PMID: 24921186 PMCID: PMC4092848 DOI: 10.3390/cells3020616] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/24/2022] Open
Abstract
Transient receptor potential (TRP) ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are implicated in modulation of cough and nociception. In vivo, TRPA1 and TRPV1 are often co-expressed in neurons and TRPA1V1 hetero-tetramer formation is noted in cells co-transfected with the respective expression plasmids. In order to understand the impact of TRP receptor interaction on activity, we created stable cell lines expressing the TRPA1, TRPV1 and co-expressing the TRPA1 and TRPV1 (TRPA1V1) receptors. Among the 600 compounds screened against these receptors, we observed a number of compounds that activated the TRPA1, TRPV1 and TRPA1V1 receptors; compounds that activated TRPA1 and TRPA1V1; compounds that activated TRPV1 and TRPA1V1; compounds in which TRPA1V1 response was modulated by either TRPA1 or TRPV1; and compounds that activated only TRPV1 or TRPA1 or TRPA1V1; and one compound that activated TRPA1 and TRPV1, but not TRPA1V1. These results suggest that co-expression of TRPA1 and TRPV1 receptors imparts unique activation profiles different from that of cells expressing only TRPA1 or TRPV1.
Collapse
|
32
|
Anderson EM, Jenkins AC, Caudle RM, Neubert JK. The effects of a co-application of menthol and capsaicin on nociceptive behaviors of the rat on the operant orofacial pain assessment device. PLoS One 2014; 9:e89137. [PMID: 24558480 PMCID: PMC3928399 DOI: 10.1371/journal.pone.0089137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 01/20/2014] [Indexed: 01/04/2023] Open
Abstract
Background Transient receptor potential (TRP) cation channels are involved in the perception of hot and cold pain and are targets for pain relief in humans. We hypothesized that agonists of TRPV1 and TRPM8/TRPA1, capsaicin and menthol, would alter nociceptive behaviors in the rat, but their opposite effects on temperature detection would attenuate one another if combined. Methods Rats were tested on the Orofacial Pain Assessment Device (OPAD, Stoelting Co.) at three temperatures within a 17 min behavioral session (33°C, 21°C, 45°C). Results The lick/face ratio (L/F: reward licking events divided by the number of stimulus contacts. Each time there is a licking event a contact is being made.) is a measure of nociception on the OPAD and this was equally reduced at 45°C and 21°C suggesting they are both nociceptive and/or aversive to rats. However, rats consumed (licks) equal amounts at 33°C and 21°C but less at 45°C suggesting that heat is more nociceptive than cold at these temperatures in the orofacial pain model. When menthol and capsaicin were applied alone they both induced nociceptive behaviors like lower L/F ratios and licks. When applied together though, the licks at 21°C were equal to those at 33°C and both were significantly higher than at 45°C. Conclusions This suggests that the cool temperature is less nociceptive when TRPM8/TRPA1 and TRPV1 are co-activated. These results suggest that co-activation of TRP channels can reduce certain nociceptive behaviors. These data demonstrate that the motivational aspects of nociception can be influenced selectively by TRP channel modulation and that certain aspects of pain can be dissociated and therefore targeted selectively in the clinic.
Collapse
Affiliation(s)
- Ethan M. Anderson
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, United States of America
- * E-mail:
| | - Alan C. Jenkins
- Department of Orthodontics, University of Florida, Gainesville, Florida, United States of America
| | - Robert M. Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, United States of America
| | - John K. Neubert
- Department of Orthodontics, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
33
|
Trevisan G, Hoffmeister C, Rossato MF, Oliveira SM, Silva MA, Ineu RP, Guerra GP, Materazzi S, Fusi C, Nassini R, Geppetti P, Ferreira J. Transient Receptor Potential Ankyrin 1 Receptor Stimulation by Hydrogen Peroxide Is Critical to Trigger Pain During Monosodium Urate-Induced Inflammation in Rodents. ACTA ACUST UNITED AC 2013; 65:2984-95. [DOI: 10.1002/art.38112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/25/2013] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | | | - Rafael P. Ineu
- Federal University of Santa Maria; Santa Maria, RS Brazil
| | - Gustavo P. Guerra
- Federal University of Technology of Paraná, Medianeira Campus; Medianeira, PR Brazil
| | | | | | | | | | - Juliano Ferreira
- Federal University of Santa Maria; Santa Maria, RS Brazil
- Federal University of Santa Catarina; Florianópolis, SC Brazil
| |
Collapse
|
34
|
Kamakura T, Ishida Y, Nakamura Y, Yamada T, Kitahara T, Takimoto Y, Horii A, Uno A, Imai T, Okazaki S, Inohara H, Shimada S. Functional expression of TRPV1 and TRPA1 in rat vestibular ganglia. Neurosci Lett 2013; 552:92-7. [PMID: 23916509 DOI: 10.1016/j.neulet.2013.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/15/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022]
Abstract
Both TRPV1 and TRPA1 are non-selective cation channels. They are co-expressed, and interact in sensory neurons such as dorsal root ganglia (DRG) and trigeminal ganglia (TG), and are involved in nociception, being activated by nociceptive stimuli. Immunohistological localization of TRPV1 in vestibular ganglion (VG) neurons has been reported. Although TRPA1 is co-expressed with TRPV1 in DRG and TG neurons, it is unclear whether TRPA1 channels are expressed in VG neurons. Moreover, it is unknown whether TRPV1 and TRPA1 channels are functional in VG neurons. We investigated the expression of TRPV1 and TRPA1 in rat VG neurons by RT-PCR, in situ hybridization, immunohistochemistry, and Ca(2+) imaging experiments. Both TRPV1 and TRPA1 RT-PCR products were amplified from the mRNA of rat VG neurons. In situ hybridization experiments showed TRPV1 and TRPA1 mRNA expression in the majority of VG neurons. Immunohistochemistry experiments confirmed TRPV1 protein expression. In Ca(2+) imaging experiments, capsaicin, a TRPV1 agonist, induced a significant increase in intracellular calcium ion concentration ([Ca(2+)]i) in rat primary cultured VG neurons, which was almost completely blocked by capsazepine, a TRPV1-specific antagonist. Cinnamaldehyde, a TRPA1 agonist, also caused an increase in [Ca(2+)]i, which was completely inhibited by HC030031, a TRPA1-specific antagonist. Moreover, in some VG neurons, a [Ca(2+)]i increase was evoked by both capsaicin and cinnamaldehyde in the same neuron. In summary, our histological and physiological studies reveal that TRPV1 and TRPA1 are expressed in VG neurons. It is suggested that TRPV1 and TRPA1 in VG neurons might participate in vestibular function and/or dysfunction such as vertigo.
Collapse
Affiliation(s)
- Takefumi Kamakura
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hoffmann T, Kistner K, Miermeister F, Winkelmann R, Wittmann J, Fischer MJM, Weidner C, Reeh PW. TRPA1 and TRPV1 are differentially involved in heat nociception of mice. Eur J Pain 2013; 17:1472-82. [PMID: 23720338 DOI: 10.1002/j.1532-2149.2013.00331.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Two transient receptor potential (TRP) channels, TRPV1 and TRPA1, have been physiologically studied with regard to noxious heat transduction. Evidence argues against these channels as sole transducers of noxious heat or cold, respectively. Moreover, in submammalian species the TRPA1 orthologue shows heat sensitivity. METHODS In vitro, single-fibre and compound action potential recordings from C-fibres as well as measurements of stimulated cutaneous CGRP release are combined with behavioural experiments to assess heat responsiveness in wild type mice, TRPA1 and TRPV1 as well as double-null mutants. RESULTS Heat thresholds of cutaneous C-mechano-heat sensitive fibres were significantly higher in TRPA1-/- (43 °C) than +/+ (40 °C) mice, and averaged heat responses were clearly weaker, whereas TRPV1-/- showed normal heat thresholds and responses (up to 46 °C). Compound action potential recordings revealed much less activity-dependent slowing of conduction velocity upon noxious heat stimulation in TRPA1-/- and a delayed deficit in TRPV1-/- in comparison to controls. Heat-induced calcitonin gene-related peptide release was reduced in TRPV1-/- but not TRPA1-/- animals. Paw withdrawal latencies to radiant heat were significantly elevated in TRPA1-/-, more so in TRPV1-/- animals. In general, double-null mutants were similar to TRPV1-/- except for the single-fibre heat responses which appeared as weak as in TRPA1-/-. CONCLUSIONS Our results indicate that in addition to TRPV1, TRPA1 plays a role in heat nociception, in particular in definition of the heat threshold, and might therefore serve as a therapeutic target in acute inflammatory pain.
Collapse
Affiliation(s)
- T Hoffmann
- Institute for Physiology and Pathophysiology, Universitaetsstrasse 17, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mechanisms of pelvic organ crosstalk: 1. Peripheral modulation of bladder inhibition by colorectal distention in rats. J Urol 2013; 190:765-71. [PMID: 23524199 DOI: 10.1016/j.juro.2013.03.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2013] [Indexed: 12/30/2022]
Abstract
PURPOSE Bladder activity can be inhibited by afferent input from the colorectum (inhibitory rectovesical reflex). We evaluated the functional response of the rat bladder to nonnoxious and noxious colorectal distention, and investigated the mechanical and pharmacological peripheral modulation of this response. MATERIALS AND METHODS In 70 female Sprague-Dawley® rats we evaluated the effect of nonnoxious (20 mm Hg) and noxious (40 and 60 mm Hg) colorectal distention on the micturition volume threshold and on bladder activity in a filled bladder. We also studied the effect of rectal balloon size (1.5 vs 3.5 cm long), and rectal administration of 2% lidocaine jelly or 1 mM allyl isothiocyanate solution on the inhibitory rectovesical reflex. RESULTS Colorectal distention at 60 mm Hg increased the micturition volume threshold (mean ± SE 0.640 ± 0.056 vs 0.448 ± 0.035 ml in controls, p <0.001). Bladder contraction frequency was significantly decreased by 40 and 60 mm Hg colorectal distention vs controls (mean 0.62 ± 0.06 and 0.33 ± 0.05 per minute, respectively, vs 0.77 ± 0.03, each p <0.001). These effects were reversible and pressure dependent (p <0.001), and more pronounced using a large rectal balloon (mean 40 vs 60 mm Hg colorectal distention 0.35 ± 0.12 vs 0.07 ± 0.04 per minute, p = 0.004). We noted no significant graded inhibition of bladder contraction amplitude or duration. The inhibitory rectovesical reflex was reversibly abolished by intrarectal lidocaine administration. Intrarectal allyl isothiocyanate administration significantly increased the effect of noxious colorectal distention on bladder contraction frequency. CONCLUSIONS Only noxious levels of colorectal distention initiated the inhibitory rectovesical reflex. The effect increased with rectal balloon size and with intrarectal administration of allyl isothiocyanate. It was reversibly abolished by lidocaine. Results suggest that spinal interneurons are the mechanism behind the inhibitory rectovesical reflex.
Collapse
|
37
|
Vodo S, Arcelli D, Fiorenzani P, Meriggiola MC, Butkevich I, Di Canio C, Mikhailenko V, Aloisi AM. Gonadal ERα/β, AR and TRPV1 gene expression: modulation by pain and morphine treatment in male and female rats. Physiol Behav 2012; 110-111:80-6. [PMID: 23287630 DOI: 10.1016/j.physbeh.2012.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/27/2012] [Accepted: 12/13/2012] [Indexed: 12/14/2022]
Abstract
The results of several studies strongly indicate a bidirectional relationship among gonadal hormones and pain. While gonadal hormones play a key role in pain modulation, they have been found to be affected by pain therapies in different experimental and clinical conditions. However, the effects of pain and pain therapy on the gonads are still not clear. In this study, we determined the long-lasting (72 h) effects of inflammatory pain (formalin test) and/or morphine on estrogen receptor (ER), androgen receptor (AR) and TRPV1 gene expression in the rat testis and ovary. The animals were divided into groups: animals receiving no treatment, animals exposed only to the experimental procedure (control group), animals receiving no pain but morphine (sham/morphine), animals receiving pain and morphine (formalin/morphine), and animals receiving only formalin (formalin/saline). Testosterone (T) and estradiol (E) were determined in the plasma at the end of the testing. In the sham/morphine rats, there were increases of ERα, ERβ, AR and TRPV1 mRNA expression in the ovary; in the testis, ERα and ERβ mRNA expression were reduced while AR and TRPV1 expression were unaffected by treatment. T and E plasma levels were increased in morphine-treated female rats, while T levels were greatly reduced in morphine-treated and formalin-treated males. In conclusion, both testicular and ovarian ER (ERα and ERβ) and ovarian AR and TRPV1 gene expression appear to be affected by morphine treatment, suggesting long-lasting interactions among opioids and gonads.
Collapse
Affiliation(s)
- Stella Vodo
- Pain and Stress Neurophysiology Lab., Department of Physiology, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 2012; 464:425-58. [DOI: 10.1007/s00424-012-1158-z] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
|
39
|
Sura L, Zíma V, Marsakova L, Hynkova A, Barvík I, Vlachova V. C-terminal acidic cluster is involved in Ca2+-induced regulation of human transient receptor potential ankyrin 1 channel. J Biol Chem 2012; 287:18067-77. [PMID: 22461626 PMCID: PMC3365772 DOI: 10.1074/jbc.m112.341859] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/20/2012] [Indexed: 11/06/2022] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a Ca(2+)-permeable cation channel whose activation results from a complex synergy between distinct activation sites, one of which is especially important for determining its sensitivity to chemical, voltage and cold stimuli. From the cytoplasmic side, TRPA1 is critically regulated by Ca(2+) ions, and this mechanism represents a self-modulating feedback loop that first augments and then inhibits the initial activation. We investigated the contribution of the cluster of acidic residues in the distal C terminus of TRPA1 in these processes using mutagenesis, whole cell electrophysiology, and molecular dynamics simulations and found that the neutralization of four conserved residues, namely Glu(1077) and Asp(1080)-Asp(1082) in human TRPA1, had strong effects on the Ca(2+)- and voltage-dependent potentiation and/or inactivation of agonist-induced responses. The surprising finding was that truncation of the C terminus by only 20 residues selectively slowed down the Ca(2+)-dependent inactivation 2.9-fold without affecting other functional parameters. Our findings identify the conserved acidic motif in the C terminus that is actively involved in TRPA1 regulation by Ca(2+).
Collapse
Affiliation(s)
- Lucie Sura
- From the Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic and
| | - Vlastimil Zíma
- the Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Lenka Marsakova
- From the Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic and
| | - Anna Hynkova
- From the Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic and
| | - Ivan Barvík
- the Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Viktorie Vlachova
- From the Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic and
| |
Collapse
|
40
|
Berg KA, Patwardhan AM, Akopian AN. Receptor and channel heteromers as pain targets. Pharmaceuticals (Basel) 2012; 5:249-78. [PMID: 24281378 PMCID: PMC3763638 DOI: 10.3390/ph5030249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/04/2012] [Accepted: 02/15/2012] [Indexed: 12/20/2022] Open
Abstract
Recent discoveries indicate that many G-protein coupled receptors (GPCRs) and channels involved in pain modulation are able to form receptor heteromers. Receptor and channel heteromers often display distinct signaling characteristics, pharmacological properties and physiological function in comparison to monomer/homomer receptor or ion channel counterparts. It may be possible to capitalize on such unique properties to augment therapeutic efficacy while minimizing side effects. For example, drugs specifically targeting heteromers may have greater tissue specificity and analgesic efficacy. This review will focus on current progress in our understanding of roles of heteromeric GPCRs and channels in pain pathways as well as strategies for controlling pain pathways via targeting heteromeric receptors and channels. This approach may be instrumental in the discovery of novel classes of drugs and expand our repertoire of targets for pain pharmacotherapy.
Collapse
Affiliation(s)
- Kelly A. Berg
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (K.A.B.)
| | - Amol M. Patwardhan
- Department of Anesthesiology, Arizona Health Sciences Center, Tucson, AZ 85724, USA; (A.M.P.)
| | - Armen N. Akopian
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (K.A.B.)
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
41
|
Furuta A, Suzuki Y, Hayashi N, Egawa S, Yoshimura N. Transient receptor potential A1 receptor-mediated neural cross-talk and afferent sensitization induced by oxidative stress: Implication for the pathogenesis of interstitial cystitis/bladder pain syndrome. Int J Urol 2012; 19:429-36. [DOI: 10.1111/j.1442-2042.2012.02966.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
New strategies to develop novel pain therapies: addressing thermoreceptors from different points of view. Pharmaceuticals (Basel) 2011; 5:16-48. [PMID: 24288041 PMCID: PMC3763626 DOI: 10.3390/ph5010016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023] Open
Abstract
One approach to develop successful pain therapies is the modulation of dysfunctional ion channels that contribute to the detection of thermal, mechanical and chemical painful stimuli. These ion channels, known as thermoTRPs, promote the sensitization and activation of primary sensory neurons known as nociceptors. Pharmacological blockade and genetic deletion of thermoTRP have validated these channels as therapeutic targets for pain intervention. Several thermoTRP modulators have progressed towards clinical development, although most failed because of the appearance of unpredicted side effects. Thus, there is yet a need to develop novel channel modulators with improved therapeutic index. Here, we review the current state-of-the art and illustrate new pharmacological paradigms based on TRPV1 that include: (i) the identification of activity-dependent modulators of this thermoTRP channel; (ii) the design of allosteric modulators that interfere with protein-protein interaction involved in the functional coupling of stimulus sensing and gate opening; and (iii) the development of compounds that abrogate the inflammation-mediated increase of receptor expression in the neuronal surface. These new sites of action represent novel strategies to modulate pathologically active TRPV1, while minimizing an effect on the TRPV1 subpopulation involved in physiological and protective roles, thus increasing their potential therapeutic use.
Collapse
|
43
|
Andrade EL, Meotti FC, Calixto JB. TRPA1 antagonists as potential analgesic drugs. Pharmacol Ther 2011; 133:189-204. [PMID: 22119554 DOI: 10.1016/j.pharmthera.2011.10.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 12/16/2022]
Abstract
The necessity of safe and effective treatments for chronic pain has intensified the search for new analgesic drugs. In the last few years, members of a closely-related family of ion channels, called transient receptor potential (TRP) have been identified in different cell types and their functions in physiological and pathological conditions have been characterized. The transient receptor potential ankyrin 1 (TRPA1), originally called ANKTM1 (ankyrin-like with transmembrane domains protein 1), is a molecule that has been conserved in different species during evolution; TRPA1 is a cation channel that functions as a cellular sensor, detecting mechanical, chemical and thermal stimuli, being a component of neuronal, epithelial, blood and smooth muscle tissues. In mammals, TRPA1 is largely expressed in primary sensory neurons that mediate somatosensory processes and nociceptive transmission. Recent studies have described the role of TRPA1 in inflammatory and neuropathic pain. However, its participation in cold sensation has not been agreed in different studies. In this review, we focus on data that support the relevance of the activation and blockade of TRPA1 in pain transmission, as well as the mechanisms underlying its activation and modulation by exogenous and endogenous stimuli. We also discuss recent advances in the search for new analgesic medicines targeting the TRPA1 channel.
Collapse
Affiliation(s)
- E L Andrade
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | |
Collapse
|
44
|
Devesa I, Planells-Cases R, Fernández-Ballester G, González-Ros JM, Ferrer-Montiel A, Fernández-Carvajal A. Role of the transient receptor potential vanilloid 1 in inflammation and sepsis. J Inflamm Res 2011; 4:67-81. [PMID: 22096371 PMCID: PMC3218746 DOI: 10.2147/jir.s12978] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a thermoreceptor that responds to noxious temperatures, as well as to chemical agonists, such as vanilloids and protons. In addition, its channel activity is notably potentiated by proinflammatory mediators released upon tissue damage. The TRPV1 contribution to sensory neuron sensitization by proalgesic agents has signaled this receptor as a prime target for analgesic and anti-inflammatory drug intervention. However, TRPV1 antagonists have notably failed in clinical and preclinical studies because of their unwanted side effects. Recent reports have unveiled previously unrecognized anti-inflammatory and protective functions of TRPV1 in several diseases. For instance, this channel has been suggested to play an anti-inflammatory role in sepsis. Therefore, the use of potent TRPV1 antagonists as a general strategy to treat inflammation must be cautiously considered, given the deleterious effects that may arise from inhibiting the population of channels that have a protective function. The use of TRPV1 antagonists may be limited to treating those pathologies where enhanced receptor activity contributes to the inflamed state. Alternatively, therapeutic paradigms, such as reduction of inflammatory-mediated increase of receptor expression in the cell surface, may be a better strategy to prevent abrogation of the TRPV1 subpopulation involved in anti-inflammatory and protective processes.
Collapse
Affiliation(s)
- Isabel Devesa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante
| | | | | | | | | | | |
Collapse
|
45
|
van Diest SA, Stanisor OI, Boeckxstaens GE, de Jonge WJ, van den Wijngaard RM. Relevance of mast cell-nerve interactions in intestinal nociception. Biochim Biophys Acta Mol Basis Dis 2011; 1822:74-84. [PMID: 21496484 DOI: 10.1016/j.bbadis.2011.03.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/11/2011] [Accepted: 03/30/2011] [Indexed: 01/06/2023]
Abstract
Cross-talk between the immune- and nervous-system is considered an important biological process in health and disease. Because mast cells are often strategically placed between nerves and surrounding (immune)-cells they may function as important intermediate cells. This review summarizes the current knowledge on bidirectional interaction between mast cells and nerves and its possible relevance in (inflammation-induced) increased nociception. Our main focus is on mast cell mediators involved in sensitization of TRP channels, thereby contributing to nociception, as well as neuron-released neuropeptides and their effects on mast cell activation. Furthermore we discuss mechanisms involved in physical mast cell-nerve interactions. This article is part of a Special Issue entitled: Mast cells in inflammation.
Collapse
Affiliation(s)
- Sophie A van Diest
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
47
|
Abstract
Transient receptor potential (TRP) channels have been extensively studied over the past years. Yet, in most cases, the gating mechanisms of these polymodal cation channels still remain a puzzle. Using the nociceptive channel TRPA1 as an example, we discuss the role of dynamic regulation of the pore size (pore dilatation) on channel gating. Additionally, we critically revise current knowledge of the role of intracellular domains, such as ankyrin repeats and EF hand motifs, in channel activation and function. Finally, we assess some problems inherent to activation of TRPA1 by the reaction of electrophilic compounds with the nucleophilic thiol sink of N-terminal reactive cysteines.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | |
Collapse
|